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Abstract: Shrinkage priors are becoming more and more popular in
Bayesian modeling for high dimensional sparse problems due to its compu-
tational efficiency. Recent works show that a polynomially decaying prior
leads to satisfactory posterior asymptotics under regression models. In the
literature, statisticians have investigated how the global shrinkage param-
eter, i.e., the scale parameter, in a heavy tailed prior affects the posterior
contraction. In this work, we explore how the shape of the prior, or more
specifically, the polynomial order of the prior tail affects the posterior. We
discover that, under the sparse normal means model, the polynomial order
does affect the multiplicative constant of the posterior contraction rate.
More importantly, if the polynomial order is sufficiently close to 1, it will
induce the optimal Bayesian posterior convergence, in the sense that the
Bayesian contraction rate is sharply minimax, i.e., not only the order, but
also the multiplicative constant of the posterior contraction rate are opti-
mal. The above Bayesian sharp minimaxity holds when the global shrinkage
parameter follows a deterministic choice which depends on the unknown
sparsity s. Therefore, a Beta-prior modeling is further proposed, such that
our sharply minimax Bayesian procedure is adaptive to unknown s. Our
theoretical discoveries are justified by simulation studies.
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1. Introduction

In Bayesian inference for high dimensional sparse models, the prior distribution
needs to incorporate certain a priori knowledge of the structural sparsity. The
classical spike-and-slab modeling assigns a two-group prior to each entry of
a sparse n-dimensional parameter vector 8 = (0y,...,60,)7, ie., 7(6;) is a
mixture of two distributions which correspond to #; = 0 and 6; # 0 respectively.
This natural modeling however requires expensive posterior computation. An
alternative one-group Bayesian modeling, or so-called shrinkage prior, is much
more computational attractive, hence gains more and more popularity in the
Bayesian community.

In this work, we consider the sparse normal means model, y(™) = (") 4 ¢,
where y™ = (y1,...,yn)T € R?, € ~ N(0,0°1,), and the parameter of interest
is 9™ € R™. Throughout this work, the variance o2 of the error term is assumed
to be known, and W.O.L.G, we let 02 = 1. Suppose that the true parameter
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value 6* is a sparse vector with s(™ nonzero entries, and asymptotically, we
allow s(™ to increase simultaneously with n. For the sake of simplicity of the
notation, we drop the superscript (n) from ™, () and s in what follows.
This normal means model can be viewed as the simplest regression problem
under orthogonality. Theoretically, the study of the sparse normal means model
can provide us important insights about Bayesian regression under a shrinkage
prior. In practice, applications of the normal means model include multiple
testing problems where y; is the z-test statistics, and signal detection problems
where y; can be a noisy pixel in a functional magnetic resonance imaging (fMRI).
In the literature, a variety of shrinkage priors have been proposed for Bayesian
inferences of . Popular examples include Bayesian Lasso [23, 18], Horseshoe
prior [8], Dirichlet-Laplace prior [6], Normal-Exponential-Gamma distribution
[17], Generalized double Pareto distribution [2], Generalized Beta mixture of
Gaussian distributions [1] and etc. A general form of shrinkage priors can be

written as
n

(6)r) = [ [{/m)mo(8s/7)}, 7~ m(r), (L.1)

i=1

where the scale parameter 7 is called the global shrinkage parameter which
controls the overall shrinkage effect. 7 can either follow a prior distribution as
in (1.1) or have a deterministic value. If furthermore, 7y can be expressed as a
scaled mixture of Gaussian distributions, (1.1) then leads to the so-called local-
global shrinkage: 6; ~ N (0, \?72), A\? ~ 7(A\?),7 ~ m(7) and \;’s are called local
shrinkage parameters. Note that the Dirichlet-Laplace prior is an exception and
doesn’t fit the general form (1.1).

Given a wide choice of shrinkage priors, certain criteria are necessary to
evaluate and compare these different priors, e.g., computational efficiency and
theoretical convergence. A benchmark for the theoretical performance is the pos-
terior contraction rate, which characterizes how fast the posterior distribution
(not just the Bayes estimator) converges to the true parameter. For example,
the Lo posterior contraction rate r,, satisfies:

tim B[ ([0 — 67 > ruly)] = 0. for any 6",

where E* denotes the expectation with respect to the data generation measure
of n dimensional data y under true parameter 6*. It is well known that the
frequentist minimax rate for normal means models is min; maxg- [|0 — 0% =
{(240(1))slog(n/s)}'/? [11], and many Bayesian works show that the Bayesian
contraction rates are comparable to this minimax rate. For example, Dirichlet-
Laplace prior [6] (under certain conditions of #*) achieves r,, < {slog(n/s)}'/?,
and van der Pas, Kleijn and van der Vaart A. W. [27] showed that horseshoe
prior achieves r, = M,{slog(n/s)}'/? for any M, — oco. Furthermore, recent
works [e.g., 28, 16, 26] show that the tail behavior of 7y plays an important role
for posterior asymptotics, and suggest to choose a polynomial decaying 7y in
order to achieve (near-) optimal posterior contraction rate. It is worth noting
that all the aforementioned shrinkage priors, except Dirichlet-Laplace prior,
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have a polynomial tail. Thus we believe polynomially decaying shrinkage priors
are, generally speaking, good choices for the high dimensional problem. As for
the Dirichlet-Laplace prior, we notice that, although its posterior contraction is
rate-minimax, its theory requires ||6*|| < s'/2log®(n). We comment that this is
actually a very strong condition. Under this condition, even the naive estimator
6 = 0 can achieve rate-{s'/?log?(n)} convergence, and minimax rate has merely
logarithmic improvement.

Given that 7y is polynomially decaying, existing literature focuses on how to
(adaptively) choose the global shrinkage 7, i.e., the scale of the prior, such that
the order of posterior contraction rate is (near-)optimal [e.g., 26, 16, 27, 29].
In this work, we will study another aspect of this story, that is how the shape
of the prior distribution, i.e., the polynomial order of mg, affects the posterior
asymptotics. Our contribution of this work is two-fold. First, we show that if the
polynomial order of 7y is sufficiently close to 1, we can achieve Bayesian sharp
minimax, i.e., 7, /{2slog(n/s)}'/? is sufficiently close to 1. This sharp minimax-
ity holds for the L; norm as well. Our simulation study also demonstrates that
it is necessary to choose a tiny polynomial order in order to obtain the opti-
mal contraction. In Bayesian literature, the sharpness in term of multiplicative
constant is barely investigated, and our work sharpens many existing results on
Bayesian posterior convergence for the normal means problem. To attain such
sharp minimaxity, the choice of 7 will depend on true sparsity ratio (s/n) which
in practice is unknown. Therefore, our second contribution is to propose a Beta
modeling on 7. This leads to a Bayesian sharply minimax inference procedure
that is adaptive to unknown sparsity. Simulations show that this adaptive Beta
modeling has an excellent performance.

This paper is organized as follows. In Section 2, we study the relationship
between the polynomial order of my and the posterior contraction rate, and
establish the Bayesian sharp minimax. In Section 3, we propose an adaptive
modeling which doesn’t depend on s. Two simulation studies and one real cancer
data application are presented in Section 4. In the end, Section 5 provides more
discussions and remarks. Technical proofs are provided in the Appendix.

Throughout this work, we use D,, to denote the observed data (i.e., D, =
{yi},), and 7 (-|D,,) to denote the posterior based on data D,,. Given two pos-
itive sequences {a,} and {b,}, a, > b, means lim(a, /b,) = 0o, a, < b, means
0 < liminf(ay/b,) < limsup(ay,/b,) < oo, and a, ~ b, means lim(a,/b,) = 1.
II-|| and || - ||y denote Lo and L; norms of a vector respectively.

