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Abstract: The extremal index θ, a number in the interval [0, 1], is known
to be a measure of primal importance for analyzing the extremes of a sta-
tionary time series. New rank-based estimators for θ are proposed which
rely on the construction of approximate samples from the exponential dis-
tribution with parameter θ that is then to be fitted via the method of
moments. The new estimators are analyzed both theoretically as well as
empirically through a large-scale simulation study. In specific scenarios, in
particular for time series models with θ ≈ 1, they are found to be superior
to recent competitors from the literature.
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1. Introduction

The statistical analysis of the extremal behavior of a stationary time series is im-
portant in many fields of application, such as in hydrology, meteorology, finance
or actuarial science [1]. Such an analysis typically consists of two steps: (1) as-
sessing the tail of the marginal law and (2) assessing the serial dependence of
the extremes, that is, the tendency that extreme observations occur in clusters.
The present work is concerned with step (2). The most common and simplest
mathematical object capturing the serial dependence between the extremes is
provided by the extremal index θ ∈ [0, 1]. In a suitable asymptotic framework,
the extremal index can be interpreted as the reciprocal of the expected size of a
cluster of extreme observations. The underlying probabilistic theory was worked
out in [18, 19, 23, 17, 20].

Estimating the extremal index based on a finite stretch of observations from
the time series has been extensively studied in the literature. An early overview
is provided in Section 10.3.4 in [1], where the estimators are classified into
three groups: estimators based on the blocks method, the runs method or the
inter-exceedance time method. Respective references are [16, 31, 13, 32, 27, 22,
12, 11, 5], among many others. The proposed estimators typically depend on
two or, arguably preferable, one parameter to be chosen by the statistician.
The present paper is on a class of method of moments estimators (based on
the blocks method), which improves upon a recent estimator proposed by Paul
Northrop in [22] and analyzed theoretically in [3].

Some notations and assumptions are necessary for the motivation of the new
class of estimators. Throughout the paper, X1, X2, . . . denotes a stationary se-
quence of real-valued random variables with continuous cumulative distribu-
tion function (c.d.f.) F . The sequence is assumed to have an extremal index
θ ∈ (0, 1], i.e., for any τ > 0, there exists a sequence ub = ub(τ), b ∈ N, such
that limb→∞ bF̄ (ub) = τ and

lim
b→∞

P(M1:b ≤ ub) = e−θτ , (1.1)

where F̄ = 1 − F and M1:b = max{X1, . . . , Xb}. Next, define a sequence of
standard uniform random variables by Us = F (Xs) and let

Y1:b = −b log(N1:b), N1:b = F (M1:b) = max{U1, . . . , Ub}. (1.2)



Method of moments estimators for the extremal index 3105

Since bF̄{F←(e−x/b)} = b(1− e−x/b) → x for b → ∞, it follows from (1.1) that,
for any x > 0,

P(Y1:b ≥ x) = P(M1:b ≤ F←(e−x/b)) → e−θx, (1.3)

where F←(z) = inf{y ∈ R : F (y) ≥ z} denotes the generalized inverse of
F evaluated at z ∈ R. In other words, for large block length b, Y1:b approxi-
mately follows an exponential distribution with parameter θ, denoted by Exp(θ)
throughout. This inspired [22] and [3] to estimate θ by the maximum likeli-
hood estimator for the exponential distribution; see Section 2 below for details
on how to arrive at an observable (rank-based) approximate sample from the
Exp(θ)-distribution based on an observed stretch of length n from the time
series (Xs)s∈N.

The idea of transforming observations into a sample of exponentially dis-
tributed observations is actually not new within extreme value statistics: it is
also, among many others, the main motivation for the Pickands estimator in
multivariate extremes [25, 14]. More precisely, if (X,Y ) is a bivariate random
vector from a multivariate extreme value distribution with Pickands function
A = (A(w))w∈[0,1], then ξ(w) = min{− logFX(X)/(1 − w),− logFY (Y )/w} is
exponentially distributed with parameter A(w). Given a sample of size n from
(X,Y ), we may replace FX and FY by their empirical counterparts and arrive
at an approximate sample of size n from the Exp(A(w))-distribution, to be, for
instance, estimated by the maximum likelihood estimator.

The present paper is now motivated by the following observation: while the
maximum likelihood estimator is asymptotically efficient in the ideal situation of
observing an i.i.d. sample from the exponential distribution, it was shown in [14]
for rank-based estimators of the Pickands function that it is in fact more efficient
to consider alternative estimators based on the method of moments, such as
a rank-based version of the CFG-estimator [6]. Given that Northrop’s blocks
estimator is also rank-based, the main motivation of this work is to consider
CFG-type estimators for the extremal index θ. Alongside, we will also investigate
other moment-based estimators, including one that is closely connected to the
madogram estimator in [21]. We will show that, depending on the true value
of θ, the new estimators may either exhibit a smaller or a larger asymptotic
variance than Northrop’s maximum likelihood estimator. In particular, we will
show that the CFG-type estimator’s variance is substantially smaller for θ close
to one, i.e., for time series with little clustering of extremes.

The remaining parts of this paper are organized as follows: in Section 2, we
collect some results about certain useful moments of the exponential distribu-
tion and use those to introduce the new estimators for θ. Regularity assumptions
needed to prove asymptotic results are summarized and discussed in Section 3.
The paper’s main results are then presented in Section 4, alongside with a dis-
cussion of certain aspects of the derived asymptotic variance formulas. Section 5
is about a particular time series model, for which we show that all regularity
conditions imposed in Section 3 are met. The finite-sample performance of the
new estimators is investigated in a Monte-Carlo simulation study in Section 6.
Finally, all proofs are postponed to Section A.
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2. Definition of estimators

Recall the definition of Y1:b in (1.2), where b ∈ N. Similarly, let

Z1:b = b(1−N1:b), N1:b = F (M1:b) = max{U1, . . . , Ub},

and note that, as b → ∞ and for any x > 0,

P(Z1:b ≥ x) = P(M1:b ≤ F←(1− x/b)) → e−θx (2.1)

by similar arguments as for Y1:b. The convergence relations in (1.3) and (2.1)
serve as a basis for the method of moments estimators defined below.

Subsequently, let X1, . . . , Xn denote a finite stretch of observations from the
stationary sequence (Xs)s≥1. Within Section 2.1 and 2.2, we start by using (1.3)
and (2.1) to derive some observable, approximate samples from the Exp(θ)-
distribution. In Section 2.3, we collect some moment equations for the expo-
nential distribution, which will then be used to motivate new estimators for the
extremal index in Section 2.4.

2.1. Approximate Exp(θ)-samples based on disjoint blocks maxima

Divide the sample X1, . . . , Xn into kn successive blocks of size bn, and for sim-
plicity assume that n = bnkn (otherwise, the last block of less than bn observa-
tions should be deleted). For i = 1, . . . , kn, let

Mni = max{X(i−1)bn+1, . . . , Xibn}

denote the maximum of the Xs in the ith block of observations and let

Yni = −bn logNni, Zni = bn(1−Nni), Nni = F (Mni).

Due to relations (1.3) and (2.1), if the block size b = bn is sufficiently large, the
(unobservable) random variables Yni and Zni are approximately exponentially
distributed with parameter θ. Observable counterparts are obtained by replacing
F by the (slightly adjusted) empirical c.d.f. F̂n(x) = (n+1)−1

∑n
s=1 1(Xs ≤ x),

giving rise to the definitions

Ŷni = −bn log N̂ni, Ẑni = bn(1− N̂ni), N̂ni = F̂n(Mni).

Both the samples Ydb
n = {Ŷni : i = 1, . . . , kn} and Zdb

n = {Ẑni : i = 1, . . . , kn}
will be used later to define disjoint blocks estimators for θ (note that both sam-
ples are dependent over i due to the use of F̂n, which complicates the asymptotic
analysis).

2.2. Approximate Exp(θ)-samples based on sliding blocks maxima

As in the previous paragraph, let n denote the sample size and bn denote a
block length parameter (the assumption that kn = n/bn ∈ N is not needed, no
discarding is necessary). For t = 1, . . . , n− bn + 1, let

M sb
nt = Mt:t+bn−1 = max{Xt, . . . , Xt+bn−1}
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denote the maximum of the Xs in a block of length bn starting at observation t.
Define

Y sb
nt = −bn logN

sb
nt , Zsb

nt = bn(1−N sb
nt ), N sb

nt = F (M sb
nt ),

Ŷ sb
nt = −bn log N̂

sb
nt , Ẑsb

nt = bn(1− N̂ sb
nt ), N̂ sb

nt = F̂n(M
sb
nt ).

By the same heuristics as before, the observable samples Ysb
n = {Ŷ sb

nt : t =
1, . . . , n − bn + 1} and Zsb

n = {Ẑsb
nt : t = 1, . . . , n − bn + 1} are approximate

samples from the exponential distribution and will be used later to define sliding
blocks estimators for θ (both samples are heavily dependent over i due to the
use of F̂n and the use of overlapping blocks).

2.3. Preliminaries on the exponential distribution

Some important moment equations, valid for a random variable ξ, which is
Exp(θ)-distributed, are collected. First,

E[log ξ] = − log θ − γ =: ϕ(C)(θ), (CFG)

where γ = −
∫∞
0

log(x)e−x dx ≈ 0.577 denotes the Euler-Mascheroni-constant.
Equation (CFG) is the basis for motivating the CFG-estimator, see [6, 14] and
the details in Section 1. Next, note that

E[exp(−ξ)] =
θ

1 + θ
=: ϕ(M)(θ), (MAD)

which serves as a basis for the madogram, see [21]. A further choice, includ-
ing (CFG) as a limit, is provided by

E[ξ1/p] = θ−1/pΓ(1 + 1/p) =: ϕ(R),p(θ), (ROOT)

where Γ(x) =
∫∞
0

tx−1e−t dt denotes the Gamma function and where p > 0. The
moment estimator in case of p = 1 will turn out to coincide with Northrop’s
maximum likelihood estimator. Also note that the previous equation is equiva-
lent to

E
[ξ1/p − 1

1/p

]
=

θ−1/pΓ(1 + 1/p)− 1

1/p
=: ϕ̃(R),p(θ), (2.2)

and taking the limits for p → ∞ on both sides (interchanging the limit and the
expectation on the left) exactly yields Equation (CFG).

2.4. Definition of the estimators

Let χm = {ξ1, . . . , ξm} denote a generic sample (not necessarily independent)
from the Exp(θ)-distribution. Replacing the moments in Equations (CFG),



3108 A. Bücher and T. Jennessen

(MAD) and (ROOT) by their empirical counterparts and solving the equation
for θ, we obtain the following three estimators for θ:

θ̂CFG(χm) = e−γ exp
{
− 1

m

m∑
i=1

log(ξi)
}
,

θ̂MAD(χm) =
1
m

∑m
i=1 exp(−ξi)

1− 1
m

∑m
i=1 exp(−ξi)

,

θ̂R,p(χm) = Γ(1 + 1/p)p
( 1

m

m∑
i=1

ξ
1/p
i

)−p

,

where p > 0. It may be verified that limp→∞ θ̂R,p(χm) = θ̂CFG(χm), see also (2.2)
for another relationship between the two estimators. Next, replacing χm by any
of the four samples Ydb

n ,Zdb
n ,Ysb

n or Zsb
n defined in Sections 2.1 and 2.2, we

finally arrive at 12 method of moments estimators for θ. We use the suggestive
notations

θ̂yn

db,CFG = θ̂CFG(Ydb
n ), θ̂znsb,MAD = θ̂MAD(Zsb

n )

to, e.g., denote the disjoint blocks CFG-estimator based on the Ŷni and the
sliding blocks madogram-estimator based on the Ẑni, respectively. Note that
the four estimators of the form θ̂yn

m,R,1, θ̂
zn
m,R,1,m ∈ {db, sb}, are the (pseudo)

maximum likelihood (PML) estimators considered in [3].

3. Mathematical preliminaries

Further mathematical details are necessary before we can state asymptotic re-
sults about the estimators defined in the previous section. The asymptotic frame-
work and the conditions are mostly similar as in Section 2 in [3], but will be
repeated here for the sake of completeness.

The serial dependence of the time series (Xs)s∈N will be controlled via mixing
coefficients. For two sigma-fields F1,F2 on a probability space (Ω,F ,P), let

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩B)− P(A)P(B)|.

In time series extremes, one usually imposes assumptions on the decay of the
mixing coefficients between sigma-fields generated by {Xs1(Xs > F←(1−εn)) :
s ≤ 
} and {Xs1(Xs > F←(1−εn)) : s ≥ 
+k}, where εn → 0 is some sequence
reflecting the fact that only the dependence in the tail needs to be restricted
(see, e.g., 29). As in [3], we need a slightly stronger condition, that also controls
the dependence between the smallest of all block maxima. More precisely, for
−∞ ≤ p < q ≤ ∞ and ε ∈ (0, 1], let Bε

p:q denote the sigma algebra generated
by Uε

s := Us1(Us > 1− ε) with s ∈ {p, . . . , q} and define, for 
 ≥ 1,

αε(
) = sup
k∈N

α(Bε
1:k,Bε

k+�:∞).
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In Condition 3.1(iii) below, we will impose a condition on the decay of the mixing
coefficients for small values of ε. Note that the coefficients are bounded by the
standard alpha-mixing coefficients of the sequence Us, which can be retrieved
for ε = 1.

The extremes of a time series may be conveniently described by the point
process of normalized exceedances. The latter is defined, for a Borel set A ⊂
E := (0, 1] and a number x ∈ [0,∞), by

N (x)
n (A) =

n∑
s=1

1(s/n ∈ A,Us > 1− x/n).

Note that N
(x)
n (E) = 0 iff N1:n ≤ 1 − x/n; the probability of that event con-

verging to e−θx under the assumption of the existence of the extremal index θ.

Fix m ≥ 1 and x1 > · · · > xm > 0. For 1 ≤ p < q ≤ n, let F (x1,...,xm)
p:q,n denote

the sigma-algebra generated by the events {Ui > 1 − xj/n} for p ≤ i ≤ q and
1 ≤ j ≤ m. For 1 ≤ 
 ≤ n, define

αn,�(x1, . . . , xm) = sup{|P(A ∩B)− P(A)P(B)| :
A ∈ F (x1,...,xm)

1:s,n , B ∈ F (x1,...,xm)
s+�:n,n , 1 ≤ s ≤ n− 
}.