2. Sharp Bayesian minimaxity

As discussed in the Section 1, we consider Bayesian inferences for the sparse
normal means model under a general prior specification (1.1), where 7y has a
polynomial tail; in other words, we assume the following conditions on the model
sparsity and prior distribution mg:

[C.1] The true model is sparse s = o(n).

[C.2] The prior density mo(-) is strictly decreasing on (0,00) and increasing
on (—o00,0).
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[C.3] The tail of my(+) is polynomially decaying with polynomial order o > 1,
i.e., there exist some positive constants M and Cy > C; such that for any
0] > M, C1]0]~ < mo(0) < Cal0] .

Note the condition C.3 (i.e., the polynomial decaying of 7y) implies the poly-
nomial decaying of 7(6;|7) as well: if |0;| > 7, w(6;|7) < |0;| 7oL

For the simplicity of analysis, in this section we only investigate the posterior
asymptotics when the global shrinkage parameter 7 is a deterministic value,
under which the posteriors of 6;’s are mutually independent.

Let’s first intuitively understand the posterior properties induced by a poly-
nomial decaying prior. The posterior distributions of all 6;’s independently follow

m(0i|y:) = Cexp{—(yi — 6:)*/2}7 (),

for some normalizing constant C. Since both functions exp{—(y; — 6;)*/2}
and prior 7(6;) are unimodal, heuristically, the posterior 7(6;|y;) will have
two major modes, around 0 and y; respectively. The posterior mass of the
mode around 0 is approximately 7{6; € (—4,0)|y;} ~ Cexp{—y?/2}w(0; €
(—=6,68)) ~ Cexp{—y?/2} for some § satisfying § = 7; The posterior mass
of the mode around y; is approximately 7(0; € y; + {6 log(n/s)}/?|y;) ~
nyfi 5Tioatns XP{— (Wi — 0;)2/2}d0;7(y;) ~ C\/2nn(y;) for any small con-

stant §'. Therefore, if exp{—y?/2} = m(y;), the dominating posterior mode is
the one at 0; if exp{—y?/2} < 7(y;), the dominating posterior mode is the one
at y;. Note that in the above comparison, we consider different neighbor ra-
diuses around 0 and y;, this is due to the fact that the landscape of 7(0;|y;) has
two unequally wide modes (refer to Figure 3 for an illustration). This heuristic
comparison demonstrates a hard thresholding phenomenon for the Bayesian pos-
terior center: when |y;| < ¢, the posterior of 7(6;|y;) shrinks to 0; when |y;| > t,
the posterior will be concentrated around y;, where the threshold value ¢ satis-
fies exp{—t2/2} < 7(t) < t~*7~L. This is analogous to the hard thresholding
estimator 6; = y;1(|y;| > t) (vefer to Figure 4 for more details). It is known that
the hard thresholding estimator achieves asymptotic sharp minimaxity when
t = {2log(n/s)}'/2, thus we conjecture that such sharp minimaxity carries
over to the posterior mean of Bayesian hard thresholding if the same threshold
value is used, i.e., the prior satisfies exp{—log(n/s)} =< 7@~ '{2log(n/s)} /2.
In addition, to derive minimax posterior contraction beyond minimax posterior
mean, we also need to control the posterior variation, especially the posterior
variation for these zero 6;’s. Hence, we need to impose a sufficiently strong
shrinkage effect such that the posteriors of these zero 6;’s contract inside a
small neighborhood around zero. Equivalently, this requires a sufficiently small
global shrinkage parameter 7. Rigorously, we establish the following theorem
whose proof is presented in Appendix A.1.

Theorem 2.1. Given a positive constant w, if 7' > (s/n){log(n/s)}'/? for
some ¢ € (0,14 w/2), and 771 < {(s/n)log(n/s)}*, then

lim B (x[[|6 — 0°| > C1(w){slog(n/s)}"/*|D,]) = 0, (2.1)
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where C1(w) = /2 + w++/w and it satisfies lim,, o C1(w) = /2. If furthermore,
71 < (s/n)*{log(n/s)}(@+1/2 then

lim E* ([0 — 0% |1 > sCs(w){log(n/s)}/2|D,]) = 0, (2.2)

where Co(w) = /2 + w + /w2 /5 + \/w/5, and it satisfies lim,, o Co(w) = v/2.

We have several comments on this theorem. There are two conditions for the
global shrinkage parameter 7. The first condition says that 7 shall not be too
small. An overly small 7 may cause over-shrinkage for the true nonzero 6;’s. This
condition also echoes our heuristic argument that s/n =< 7%~ 1(2log(n/s))~/?
in the previous paragraph. The second condition says that 7 shall not be too
large, since an overly large 7 fails to impose sufficient shrinkage effect on the
zero 0;’s. To satisfy both conditions of 7, we need to choose o € (1,1 4 w/2).
The theorem provides an L; contraction result as well. Convergence in L;, com-
paring with Ly convergence, requires stronger posterior variation control for the
zero 0;’s. Note that L; contraction result can not be easily derived from the
quantification of the posterior mean bias and posterior variance (which is the
proof technique adopted by [27, 3]). Our proof technique, which directly studies
the entry-wise posterior contraction for all the zero 6;’s, enables us to perform
L1 contraction analysis. There are several insights obtained from the theoretical
results of this theorem. First, for any polynomially decaying prior, with proper
choice of global shrinkage 7, the order of Bayesian contraction rate is exactly
O({slog(n/s)}'/?). Note that [27, 16, 28] only showed that the order of con-
traction is O(M,,{slog(n/s)}'/?) with M,, — oo, since their results are based
on Markov’s inequality. In contrast, our proof is based on constructing hypoth-
esis testing that can test the true parameter versus balls of alternatives with
exponentially small error probabilities. Secondly, the multiplicative constant of
the Bayesian contraction rate is positively related to the polynomial order of
7o(+). Therefore, to obtain sharply L,/L; minimax contraction,® i.e. the w can
be sufficiently small, a sufficient choice is to let the polynomial order of 7wy be
very close to 1.

Since the logarithmic term log(n/s) is asymptotically dominated by (n/s)°
for any small constant ¢ > 0, the conditions of 7 in Theorem 2.1 can be simplified
(by replacing log(n/s) with arbitrarily small exponent of (n/s)), and we obtain
the following corollary.

Corollary 2.1. If a <1+ w/2 and 77! < (s/n)¢ for some c € [a,1 + w/2),
then (2.1) and (2.2) hold.

Theorem 2.1 and Corollary 2.1 suggest an optimal choice for the global shrink-
age as 7 < (s/n)(@+9)/(@=1) for some non-negative small value d. In practice,
when true sparsity is always unknown, this theoretical suggestion is not useful.
Therefore in Section 3, we will discuss a full Bayesian approach which is adap-
tive to unknown sparsity. To end this section, we consider a possible alternative
choice as 7 =< (1/n)(@+9/(@=1)"that is to substitute the unknown s with 1.

IThe minimax L; contraction rate is s1/(2 + o(1)) log(n/s) [10, 31].
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Obviously, if we assume that the sparsity s is a fixed quantity, this choice of
7 is of the same order of the optimal suggestion. But if s is increasing with n,
this leads to suboptimal upper bound for the contraction rate. The details are
provided in the next theorem.

Theorem 2.2. If 71 > (1/n)%{log(n/s)}'/? for some c € (0,1 + w/2), and
7o < (s/n)*{log(n/s)}(@+D/2 then

lim E*(x[||6 — 0%]| > C1(w){slog(n)}'/?|D,]) = 0,

s (2.3)
lim E*(x[[|0 — 6% ||y > sCa(w){log(n)}/?|D,]) = 0,

for the same functions C1(w) and Cy(w) used in Theorem 2.1.

The proof of this theorem is similar to the proof of Theorem 2.1, hence is
omitted in this manuscript. This result allows one to choose 7 to be of order
(1/n)(@+9/(@=1) for any constant § > 0, and the resultant Ly contraction rate is
of order {slog(n)}'/2. The rate {slog(n)}'/? is considered to be suboptimal in
the literature. When comparing C1 (w){slog(n)}*/? versus C; (w){slog(n/s)}'/?,
we have that (1) the two rates are asymptotically the same when logs < logn
(i.e., the sparsity s increases slower than polynomial rate); (2) the former one is
of the same order with the latter, but has a large multiplicative constant, when
s =< n° for some ¢ € (0,1); (3) the former one is of strictly greater order, when
logs ~ logn (e.g., s = n/logn). Note here we only compare the upper bound
of posterior contraction rates obtained by Theorems 2.1 and 2.2, thus it is not
rigorous to claim that the prior specification in Theorem 2.2 leads to suboptimal
posterior convergence.

3. Adaptive Bayesian inference

In this section, we now consider that the information of s is not available,
hence adaptive ways to determine the global shrinkage 7 are necessary. In the
Bayesian paradigm, there are at least two popular approaches to handle the
hyperparameters: one is the empirical Bayes, i.e., to maximize the marginal
likelihood of data, and the other one is the full Bayesian approach, i.e., to
assign a prior distribution on the hyperparameters. For example, van der Pas,
Szabo and van der Vaart [29] studied both approaches for the global shrinkage
parameter in the horseshoe modeling, and established an adaptive horseshoe
Bayesian inference with a suboptimal contraction rate of order O({slogn}'/?).
In this work, we are particularly interested in constructing an appropriate prior
for 7.

Theorem 2.1 suggests that 7 decreases to zero if 7 is deterministic. This mo-
tivates us to design the prior 7(7) to be stochastically decreasing as n increases.
More specifically, the distribution of prior m(7) shrinks toward 0 under proper
rate. In the meantime, this prior must not shrink too fast, such that it still
assigns minimal prior density around the optimal choice 7 = (s/n)(@+9)/(@=1)
Our next theorem provides a sufficient condition for the prior 7(7), such that
the Bayesian sharp minimaxity still holds.
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Theorem 3.1. If a < 1+4w/2, n(7) satisfies that —log7{(s/n)T«/2/(e=1) <
7 < (s/n)*/@=D} < slog(n/s) and —logm{r > (s/n)*/(@=D} = slog(n/s),
and max; |07 | < (n/s)*/ G2 then (2.1) and (2.2) still hold.

The above theorem claims that under proper choice of 7(7), sharp mini-
maxity is still attainable when we choose a to be close to 1. Let us first
discuss the two conditions on the hyper-prior 7 (7). The first condition re-
quires that 7(7) maintains a minimal prior probability on the optimal range
[(s/n)0+w/2)/(@=1) (s/n)e/(@=1)] The second condition requires that 7{r >
(5/n)*/(@=1} rapidly decays to 0, i.e., the distribution m(7) becomes more and
more concentrated around 0. A particular choice that satisfies these two condi-
tions is that

T =15, 7o~ Beta(l,n) (3.1)

for some ¢ € (a/(a—1), (1 +w/2)/(ac — 1)). One can easily verify that

{1 > (s/n)*/ @7V} = (1= (s/n)* 7D/ ~ exp{—s(n/s)’}, and
m{(s/n) RO < 7 < (5/n) @7V} ~ expl—s(n/s) "'}

where § = 1 — a/(a—1)/c and ¢ = (1 + w/2)/(a — 1)/c — 1 are two small
positive constants. It is worth mentioning that the Beta prior is widely used as
a hyperprior in spike-and-slab Bayesian modeling [9, 24]. For example, a common
spike-and-slab modeling assigns a prior probability p for each 6; being selected
into the model, i.e. w(6; # 0) = p, and Castillo and van der Vaart [9] suggested a
hyperprior p ~ Beta(1,4n+1). In the literature, van der Pas, Szabo and van der
Vaart [29] proposed a hyper truncated half Cauchy prior for the global shrinkage
parameter in the horseshoe modeling, that is m(7) o< 1(7 € [1/n,1])/(1 + 72).
Both Beta modeling (3.1) and truncated half Cauchy prior have a compact
support within [0, 1], but a big difference between these two is that the Beta
prior distribution converges to a Dirac measure at 0 as n goes to infinity, but the
truncated half Cauchy prior converges to a non-degenerated distribution which
is the half Cauchy distribution truncated within [0,1].

In the above theorem, we also impose an additional technical condition on
the magnitude of the true nonzero 6; such that log(max |07|)/(log(n/s)) <
w/ba. Note that log(n/s) — oo, hence this condition still allows that the true
signal strength to grow. If the true signal grows sub-polynomially fast, i.e.,
log(max [07[) = o(log(n/s)), then w can be arbitrarily small and we obtain
sharply minimax contraction; If the true signal grows polynomially fast, i.e.,
max [0%] < (n/s)* for some constant a > 0, then Theorem 3.1 still ensures
that the rate of contraction is O({slog(n/s)}'/?), despite a larger multiplica-
tive constant. This constraint on |0;| essentially is equivalent to that the prior
density on true parameter (i.e., 7(6*)) is bounded away from 0. Similar condi-
tions, which require that the prior is “thick” around the true parameter value
0*, are regularly used in Bayesian theoretical literature [e.g., 19, 20, 14, 15].
As mentioned in Section 1, the Dirichlet-Laplace prior [6] also imposes an up-
per bound constraint on the magnitude of [|6*||, but our condition is much
weaker.
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It is worth to mention that this additional condition is mainly due to the
fact that the posterior distributions among 6;’s are no longer independent when
T is subject to a prior distribution. This condition is only sufficient, and is
not appealing to theoreticians. Theorem 3.7 in [29] showed that the Bayesian
horseshoe with truncated half Cauchy prior on 7 is capable to achieve order-
(slogn)'/? contraction rate without any assumption on 07]. A similar result
can be derived here if one is only interested in a suboptimal upper bound for
the posterior contraction rate:

Theorem 3.2. If a < 1+w/2, the prior of T has support on [(1/n)/ (@1 o)
for some c<1+w/2, and the 7(7) also satisfies that —log 7{(s/n)1+w/2)/(e=1) <
7 < (s/n)*/(@=D} < slog(n/s) and —logm{r > (s/n)*/(@=D} = slog(n/s),
then (2.3) holds.

The proof of this theorem is a combination of the proof of Theorems 2.1
and 3.1, hence is omitted. To construct a 7(7) that satisfies the conditions in
this theorem, we can simply modify the above Beta modeling as: 7 = 7§ with
c€(af(a—1),(1+w/2)/(a—1)) and 7(70) x B(70;1,n)1(19 € [1/n,1]), where
B(-;a,b) is the density of a Beta distribution.

4. Simulation and data anlaysis

This section, we will demonstrate two simulation studies to justify our the-
oretical discoveries, as well as a cancer data application. In the first simula-
tion, we assume that the sparsity s is known in advance, and we empirically
compare difference choices of the polynomial order of the prior tail. The the-
orems presented in Section 2 assert that it is sufficient to assign a very small
a; and we would like to use numerical studies to evaluate how good is such
a choice, and how necessary is this small-a condition. In the second simu-
lation, we study the performance of the adaptive prior proposed by Theo-
rem 3.1 when s is unknown, and compare it to the adaptive horseshoe prior
proposed by [29]. We will also present a prostate cancer real data Bayesian
analysis.