The condition Δn({un(xj)}1≤j≤m) is said to hold if there exists a sequence
(
n)n with 
n = o(n) such that αn,�n(x1, . . . , xm) = o(1) as n → ∞. A sequence
(qn)n with qn = o(n) is said to be Δn({un(xj)}1≤j≤m)-separating if there exists
a sequence (
n)n with 
n = o(qn) such that nq−1

n αn,�n(x1, . . . , xm) = o(1) as
n → ∞. If Δn({un(xj)}1≤j≤m) is met, then such a sequence always exists,
simply take qn = 
max{nα1/2

n,�n
, (n
n)

1/2}�.
By Theorems 4.1 and 4.2 in [17], if the extremal index exists and the

Δ(un(x))-condition is met (m = 1), then a necessary and sufficient condition
for weak convergence of N (x)

n is convergence of the conditional distribution of
N (x)

n (Bn) with Bn = (0, qn/n] given that there is at least one exceedance of
1− x/n in {1, . . . , qn} to a probability distribution π on N, that is,

lim
n→∞

P(N (x)
n (Bn) = j | N (x)

n (Bn) > 0) = π(j) ∀ j ≥ 1,

where qn is some Δ(un(x))-separating sequence. Moreover, in that case, the
convergence in the last display holds for any Δ(un(x))-separating sequence qn,
and the weak limit of N (x)

n is a compound poisson process CP(θx, π). If the
Δ(un(x))-condition holds for any x > 0, then π does not depend on x (17,
Theorem 5.1).

A multivariate version of the latter results is stated in [24], see also the
summary in [27], page 278, and the thesis [15]. Suppose that the extremal index
exists and that the Δ(un(x1), un(x2))-condition is met for any x1 ≥ x2 ≥ 0,
x1 = 0. Moreover, assume that there exists a family of probability measures
{π(σ)

2 : σ ∈ [0, 1]} on J = {(i, j) : i ≥ j ≥ 0, i ≥ 1}, such that, for all (i, j) ∈ J ,

lim
n→∞

P(N (x1)
n (Bn) = i, N (x2)

n (Bn) = j | N (x1)
n (Bn) > 0) = π

(x2/x1)
2 (i, j),
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where qn is some Δ(un(x1), un(x2))-separating sequence. In that case, the two-
level point process N (x1,x2)

n = (N (x1)
n , N (x2)

n ) converges in distribution to a point
process with characterizing Laplace transform explicitly stated in [27] on top of
page 278. Note that

π
(1)
2 (i, j) = π(i)1(i = j), π

(0)
2 (i, j) = π(i)1(j = 0).

Finally, we will need the tail empirical pocess

en(x) =
1√
kn

n∑
s=1

{
1

(
Us > 1− x

bn

)
− x

bn

}
, x ≥ 0, (3.1)

where Us = F (Xs), see, e.g., [10, 29].
The following set of conditions will be imposed to establish asymptotic nor-

mality of the estimators.

Condition 3.1.

(i) The stationary time series (Xs)s∈N has an extremal index θ ∈ (0, 1] and
the above assumptions guaranteeing convergence of the one- and two-level
point process of exceedances are satisfied.

(ii) There exists δ > 0 such that, for any m > 0, there exists a constant C̃m

such that, for all 0 ≤ x1 ≤ x2 ≤ m,n ∈ N,

E
[
|N (x1)

n (E)−N (x2)
n (E)|2+δ

]
≤ C̃m(x2 − x1).

(iii) There exist constants c2 ∈ (0, 1) and C2 > 0 such that

αc2(m) ≤ C2m
−η

for some η ≥ 3(2 + δ)/(δ − μ) > 3, where 0 < μ < min(δ, 1/2) and δ > 0
is from Condition (ii). The block size bn converges to infinity and satisfies

kn = o(b2n), n → ∞.

Further, there exists a sequence 
n → ∞ with 
n = o(b
2/(2+δ)
n ) and

knαc2(
n) = o(1) as n → ∞.
(iv) There exist constants c1 ∈ (0, 1) and C1 > 0 such that, for any y ∈ (0, c1)

and n ∈ N,

Var

{
n∑

s=1

1(Us > 1− y)

}
≤ C1(ny + n2y2).

(v) For any c ∈ (0, 1), one has

lim
n→∞

P

(
min

i=1,...,2kn

N ′
ni ≤ c

)
= 0,

where N ′
ni = max{Us, s ∈ [(i− 1)bn/2 + 1, . . . , ibn/2]} for i = 1, . . . , 2kn.
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(vi) For any x > 0,

lim
m→∞

lim sup
n→∞

P

(
Nm:bn > 1− x

n

∣∣∣U1 ≥ 1− x

n

)
= 0.

Condition 3.2 (Integrability).

(i) With δ > 0 from Condition 3.1(ii), one has

lim sup
n→∞

E
[
| log(Z1:n)|2+δ

]
< ∞.

(ii) Fix p > 0. With δ > 0 from Condition 3.1(ii), one has

lim sup
n→∞

E
[
Z

(2+δ)/p
1:n

]
< ∞.

Condition 3.3 (Bias Condition). Recall ϕ(C), ϕ(M) and ϕ(R),p defined in Equa-
tions (CFG), (MAD) and (ROOT), respectively.

(i) As n → ∞, E[log(Z1:bn)] = ϕ(C)(θ) + o
(
k
−1/2
n

)
.

(ii) As n → ∞, E[exp(−Z1:bn)] = ϕ(M)(θ) + o
(
k
−1/2
n

)
.

(iii) Fix p > 0. As n → ∞, E
[
Z

1/p
1:bn

]
= ϕ(R),p(θ) + o

(
k
−1/2
n

)
.

Condition 3.4 (Technical Condition for the CFG-type estimator).

(i) For some q > 1/2, we have bn = O(kqn) as n → ∞.
(ii) For some τ ∈ (0, 1/2), we have, as n → ∞,{

en(x)

xτ

}
x∈[0,1]

d−→
{
e(x)

xτ

}
x∈[0,1]

in D([0, 1]),

the càglàd space of functions on [0, 1], where en denotes the tail empirical
process defined in (3.1) and where e is a centered Gaussian process with
continuous sample paths and covariance as given in Lemma B.1.

(iii) For any c > 0, we have, as n → ∞,

max
Zni≥c

∣∣∣∣ en(Zni)

Zni

√
kn

∣∣∣∣ = oP(1).

(iv) For any c > 0, there exists μ = μc ∈ (1/2, 1/{2(1 − τ)}) with τ from (ii)
such that, as n → ∞,

P(Zn1 < ck−μ
n )− P(ξ < ck−μ

n ) = o
(
log(n)−1k−1/2

n

)
, where ξ ∼ Exp(θ).

The items of Condition 3.1 are the same as Condition 2.1(i)-(v) and (2.2) in
[3] and are discussed in great detail in that reference. Condition 3.2 is needed for
uniform integrability of the sequences Z2/p

n1 and log2 Zn1, respectively. It implies

lim
n→∞

Var(Z
1/p
n1 ) = Var(ξ1/p), lim

n→∞
Var(logZn1) = Var(log ξ),
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respectively, where ξ denotes an exponentially distributed random variable with
parameter θ. Condition 3.3 is a bias condition requiring the approximation of
the first moment of f(Zn1) by E[f(ξ)] to be sufficiently accurate, where f(x) ∈
{x1/p, exp(−x), log x}.

Condition 3.4 is a technical condition which is only needed for deriving the
asymptotics of the CFG-estimator. The Condition 3.4(i) requires b to be not
too large. Sufficient conditions for Condition 3.4(ii) in terms of beta mixing
coefficients can be found in [10]. A sufficient condition for Condition 3.4(iii) is for
instance strong mixing with polynomial rate α1(n) = O(n−(1+

√
2)−ε), n → ∞,

for some ε > 0, together with Condition 3.4(i) being met with q < 1/(
√
2−1) ≈

2.41. Indeed, for any x ≥ c and η > 0, one can write

en(x)

x
=

1√
kn

n∑
s=1

{
1
(
Us > 1− x

bn

)
− x

bn

}
1

x
= −b1/2−η

n Un,η

(
1− x

bn

) 1

x1−η
,

where

Un,η(u) =

1√
n

∑n
s=1 {1(Us ≤ u)− u}

(1− u)η
1(0,1)(u).

By Theorem 2.2 in [30], we have supx≥0 |Un,η(1 − x/bn)| = OP(1) for all η ≤
1− 2−1/2 ≈ 0.29. Hence, by Condition 3.4(i),

max
Zni≥c

∣∣∣∣ en(Zni)

Zni

√
kn

∣∣∣∣ = OP

(b1/2−η
n√
kn

)
= OP

(
kq(1/2−η)−1/2
n

)
.

The expression on the right-hand side is oP(1) if we choose η ∈ (1/2−1/{2q}, 1−
2−1/2]; note that the latter interval is non-empty since q < 1/(

√
2− 1). Finally,

Condition 3.4(iv) is another technical condition requiring the approximation of
the law of Zn1 by the exponential distribution to be sufficiently accurate in the
lower tail.

4. Asymptotic results

We present asymptotic results on all estimators defined in Section 2. For sim-
plicity, all results are stated and proved for the Ẑni-versions only. As in Theorem
3.1 in [3], it may be verified that the respective versions based on Ŷni show the
same asymptotic behavior as the Ẑni-versions. Throughout, for z ∈ (0, 1), let

(ξ
(z)
1 , ξ

(z)
2 ) ∼ π

(z)
2 .

Theorem 4.1. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have√
kn(θ̂

zn
m,CFG − θ)

d−→ N (0, σ2
m,C)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,C = 2θ3

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ]− E[ξ

(z)
1 1(ξ

(z)
2 > 0)]

z(1 + z)
dz +

{
π2/6− 2 log(2)}θ2,

σ2
sb,C = σ2

db,C − {π2/6− 8 log(2) + 4}θ2.
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Theorem 4.2. Under Condition 3.1 and 3.3(ii), we have

√
kn(θ̂

zn
m,MAD − θ)

d−→ N (0, σ2
m,M)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,M = 4θ2(1 + θ)

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ]− E[ξ

(z)
1 1(ξ

(z)
2 > 0)]

(1 + z)3
dz +

θ2(1 + θ)

2(2 + θ)

σ2
sb,M = σ2

db,M − 3θ2 + 4θ − 4(1 + θ)(2 + θ) log{2(1 + θ)/(2 + θ)}
θ(2 + θ)(1 + θ)2

.

Theorem 4.3. Fix p > 0. Under Condition 3.1, 3.2(ii) and 3.3(iii),

√
kn(θ̂

zn
m,R,p − θ)

d−→ N (0, σ2
m,p)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,p =

4pθ3

B(1/p, 1/p)

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ] + E[ξ

(z)
1 1(ξ

(z)
2 = 0)]z

1
p−1

(1 + z)1+
2
p

dz

+
{ 2p3

B(1/p, 1/p)
− p2 − 2p

}
θ2,

σ2
sb,p = σ2

db,p −
[
p2 +

2p3

B(1/p, 1/p)

− 4p

Γ(1/p)2

∫ ∞

0

(1− e−z)z1/p−2Γ(1/p, z) dz

]
θ2,

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt denotes the beta function and Γ(x, z) =∫∞

x
tz−1e−t dt is the incomplete gamma function.

It is worthwhile to mention that the imposed conditions in each theorem are
exactly the same for the disjoint and the sliding blocks version. Furthermore,
apart from the different bias conditions, the conditions regarding kn are exactly
the same in Theorem 4.2 and 4.3, and slightly stronger for Theorem 4.1 in that
the additional technical Condition 3.4 is imposed.

The proofs are provided in Section A and bear some similarities with the one
of Theorem 3.2 in [3]. In particular, they rely on the delta method, Wichura’s
theorem and empirical process theory to adequately handle the asymptotic con-
tribution of the rank transformation. The most sophisticated proof is the one of
Theorem 4.1, which is essentially due to the fact that E[log ξ]=

∫∞
0

log(t)θe−θt dt
is an improper integral both at zero and at infinity (see also [14] for similar tech-
nical difficulties with the CFG-estimator for the Pickands dependence function
in multivariate extremes).

It is worth to mention that the difference

AsyVar(
√

knθ̂
zn
db,CFG/θ)−AsyVar(

√
knθ̂

zn
sb,CFG/θ) = (σ2

db,C−σ2
sb,C)/θ

2 ≈ 0.0977
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Fig 1. Graph of the functions θ �→ (σ2
db,M − σ2

sb,M)/θ2 (left) and p �→ (σ2
db,p − σ2

sb,p)/θ
2

(right).

is a universal constant independent of any properties of the observed time se-
ries. The same holds true for the Root-estimator with a constant depending in a
complicated way on the parameter p (the graph of p �→ (σ2

db,p − σ2
sb,p)/θ

2 is de-
picted in Figure 1, with a value of approximately 0.2274 for the PML-estimator).
For the Madogram-estimator, this difference depends on θ (see Figure 1 for the
graph of θ �→ (σ2

db,M − σ2
sb,M)/θ2); it is non-negative and decreasing with value

1/12 ≈ 0.083 for θ → 0 and approximately 0.0079 for θ = 1. In that regard, the
use of sliding blocks over disjoint blocks is least beneficial for the Madogram-
estimator.

Example 4.4. In the case that the time series is serially independent, the cluster
size distributions are given by π(i) = 1(i = 1) and π(z)

2 (i, j) = (1 − z)1(i =
1, j = 0) + z1(i = 1, j = 1), which implies

θ = 1, E[ξ
(z)
1 ξ

(z)
2 ] = z and E[ξ

(z)
1 1(ξ

(z)
2 = 0)] = 1− z.

It can be seen that these formulas hold true whenever θ = 1. Consequently, the
limiting variances in Theorem 4.1 and 4.2 are equal to

σ2
db,C =

π2

6
− 2 log(2) ≈ 0.2586, σ2

sb,C = 6 log(2)− 4 ≈ 0.1588,

σ2
db,M = 1/3, σ2

sb,M ≈ 0.32536.

It is remarkable that the asymptotic variances are substantially smaller than
those of the maximum likelihood estimator, see Example 3.1 in [3], which are
equal to 1/2 and 0.2726 for the disjoint and sliding blocks version, respectively.

The limiting variance in the case of the Root-estimator is given by

σ2
db,p =

2p

B( 1p ,
1
p )

[
p2 + 2−2/pp

]
− p2 − p,

σ2
sb,p = σ2

db,p −
[
p2 +

2p3

B( 1p ,
1
p )

− 4p

Γ( 1p )
2

∫ ∞

0

(1− e−z)z1/p−2Γ( 1p , z) dz

]
.
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Some values are

σ2
db,1/2 =

15

16
, σ2

db,1 =
1

2
, σ2

db,2 ≈ 0.3662,

σ2
sb,1/2 =

7

16
, σ2

sb,1 ≈ 0.2726, σ2
sb,2 ≈ 0.212909.

It can further be shown that limp→∞ σ2
m,p = σ2

m,C for m ∈ {db, sb}.
Remark 4.5. Instead of working with F̂n in the definition of Ẑni = bn{1 −
F̂n(Mni)}, one may alternatively use the empirical c.d.f. of (Xs)s/∈Ii multiplied

by (n− bn)/(n− bn +1) for Ii = {(i− 1)bn +1, . . . , ibn}, denoted by F̂n,−i, and

define Z̃ni = bn{1 − F̂n,−i(Mni)} and θ̃ = θ̂(Z̃n1, . . . , Z̃nkn). This modification
has been motivated as a bias reduction scheme in [22]. Since

Z̃ni = bn{1− F̂n,−i(Mni)} = bn{1− F̂n(Mni)}
n+ 1

n− bn + 1
= Ẑni

n+ 1

n− bn + 1
,

some simple calculations show that, for instance for the CFG-estimator,

e−γ exp
{
− 1

kn

kn∑
i=1

log(Z̃ni)
}
=

n− bn + 1

n+ 1
θ̂zndb,CFG,

showing that the modification is asymptotically negligible. It is however ben-
eficial in finite-sample situations, whence it has been applied throughout the
finite-sample situations considered in Section 6. Obviously, similar adaptions
can be applied to the sliding blocks version and the other moment based esti-
mators.

5. Example: max-autoregressive process

In this section, we exemplarily discuss the new estimators when applied to a
max-autoregressive process, defined by the recursion

Xs = max {αXs−1, (1− α)Zs} , s ∈ Z,

where α ∈ [0, 1) and where (Zs)s∈Z is an i.i.d. sequence of Fréchet(1)-distributed
random variables. A stationary solution of the above recursion is

Xs = max
j≥0

(1− α)αjZs−j ,

such that the stationary solution is again Fréchet(1)-distributed. Note that a
model with an arbitrary stationary c.d.f. F may be obtained by considering
X̃s = F←{exp(−1/Xs)} and that all subsequent results are also valid for (X̃s)s.

We start by explicitly calculating the asymptotic variances of the estimators
in Section 5.1, and then show in Section 5.2 that all regularity conditions from
Section 3 are met.
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Fig 2. Asymptotic variance of
√
kn(θ̂n/θ − 1) in the ARMAX-model. The estimators in the

right figure rely on disjoint blocks.

5.1. Asymptotic variances for the ARMAX-model

Recall that the ARMAX-model has extremal index θ = 1 − α and that the
corresponding cluster size distribution is geometric, that is, π(j) = αj−1(1 −
α), j ≥ 1, see, e.g., Chapter 10 in [1]. From Example 6.1 in [3], one further has

E[ξ
(z)
1 ξ

(z)
2 ] =

αw+1 + z + zw(1− α)

(1− α)2
,

E[ξ
(z)
1 1(ξ

(z)
2 = 0)] =

1− αw+1

1− α
− z(w + 1),

where w = 
log(z)/ log(α)� and (ξ
(z)
1 , ξ

(z)
2 ) ∼ π

(z)
2 . This allows to calculate the

limiting variances in Theorem 4.1–4.3 explicitly. For the CFG-type estimator,
some tedious but straightforward calculations imply

σ2
db,C

θ2
=

π2

6
+ 2 log(2)(α− 1) and

σ2
sb,C

θ2
= 2 log(2)(3 + α)− 4,

see also Figure 2 for a picture of the graph of these functions. Next, we com-
pare these variances with the disjoint and sliding blocks variances of the PML-
estimator in [3], which are given by σ2

db,1 and σ2
sb,1 and satisfy

σ2
db,1

θ2
=

1

2
(1 + α) and

σ2
sb,1

θ2
=

8 log(2)− 5 + α

2
,

respectively. Thus, σ2
db,C ≤ σ2

db,1 iff α ≤ {1 + 4 log(2)− π2/3}/{4 log(2)− 1} ≈
0.2723 and σ2

sb,C ≤ σ2
sb,1 iff α ≤ {3− 4 log(2)}/{4 log(2)− 1} ≈ 0.128.

Further comparisons can be drawn from Figure 2, where the asymptotic vari-
ances of

√
kn(θ̂n/θ − 1) are additionally illustrated for the Madogram- and the

Root-estimators.
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5.2. Regularity conditions for the ARMAX-model

Recall that Xs is Fréchet(1)-distributed, i.e., the stationary c.d.f. F is given by
F (x) = exp(−1/x), x > 0, with inverse F−1(x) = − log(x)−1.

The assumptions in Condition 3.1 are satisfied as shown in [3], page 2322,
provided bn and kn are chosen to satisfy the conditions in item (iii). Next, by
induction,

P
(

max
s=1,...,b

Xs ≤ x
)
= F (x)1+θ(b−1),

which implies that the c.d.f. of Z1:b = b{1− F (M1:b)} is given by

P(Z1:b ≤ x) =

⎧⎪⎨
⎪⎩
1, x ≥ b,

1−
(
1− x

b

)1+θ(b−1)
, x ∈ [0, b],

0, b ≤ 0.

(5.1)

A tedious but straightforward calculation then shows that the assumptions in
Condition 3.2 and 3.3 are met, provided kn/b

2
n = o(1), cf. Condition 3.1(iii).

Condition 3.4(i) is a condition on the choice of bn, that is under the control
of the statistician. Conditions 3.4(ii) and 3.4(iii) are consequences of mixing
properties of (Xs)s as argued at the end of Section 3. It remains to show that
Condition 3.4(iv) is satisfied. By (5.1) and with ξ ∼ Exp(θ), we have

P(Zn1 < ck−μ
n )− P(ξ < ck−μ

n ) = exp(−θck−μ
n )−

(
1− ck−μ

n

bn

)1+θ(bn−1)

= o(k−1/2
n (logn)−1), n → ∞,

for any μ > 1/2, where the final estimate follows from Taylor’s theorem and
Condition 3.4(i).

6. Finite-sample results

A Monte-Carlo simulation study was performed to assess the finite-sample per-
formance of the introduced estimators and to compare them with competing
estimators from the literature. The data is simulated from the following four
time series models that were also investigated in [3]:

• The ARMAX-model:

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and where (Zs)s is an i.i.d. sequence of standard Fréchet
random variables. We consider α = 0, 0.25, 0.5, 0.75 resulting in θ =
1, 0.75, 0.5, 0.25.

• The squared ARCH-model:

Xs = (2× 10−5 + λXs−1)Z
2
s , s ∈ Z,
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where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard
normal random variables. We consider λ = 0.1, 0.5, 0.9, 0.99 for which the
simulated values θ = 0.997, 0.727, 0.460, 0.422 were obtained, respectively;
see Table 3.1 in [8].

• The ARCH-model:

Xs = (2× 10−5 + λX2
s−1)

1/2Zs, s ∈ Z,

where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard
normal random variables. We consider λ = 0.1, 0.5, 0.7, 0.99 for which the
simulated values θ = 0.999, 0.835, 0.721, 0.571 were obtained, respectively;
see Table 3.2 in [8].

• The Markovian Copula-model ([7]):

Xs = F←(Us), (Us, Us−1) ∼ Cϑ, s ∈ Z.

Here, F← is the left-continuous quantile function of some arbitrary con-
tinuous c.d.f. F , (Us)s is a stationary Markovian time series of order 1
and Cϑ denotes the Survival Clayton Copula with parameter ϑ > 0. We
consider choices ϑ = 0.23, 0.41, 0.68, 1.06, 1.90 such that (approximately)
θ = 0.95, 0.8, 0.6, 0.4, 0.2 [3] and fix F as the standard uniform c.d.f. (the
results are independent of this choice, as the estimators are rank-based).
Algorithm 2 in [26] allows to simulate from this model.

In each case, the sample size is fixed to n = 213 = 8192 and the block size
is chosen from b = bn ∈ {22, . . . , 29}. The performance is assessed based on
N = 3000 simulation runs each.

6.1. Comparison of the introduced estimators

We start by comparing the finite-sample properties of the proposed sliding blocks
estimators θ̂xm,CFG, θ̂

x
m,MAD and θ̂xm,R,p for p ∈ {0.5, 0.75, 1, 2, 4, 8, 16} for x ∈

{zn, yn} and for m ∈{sb, db}.
As the simulation results are, to a large extent, similar among the different

models and estimators, they are only partially reported, with a particular view
on highlighting selected interesting qualitative features. We begin by a detailed
investigation of the variance, the squared bias and the mean squared error (MSE)
as a function of the block size parameter b. In Figure 3, we present results for
the disjoint and sliding blocks version of the CFG- and the PML-estimator in
a representative ARMAX-model with θ = 0.75. Similarly as in [3] and as to be
expected from the asymptotic results, the bias of the disjoint and the sliding
blocks version are almost identical, while the variance is uniformly smaller for the
sliding blocks version (in particular for large values of bn). Since this qualitative
behavior holds uniformly over all models and estimators, we omit the disjoint
blocks estimator from the subsequent discussions and write θ̂xCFG = θ̂xsb,CFG etc.
for simplicity.
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Fig 3. Comparison of variance, squared bias and MSE, multiplied by 103, of the disjoint and
sliding blocks CFG- and PML-estimator in the ARMAX-model.

Next, we compare the different moment estimators. For illustrative purposes,
we begin by restricting the presentation to the zn-versions and the ARCH-
model. The corresponding results are depicted in Figure 4 (for the CFG-, the
Madogram- and three selected Root-estimators). In general, as to be expected
from the underlying theory, the variance curves are increasing in b, while the
squared bias curves are (mostly) decreasing in b, resulting in a typical U-
shape for the MSE curves. The hierarchy of the estimators with regard to
the considered performance measures is similar among the considered values
of θ. In terms of the MSE, up to an intermediate block size, the CFG- and
Madogram-estimator are superior to the other estimators (especially to the
PML-estimator), while for large block sizes the Madogram-estimator has a rel-
atively high MSE, but the CFG-estimator partly remains superior. The Root-
estimators are, as expected, ordered in p and located between the PML- and
CFG-estimator.

Next, a comparison between the zn- and yn-versions of the estimators is
drawn in Figure 5; for illustrative purposes, attention is restricted to six different
models and two estimators. Remarkably, there are many models, especially for
smaller values of θ, in which the MSE-curves of the yn-versions lie uniformly
below the ones of the zn-versions. In the remaining models, neither version can
be said to be strictly preferable. Furthermore, it is remarkable that, for θ close
to one, the MSE-curves of the yn-versions are often no longer U-shaped, but
increasing in the block size instead. The latter behavior may be explained by
the proximity to the i.i.d. case, since in that case, we have

P(Y1:b ≥ y) = P(N1:b ≤ e−y/b) = P(U1 ≤ e−y/b)b = e−y

for all b ∈ N, such that there is real equality in relation (1.3), resulting in a
vanishing bias.

Next, we investigate the dependence of the performance of the Root-estima-
tors on the parameter p; recall that p = 1 yields the PML-estimator, while
‘p = ∞’ yields the CFG-estimator. In Figure 6, the MSE-curves are depicted
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Fig 4. Variance, squared bias and MSE, multiplied by 103, for the estimation of θ within the
ARCH-model for four values of θ.

Fig 5. Comparison of the MSE multiplied by 103 of the zn- and yn-versions of the estimators.
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Fig 6. Mean Squared Error multiplied by 103 of the Root-estimators as a function of the
parameter p for block sizes b ∈ {16, 32, 64, 128, 256} and three different models.

Table 1

Identification of the Root-estimator p with the minimum MSE for the ARCH- and
ARMAX-model and every considered block size b. The p with the minimum MSE over all

blocksizes is presented in the last line.

Model ARCH ARMAX
Theta 0.999 0.835 0.721 0.571 1 0.75 0.5 0.25

b = 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
32 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
64 2 2 ∞ ∞ 16 8 1.5 2

128 2 1.5 4 4 8 4 1 1
256 2 4 ∞ 1.25 4 8 1 0.75
512 2 8 ∞ ∞ 4 ∞ 1 0.75

minb ∞ ∞ ∞ ∞ ∞ ∞ 1.5 1

as a function of p for various fixed block sizes and for three selected models. It
can be seen that choices of p < 1 lead to a poor behavior of the corresponding
estimators. At the same time, the results do not allow to identify some ‘optimal’
choice of p ≥ 1 which is valid uniformly over all models. A similar conclusion
can be drawn from Table 1, which presents, for the ARCH- and ARMAX-model
and every block size b, the value of p for which the Root-estimator attains the
minimal MSE (p = ∞ corresponds to the CFG-estimator). One can see that
most values of p are represented, with p = ∞ appearing most often, but that
there is no optimal choice of p universally over all models.

6.2. Comparison with other estimators for the extremal index

In this section, we compare the performance of the introduced new estimators
with the following estimators: the bias-reduced sliding blocks estimator from [28]
(with a data-driven choice of the threshold as outlined in Section 7.1 of that
paper), the integrated version of the blocks estimator from [27], the intervals
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Fig 7. Mean Squared Error multiplied by 103 for the estimation of θ within the ARCH-model
for four values of θ.

estimator from [13] and the ML-estimator from [32]. The parameters σ and φ
for the Robert-estimator (cf. page 276 of 27) are chosen as σ = 0.7 and φ = 1.3.
In the case of the intervals- and Süveges-estimator, the choice of a threshold u is
required, which is here chosen as the 1−1/bn empirical quantile of the observed
data. With regard to our estimators, we present results for the sliding-blocks,
bias-reduced and zn-versions, if not indicated otherwise.

In Figure 7, we depict the MSE as a function of the block size b. For most
models, the MSE-curves of the estimators from the literature are again U-shaped
due to the bias-variance tradeoff already described in Section 6.1. It can further
be seen that no estimator is uniformly best in any model under consideration.
The method-of-moment estimators do however compare quite well to the com-
petitors.

The minimum values of the MSE-curves in Figure 7 are of particular in-
terest. Due to the large amount of estimators and models under consideration
(in total 26 estimators and 17 models) we try to simplify possible comparisons
by the following aggregation, summarized in Table 2. First, in the first four
columns of the table, we calculate for each time series model and each estima-
tor under consideration, the sum (sum over all values of θ considered for the
specific model) of the minimum MSE-values (minimum over b). Second, in the
last four columns of the table, we present the sum of the minimum MSE-values
(minimum over b) over all models, for which the extremal index θ lies in the in-
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Table 2

Sum of minimal Mean Squared Error multiplied by 103 over different models and
θ1 ∈ (0, 0.3], θ2 ∈ (0.3, 0.6], θ3 ∈ (0.6, 0.8] and θ4 ∈ (0.8, 1]. The three smallest values per

column are in boldface.