Simulation I: Comparison between different choices of polynomial order

In this simulation, to study the asymptotic behavior, we let the data dimension
increases as n = 50, 100, 500, 1000 and the sparsity s equals to the rounded
value of n'/2. The nonzero coefficients are chosen to be 8} = {tlog(n/s)}'/? for
1 <i<s, wheret=1.2,2.2,4.2 and 6.2. These different choices of ¢ represent
a range of levels of signal strength. To implement a class of polynomial priors
with difference tail orders, we let my be the ¢ distribution with degree of freedom
a—1,ie.

0; ~ N(0,X}7%); A7 ~ IG((a — 1)/2, (a —1)/2), (4.1)
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and 7 follows a deterministic choice 7 = (s/n)¢. This leads to a simple Gibbs
update

a a—1 62 1 1
N AIG(=, —— 4+ =), 0, ~N((1 + —=) Ly, (1 + —=)71). 4.2
M 1C(G S+ ) 0~ N ) (L ) ) (42
We consider six different choices of prior modeling: (1) o = 1.1, ¢ = (o +

0.05)/(c —1); (2) a = 2.1, ¢ = (a+0.05)/(a—1); 3) a =31, ¢ = (a+
0.05)/(a—1); 4) a =21, ¢ =1/(a—1); 5) a = 3.1, ¢ = 1/(a — 1); (6)
horseshoe prior with global shrinkage 7 = (s/n){log(n/s)}!/2. In the above
five t-prior specifications, there are two choices for global shrinkage 7. One is
(5/n)(@F0:05)/(a=1) " which satisfies the upper bound condition on 7 in Theo-
rem 2.1. By our heuristic arguments in Section 2, under such prior specifica-
tion, 07 ~ {2(a+0.05)log(n/s)}'/? posts the most difficult problem. The other
choice is (s/n)Y (=1 which satisfies the lower bound condition on 7 in Theo-
rem 2.1. Note that Ghosh and Chakrabarti [16] claimed that an optimal choice
for 7 is [(s/n){log(n/s)}*/?]*/(@=1)_ The difference between (s/n)'/(*=1 and
[(s/n){log(n/s)}}/?]*/(@=1) is only a logarithmic term. The horseshoe prior has
a polynomial tail with order = 2, and the choice of its 7 follows the sug-
gestion of [27]. And asymptotically, this horseshoe prior is almost the same to
t-distribution with o = 2.1 and ¢ = 1/(a — 1). All simulation results are based
on the average of 100 replications.

In Figure 1, we compare the posterior contraction among these 6 priors. We
estimate their posterior probability 7 (][0 —0*||? > 2.2slog(n/s)|D,,) by posterior
samples, and plot this probability with respect to the different n and ¢ values. For
a minimax Bayesian procedure, this probability converges to 0 as n increases,
regardless of the magnitude of 8*. The figure clearly indicates that = 1.1 has
the best performance. The posterior probability always decreases toward 0 for
all different t’s. For the rest 5 priors, their posteriors don’t contract into the
{2.2s1og(n/s)}'/?-neighborhood for some value of t. It is worth to mention that
for the t prior with o = 1.1, the case t = 2.2 leads to the slowest convergence,
as the red curve is decreasing very slowly. This is because, as we discussed,
t = 2.2 corresponds to the most difficult scenario for o = 1.1. Besides, the plots
of horseshoe and t-distribution with & = 2.1 and ¢ = 1/(a—1) have very similar
patterns, since these two prior specifications are almost equivalent in terms of
their tail behaviors.

In Figure 2, we present the some comparisons of the posterior mean of squared
Ly error E(||0 — 0*||?|D,,) and posterior mean of Ly error E(||0 — 0*||1|D,,). As
a reference for the comparison, we also plot the curves corresponding the the
minimax squared Ly and L; errors, namely, 2slog(n/s) and s{2log(n/s)}/? re-
spectively. Note that when s = n!/2, the suboptimal contraction rate 2s log(n) =
2(2slog(n/s)) and s{2logn}/? = {2}1/25{2log(n/s)}*/?. When t = 1.2, i..,
signals are weak, the Ly errors of all 4 priors don’t exceed the minimax rate.
This is not surprising, because under weak signals, any method that imposes
enough shrinkage effect, including the naive estimator § = 0, will induce an Lo
error that is smaller than the minimax error. It also shows that the ¢-prior with
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Fi1c 1. Posterior contraction of the 6 prior specifications.

a=21,c¢=(a+0.05)/(a — 1) does have a better Ly error than ¢-prior with
a = 1.1 under weak signals. When ¢ = 2.2, i.e., the signal strength is in the
boundary case, horseshoe and ¢-prior with ¢ = 1/(ax — 1) begin to exceed the
minimax Ly error, while the two t-priors with ¢ = (o + 0.05)/(a — 1) have Ly
errors that is almost the same as, but slightly higher than, the minimax error.
When t = 4.2, i.e., signals are strong, t-prior with o = 1.1 is the only one that
achieves asymptotic sharp minimaxity. When ¢ is even larger (which is not pre-
sented in the Figure 2), the Ly error of ¢-prior with a = 1.1 will be much smaller
than the minimax rate, but the Lo errors for the rest three are much larger than
the minimax rate. In summary, a small polynomial order universally ensures
that the Lo estimation error is asymptotically bounded by the minimax rate.
As for the error rates under L; norm, it is much more sensitive to small varia-
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Fic 2. Posterior mean sqaured Lo and Ly errors of the 4 selective prior specifications.

tions in the coordinates than the Ly error. The choice 7 = (s/n)(®)+0-05/(a=1)
satisfies the upper bound condition on 7 in Theorem 2.1, and as we discussed,
guarantees sufficient posterior shrinkage for the zero 6;’s, hence it leads to small
Ly error. This argument is consistent to our simulation results: the two priors
with choice ¢ = (& +0.05)/(a — 1) have much smaller L, errors. The same holds
for the comparison of Ly errors, only the small polynomial order prior (o = 1.1)
ensures sharp minimaxity. Similar to Figure 1, we see that the ¢-distribution
with @ = 2.1 and ¢ = 1/(a — 1) has almost identical performance with the
horseshoe prior.

The above simulation results successfully demonstrate the sharpness of the
Bayesian minimax contraction when the polynomial order « of the prior is close
to 1. However, there are still some discrepancies between the displayed finite-
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sample behaviors and the Bayesian hard thresholding phenomenon described
in Section 2. According to the Bayesian hard thresholding phenomenon, when
lyi| is greater than the thresholding value /2alog(n/s), its posterior will have
one dominating mode which is approximately N(y;,1). This implies that when
t = 4.2 > 2a = 2.2, the posterior mean squared Lo error or L error of those
nonzero 6;’s is asymptotically of order O(s), which thus shall lead to a much
smaller estimation error comparing with the boundary case of ¢ = 2.2. But in
Figure 2, there is no noticeable difference for posterior mean errors between
t = 2.2 and t = 4.2 under the ¢ prior with a = 1.1. This is because our asymp-
totic theory relies on the sparsity assumption such that log(n/s) — oo, while in
our simulation experiments, the ratio of n/s is not large enough to reflect the
asymptotic behavior. To illustrate it, Figure 3 plots the histograms of posterior
7(0;)y; = [3.2log(n/s)]*/?) using t-prior with a = 1.1 and 7 = (s/n)'1%/%1 for
different values of n/s. As showed, the posterior does have two modes, but the
mode around y; isn’t the dominating one until n/s is as huge as 100,000. In
contrast, other choices of prior with different polynomial order of tail decaying,
for example, the horseshoe prior requires a much smaller value of n/s to have
the mode around y; be dominating. This implies that in a small-sample real
application, prior with polynomial order close to 1 is less powerful in terms of
detecting signals, i.e., yields a sparser model selection result, comparing with
the horseshoe prior. But on the other hand, horseshoe prior specification fails
to induce sufficient shrinkage effect for the zero 6;’s, therefore its estimation
performance for the whole vector 6 is still inferior. For ¢-prior with o = 1.1,
we also plot its posterior mean shrinkage coefficient E(0;|y;)/y; with respect to
values of ¢ = y?/log(n/s) and n/s in Figure 4. As n/s tends to infinity, the
posterior shrinkage does behave more and more similarly to the hard threshold-
ing.