Estimator armax arch arch2 markov (0, .3] (.3, .6] (.6, .8] (.8, 1]
CFG, Z 4.80 8.54 8.46 11.19 5.84 19.08 5.46 2.61
CFG, Y 2.56 6.98 8.41 12.63 5.08 15.45 3.56 6.49
Madogram, Z 5.17 8.87 7.92 10.77 5.66 18.12 5.68 3.27
Madogram, Y 3.00 7.08 8.62 12.65 5.10 15.72 3.59 6.94
PML, Z 6.18 11.74 7.99 10.89 4.44 18.62 7.37 6.38
PML, Y 1.96 8.40 7.45 10.99 3.73 14.83 4.04 6.21
R, p = 0.5, Z 9.64 17.37 11.57 12.11 4.90 24.18 11.25 10.35
R, p = 0.5, Y 2.33 11.99 8.49 10.94 3.90 18.14 5.66 6.05
R, p = 0.75, Z 7.08 13.33 8.83 10.99 4.44 19.80 8.79 7.20
R, p = 0.75, Y 2.03 9.26 7.63 10.74 3.66 15.53 4.41 6.06
R, p = 1.25, Z 5.77 11.02 7.82 10.80 4.56 18.33 6.61 5.89
R, p = 1.25, Y 1.96 8.06 7.37 11.04 3.74 14.47 3.90 6.32
R, p = 1.5, Z 5.54 10.48 7.86 10.47 4.72 18.38 6.21 5.04
R, p = 1.5, Y 1.98 7.93 7.32 11.10 3.76 14.32 3.84 6.40
R, p = 2, Z 5.22 9.82 8.11 10.22 4.84 18.67 5.76 4.10
R, p = 2, Y 2.03 7.88 7.34 11.16 3.84 14.34 3.72 6.51
R, p = 4, Z 4.84 9.10 8.40 10.14 5.07 18.81 5.39 3.20
R, p = 4, Y 2.20 7.52 7.64 11.58 4.21 14.53 3.67 6.52
R, p = 8, Z 4.76 8.88 8.42 10.48 5.37 18.96 5.36 2.85
R, p = 8, Y 2.35 7.31 7.95 12.02 4.56 14.91 3.68 6.48
R, p = 16, Z 4.76 8.69 8.41 10.78 5.58 18.99 5.39 2.68
R, p = 16, Y 2.45 7.14 8.16 12.32 4.80 15.18 3.61 6.47
Intervals 3.49 12.53 11.72 21.86 3.60 15.55 11.46 18.98
ML Süveges 1.90 22.67 8.70 25.20 14.93 30.46 4.95 8.13
Robert 8.54 12.45 9.97 13.61 6.46 22.42 8.34 7.34
RSF 8.09 11.68 9.77 15.85 7.28 23.52 7.52 7.06

terval (0, 0.3], (0.3, 0.6], (0.6, 0.8] or (0.8, 1], respectively. It can be seen that the
CFG-estimator wins thrice, the Madogram- and PML-estimator wins twice, the
Süveges and the Intervals-estimator wins once, and that the remaining smallest
values are covered by a version of the Root-estimator. Also note that for large
values of θ ∈ (0.8, 1] (last column), the CFG-estimator and the Root-estimator
for p ∈ {8, 16} are the best performing estimators. As a final interesting observa-
tion, note that the y-versions of the moment estimators mostly outperform the
z-version, except for the column corresponding to θ ∈ (0.8, 1] and some entries
in the columns ‘Markov’ and ‘sqARCH’. A more refined analysis showed that
these differences were almost exclusively attributable to the two specific mod-
els ‘Markov(θ = 0.95)’ and ‘sqARCH(θ = 0.997)’, which appear to be rather
difficult to estimate for all estimators under consideration.

7. Conclusion

Estimating the extremal index is a classical problem in extreme value analy-
sis for univariate stationary time series, with many ad-hoc solutions based on
diverse motivations. This paper considers a new approach that is based on cer-
tain rescaled samples of ranks of block maxima and the method of moment
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principle. The underlying samples have also been used by [22] and [3] to define
explicit (pseudo) maximum likelihood estimators for the extremal index. Using
the method of moment principle instead results in a large variety of alternative
estimators. Studying their properties was initially motivated by the fact that a
similar approach in multivariate extremes (the rank-based CFG-estimator for
the Pickands function) was found to yield a more efficient estimator than the
(pseudo) maximum likelihood method [14].

The method of moment principle being a rather universal principle, the
present paper goes far beyond only considering a CFG-type estimator. In fact,
based on natural moment equations for the exponential distribution (see Sec-
tion 2.3), three classes of method of moment estimators were considered, which
may each be based on (1) either disjoint or sliding block maxima, and (2) on cer-
tain y- or z-transformations of the block maxima. The sliding blocks version was
always found to be more efficient than the disjoint blocks version. The y- and
z-version share a similar behavior in terms of their asymptotic variances, but
their bias may differ substantially depending on the underlying data generating
process. The initial conjecture derived from [14] was partially confirmed: for θ
in an explicit neighbourhood of 1, the asymptotic variance of the CFG-type es-
timator is always smaller than the one of the ML-type estimator. A comparison
between the various method of moment estimators is more cumbersome, with
no universal answer, neither theoretically nor in terms of simulated finite sample
results. If one were to come up with a single proposal, then the simulation study
overall suggests to use the sliding blocks y-version of the root-estimator with an
intermediate choice of p, say, p = 1.25.

In comparison with many other estimators for the extremal index, the pro-
posed estimators have the advantage of being based on only one parameter to
be chosen by the statistician, namely the block size b. Moreover, the estima-
tors perform equally well or even better in some typical finite sample situa-
tions.

Finally, this work leaves some interesting questions for future research:
(1) what is the minimal asymptotic variance that can be achieved by estimators
based on the considered rank-based samples? (2) More generally, are there esti-
mators for the extremal index that are semiparametrically efficient? (3) Can the
sliding blocks method be used to derive more efficient estimators for the cluster
size distribution, for instance by generalizing the disjoint blocks versions in [27]?

Appendix A: Proofs of Theorems 4.1–4.3

The proofs of Theorems 4.1–4.3 are actually quite similar in that each proof will
be decomposed into a sequence of similar intermediate lemmas. Occasionally,
those lemmas will be hardest to prove for Theorem 4.1 and easiest to prove for
Theorem 4.2; this is also reflected by the larger number of conditions required
for the proof of Theorem 4.1. The proof of Theorem 4.3 in turn is quite simi-
lar to the one in [3], and of intermediate difficulty. For the above reasons, we
will carry out the proof of Theorem 4.1 in great detail (Section A.1), and skip
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parts of the technical arguments needed for Theorem 4.2 and 4.3 where possible
(Sections A.2 and A.3). Intermediate, but less central results for the proof of
Theorem 4.1 are given in Sections B.1, B.2 and B.3.

All convergences are for n → ∞ if not stated otherwise.

A.1. Proof of Theorem 4.1

The following notations will be used throughout:

Ŝn =
1

kn

kn∑
i=1

log(Ẑni), Sn =
1

kn

kn∑
i=1

log(Zni),

Ŝsb
n =

1

n− bn + 1

n−bn+1∑
i=1

log(Ẑsb
ni), Ssb

n =
1

n− bn + 1

n−bn+1∑
i=1

log(Zsb
ni).

Note that θ̂zndb,CFG = ϕ−1
(C)(Ŝn) and θ̂znsb,CFG = ϕ−1

(C)(Ŝ
sb
n ), where ϕ−1

(C)(x) =

exp{−(x + γ)}. Observing that (ϕ−1
(C))

′{ϕ(C)(θ)} = θ, the two assertions of

the theorem are a consequence of the delta-method and Proposition A.1 and
Proposition A.2, respectively.

Proposition A.1. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have

√
kn{Ŝn − ϕ(C)(θ)}

d−→ N (0, σ2
db,C/θ

2) as n → ∞.

Proof. We may decompose√
kn{Ŝn − ϕ(C)(θ)} = An +Bn + Cn,

where

An =
√
kn{Ŝn−Sn}, Bn =

√
kn{Sn−E(Sn)}, Cn =

√
kn{E(Sn)−ϕ(C)(θ)}.

We have Cn = o(1) by Condition 3.3(i). For the treatment of An, recall the tail
empirical process defined in (3.1). Further, let Ñni = (n+1)/n× N̂ni, and note
that

1− Ñni =
1

n

n∑
s=1

1(Xs > Mni)

=
1

n

n∑
s=1

1
(
Us > 1− Zni

bn

)

=

√
kn
n

1√
kn

n∑
s=1

{
1
(
Us > 1− Zni

bn

)
− Zni

bn

}
+

Zni

bn

=

√
kn
n

en(Zni) +
Zni

bn
. (A.1)



3126 A. Bücher and T. Jennessen

Finally, let

Ĥkn(x) :=
1

kn

kn∑
i=1

1(Zni ≤ x) (A.2)

denote the empirical c.d.f. of Zn1, . . . , Znkn . By Equation (A.1), we obtain

An =
1√
kn

kn∑
i=1

log(1− N̂ni)− log
(
Znib

−1
n

)

=
1√
kn

kn∑
i=1

log

{
n

n+ 1

(
1

n
+ 1− Ñni

)}
− log

(
Zni

bn

)

=
1√
kn

kn∑
i=1

[
log

{
1

n
+

√
kn
n

en(Zni) +
Zni

bn

}
− log

(
Zni

bn

)
+ log

(
n

n+ 1

)]

=
1√
kn

kn∑
i=1

log

{
1 +

√
knbn
n

· en(Zni)

Zni
+

bn
nZni

}
+
√

kn log
( n

n+ 1

)

=

∫ ∞

0

Wn(x) dĤkn(x) + o(1), (A.3)

where

Wn(x) =
√

kn log

{
1 +

1√
kn

(
en(x)

x
+

1√
knx

)}
.

Heuristically, Ĥkn(x) ≈ 1 − exp(−θx) and Wn(x) ≈ e(x)/x (where e denotes
the limit of the tail empirical process), whence the tentative limit of An should
be

A =

∫ ∞

0

e(x)

x
θe−θx dx.

For a rigorous treatment of An +Bn, let

En =

∫ ∞

0

Wn(x) dĤkn(x), En,m =

∫ m

1/m

Wn(x) dĤkn(x),

E′
m =

∫ m

1/m

e(x)

x
θe−θx dx

and let B be defined as in Lemma B.1 below. As shown above, An = En +
o(1). The proposition is hence a consequence of Wichura’s theorem ([4], Theo-
rem 25.5) and the following items:

(i) For all m ∈ N: En,m +Bn
d−→ E′

m +B as n → ∞.

(ii) E′
m +B

d−→ A+B ∼ N (0, σ2
db,C/θ

2) as m → ∞.
(iii) For all δ > 0: limm→∞ lim supn→∞ P(|En − En,m| > δ) = 0.
The assertion in (i) is proven in Lemma B.4. The assertion in (ii) follows from
the fact that E′

m + B is normally distributed with variance τ2m as specified in
Lemma B.4, and the fact that τ2m → σ2

db,C/θ
2 as m → ∞ by Lemma B.5.

Finally, Lemma B.6 proves (iii).
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Proposition A.2. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have

√
kn{Ŝsb

n − ϕ(C)(θ)}
d−→ N (0, σ2

sb,C/θ
2) as n → ∞.

Proof. The proof is very similar to the proof of Proposition A.1. Decompose√
kn{Ŝsb

n − g(θ)} = Asb
n +Bsb

n + Csb
n ,

where

Asb
n :=

√
kn{Ŝsb

n − Ssb
n }, Bsb

n :=
√
kn{Ssb

n − E[Ssb
n ]},

Csb
n :=

√
kn{E[Ssb

n ]− ϕ(C)(θ)}.

Again, we have Csb
n = o(1) by Condition 3.3(i). A similar calculation as in (A.3)

in the case of the disjoint blocks shows that Asb
n can be written in the following

way

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x) + o(1),

where

Ĥsb
n (x) =

1

n− bn + 1

n−bn+1∑
t=1

1(Zsb
nt ≤ x)

denotes the empirical c.d.f. of Zsb
n1, . . . , Z

sb
n,n−bn+1. We may now treat Asb

n +

Bsb
n exactly as An + Bn in the proof of Proposition A.1, with En, En,m and

Lemma B.4, B.5 and B.6 replaced by

Esb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x), Esb

n,m =

∫ m

1/m

Wn(x) dĤ
sb
n (x),

and Lemma B.10, B.11 and B.12, respectively.

A.2. Proof of Theorem 4.2

The following notation will be used throughout:

Ŝn =
1

kn

kn∑
i=1

exp(−Ẑni), Sn =
1

kn

kn∑
i=1

exp(−Zni),

Ŝsb
n =

1

n− bn + 1

n−bn+1∑
i=1

exp(−Ẑsb
ni), Ssb

n =
1

n− bn + 1

n−bn+1∑
i=1

exp(−Zsb
ni).

Note that θ̂zndb,MAD = ϕ−1
(M)(Ŝn) and θ̂znsb,MAD = ϕ−1

(M)(Ŝ
sb
n ), where ϕ(M)(x) =

x/(1 + x). The assertion follows from the delta-method and Proposition A.3
and A.5.
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Proposition A.3. Under Condition 3.1 and 3.3(ii), we have√
kn{Ŝn − ϕ(M)(θ)}

d−→ N (0, σ2
db,M/(1 + θ)4) as n → ∞.

Proof. Write
√
kn{Ŝn − ϕ(M)(θ)} = An +Bn + Cn, where

An =
√
kn{Ŝn − Sn}, Bn =

√
kn{Sn − E[Sn]}, Cn =

√
kn{E[Sn]− ϕ(M)(θ)}.

The term Cn is asymptotically negligible by Condition 3.3(ii). A straightforward
calculation shows that the summand An can be written in terms of the tail
empirical process en as

An =

∫ ∞

0

Wn(x) dĤkn(x), Wn(x) =
√

kne
−x
[
exp(−en(x)k

−1/2
n )− 1

]
,

where Ĥkn is the empirical c.d.f. of Zn1, . . . , Znkn , see (A.2). The asymptotic
normality of An+Bn can now be shown as in the proof of Proposition A.1. The
corresponding key result is given by Lemma A.4; whose proof is similar (but
easier) as for the CFG-estimator (Lemma B.1) and is omitted for the sake of
brevity.

Lemma A.4. (a) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bn)
d−→ (e(x1), . . . , e(xm), B) ∼ Nm+1(0,Σm+1),

with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)

f(x1) . . . f(xm) θ
θ+2 − θ2

(θ+1)2

⎞
⎟⎟⎟⎠ ,

where the covariance function r is given as in Lemma B.1 and

f(x) =

∞∑
i=1

i

∫ 1

0

p(x)(i)− p
(x,− log(y))
2 (i, 0)1(x ≥ − log(y)) dy − xϕ(M)(θ).

(b) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bn)
d−→ (−e−x1e(x1), . . . ,−e−xme(xm), B).

Proposition A.5. Under Condition 3.1 and 3.3(ii), we have√
kn{Ŝsb

n − ϕ(M)(θ)}
d−→ N (0, σ2

sb,M/(1 + θ)4) as n → ∞.

Proof. The proof is similar to the proof of Proposition A.3. We may decompose√
kn{Ŝsb

n − ϕ(M)(θ)} = Asb
n +Bsb

n + Csb
n , where

Asb
n =

√
kn{Ŝsb

n − Ssb
n }, Bsb

n =
√
kn{Ssb

n − E[Ssb
n ]},
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Csb
n =

√
kn{E[Ssb

n ]− ϕ(M)(θ)}.

Again, we have Csb
n = o(1) by Condition 3.3(ii) and

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x),

where Ĥsb
n denotes the empirical c.d.f. of Zsb

n1, . . . , Z
sb
n,n−bn+1. The sum Asb

n +Bsb
n

can now be treated as in proof of Proposition A.2. The corresponding key result,
Lemma B.7, needs to be replaced by Lemma A.6; whose proof is again omitted
for the sake of brevity.