In additional, several simulation experiments are presented in the Supplemen-
tary Material, where we explore (1) the posterior contraction of shrinkage prior
under varying nonzero 6’s scenario, (2) the posterior convergence performances
for nonzero 0’s and zero 6’s respectively, and (3) the uncertainty quantification
and Bayesian model selection of shrinkage priors.

Simulation II: Adaptive Bayesian modeling and comparisons

In the second simulation, we no longer assume that s is known, and now the
global shrinkage 7 is chosen in an adaptive Bayesian manner. We compare the
following two adaptive Bayesian procedures. The first prior is constructed based
on Theorem 3.1. We consider a t-prior with @ = 1.1, and 7 follows the Beta
modeling (3.1) with ¢ = (¢4 0.05)/(a—1). As for the posterior sampling of this
adaptive t-prior, in addition to (4.2), the marginal condition distribution of 7
is

1 1 07 | (1 —7o)" 7t
t — —— L —1 0,1)).
7(To|rest) o Py exp{ 2e Z 2)\12} (10 € (0,1))

- n—+1
3
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Since this conditional posterior has a compact support, it can be sampled via
the inverse cumulative-distribution sampling. Another prior is the horseshoe
prior with 7 following a half-Cauchy distribution truncated on [1/n, 1] [29]. The
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simulation settings for data dimension and signal strength are exactly the same
as the first simulation study. Obviously, one shall expect that the performances
of adaptive Bayesian approaches are worse than the case that s is known.

Figure 5 demonstrates a comprehensive comparison between adaptive t-prior
and adaptive horseshoe prior, in terms of posterior contraction, posterior mean
square Lo error and posterior mean L, error. It shows that the adaptive t-prior
has a better performance in almost every aspect. The posterior contraction
plots of t-prior always have a decreasing trend towards 0 under different signal
strengths, and its convergence pattern is very similar to Figure 1. This implies
that the Beta modeling of 7 is a good substitute for the optimal choice 7 =
(5/n)(@+0:05)/(e=1) The posterior contraction of the adaptive horseshoe, on the
other side, doesn’t converge at all. The plot pattern is also quite different from
the posterior contraction plot in Figure 1, especially for the case ¢ = 6.2. This
somehow indicates that the truncated half-Cauchy prior doesn’t adapt well to
large signals. For the posterior mean Ly error of the adaptive t-prior, when the
signal is weak or strong, its error is well bounded by minimax rate if n is large.
When the signal strength is moderate, its error slightly exceeds the minimax
rate. However, there is no trend showing that the Ly error will increase faster
than the minimax rate, thus we believe that if n continues growing and « is
closer to 1, the error of adaptive t-prior should be asymptotically bounded by
the minimax rate. But the adaptive horseshoe prior induces a much larger error
than the minimax rate, except for the weak signal situation. Similarly, in term
of the L; norm, the adaptive ¢t-prior attains the minimax rate, and it clearly
outperforms the horseshoe prior regardless of the signal strength.

As a conclusion, the presented two simulation studies demonstrate the ne-
cessity of choosing « to be sufficiently close to 1. A prior specification as simple
as t-distribution with a tiny degree of freedom ensures supreme Bayesian con-
traction and estimation. The proposed adaptive Beta modeling on the global
shrinkage 7 leads to a very stable result and significantly outperforms the adap-
tive horseshoe prior.

Real data set analysis

We consider a popular prostate cancer dataset [12, 25] from a microarray ex-
periment which consists of expression levels for n = 6033 genes from 50 normal
control subjects and 52 cancer patients.? Two-sample tests are performed to
compare the expression level of each gene between control and patient groups.
The corresponding p-values are thereafter converted into z-statistics, i.e., z; =
®~1(p;/2) for i = 1,...,n. Hence, it is appropriate to model these z-statistics
as a normal means model z; = 0; +¢;, where #; = 0 if the mean expression levels
for the ith gene are the same between control and patient population. We use
Bayesian shrinkage to make inference on the parameter 6.

We implement the adaptive ¢ prior with « = 1.1 and 7 following the Beta
modeling (3.1), and the adaptive horseshoe prior with 7 following truncated

2The data set is available in the book [13].
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Fic 5. Comparison between adaptive t-prior and adaptive horseshoe prior.

half Cauchy prior. Note that horseshoe prior has already been used to analyze
this prostate cancer data in the literature [6, 3, 5], but all these applications
choose 7 to follow the non-truncated half Cauchy prior. As illustrated by [29],
the empirical performance between truncated half Cauchy hyper-prior and non-
truncated half Cauchy hyper-prior are quite different, hence the horseshoe pos-
terior summary presented in this section is not comparable to the results in the
literature.

In Figure 6, we plot the posterior means |E(6;|D,)| against the observa-
tions |y;|. For larger |y;|’s, the posterior means between adaptive t-prior and
adaptive horseshoe prior are close. For smaller |y;|’s, the adaptive ¢-prior ap-
parently induces stronger shrinkage effect. This observation is consistent to our
simulations results that horseshoe prior imposes insufficient posterior shrinkage
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F1a 6. Comparison between adaptive t-prior and adaptive horseshoe prior.

for the zero 6;’s. If we perform a variable selection by selecting genes for which
|E(8;|Dx)|/|yi] > 1/2, then horseshoe selects the top 8 genes and ¢-prior selects
the top 6 genes. This is also consistent to our previous arguments that the t-
prior with polynomial order close to 1 is less powerful than horseshoe prior. Note
that the posterior of m(6;|D,,) has two major modes around 0 and y;, hence the
selection rule |E(0;|Dy,)|/]yi| > 1/2 heuristically means that the posterior mass
for the mode around y; is greater than half.

5. Final remarks

In this work, we study the Bayesian inference on high dimensional sparse normal
sequence model with a polynomially decaying prior distribution. Our main result
Theorem 2.1 reveals the connection between the upper bound of the posterior
contraction and the polynomial order . This provides a sufficient condition to
induce sharp posterior minimaxity. That is, choosing a sufficiently tiny o — 1,
the ratio between Bayesian posterior contraction rate and minimax will be suf-
ficiently close to 1. We conjecture necessity holds for Theorem 2.1 as well, such
that the smaller the o — 1, the better the Bayesian contraction in terms of the
multiplicative constant. Empirical studies also show great improvement for the
accuracy of the Bayesian shrinkage procedure using a ¢-prior with a tiny degree
of freedom. Our study considers « to be a fixed, sufficiently small hyperparame-
ter. Alternatively, one can investigate the choice of letting the polynomial order
« decrease to 1 as n increases, i.e., lim «,, = 1 under proper rate. Another re-
lated question will be: is it a good choice to use an improper prior with exactly
a =1, eg. m(f) oc 0~1. Our theoretical results break down when a = 1 (the
term a — 1 appears in the denominator), and our technical tool which follows
the arguments of Le Cam-Birgé testing theory [7, 4, 22] only works for proper
prior specifications.
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The primary research interest of this paper is on the Lo and L; posterior
contraction rates. Another important research objective is sparsity recovery,
i.e., to identify the set {j : 0 # 0}. Given a continuous posterior distribution
induced by a shrinkage prior, one easy way to perform model selection is to do
a threshold truncation, that is, a variable is selected if its posterior summary
such as posterior mean is greater than some thresholding value. This simply
approach has been widely used in the literature, however, it usually leads to
over-selection with the number of false positives being of order of O(s) [e.g.,
Theorem 3.4 of 6]. Another different model selection approach is to select 6;’s
whose marginal credible intervals exclude 0, and the consistency of this Bayesian
selection method is investigated by [30] for the horseshoe prior.