Lemma A.6. (a) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bsb
n )

d−→ (e(x1), . . . , e(xm), Bsb) ∼ Nm+1(0,Σ
sb
m+1),

where all entries of Σsb
m+1 are the same as those of Σm+1 in Lemma A.4 except

for the entry at position (m+ 1,m+ 1), which needs to be replaced by

v(θ) = 2− 4

θ + 1
+ 4

log(θ + 1)− log(θ + 2) + log(2)

θ(θ + 1)
− 2θ2

(θ + 1)2
.

(b) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bsb
n )

d−→ (−e−x1e(x1), . . . ,−e−xme(xm), Bsb).

A.3. Proof of Theorem 4.3

For fixed p > 0, define

Ŝn =
1

kn

kn∑
i=1

Ẑ
1/p
ni , Sn =

1

kn

kn∑
i=1

Z
1/p
ni ,

Ŝsb
n =

1

n− bn + 1

n−bn+1∑
i=1

Ẑ
1/p
ni , Ssb

n =
1

n− bn + 1

n−bn+1∑
i=1

Z
1/p
ni .

Note that θ̂zndb,R,p = ϕ−1
(R),p(Ŝn) and θ̂znsb,R,p = ϕ−1

(R),p(Ŝ
sb
n ), where ϕ(R),p(x) =

x−1/pΓ(1+1/p). By the delta-method, the assertion follows from Proposition A.7
and A.9.

Proposition A.7. Under Condition 3.1, 3.2(ii) and 3.3(iii), we have

√
kn{Ŝn − ϕ(R),p(θ)}

d−→ N (0, σ2
db,pψp(θ)) as n → ∞,

where ψp(θ) = Γ(1 + 1/p)2p−2θ−(2+2/p).
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Proof. Decompose
√
kn{Ŝn − ϕ(R),p(θ)} = An +Bn + Cn, where

An =
√

kn{Ŝn − Sn}, Bn =
√

kn{Sn − E[Sn]},
Cn =

√
kn{E[Sn]− ϕ(R),p(θ)}.

By Condition 3.3(iii), the term Cn converges to zero. A straightforward calcu-
lation shows that the term An can be written as

An =

∫ ∞

0

Wn(x) dĤkn(x), Wn(x) =
√

kn

{[
en(x)√

kn
+ x

]1/p
− x1/p

}
.

The asymptotic normality of An+Bn can be shown as in the proof of Propo-
sition A.1 by an application of Wichura’s theorem. Here, Lemma B.1 needs to be
replaced by Lemma A.8, whose proof is similar but easier and therefore omitted
for the sake of brevity.

Lemma A.8. (a) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bn)
d−→ (e(x1), . . . , e(xm), B) ∼ Nm+1(0,Σm+1)

with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) fp(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) fp(xm)
fp(x1) . . . fp(xm) vp(θ)

⎞
⎟⎟⎟⎠ ,

where the covariance function r is defined as in Lemma B.1 and

fp(x) =

∞∑
i=1

i

∫ ∞

0

p
(x,yp)
2 (i, 0)1(x ≥ yp) dy − xϕ(R),p(θ),

vp(θ) = θ
−2
p
{
Γ(1 + 2/p)− Γ(1 + 1/p)2

}
.

(b) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bn)
d−→
(
e(x1)x

1
p−1

1 p−1, . . . , e(xm)x
1
p−1
m p−1, B

)
.

Proposition A.9. Under Condition 3.1, 3.2(ii) and 3.3(iii), we have

√
kn{Ŝsb

n − ϕ(R),p(θ)}
d−→ N (0, σ2

sb,pψp(θ)) as n → ∞,

where ψp(θ) = Γ(1 + 1/p)2p−2θ−(2+2/p).

Proof. The proof is similar to the proof of Proposition A.7. Write
√
kn{Ŝsb

n −
ϕ(R),p(θ)} = Asb

n +Bsb
n + Csb

n , where

Asb
n =

√
kn{Ŝsb

n − Ssb
n }, Bsb

n =
√

kn{Ssb
n − E[Ssb

n ]},
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Csb
n =

√
kn{E[Ssb

n ]− ϕ(R),p(θ)}.

By Condition 3.3(iii), Csb
n = o(1), and a straightforward calculation yields

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x),

where Ĥsb
n denotes the empirical c.d.f. of Zsb

n1, . . . , Z
sb
n,n−bn+1. The sum Asb

n +

Bsb
n can be treated as in the proof of Proposition A.2, where the main result,

Lemma B.7, needs to be replaced by Lemma A.10, whose proof is omitted for
the sake of brevity.

Lemma A.10. (a) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bsb
n )

d−→ (e(x1), . . . , e(xm), Bsb) ∼ Nm+1(0,Σ
sb
m+1),

where all entries of Σsb
m+1 are the same as those of Σm+1 in Lemma A.8 except

for the entry at position (m+ 1,m+ 1), which needs to be replaced by

vsbp (θ) = 4p−2θ−2/p

∫ ∞

0

(1− e−z)z1/p−2Γ(1/p, z) dz − 2θ−2/pΓ(1 + 1/p)2.

(b) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bsb
n )

d−→
(
e(x1)x

1
p−1

1 p−1, . . . , e(xm)x
1
p−1
m p−1, Bsb

)
.

Appendix B: Auxiliary results for the proof of Theorem 4.1

B.1. Auxiliary lemmas – disjoint blocks

Throughout this section, we assume that Condition 3.1, 3.2(i) and 3.3(i) are
met.

Lemma B.1. For any x1, . . . , xm ∈ [0,∞) and m ∈ N, we have

(en(x1), . . . , en(xm), Bn)
′ d−→ (e(x1), . . . , e(xm), B)′,

where (e(x1), . . . , e(xm), B)′ ∼ Nm+1(0,Σm+1) with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)
f(x1) . . . f(xm) π2/6

⎞
⎟⎟⎟⎠ .

Here, r(0, 0) = 0 and, for x ≥ y ≥ 0 with x = 0,

r(x, y) = θx

∞∑
i=1

i∑
j=0

ijπ
(y/x)
2 (i, j), f(x) = h(x)− xϕ(C)(θ),
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h(x) =

∞∑
i=1

i

[ ∫ ∞

0

1(ey ≤ x)p
(x,ey)
2 (i, 0) dy

−
∫ 0

−∞
p(x)(i)− 1(ey ≤ x)p

(x,ey)
2 (i, 0) dy

]

and where, for i ≥ j ≥ 0, i ≥ 1,

p
(x,y)
2 (i, j) = P

(
N

(x,y)
E = (i, j)

)
, N

(x,y)
E =

η∑
i=1

(
ξ
(y/x)
i1 , ξ

(y/x)
i2

)

with η ∼ Poisson(θx) independent of i.i.d. random vectors
(
ξ
(y/x)
i1 , ξ

(y/x)
i2

)
∼

π
(y/x)
2 , i ∈ N and

p(x)(i) = P(N
(x)
E = i), N

(x)
E =

η2∑
i=1

ξi

with η2 ∼ Poisson(θx) independent of i.i.d. random variables ξi ∼ π, i ∈ N.

Lemma B.2. For any m ∈ N, we have

{(Wn(x), Bn)
′}x∈[1/m,m]

d−→
{(

e(x)

x
,B

)′}
x∈[1/m,m]

in D([1/m,m])× R,

where (e,B)′ is a centered Gaussian process with continuous sample paths and
with covariance functional as specified in Lemma B.1.

Lemma B.3. For any m ∈ N, we have

En,m = E′
n,m + oP(1) as n → ∞,

where E′
n,m =

∫m

1/m
Wn(x)θe

−θx dx.

Lemma B.4. For any m ∈ N, we have

En,m +Bn
d−→ E′

m +B ∼ N (0, τ2m) as n → ∞,

where, with r and f defined as in Lemma B.1,

τ2m = θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dxdy + 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+

π2

6
.

Lemma B.5. As m → ∞, τ2m → σ2
db,(C)/θ

2, where σ2
db,(C) is specified in The-

orem 4.1.

Lemma B.6. If, in addition to Condition 3.1, 3.2(i) and 3.3(i), Condition 3.4
holds, then, for all δ > 0,

lim
m→∞

lim sup
n→∞

P (|En,m − En| > δ) = 0.
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Proof of Lemma B.1. We proceed similarly as in the proof of Lemma 9.3 in [3].
Weak convergence of the (en(x1), . . . , en(xm))′ is a consequence of Theorem 4.1
in [27]. For the treatment of the joint convergence with Bn, we only consider
the case m = 1 and set x1 = x; the general case can be treated analogously.
For i = 1, . . . , kn, we decompose a block Ii = {(i− 1)bn + 1, . . . , ibn} into a big
block I+i and a small block I−i , where, recalling 
n from Condition 3.1(iii),

I+i = {(i− 1)bn + 1, . . . , ibn − 
n}, I−i = {ibn − 
n + 1, . . . , ibn},

and set

e+n (x) =
1√
kn

kn∑
i=1

∑
s∈I+

i

{
1
(
Us > 1− x

bn

)
− x

bn

}
,

B+
n =

1√
kn

kn∑
i=1

{
log(Z+

ni)− E[log(Z+
ni)]
}
,

where Z+
ni = bn(1−N+

ni), N
+
ni = maxs∈I+

i
Us. Next, according to Lemma 6.6 in

[27],
e−n (x) := en(x)− e+n (x) = oP(1).

It can further be shown by the same arguments as in the proof of Lemma 9.3
in [3] that

B−
n := Bn −B+

n = oP(1).

Finally, for ε ∈ (0, c1 ∧ c2), define A+
n = {mini=1,...,kn N+

ni > 1− ε}, and note
that P(A+

n ) → 1 by Condition 3.1(v). As a consequence of the previous three
statements, it suffices to show that, using the Cramér-Wold device,

{λ1e
+
n (x) + λ2B

+
n }1A+

n

d−→ λ1e(x) + λ2B, (B.1)

for any λ1, λ2 ∈ R.
Now, the left-hand side of (B.1) can be written as

{λ1e
+
n (x) + λ2B

+
n }1A+

n
=

1√
kn

kn∑
i=1

g̃i,n + oP(1),

where g̃i,n = gi,n1(Z
+
ni < εbn) and where

gi,n = λ1

∑
s∈I+

i

{
1
(
Us > 1− x

bn

)
− x

bn

}
+ λ2

{
log(Z+

ni)− E[log(Z+
ni)]
}
.

Note, that g̃i,n only depends on the block I+i and is Bε
(i−1)bn+1:ibn−�n

-measurable.
In particular, the (g̃i,n)i=1,...,kn are each separated by a small block of length 
n.
A standard argument based on characteristic functions and the assumption on
alpha mixing may then be used to show that the weak limit of k−1/2

n

∑kn

i=1 g̃i,n
is the same as if the g̃i,n were independent.
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Next, we show that Ljapunov’s condition ([4], Theorem 27.3) is satisfied. By
Minkowski’s inequality, for any p ∈ (2, 2+δ), we have C∞ = supn∈N E[|g̃1,n|p] <
∞ by Condition 3.1(ii) and 3.2(i). Further, by stationarity and independence,
we get ∑kn

i=1 E[|g̃i,n|p]
Var
(∑kn

i=1 g̃i,n
)p/2 = k1−p/2

n

E[|g̃1,n|p](
E[g̃21,n]

)p/2 ≤ C∞ × k1−p/2
n E[g̃21,n]

−p/2.

Hence, provided limn→∞ E[g̃21,n] exists, the last expression converges to 0 and

hence Ljapunov’s condition is met. As a consequence, k−1/2
n

∑kn

i=1 g̃i,n weakly
converges to a centered normal distribution with variance limn→∞ E[g̃21,n].

Finally, since limn→∞ E[g̃21,n] = limn→∞ E[g21,n], it remains to be shown that

lim
n→∞

E[g21,n] = λ2
1r(x, x) + 2λ1λ2h(x) + λ2

2π
2/6.

Since similar arguments as in the proof of B−
n = oP(1) and e−n = oP(1) allow us

to replace I+1 by I1 and then bn by n, this in turn is a consequence of

lim
n→∞

Var
(
N (x)

n (E)
)
= r(x, x), (B.2)

lim
n→∞

Cov
{
N (x)

n (E), log(Z1:n)
}
= f(x), (B.3)

lim
n→∞

Var{log(Z1:n)} = π2/6. (B.4)

The assertion in (B.2) follows from Theorem 4.1 in [27]. Further, since Z1:n
d−→

ξ ∼ Exp(θ) and since since | log(Z1:n)|2 is uniformly integrable by Condi-
tion 3.2(i), we have

lim
n→∞

Var{log(Z1:n)} = Var{log(ξ)} =
π2

6
,

which is (B.4). Finally, note that E[N (x)
n (E)] = x and E[log(Z1:n)] → ϕ(C)(θ)

by similar arguments as given above. As a consequence, (B.3) follows from
limn→∞ E

[
N (x)

n (E) log(Z1:n)
]
= h(x). The latter in turn can be seen as fol-

lows: first,

E
[
N (x)

n (E) log(Z1:n)
]
=

n∑
i=1

i E
[
1(N (x)

n (E) = i) log(Z1:n)
]
. (B.5)

The expected value on the right-hand side can be written as∫ ∞

0

P
(
1(N (x)

n (E) = i) log(Z1:n) > y
)
dy

−
∫ 0

−∞
1− P(1(N (x)

n (E) = i) log(Z1:n) > y) dy

=

∫ ∞

0

P(N (x)
n (E) = i, Z1:n > ey) dy
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−
∫ 0

−∞
P(N (x)

n (E) = i)− P(N (x)
n (E) = i, Z1:n > ey) dy.

Now,

P(N (x)
n (E) = i, Z1:n > ey) = P(N (x)

n (E) = i, N (ey)
n (E) = 0)

→
{
p
(x,ey)
2 (i, 0) , x ≥ ey ≥ 0,

0 , ey > x ≥ 0

and P(N
(x)
n (E) = i) → p(x)(i), see [24] and [27]. By uniform integrability we

obtain that the expected value on the right-hand side of (B.5) converges to h(x).
The proof is finished.

Proof of Lemma B.2. For fixed x > 0, consider the function

fn : R → R, fn(z) =
√

kn log
{
1 +

1√
kn

( z
x
+

1√
knx

)}
.

For zn → z, one has fn(zn) → e(z)/z. Hence, since (en(x1), . . . , en(xm), Bn)
′

converges in distribution to (e(x1), . . . , e(xm), B)′ for any x1, . . . , xm > 0 and
m ∈ N by Lemma B.1, we can apply the extended continuous mapping theorem
(Theorem 18.11 in 33) to obtain (Wn(x1), . . . ,Wn(xm), Bn)

′ → (e(x1)/x1, . . . ,
e(xm)/xm, B)′ in distribution. This is the fidi-convergence needed to prove
Lemma B.2.