This work focus on the normal sequence model, thus it would be of substan-
tial interest to conduct similar investigation for a more general regression model.
Our results heavily rely on the independence among y;’s, and it is not trivial
to extend these results to regression model with correlated design matrix. Song
and Liang [26] studies the posterior asymptotics for the general linear regres-
sion model, including order-(slogp/n)'/? L, contraction and model selection
consistency, when a polynomially decaying prior is used. We believe that the
choice of polynomial order also plays a role for the multiplicative constant of the
posterior contraction rate under regression model, and we conjecture that the
optimal choice of o will depend on the eigenstructure of the design matrix. If the
design matrix X is nearly orthogonal, e.g., all entries of X follow independent
Gaussian distribution, we conjecture that the same results as Theorem 2.1 will
still hold, and one needs to choose v = 1 in order to obtain optimal Bayesian
contraction.
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Appendix A: Technical proofs
A.1. Proof of Theorem 2.1

The proof consists of two parts. Since the posteriors of 6;’s are independent, in
Part I, we study the posterior contraction for the nonzero 6;’s and in Part II, we
study the posterior contraction for the zero 6;’s. First, let us state some useful
lemmas.

Lemma A.1 (Lemma 1 of [21]). Let x%(k) be a chi-square random variable
with degree of freedom d and noncentral parameter k, then we have the following
concentration inequality

Pr(x3(k) < d+ r — {(4d + 8k)z}/?) < exp(—z),

for any x > 0.
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Lemma A.2 (Theorem 1 of [32]). Let X be a Binomial random variable X ~
B(n,v). Foranyl <k<n-—1

Pr(X > k+1) <1— &(sign(k — nv){2nH (v, k/n)}'/?),

where @ is the cumulative distribution function of standard Gaussian distribu-
tion and H(v,k/n) = (k/n)log(k/nv) + (1 — k/n)log[(1 — k/n)/(1 — v)].

The next lemma is a refined result of Lemma 6 in [4]:

Lemma A.3. Let f* be the true probability density of data generation, fg be the
likelihood function with parameter 0 € ©, and E*, FEy denote the corresponding
expectation respectively. Let B, and C,, be two subsets of the parameter space ©,
and ¢, be some testing function satisfying ¢, (Dy,) € [0,1] for any realization D,
of the data generation. If m(B,) < by, E*¢(Dy) < b, supgec, Eo(1—¢(Dy)) <

Cn, and
P*{m(D)Z }Zl_a:@,
f*(Dn)
where m(D fo n)dO is the margin density of D,,, then,
bn n
E* (1(C U B)| D)) < 2250 gl 1y

n

Proof. Define €,, be the event of (m(D,,))/(f*(Dn)) > an, and m(D,,C, U
By) = Je up, () fo(Dy)do. Then

E'm(Cp U By)|Dy) = E*m(Cr U By)|Dn ) (1 = ¢(Dn))1a,
+E*1(Cp U By)|Dn)(1 = ¢(Dn))(1 = 1q,) + E*7(Cp U Byn)|Dn)$(Dn)
<E*m(Cy U By)|Dn)(1 = ¢(Dn))le, + E*(1 = 1q,) + E*¢(Dy,)
<E*n(C,UB,)|Dy)(1 — ¢(Dy))lq, +b, +al,
<E*{m(Dy,Cy U By)/anf*(Dn)}(1 — ¢(Dy)) + by, + ay,.

By Fubini theorem,

E*(1 = ¢(Dn))m(Dn, Cn U By)/ f*(Dn)
/ / - Fo(D)dDo(0)d0
C,UB,
g/ Eg(1 = ¢(Dy,))m( d9+/ /f.g W7 (0)dO < by, + ¢y
Ch
Combining the above inequalities leads to the conclusion. O

Part I: posterior contraction rate of nonzero 6;’s

It is equivalent to consider the situation that § = 9 + €, where 3,9, € R?,
€ ~ N(0, I,). The parameter v is subject to prior H;Zl m(¥1,5). The parameter
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91 hence correspeonds to the subvector of 8: ¥; = (Oj)je{gj*_#o}, and its true
value is 97 = (07) (o 0y- We want to show that

E*n(|[9r = 97] = {(2 + w)slog(n/s)}'/?[7) < exp{—coslog(n/s)}, (A1)
for some positive constant cg.
Let’s consider the testing function ¢(§) = 1(||§ — 9| > {dslog(n/s)}'/?)
where § is a positive but tiny constant. This testing function satisfies

Eyg:¢(§) = Pr(x? > dslog(n/s)) < exp {_(55;()?_—(;0/5)} (A.2)

where Ey, denotes the expectation over y with respect to true parameter being
9J1, and the last inequality holds for any fixed §; > 0 when n is sufficiently
large due to Lemma A.1. And for any ¢; € C,, = {¢1 € R® : || — 95| >

{(2+w)slog(n/s)}'/?},

Ey,[1 = ¢(9)] = Pr(|[§ — 97| < {dslog(n/s)}'/91)

<Pr(|[fi — 04]| > [[9h — 05| — {slog(n/s)}/2[01)

—Pr(x2 > [|[9, — 9;]| — {5slog(n/s)}/*]?) (A.3)
(191 — 9%]| — {55 log(n/s)} /2] 191 — 0%

< < L e G 51

=P { 2+ 0o =P 2, [

where the last inequality holds as § is sufficiently small. Denote Ay = 91 — V5.
With probability at least 1 — exp{—cslog(n/s)} for some positive ¢, ||e]|? <
nslog(n/s)/2 and

~ _llelr2 2
0 _ [ oy (MDD 2
(@) 2 (A1)
slog(n/s '
> exp { - PRE L w801 < {stogn/s)/21)
for any fixed small constant n > 0, where m(y) = [ f(g;91)7(dd1) is the

marginal likelihood of data g.
Therefore, let €2, be the event that (A.4) holds, by (A.2)—(A.4), we have

E*x(Cal)

—E*m(Col§)(1 = 6()) Lo, + E*7(Cali)(1 = (@)L~ 1a,) + E*m(Cul§)0(7)

<E*m(Culf)(1 - (7)) 1a, + E*(1 = 10,) + E6(7)

<B*n(Cy |y><1—¢<y>>1gn+exp{ cslog(n/s)} + exp{—dslog(n/s)/ (2 + b))}
B [, £5:91)(1 = 6(5)/ £ (@)n(di)

“exp |- 1—/} (I1A01 ] < {nslog(n/s)/2}1/2)

+ exp{—cslog(n/s)} + exp{—dslog(n/s)/(2 + do)}.
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And the first term in the above equation satisfies

E* [ f5:00)(1 = 6(§)/ £ ()m(din)
=P {7%(71/5)} 7T(HAﬁlH < {nslog(n/s)/2}1/2)
_ [ Jo, $@:92)(1 = 6(7)m(dv1)dy
exp {_%} m([[Ad]| < {nslog(n/s)/2}1/?)
_ Jo, Bo, (1= 6(§))m(dd1)
exp { 4000 L (|| Ad || < {nsloa(n/s)/2}1/2)
S exp{=[|A01[|2/(2 + 250} (didy ) {775 log(n/s) } |
m([[A%]] < {nslog(n/s)/2}1/?) 5

Let us now study the quantity an exp{— || A1 [|2/(2 4 280) }(ddr) /(|| Ad || <
{nslog(n/s)/2}%). Let Ty = {j:9},] > 1} and Ty = {j; [95,] < 1}, Ty be
the generic notation for a subset of Ty, Ty = T1\T3 and t; = |T;|. Y11, de-
notes the subvector of ¥; corresponding to T;. Decompose C,, = Up,c7, CL* =
Urnyer (Cr, N {1 {7 : [91,;] < 1} =T3}). Then, we have

Je, exp{=[[AV1[*/(2 + 200) }m(do1)
m(|Ad1 < {nslog(n/s)/2}1/?)
Je., exp{=[|AV1[*/(2 + 280) }m(d1)

m(||AYy 4] < {nlog(n/s)/2}1/2 for all j =1,...,s)
- Je, exp{=[1A01[12/(2 + 200)} [ Lier, 7(91,5) [T ez, m(01,5)d01
- HjeT1 7r(1‘9>.1<7j)HjeT2 (ﬁl,j [—1,1])

1 (91 ,J

. Z fC;‘:S eXp{_ gﬁgél‘ } Hj€T4 wéﬂ : HJ€T3 7r(19* ) HjGTZUTS ﬂ(ﬁl’j)dﬁl

T5CTy HjETg (191»] [ 171}) 7

(A.5)

where the second inequality holds asymptotically, because log(n/s) is sufficiently
large and 7(] - |) is a decreasing function.

By C.3,if [1 ;] and |7 ;| are both larger than 1, then |log (7 (¥1,;) /(97 ;)| <
[10g(Ca/C) |+ o 91 o 91 | < 108(Ca/ )|+ i — 7, |. T 95 | >
1, then we have that log[1/7(J] )] < alog |97 ;| + (a — 1)log(1/7) logC <
oz|19f7j| + (¢ —1)log(1/7) — log C;. Using these facts, for any T C 77,

AY 19
Jes exp{- gwéy } Haen o J) 7 jer, 7r(19 ) [Ler,ur, m(01,5)dv:

HjeT2 (791,3 [ 1 1])
1A9,2

<fC33 exp{— S0 +oal|AYy 1, |1 +ta log 02 +a|9} Ty 1 }Hj.nguT2 m(01,5)dy
- CPlr (1~ 205 (/) |

(A.6)
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Since fOI‘ any j € 11, Aﬁ%,j — (2 + 250)0&|A191,j‘ = (‘A1917j| — (1 —|—(50)a)2 — (1 +
80)%a?, we have that

AV ||? Y
exp{— 180 1 0| AV 7, |11 + talog & + |95 1, 11}

Cplre=t]ts [l — 20y (1 /)~ (- V)]t

<exp{_HIAmH—sl/z(l;f%icﬁ—s(1+6o)2a2 iy logg—f—i—at;j}

- CElr1]a[1 = 2Cy(1/r) (e D]e (A7)
w)slog(n/s 1/27 1/2 azfs a

<exp{7[{<2+ Jslog(n/ 9} /2 s 2(tdolal’=a(1tho)” 4 4 10g G 4 )

- CPlr B[l =2C5(1/7) ]

exp{—krslog(n/s
<o lrslogtn/s)

for any 0 < k < (2 + w)/(2 + 20y), where the last inequality holds since tq4,
ts3 < s, 7 — 0 and n/s — oo. Combining inequalities (A.5)—(A.7), (A.5) can be
bounded by

Jo, exp{—l| A1]? /(2 + 2d0) } (d1)
m(|AY1 ]| < {nslog(n/s)/2}1/2)
- Z fCTJ exp{—rslog(n/s)} [1;crur, 7(¥1,5)dd

[re—T1]ts
T3CTy
exp[—k log(n/s
Z/T{ ol Tagl L } H“%J Hﬂ’glﬂdﬁl (A-8)
TsCTy 3 JETS JET>

S/ [T 7@ )dor r,
A91, 7, |<{(2+w)slog(n/s)}'/? joq
<cxp{—/<s log(n/s)}

[ro—1]s [+ Va({(2 + w)slog(n/s)} /)],

where 7(9) = exp|—rlog(n/s)|x(9)/ro L if 9] < 1, #(¥) = 1if |[¥| > 1; and
V.(R) is the volume of n-dimensional ball with radius R.

Combining all the above calculus results, if 7¢~1 > (s/n)*{log(n/s)}'/? for
0 < ¢ < k —n/2 (which is guaranteed by the condition of the theorem, as long
as dg and 7 are sufficiently small), then

S exp{—[|A01]12/(2 + 200)}m(ddy) /
CW(||A191|| < {nslog(n/s)/2}1/2) exp{gslog(n/s)} < exp{—c'slog(n/s)}

for some 0 < ¢ < kK —n/2 — c¢. And this concludes (A.1).
Part II: posterior contraction rate of zero 6;’s

It is equivalent to consider the situation that § = 93 4+ € where y,9; € R*" ™%,
€ ~ N(0,I,-s). The parameter ¥ is subject to prior [[7_} 7(¥2,;). The true
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parameter 95 = 0, and we want to show that

E*7n(]|¥2]] > Vwslog(n/s),at most cds entries of Yo

(A.9)
is larger than \/dslog(n/s)/n|y) < exp{—coslog(n/s)},
if 771 < [(s/n)log(n/s)]*; and
E*m(||92]] > v/wslog(n/s) at most cds entries of 5 (A.10)

is larger than s+/dlog(n/s)/n|y) < exp{—coslog(n/s)},

if 771 < (s/n)*{log(n/s)}@*tV/2 for § = w/5 and some constants ¢ < 1/2
and ¢g > 0. We will apply Lemma A.3 to prove (A.9) and (A.10).

To proof (A.9), we consider the testing function ¢(7) = max¢j<css 1(|7e || >
{8slog(n/s)}'/?), where ¢ denotes the subvector of § corresponding to model
. First, for any fixed §p > 0, by Lemma A.1 and Sterling’s approximation, we
have

n

B 0(0) = 16051 {51 | PrOchan = Ostor(n/)

< [ebs] ([07551) exp {_%ﬁg/)} < exp{—'slog(n/s)}

(A.11)

for some 0 < ¢ < §(1/(2+ o) — ¢), when n is sufficiently large and we choose
c<1/(2+ ).
We define two sets in R"~* as: B,, = {more than cds entries of |)3] are bigger

than y/dslog(n/s)/n}, and C, = {|[J2| > +/5dslog(n/s) and at most cds

entries of |J3] are bigger than y/dslog(n/s)/n}. For any 9o € C,, let £ =
£(92) = {j : |92] > {dslog(n/s)/n}'/?}}, thus we always have that |€] < ¢ds,
19 ¢l < {ds log(n/s)}'/? and |9, ell = 2{0s log(n/s)}'/2. Then we can derive
that
JSup Eg,[1— ¢(§)] < Pr(||7¢]l < {0slog(n/s)}'/*|92)
<Pr(|[ge — Oy gll = |19, ¢ — 0 eIl = {5slog(n/s)}'/*|02)

<Pr(Xfessy = (1956 = 0 6l — {05 log(n/s)}'/*?)
dslog(n/s

Note that with dominating probability, ||y|| < (14 ¢/)n'/? for any ¢ > 0 and
m)

/ f(02:9)
I ~ Jyjosllw<siognss)n F(0;9)

1, -
-/ exp{ =517~ 0alP = 131P) } w(v2)
192l oo <nslog(n/s)/n

> exp{—3nslog(n/s)}7(||[V2]|c < nslog(n/s)/n),

(A.12)

m(V2)

(A.13)
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for any positive 7. By the condition of T,

™ slog(n/s)/n — M —(a—1)\n—s
(192]loe < nslog(n/s)/n) > (1 = Ca(=2—=) ) s

>(1- n'% log g)"‘s — exp{—1n'slog(n/s)}

for any positive 7’.
Similar, we have the 7(|d2 ;| > {Js log(n/s)/n}?)=o([(s/n)log(n/s)](@+1)/2),
Thus by Lemma A.2, it is easy to verify that the prior of B, satisfies

—logm(B,) 2 cdl(a —1)/2]slog(n/s) (A.15)

Combining results (A.11)—(A.15), by Lemma A.3, one can see that (A.9)
holds as long as we choose sufficiently small n and 7'

Similar arguments can be use to proof (A.10). The only difference is that we
now define the set B, = {more than c¢js entries of |¥s| are bigger than

sy/dlog(n/s)/n} and set C,, = {||J2]| > \/5dslog(n/s) and at most cds entries
of|¥z| are bigger than s4/dlog(n/s)/n}. The details of proving (A.10) is left to
the readers.