Asymptotic tightness of the tail empirical process en follows from Theorem
4.1 in [27]. Asymptotic tightness of Bn follows from its weak convergence. This
implies asymptotic tightness of the vector (en, Bn), for instance by a simple
adaptation of Lemma 1.4.3 in [34].

Proof of Lemma B.3. LetH(x) = 1−e−θx be the cdf of the Exp(θ)-distribution.
From the proof of Lemma 9.2 in [3], we have, for any m ∈ N,

sup
x∈[1/m,m]

|Ĥkn(x)−H(x)| = oP(1), n → ∞.

Since

En,m − E′
n,m =

∫ m

1/m

Wn(x) d(Ĥkn −H)(x),

the assertion follows from Lemma B.2, Lemma C.8 in [2] and the continuous
mapping theorem.

Proof of Lemma B.4. As a consequence of Lemma B.3, Lemma B.2 and the
continuous mapping theorem, we have

En,m +Bn =

∫ m

1/m

Wn(x) θe
−θx dx+Bn + oP(1)

d−→
∫ m

1/m

e(x)

x
θe−θx dx+B = E′

m +B ∼ N (0, τ2m),
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where the variance τ2m is given by

τ2m = Var
{ ∫ m

1/m

e(x)
1

x
θe−θx dx

}
+ 2Cov

{ ∫ m

1/m

e(x)
1

x
θe−θx dx,B

}
+Var(B)

= θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dx dy + 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+

π2

6

as asserted.

Proof of Lemma B.5. By the definition of τ2m in Lemma B.4

lim
m→∞

τ2m = θ2
∫ ∞

0

∫ ∞

0

r(x, y)
1

xy
e−θ(x+y) dxdy + 2θ

∫ ∞

0

f(x)
1

x
e−θx dx+

π2

6
.

(B.6)

For x > y, we have r(x, y) = θxE
[
ξ
(y/x)
1 ξ

(y/x)
2

]
with (ξ

(y/x)
1 , ξ

(y/x)
2 ) ∼ π

(y/x)
2 .

Hence, applying the transformation z = y/x, the first summand on the right-
hand side of (B.6) can be written as

θ2
∫ ∞

0

∫ ∞

0

r(x, y)

xy
e−θ(x+y) dxdy = 2θ3

∫ ∞

0

∫ x

0

E
[
ξ
(y/x)
1 ξ

(y/x)
2

]
y

e−θ(x+y) dy dx

= 2θ3
∫ ∞

0

∫ 1

0

E
[
ξ
(z)
1 ξ

(z)
2

]
z

e−θx(1+z) dz dx

= 2θ2
∫ 1

0

E
[
ξ
(z)
1 ξ

(z)
2

]
z(z + 1)

dz. (B.7)

For the second summand on the right-hand side of (B.6), note that

∞∑
i=1

ip
(x,ey)
2 (i, 0) = E

[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey , (B.8)

see Formula (A.7) in the proof of Lemma 9.6 in [3] and
∑∞

i=1 ip
(x)(i) = E[N (x)

E ] =
x, see [27]. Therefore, we can rewrite h from Lemma B.1 as follows

h(x) =

∫ ∞

0

1(ey ≤ x) E
[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey dy

−
∫ 0

−∞
x− 1(ey ≤ x) E

[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey dy.

= x

∫ ∞

1/x

1(z ≤ 1)E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz

− x

∫ 1/x

0

1

z
− 1(z ≤ 1)E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz,



Method of moments estimators for the extremal index 3137

where we have used the transformation z = ey/x. For 0 < x ≤ 1, the first
integral is zero and we obtain

h(x) = −x

∫ 1

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz − x

∫ 1/x

1

1

z
dz

= −x

∫ 1

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz + x log(x),

while for x > 1,

h(x) = x

∫ 1

1/x

E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz

− x

∫ 1/x

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz.

As a consequence, writing g(z) = E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
, we obtain

∫ ∞

0

h(x)
1

x
e−θx dx =

∫ 1

0

log(x)e−θx dx−
∫ 1

0

e−θx

∫ 1

0

1

z
− g(z)θ

e−θzx

z
dz dx

+

∫ ∞

1

e−θx

∫ 1

1/x

g(z)θ
e−θzx

z
dz dx

−
∫ ∞

1

e−θx

∫ 1/x

0

1

z
− g(z)θ

e−θzx

z
dz dx.

Next, some tedious calculations based on Fubini’s theorem allow to rewrite the
sum of the last three double integrals as

s =

∫ 1

0

e−θ/z − 1

θz
+

g(z)

z(1 + z)
dz.

Using the fact that g(z) = 1
θ − E

[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]
, we thus obtain

∫ ∞

0

h(x)
1

x
e−θx dx

=

∫ 1

0

log(z)e−θz +
e−θ/z − 1

θz
+

1

θz(1 + z)
−

E
[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]
z(1 + z)

dz

=

∫ 1

0

log(z)e−θz +
e−θ/z

θz
− 1

θ(1 + z)
−

E
[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]
z(1 + z)

dz.

Finally, one can show

∫ 1

0

log(z)e−θz +
e−θ/z

θz
dz = −(log θ + γ)/θ = ϕ(C)(θ)/θ,
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such that, assembling terms and recalling f(x) = h(x)− xϕ(C)(θ),∫ 1

0

f(x)
1

x
e−θx dx =

∫ 1

0

h(x)
1

x
e−θx dx− ϕ(C)(θ)

∫ ∞

0

e−θx dx

= − log(2)/θ −
∫ 1

0

E
[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]
z(1 + z)

dz. (B.9)

The lemma is now an immediate consequence of (B.6), (B.7) and (B.9).

Proof of Lemma B.6. By Lemma B.3, it suffices to show the assertion with En,m

replaced by E′
n,m. Define ẽn(x) := en(x)+k−1/2

n , such that, by Condition 3.4(iii),
we have

max
Zni≥c

∣∣∣∣ ẽn(Zni)

Zni

√
kn

∣∣∣∣ = oP(1)

for any constant c > 0. Fix m ∈ N. By the previous display, for any ε > 0, the
event

Bn = Bn(m, ε) =
{

max
Zni≥m

∣∣∣ ẽn(Zni)

Zni

√
kn

∣∣∣ ≤ ε
}

satisfies P(Bn) → 1. Next,

|En,m − En| ≤
∣∣∣ ∫ ∞

0

log
(
1 +

ẽn(x)

x
√
kn

)√
kn 1(0,1/m](x) dĤkn(x)

∣∣∣
+
∣∣∣ ∫ ∞

0

log
(
1 +

ẽn(x)

x
√
kn

)√
kn 1[m,∞)(x) dĤkn(x)

∣∣∣
=: |Vn1|+ |Vn2|,

such that

|En,m − En| = |En,m − En|1Bn + oP(1) ≤ |Vn1|+ |Vn2|1Bn + oP(1). (B.10)

We begin by treating the term |Vn2|1Bn . Since log(1 + x) =
∫ 1

0
x/(1 + sx) ds

for any x > −1, we have

Vn21Bn =

∫ ∞

0

ẽn(x)

x

∫ 1

0

1

1 + s ẽn(x)

x
√
kn

ds 1(x ≥ m) dĤkn(x)1Bn

=
1

kn

kn∑
i=1

ẽn(Zni)

Zni
1(Zni ≥ m)

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds1Bn

= k−3/2
n

kn∑
i=1

1(Zni ≥ m)

Zni

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds
{ n∑

t=1

f(Ut, Zni) + 1
}
1Bn ,

where

f(Ut, Zni) = 1(Ut > 1− Zni/bn)− Zni/bn. (B.11)
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For given ε ∈ (0, c1 ∧ c2) with cj as in Condition 3.1, let Cn = Cn(ε) denote the
event {mini=1,...,kn Nni > 1−ε/2} = {maxi=1,...,kn Zni < εbn/2}, which satisfies
P(Cn) → 1 by Condition 3.1(v). Hence, we can write Vn21Bn = V̄n21Cn +oP(1),
where

V̄n2 = k−3/2
n

kn∑
i=1

1

Zni
1(εbn/2 > Zni ≥ m)

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds

×
{ n∑

t=1

f(Ut, Zni) + 1
}
1Bn .

We obtain

|V̄n2| ≤
1

m
k−3/2
n

kn∑
i=1

1(εbn/2 > Zni ≥ m)

∫ 1

0

1∣∣∣1 + s ẽn(Zni)

Zni

√
kn

∣∣∣ ds
×
{∣∣∣ n∑

t=1

f(Ut, Zni)
∣∣∣+ 1

}
1Bn .

On the event Bn the integral over s can be bounded as follows∫ 1

0

1∣∣∣1 + s ẽn(Zni)

Zni

√
kn

∣∣∣ ds 1Bn ≤
∫ 1

0

1

1− sε
ds 1Bn ≤ 1

1− ε
.

The previous two displays imply that |V̄n2| is bounded by

1

m

1

1− ε
k−3/2
n

kn∑
i=1

1(εbn/2 > Zni ≥ m)
{∣∣∣ n∑

t=1

f(Ut, Zni)
∣∣∣+ 1

}

=
1

m

1

1− ε
k−3/2
n

kn∑
i=1

1(εbn/2 > Zni ≥ m)
∣∣∣ n∑
t=1

f(Ut, Zni)
∣∣∣+OP(k

−1/2
n ).

The upper bound can now be treated exactly as in the proof of Lemma 9.1 in
[3], finally yielding

lim
m→∞

lim sup
n→∞

P(|Vn21Bn | > δ) = 0. (B.12)

It remains to treat |Vn1|. Write

|Vn1| ≤ Tn(0, dk
−1
n ) + Tn(dk

−1
n , dk−μ

n ) + Tn(dk
−μ
n , 1/m)

=: Tn1 + Tn2 + Tn3, (B.13)

where, for some constant d > 0 and μ = μd determined below,

Tn(a, b) =
√

kn

∫ ∞

0

1(x ∈ (a, b])
∣∣∣ log (1 + ẽn(x)

x
√
kn

)∣∣∣ dĤkn(x).
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We start by covering the term Tn1 = Tn(0, dk
−1
n ) and determining the constants

d and μ. Note that for the event Jn = {mini=1,...,kn Zni > dk−1
n } one has

P(Jn) = P
(
kn min

i=1,...,kn

Zni > d
)
= P
(
n
(
1− max

i=1,...,kn

Nni

)
> d
)

= P(Z1:n > d) → e−dθ.

Then,

P(Tn1 > δ) = P(Tn11Jn + Tn11Jc
n
> δ)

≤ P(Tn11Jn > δ/2) + P(Tn11Jc
n
> δ/2)

≤ P(Jc
n) → 1− exp(−dθ).

Hence, for any given ε > 0 we can choose d = d(ε) < − log(1− ε)/θ, such that

lim sup
n→∞

P(Tn1 > δ) ≤ lim sup
n→∞

P(Jc
n) = 1− exp(−dθ) < ε. (B.14)

Now, choose μ = μd ∈ (1/2, 1/{2(1 − τ)}) from Condition 3.4(iv), where
τ ∈ (0, 1/2) is from Condition 3.4(ii). Next, consider Tn3 = Tn(dk

−μ
n , 1/m) and

note that, for x ∈ (dk−μ
n , 1/m], we have∣∣∣∣ ẽn(x)x

√
kn

∣∣∣∣ =
∣∣∣∣ ẽn(x)xτ

∣∣∣∣ 1

x1−τ
√
kn

≤ 1

d1−τ

∣∣∣∣ ẽn(x)xτ

∣∣∣∣ kμ(1−τ)−1/2
n = oP(1)

uniformly in x, by Condition 3.4(ii). As a consequence, the event

Dn =
{∣∣∣ ẽn(x)

x
√
kn

∣∣∣ ≤ 1

2

}
satisfies 1Dc

n
= oP(1), whence, recalling that x/(1 + x) ≤ log(1+ x) ≤ x for any

x > −1, we have

Tn3 =
√

kn

∫
(dk−μ

n ,1/m]

∣∣∣ log (1 + ẽn(x)

x
√
kn

)∣∣∣1Dn dĤkn(x) + oP(1)

≤
∫
(dk−μ

n ,1/m]

max
{∣∣∣ ẽn(x)

x

∣∣∣, ∣∣∣ ẽn(x)
x

∣∣∣(1 + ẽn(x)

x
√
kn

)−1}
1Dn dĤkn(x) + oP(1)

≤ 2

∫
(dk−μ

n ,1/m]

∣∣∣∣ ẽn(x)xτ

∣∣∣∣ 1

x1−τ
1Dn dĤkn(x) + oP(1).

By Lemma B.15, Condition 3.4(ii) and the continuous mapping theorem, the
last expression converges weakly to

T3(m) = 2

∫ 1/m

0

∣∣∣∣e(x)xτ

∣∣∣∣ 1

x1−τ
dH(x).

As a consequence,

lim
m→∞

lim sup
n→∞

P(Tn3 ≥ δ) ≤ lim
m→∞

P(T3(m) > δ) = 0. (B.15)
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Finally, regarding Tn2, note that, for x ∈ (dk−1
n , dk−μ

n ),

ẽn(x)

x
√
kn

≤ 1

x

( 1

kn
+

1

kn

n∑
i=1

1(Ui > 1− x/bn)
)
≤ n+ 1

d
,

ẽn(x)

x
√
kn

≥ 1

x

( 1

kn
− 1

kn

n∑
i=1

x/bn

)
≥ 1

dk1−μ
n

− 1,

which implies

∣∣∣ log (1 + ẽn(x)

x
√
kn

)∣∣∣
= log

(
1 +

ẽn(x)

x
√
kn

)
1
( ẽn(x)
x
√
kn

> 0
)
− log

(
1 +

ẽn(x)

x
√
kn

)
1
( ẽn(x)
x
√
kn

< 0
)

≤ log
(
(n+ 1)d−1 + 1

)
+ log

(
dk1−μ

n

)
� log(n).

As a consequence, the term Tn2 = Tn(dk
−1
n , dk−μ

n ) can be bounded as follows

Tn2 � log(n)
√
kn

∫
(dk−1

n ,dk−μ
n ]

dĤkn(x) =
log(n)√

kn

kn∑
i=1

1
(
Zni ∈ (dk−1

n , dk−μ
n ]
)
.

Hence, by Condition 3.4(iv),

E [Tn2] � log(n)
√
knP(Zn1 < dk−μ

n )

= log(n)
√
kn{1− exp(−θdk−μ

n )}+ o(1)

= θd log(n) k1/2−μ
n {1 + o(1)}+ o(1)

= O(log(kn)k
1/2−μ
n ) = o(1), (B.16)

where the last line follows from logn = log kn + log bn � (1 + q) log kn by
Condition 3.4(i).

The assertion follows from (B.10), combined with (B.12), (B.13), (B.14),
(B.15) and (B.16).

B.2. Auxiliary lemmas – sliding blocks

Throughout this section, we assume that Condition 3.1, 3.2(i) and 3.3(i) are
met.

Lemma B.7. For any x1, . . . , xm ∈ [0,∞) and m ∈ N, we have

(en(x1), . . . , en(xm), Bsb
n )′

d−→ (e(x1), . . . , e(xm), Bsb)′,
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where (e(x1), . . . , e(xm), Bsb)′ ∼ Nm+1(0,Σ
sb
m+1) with

Σsb
m+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)
f(x1) . . . f(xm) 8 log(2)− 4

⎞
⎟⎟⎟⎠ .

Here, the functions r and f are defined as in Lemma B.1.

Lemma B.8. For any m ∈ N, we have

{
(Wn(x), B

sb
n )′
}
x∈[1/m,m]

d−→
{(

e(x)

x
,Bsb

)′}
x∈[1/m,m]

in D([1/m,m])× R,

where (e,Bsb)′ is a centered Gaussian process with continuous sample paths and
with covariance functional as specified in Lemma B.7.

Lemma B.9. For any m ∈ N, we have

Esb
n,m = E′

n,m + oP(1) as n → ∞,

where E′
n,m =

∫m

1/m
Wn(x)θe

−θx dx is as in Lemma B.3.

Lemma B.10. For any m ∈ N, we have

Esb
n,m +Bsb

n
d−→ E′

m +Bsb ∼ N (0, τ2sb,m) as n → ∞,

where, with r and f defined as in Lemma B.1,

τ2sb,m = θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dxdy

+ 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+ 8 log(2)− 4.

Lemma B.11. As m → ∞, τ2sb,m → σ2
sb,(C)/θ

2, where σ2
sb,(C) is specified in

Theorem 4.1.

Lemma B.12. If in addition, Condition 3.4 holds, then, for all δ > 0,

lim
m→∞

lim sup
n→∞

P
(
|Esb

n,m − Esb
n | > δ

)
= 0.

Proof of Lemma B.7. As in the proof of Lemma B.1 we only show joint weak
convergence of (en(x), B

sb
n ) for some fixed x > 0; the general case can be shown

analogously. For given ε ∈ (0, c1 ∧ c2) let A
′
n = {mint=1,...,n−bn+1 N

sb
nt > 1− ε},

such that P(An) → 1 by Condition 3.1(v). By the Cramér-Wold device, it suffices
to prove weak convergence of
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λ1en(x) + λ2B
sb
n =

kn−1∑
j=1

∑
s∈Ij

[ λ1√
kn

{
1
(
Us > 1− x

bn

)
− x

bn

}

+
λ2

√
kn

n− bn + 1

{
log(Zsb

ns)− E[log(Zsb
ns)]
}]

+ oP(1),

for some arbitrary λ1, λ2 ∈ R, where the negligible term stems from omitting a
negligible number of summands.

We are going to apply a big block-small block argument, based on a suitable
‘blocking of blocks’ to take care of the serial dependence introduced through
the use of sliding blocks. For that purpose, let k∗n < kn be an integer sequence
with k∗n → ∞ and k∗n = o(kδ/(2(1+δ))

n ), where δ is from Condition 3.1(ii). For
q∗n = 
kn/(k∗n + 2)� and j = 1, . . . , q∗n, define

J+
j =

j(k∗
n+2)−2⋃

i=(j−1)(k∗
n+2)+1

Ii and J−
j = Ij(k∗

n+2)−1 ∪ Ij(k∗
n+2).

Thus we have q∗n big blocks J+
j of size k∗nbn, which are separated by a small

block J−
j of size 2bn, just as in the construction in the proof of Lemma 10.3 in

[3]. Consequently, we have λ1en(x) + λ2B
sb
n = L+

n + L−
n + oP(1), where

L±
n =

1√
q∗n

q∗n∑
j=1

W±
nj

with

W±
nj =

√
q∗n
kn

∑
s∈J±

j

λ1

{
1
(
Us > 1− x

bn

)
− x

bn

}

+
λ2n

n− bn + 1

1

bn

{
log(Zsb

ns)− E[log(Zsb
ns)]
}

for j = 1, . . . , q∗n. In the following, we show that, on the one hand, L−
n1A′

n
=

oP(1) and that, on the other hand, L+
n1A′

n
converges to the claimed normal

distribution. First, we cover L−
n1A′

n
. As in the proof of Lemma B.1, we have

Zsb
ns = bn

(
1− max

t=s,...,s+bn−1
Ut

)
= bn

(
1− max

t=s,...,s+bn−1
Uε
t

)
=: Zε,sb

ns

on the event A′
n, where Uε

t = Ut1(Ut > 1 − ε). Hence, we can write L−
n1A′

n
=

L̃−
n1A′

n
+ oP(1) = L̃−

n + oP(1) with

L̃−
n =

1√
q∗n

q∗n∑
j=1

W ε−
nj ,

where
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W ε−
nj =

√
q∗n
kn

∑
s∈J−

j

λ1

{
1
(
Uε
s > 1− x

bn

)
− x

bn

}

+
λ2n

n− bn + 1

1

bn

{
log(Zε,sb

ns )− E[log(Zε,sb
ns )]

}
.

We proceed by showing that Var[L̃−
n ] = o(1). By stationarity, one has

Var[L̃−
n ] = Var[W ε−

n1 ] +
2

q∗n

q∗n∑
j=1

(q∗n − j) Cov
(
W ε−

n1 ,W
ε−
n,j+1

)
,

which is bounded by 3Var[W ε−
n1 ] + 2

∑q∗n
j=2 |Cov

(
W ε−

n1 ,W
ε−
n,j+1

)
| in absolute

value. First, we show Var[W ε−
n1 ] = o(1), for which it suffices to show that

||W ε−
n1 ||p = o(1) for some p ∈ (2, 2 + δ). By Minkowski’s inequality, one has

||W ε−
n1 ||p ≤ 2

√
q∗n
kn

[
|λ1| ||N (x)

bn
(E)||p + |λ2| || log(Zε,sb

n1 )− E[log(Zε,sb
n1 )]||p

]
(B.17)

= O(
√

q∗n/kn) = o(1)

by Condition 3.1(ii) and 3.2(i). It remains to treat the sum over the covariances.
Since W ε−

nj is Bε

{(j(k∗
n+2)−2)bn+1}:{j(k∗

n+2)bn}- measurable, we may apply Lemma

3.11 in [9] to obtain

|Cov(W ε−
n1 ,W

ε−
n,j+1)| ≤ 10 ||W ε−

n1 ||2p αc2(jk
∗
nbn)

1−2/p.

By Condition 3.1(iii), the sum
∑q∗n

j=2 αc2(jk
∗
nbn)

1−2/p converges to zero, hence

||W ε−
n1 ||p = o(1) as asserted.
Let us now treat the term L+

n1A′
n
and show weak convergence to the asserted

normal distribution. One can write

L+
n1A′

n
=

1√
q∗n

q∗n∑
j=1

W̃+
nj + oP(1), W̃+

nj = W+
nj1
(
max
t∈J+

j

Zsb
nt < εbn

)
.

A standard argument based on characteristic functions shows that the weak

limit of q∗n
−1/2

∑q∗n
j=1 W̃

+
nj is the same as if the summands were independent. By

arguments as before, we may also pass back to an independent sample W+
nj ,

j = 1, . . . , q∗n. The assertion then follows from Ljapunov’s central limit theorem,
once we have shown the Ljapunov condition.

For that purpose, note that ||W+
nj ||2+δ = O(

√
q∗nkn) = O(

√
k∗n) by similar

arguments as in (B.17) such that E[|W+
nj |2+δ] = O(k∗n

(2+δ)/2). As a consequence,

∑q∗n
j=1 E[|W+

nj |2+δ]

Var
[∑q∗n

j=1 W
+
nj

] 2+δ
2

= q∗n
− δ

2
E[|W+

n1|2+δ]

E[|W+
n1|2]

2+δ
2

= O(k−δ/2
n k∗n

1+δ) = o(1),
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since k∗n = o(k
δ/(2(1+δ))
n ) by construction and provided that the limit of E[|W+

n1|2]
exists. If it does, we can conclude that L+

n
d−→ N (0, limn→∞ E[|W+

n1|2]). and it
suffices to show that

lim
n→∞

E[|W+
n1|2] = λ2

1r(x, x) + 2λ1λ2f(x) + λ2
2{8 log(2)− 4}.

To this, note that W+
n1 = λ1en∗(x) + λ2B

sb
n∗ + oP(1), where en∗ and Bsb

n∗ are de-
fined as en and Bsb

n with n replaced by n∗ = k∗nbn and kn by k∗n; and our general
conditions still hold with this replacement. The result follows from Lemma B.13
and Lemma B.14 and the proof of Theorem 4.1 in [27].

Proof of Lemma B.8. Up to notation, the proof is exactly the same as the one
of Lemma B.2 in the disjoint blocks case.

Proof of Lemma B.9. The result follows immediately from the argument in the
proof of Lemma B.3 and the proof of Lemma 10.2 in [3].

Proof of Lemma B.10. Up to notation, the proof is exactly the same as the one
of Lemma B.4 in the disjoint blocks case.

Proof of Lemma B.11. By the definition of τ2m and τ2sb,m in Lemma B.4 and B.10,
we have

τ2sb,m = τ2m − π2/6 + 8 log(2)− 4.

Hence, by the proof of Lemma B.5 and the definition of σ2
sb,C in Theorem 4.1,

lim
m→∞

τ2sb,m = σ2
db,C/θ

2 − π2/6 + 8 log 2− 4 = σ2
sb,C/θ

2.

Proof of Lemma B.12. The proof is similar to the one of Lemma B.6, which is
why we keep it short. Write |Esb

n,m − Esb
n | ≤ |Vn1|+ |Vn2| with

Vn1 =

∫ ∞

0

log

(
1 +

ẽn(x)

x
√
kn

)√
kn 1(0,1/m](x) dĤ

sb
n (x),

Vn2 =

∫ ∞

0

log

(
1 +

ẽn(x)

x
√
kn

)√
kn 1[m,∞)(x) dĤ

sb
n (x),

where ẽn(x) = en(x) + k
−1/2
n . For some ε > 0 define the event

Bn =
{

max
Zsb

ni≥m

∣∣∣ ẽn(Zsb
ni)

Zsb
ni

√
kn

∣∣∣ ≤ ε
}
,

such that P(Bn) → 1 by Condition 3.4(iii). As in the proof of Lemma B.6, with
f defined in (B.11), we can write

Vn21Bn = k−3/2
n

kn−1∑
i=1

∑
w∈Ii

1

Zsb
nw

1(Zsb
nw ≥ m)

∫ 1

0

1

1 + s
ẽn(Zsb

nw)

Zsb
nw

√
kn

ds
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× b−1
n

{ kn∑
j=1

∑
t∈Ij

f(Ut, Z
sb
nw) + 1

}
1Bn + oP(1).

By Condition 3.1(v), P(Cn) → 1 where Cn =
{
mini=1,...,n−bn+1 N

sb
ni > 1−ε/2

}
.

Hence, Vn21Bn = V̄n21Bn1Cn + oP(1), where

V̄n2 = k−3/2
n

kn−1∑
i=1

∑
w∈Ii

1

Zsb
nw

1(εbn/2 > Zsb
nw ≥ m)

∫ 1

0

1

1 + s
ẽn(Zsb

nw)

Zsb
nw

√
kn

ds

× b−1
n

{ kn∑
j=1

∑
t∈Ij

f(Ut, Z
sb
nw) + 1

}
,

such that V̄n2 can be bounded as in the proof of Lemma B.6 as follows

|V̄n21Bn | ≤
1

m

1

1− ε
k−3/2
n

kn−1∑
i=1

∑
w∈Ii

1(εbn/2 > Zsb
nw ≥ m)

× b−1
n

∣∣∣ kn∑
j=1

∑
t∈Ij

f(Ut, Z
sb
nw)
∣∣∣+ oP(1).

This expression can be handled as in the proof of Lemma 10.1 in [3], such that

lim
m→∞

lim sup
n→∞

P(|V̄n21Bn1Cn | > δ) = 0.

The remaining term |Vn1| can be treated analogously to the eponymous term in
the proof of Lemma B.6.

Lemma B.13. (a) For x ≥ 0, as n → ∞,

Cov(en(x), B
sb
n ) → 2

∫ 1

0

hsb,x(ξ) dξ − 2xϕ(C)(θ),

where

hsb,x(ξ) =

∞∑
i=1

i

∫ ∞

0

1(y ≤ log(x))

i∑
l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0) e−θξey

+ 1(y > log(x)) p(ξx)(i) e−θey dy

−
∞∑
i=1

i

∫ 0

−∞
p(x)(i)− 1(y ≤ log(x))

i∑
l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)

× e−θξey

− 1(y > log(x)) p(ξx)(i) e−θey dy.
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(b) We have

2

∫ 1

0

hsb,x(ξ) dξ = h(x) + xϕ(C)(θ),

where h is defined in Lemma B.1.

Proof. (a) We assume that both Us and Zsb
nt are measurable with respect to

the appropriate Bε
·:· sigma-algebra; the general case can be treated by mul-

tiplying with suitable indicator functions as in the proof of Lemma B.7. Let
Aj =

∑
s∈Ij

1
(
Us > 1− x

bn

)
and Dj =

∑
s∈Ij

log(Zsb
ns). Then

Cov(en(x), B
sb
n ) =

1

n− bn + 1

kn∑
i=1

kn−1∑
j=1

Cov(Ai, Dj)

+
1

n− bn + 1

kn∑
i=1

Cov(Ai, log(Z
sb
n,n−bn+1)).

The second sum is asymptotically negligible, since ||Aj ||2 = ||N (x)

bn
(E)||2 = O(1)

and || log(Zsb
n,n−bn+1)||2 = O(1) by Condition 3.1(ii) and 3.2(i). Next, following

the argument in the proof of Lemma B.1 in [3], we may write

Cov(en(x), B
sb
n ) =

1

bn
Cov(A2, D1 +D2) + o(1)

=
1

bn

2bn∑
t=1

Cov
{∑

s∈I2

1
(
Us > 1− x

bn

)
, log(Zsb

nt)
}
+ o(1)

=

∫ 1

0

fn(ξ) + gn(ξ) dξ − 2xE
[
log(Zsb

n1)
]
+ o(1),

where

fn(ξ) =

bn∑
t=1

E
[∑
s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

nt)
]
1
{
ξ ∈ [ t−1

bn
, t
bn
)
}
,

gn(ξ) =

2bn∑
t=bn+1

E
[∑
s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

nt)
]
1
{
ξ ∈ [ t−bn−1

bn
, t−bn

bn
)
}
.

Note that limn→∞ E[log(Zsb
n1)] = ϕ(C)(θ) by uniform integrability of log(Z1:n),

and that supn∈N ||fn||∞ + ||gn||∞ < ∞ as a consequence of ‖
∑

s∈I1
1
(
Us >

1− x
bn

)
‖2×‖ log(Zsb

n1)‖2 < ∞ by Condition 3.1(ii) and 3.2(i). Hence, the lemma
is proven if we show that, for any ξ ∈ (0, 1),

lim
n→∞

fn(1− ξ) = lim
n→∞

gn(ξ) = hsb,x(ξ).

Since the proof for fn(1−ξ) is similar, we only treat gn(ξ), which can be written
as

gn(ξ) = E
[∑
s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

n,�(1+ξ)bn�+1)
]
.
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Let us proceed by showing joint weak convergence of
∑

s∈I2
1(Us > 1− x

bn
) and

log(Zsb
n,�(1+ξ)bn�+1). For that purpose, note that

Gn(i, y) :=P

(∑
s∈I2

1
(
Us > 1− x

bn

)
= i, log(Zsb

n,�(1+ξ)bn�+1) ≥ y
)

=P

(∑
s∈I2

1
(
Us > 1− x

bn

)
= i, Zsb

n,�(1+ξ)bn�+1 ≥ ey
)
,

coincides with Fn(i, e
y) in the proof of Lemma B.1 in [3]. Hence, by that proof,

we have

lim
n→∞

Gn(i, y) =

i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)e−θξey

for y ≤ log x and

lim
n→∞

Gn(i, y) = p(ξx)(i) e−θey

for y > log x. Further, note that

lim
n→∞

P
(
N

(x)
bn

(E) = i
)
= p(x)(i).

As a consequence of the previous three displays, and since weak convergence
and uniform integrability implie convergence of moments, we have

gn(ξ) =

∞∑
i=1

i

∫ ∞

0

P

( 2bn∑
s=bn+1

1
(
Us > 1− x

bn
= i
)
, log(Zsb

n,�(1+ξ)bn�+1) ≥ y
)
dy

− i

∫ 0

−∞
P

( 2bn∑
s=bn+1

1
(
Us > 1− x

bn

)
= i, log(Zsb

n,�(1+ξ)bn�+1) ≤ y
)
dy

=

∞∑
i=1

i

∫ ∞

0

Gn(i, y) dy − i

∫ 0

−∞
P
(
N

(x)
bn

(E) = i
)
−Gn(i, y) dy

→ hsb,x(ξ)

as asserted, which implies part (a) of the lemma.
(b) In the proof of Lemma B.3 in [3] it is shown that, for y ≤ log(x),

S(x, y, ξ) = e−θξey
∞∑
i=1

i

i∑
l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)

= ξxe−θey + E
[
ξ
(ey/x)
11 1(ξ

(ey/x)
12 = 0)

]
θ(1− ξ)xe−θey ,

where (ξ
(y/x)
11 , ξ

(y/x)
12 ) ∼ π

(y/x)
2 . Equation (B.8) then allows to rewrite

S(x, y, ξ) = ξxe−θey + (1− ξ)
∞∑
i=1

ip
(x,ey)
2 (i, 0) ≡ ξxe−θey + (1− ξ)T (x, y).
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As a consequence, further noting that
∑∞

i=1 i p
(ξx)(i) = ξx, we obtain

hsb,x(ξ) =

∫ ∞

0

ξxe−θey + 1(y ≤ log(x))(1− ξ)T (x, y) dy

−
∫ 0

−∞
x− ξxe−θey − 1(y ≤ log(x))(1− ξ)T (x, y) dy.

Then, by Fubinbi’s theorem,

2

∫ 1

0

hsb,x(ξ) dξ =

∫ ∞

0

xe−θey + 1(y ≤ log x)T (x, y) dy

−
∫ 0

−∞
x(1− e−θey ) + x− 1(y ≤ log(x))T (x, y) dy.

The assertion now follows from the fact that∫ ∞

0

e−θey dy =

∫ ∞

θ

e−z

z
dz = −Ei(−θ)

and∫ 0

−∞
1− e−θey dy =

∫ θ

0

1− e−z

z
dz = (1− e−z) log(z)

∣∣θ
0
−
∫ θ

0

e−z log(z) dz

= log(θ)− e−θ log(θ)−
{
γ −

∫ ∞

θ

e−z log(z) dz
}

= log(θ)− e−θ log(θ)− γ +
{
− e−z log(z)

∣∣∞
θ

+

∫ ∞

θ

e−z

z
dz
}

= log(θ) + γ − Ei(−θ) = −ϕ(C)(θ)− Ei(−θ)

after assembling terms, where Ei(x) = −
∫∞
−x

e−t/t dt for x > 0 is the exponen-
tial integral.

Lemma B.14. One has

lim
n→∞

Var(Bsb
n ) = 8 log(2)− 4 ≈ 1.545.

Proof. As in the proof of Lemma B.13, we assume that the Zsb
nt are measurable

with respect to the appropriate Bε
·,· sigma-algebra. We may then argue as in

that proof to obtain

Var(Bsb
n ) =

2

bn

bn∑
t=1

E
[
log(Zsb

n1) log(Z
sb
n,1+t)

]
− 2E[log(Zsb

n1)]
2 + o(1)

= 2

∫ 1

0

fn(ξ) dξ − 2E[log(Zsb
n1)]

2 + o(1), (B.18)
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where fn : [0, 1] → R is defined as

fn(ξ) =

bn∑
t=1

E[log(Zsb
n1) log(Z

sb
n,1+t)] 1

(
ξ ∈
[
t−1
bn

, t
bn

))
= E[log(Zsb

n1) log(Z
sb
n,�bnξ�+1)].

By Condition 3.2(i), we have E[log(Zsb
n1)] → ϕ(C)(θ). Further,

sup
n∈N

||fn||∞ ≤ sup
n∈N

E[log(Zsb
n1)

2] < ∞,

whence convergence of the integral over fn in (B.18) may be concluded from
the dominated convergence theorem, once we have shown pointwise convergence
of fn. To this end we show that, for any fixed ξ ∈ (0, 1),

(
log(Zsb

n1), log(Zsb
n,�bnξ�+1)

d−→
(
X(ξ), Y (ξ)

)
(B.19)

for some random vector
(
X(ξ), Y (ξ)

)
. This in turn will imply

lim
n→∞

fn(ξ) = lim
n→∞

E[log(Zsb
n1) log(Zsb

n,�bnξ�+1)] = E[X(ξ)Y (ξ)]

by Condition 3.2(i) and therefore

lim
n→∞

Var(Bsb
n ) = 2

∫ 1

0

E[X(ξ)Y (ξ)] dξ − 2ϕ(C)(θ)
2 = 2

∫ 1

0

Cov(X(ξ), Y (ξ)) dξ.

(B.20)
For the proof of (B.19), define, for x, y ∈ R,

Gn,ξ(x, y) = P
(
log(Zsb

n1) > x, log(Zsb
n,�bnξ�+1) > y

)
= P
(
Zsb
n1 > ex, Zsb

n,�bnξ�+1 > ey
)
,

which converges to

Gξ(x, y) = exp
(
−θ
[
ξ(ex ∧ ey) + (ex ∨ ey)

])
by the proof of Lemma B.2 in [3]. Hence, (B.19), where the random vector
(X(ξ), Y (ξ)) has joint c.d.f.

Fξ(x, y) = P
(
X(ξ) ≤ x, Y (ξ) ≤ y

)
= 1− P

(
X(ξ) > x

)
− P
(
Y (ξ) > y

)
+Gξ(x, y),

= 1− exp(−θex)− exp(−θey) +Gξ(x, y).

We are left with calculating the right-hand side of (B.20). By Lemma B.16,
we have
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V ≡
∫ 1

0

Cov(X(ξ), Y (ξ)) dξ

=

∫ 1

0

∫ ∞

0

∫ ∞

0

Gξ(x, y)− e−θexe−θey dx dy dξ

+

∫ 1

0

∫ 0

−∞

∫ 0

−∞
Fξ(x, y)− (1− e−θex)(1− e−θey ) dx dy dξ

− 2

∫ 1

0

∫ 0

−∞

∫ ∞

0

P(X(ξ) > x, Y (ξ) ≤ y)− e−θex(1− e−θey ) dx dy dξ,

≡ A+B − 2 · C. (B.21)

We start with the first summand A. Recall the exponential integral Ei(x) =
−
∫∞
−x

e−t/t dt for x > 0, and note that
∫∞
y

e−θex dx = −Ei(−θey) for y ∈ R

and
∫ 1

0
e−aξ dξ = (1− e−a)/a for a > 0. Fubini’s theorem allows to rewrite A as

∫ ∞

0

∫ y

0

e−θey
{∫ 1

0

e−θξex dξ − e−θex
}
dx

+

∫ ∞

y

e−θex
{∫ 1

0

e−θξey dξ − e−θey
}
dx dy

=

∫ ∞

0

e−θey
∫ y

0

1− e−θex

θex
− e−θex dx

+

∫ ∞

y

e−θex dx
{1− e−θey

θey
− e−θey

}
dy

=

∫ ∞

0

e−θey
{e−θey − 1

θey
− e−θ − 1

θ

}
+ {−Ei(−θey)}

{1− e−θey

θey
− e−θey

}
dy.

Next, invoke the substitution z = θey to obtain that

A =

∫ ∞

θ

{e−z

z
− 1

z
+

1− e−θ

θ

}e−z

z
− Ei(−z)

{1
z
− e−z

z
− e−z

}1
z
dz. (B.22)

A similar calculation allows to rewrite

B =

∫ 1

0

∫ 0

−∞

∫ 0

−∞
Gξ(x, y)− e−θexe−θey dxdy dξ

=

∫ 0

−∞

∫ y

−∞
e−θey

{∫ 1

0

e−θξex dξ − e−θex
}
dx

+

∫ 0

y

e−θex
{∫ 1

0

e−θξey dξ − e−θey
}
dxdy

=

∫ 0

−∞
e−θey

∫ y

−∞

1− e−θex

θex
− e−θex dx

+

∫ 0

y

e−θex dx
{1− e−θey

θey
− e−θey

}
dy
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=

∫ 0

−∞
e−θey

{e−θey − 1

θey
+ 1
}

+
{
Ei(−θ)− Ei(−θey)

}{1− e−θey

θey
− e−θey

}
dy,

and the substitution z = θey yields

B =

∫ θ

0

{e−z

z
− 1

z
+ 1
}e−z

z
+
{
Ei(−θ)− Ei(−z)

}{1
z
− e−z

z
− e−z

}1
z
dz.

(B.23)

Finally, regarding the term C, we have

C =

∫ 1

0

∫ 0

−∞

∫ ∞

0

e−θexe−θey −Gξ(x, y) dxdy dξ

=

∫ 0

−∞

∫ ∞

0

e−θex
{
e−θey −

∫ 1

0

e−θξey dξ
}
dxdy

= {−Ei(−θ)}
∫ 0

−∞
e−θey − 1− e−θey

θey
dy

= Ei(−θ)

∫ θ

0

{1
z
− e−z

z
− e−z

}1
z
dz. (B.24)

Next, the expressions in (B.22), (B.23) and (B.24) may be plugged-into (B.21).
Using the notations

g(z) =
{1
z
− e−z

z
− e−z

}1
z
, h(z) =

{e−z

z
− 1

z
+ 1
}e−z

z
,

we obtain that

V =

∫ ∞

θ

{1− e−θ

θ
− 1
}e−z

z
+ h(z) + {−Ei(−z)}g(z) dz

+

∫ θ

0

{
Ei(−θ)− Ei(−z)

}
g(z) + h(z)− 2Ei(−θ)g(z) dz

=

∫ ∞

0

h(z) + {−Ei(−z)}g(z) dz + 1− e−θ − θ

θ
{−Ei(−θ)}

− Ei(−θ)

∫ θ

0

g(z) dz

The first integral is independent of θ, and can be seen to be equal to 4 log 2− 2.

Further,
∫ θ

0
g(z) dz = (e−θ − 1 + θ)/θ, whence the last two summands cancel

out. This proves the lemma.

B.3. Further auxiliary lemmas

Lemma B.15. Let A be a continuous function on [0, 1] with limx→0 A(x)/x
η =

0 for some η ∈ (0, 1/2). Further, let Hn and H be monotone and non-negative
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functions on [0, 1] with

lim sup
n→∞

∫
[0,1]

1

x1−η
dHn(x) < ∞ and

∫
[0,1]

1

x1−η
dH(x) < ∞.

If limn→∞ supx∈[0,1] |Bn(x)| = 0, where Bn := Hn−H, and if there is a sequence
of measurable functions An such that

lim
n→∞

sup
x∈[0,1]

∣∣∣∣An(x)−A(x)

xη

∣∣∣∣ = 0,

then we have

lim
n→∞

∫
[0,1]

An(x)

x
dBn(x) = 0.

Proof. For r ∈ N define the piecewise constant function

Ãr(x) :=

r∑
k=1

1( k−1
r , kr ]

(x)
A
(
k/r
)

k/r

as an approximation of A(x)/x. We write
∫
[0,1]

An(x)/x dBn(x) = In1+In2+In3,

where

In1 =

∫
[0,1]

An(x)−A(x)

x
dBn(x), In2 =

∫
[0,1]

A(x)

x
− Ãr(x) dBn(x),

In3 =

∫
[0,1]

Ãr(x) dBn(x).

The first integral is bounded by

∫
[0,1]

∣∣∣An(x)−A(x)

x

∣∣∣ d(Hn +H)(x)

≤ sup
x∈[0,1]

∣∣∣An(x)−A(x)

xη

∣∣∣ ∫
[0,1]

1

x1−η
d(Hn +H)(x),

which converges to zero by assumption. Regarding In2, we obtain

|In2| =
∣∣∣ ∫

[0,1]

A(x)− Ãr(x)x

xη

1

x1−η
dBn(x)

∣∣∣
≤ sup

x∈[0,1]

∣∣∣A(x)− Ãr(x)x

xη

∣∣∣ ∫
[0,1]

1

x1−η
d(Hn +H)(x). (B.25)

By uniform continuity of x �→ A(x)/xη on [0, 1], we have

sup
x∈[0,1]

∣∣∣A(x)− Ãr(x)x

xη

∣∣∣→ 0 for r → ∞.
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Thus, the limes superior (for n → ∞) of the expression on the right-hand side
of (B.25) can be made arbitrarily small by increasing r. Finally, we can bound
|In3| as follows

|In3| ≤
r∑

k=1

|A(k/r)|
k/r

∣∣∣ ∫
[0,1]

1( k−1
r , kr

](x) dBn(x)
∣∣∣

=

r∑
k=1

|A(k/r)|
k/r

∣∣∣Bn

(k
r

)
−Bn

(k − 1

r

)∣∣∣
≤ 2r2 sup

x∈[0,1]

|A(x)| sup
x∈[0,1]

|Bn(x)|,

which converges to zero by assumption.

Lemma B.16. Let X and Y be real-valued random variables such that XY is
integrable. Then,

E[XY ] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y) dxdy +

∫ 0

−∞

∫ 0

−∞
P(X ≤ x, Y ≤ y) dxdy

−
∫ 0

−∞

∫ ∞

0

P(X > x, Y ≤ y) dxdy −
∫ ∞

0

∫ 0

−∞
P(X ≤ x, Y > y) dxdy.

Proof. This is a standard calculation based on Fubini’s theorem.
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