Due to the fact that posterior of ¢y and 5 are independent, (A.1) and (A.9)
imply
E*n([16 — 6" > {(2 +w)slog(n/s)}'/? + {(w)slog(n/s)}/*| Dn)
<exp{—cyslog(n/s)}
for some ¢j. And (A.1) and (A.10) imply that

E*n([0 =071 = s{(2 + w) log(n/s)}'/* + s{wd log(n/s)}'/
+s{01og(n/s)}'/*|Dy) < exp{—cyslog(n/s)},

for some ¢,. These conclude our results in Theorem 2.1.

A.2. Proof of Theorem 3.1

Consider the following testing function

¢(Dn) max _ 1(llye —0¢ ]| = {dslog(n/s)}'/?), (A.16)

£287,[8\&*|<cds
for some ¢ < 1/2, and define two sets in ©: B,, = {6 : |{j : j ¢ £*,10;] >
s{log(n/s)}/?/n}| > cds}, and Cp, ={0 : |0 —0*|| > /(2 + 2w)slog(n/s) }\ By,
where §* = {j : [07] # 0}. The § is a small quantity depending on w which we
will determine later.

By the same arguments used in the proof of Theorem 2.1 and Lemma A.1,
we have that, for any fixed small §y satisfying 1/(2 + dg) > ¢,

Eo-6(Dy) < exp {—[ﬁ ~ s log<n/s>} ,
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if n is sufficiently large, and

sup Eg(1 = ¢(Dy)) < exp{~[{(2+ 2w — 8)"/% = 6'/2}?/(2 + 60)]s log(n/s)},
0eC,
and we choose the values of § and §y to be very small, such that {/2 4 2w — § —
VY2 /(2 +d0) > 1+ 3w/4.

To derive the upper bound for E*n(C,, U B,|D,,), let us study E*n(C,|D,,)
and E*m(By|D,,) separately.

Use the same notation and arguments in the proof of Theorem 2.1, let m(D),,)
be the marginal density of data, and f*(D,,) be the true likelihood. Let ©¥; and
Y2 be the subvectors of 6 corresponding to £* and £*¢. Thus with probability
1 — exp{—cslog(n/s)},

m(Dn)

f*(Dn)

> exp{—4nslog(n/s)}

x (|| — 97] < {nslog(n/s)/2}/%, |[V2lloc < nslog(n/s)/n)

for any positive 7.
By Lemma A.3 and testing function (A.16), we have that

E*n(Cy|D,) < exp{—cslog(n/s)} + exp {[2_:(50 —c|ds log(n/s)}

exp{—[{(2+ 2w — §)'/% — 6"/2}2/(2 + y)]s log(n/s)}

+eXp{—4778 log(n/s)}m([[01 — 971l < v/nslog(n/s)/2, 2] < ns log(n/a/n)g
A7

When 7 € [(s/n)F«/2)/(@=1) (5/n)/(@=1)] "as showed in the proof of The-
orem 2.1, we have that 7(]|¥92||cc < nslog(n/s)/n)|T) > exp{—n'slog(n/s)} for
any positive i/, and

(|91 — O5ll < {nslog(n/s)/2}/*|7)

>{nlog(n/s)/2}%/? min (0|1
={nlog(n/s)/2} <9l<{nlog(n/8)/2}”2+max9;‘ © )>
>exp{—(1+w/2+w/5+1")slog(n/s)},

for any positive "/, where the last inequality is due to the upper bound condition
of max |07 |. Therefore,

m{[[01 = 91| < V/nslog(n/s)/2, [[92]lcc < nslog(n/s)/n)}
zw{(s/n)(1+“/2)/("_1) <7< (s/n)a/(a—l)}
x exp{—(n' +1+w/2+w/5+n")slog(n/s)}.
Combining the above results, with the condition on the prior 7(7), we have that

A7) < exp{—c'slog(n/s)} for some positive ¢, given iy and n”’ are sufficient],
g g n n y
small.



2738 Q. Song

Now we study the posterlor E*7(B,|D,,). The marginal distribution can be
written as m( ff W591) f(y?; 99)m(0)dl, where y(V) = yer, y?) = yeue,
flyM;9y) and f(y(2 ¥5) are the likelihood functions for y( and %), and
0 = (¥1,92). By the same arguments used in the proof of Theorem 2.1, with
probability 1 — exp{—cslog(n/s)},

m(Dy) > f(y'®;93) exp{—3nslog(n/s)} Fy;01)m(0)df,

1911w <ns 08 (n /) /.
and [[y'Y — 97> < o"slog(n/s), (A.18)

for some positive ¢ and n"”’. Let 2,, be the event that (A.18) holds.
Therefore, by the same argument in the Lemma A.3,

E*n(By,|Dy)
<(1 = P*(2))
Eye [, fyN;00) f(y?;02)m(0)d0/ £ (y');93)

+ E, 1q,
" exp{=3ns1og(n/)} Jig, 1. <nsrog(nss)m SN 01)7(0)dO
=(1 = P*())
W 9,)7(0)do
+ By Js, f ()

1
exp{—3nslog(n/s) }f‘|192|‘oc§77810g(n/5)/n Fy®;90)m(6)do "
(A.19)

Let’s study the last term in the right handed side of (A.19). Define two sets
in R"=%: BL = {95 : |{j : |02,] > s{0log(n/s)}}/?/n}| > cbs}, B2 = {¥s :
|92]lco < mslog(n/s)/n}, hence

[, Py 91)m(0)do 1
" fl\ﬂzl\w<nslog(n/s)/n Fly®;90)m(0)do
(f7<70 fT>To fBl Jo P30 7(01|7)7 (D2| )7 (1) d0 1 dD2dr
fT<T0 fBQ Sz O35 91)w (91|77 (Da|7) 7 (7)d01 ddodT

Ey

<E,n lo,,

(A.20)

where 75 = (s/n)®/(®=1). When 7 < 79, by the same arguments used in the Part
IT of the proof of theorem 2.1, we have

fBl fRS y(l) W) (| 7) 7 (P2 7)dd d2 B fB}L w(92|T)dds

\[Bz f]RS 1) 191 (’191|T)7T(’(92|T)d’l91d’l92 a fB’QL 7T(192|T)d’l92

<exp{ 05(a — 1)slog(n/s)/2}
exp{—n'slog(n/s)}

(A.21)
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for any fixed small > 0. And on event Q,,,
1, (1) 2
[ el = a1 2)w(or )iy
= [ exp{—lly = 5+ 07~ n[*/2m(0r )

> / exp{— |y — 04]|?/2} (01 |7)dvy
191 =97 [l oo <{log(n/s)}1/2

2/ exp[—{n"" + 1+ 2(n"")/*}slog(n/s)/2]m (91 |7)dV;
[[91 =97 [l oo <{log(n/s)}1/2

— exp{—'slog(n/s)} 7(91]7)dvs,
[[91 =97 [l oo <{log(n/s)}1/2

for some positive ¢’. Therefore, conditional on §2,,, we have

Joon f31 Joo FYD;00) w01 |7) (Do |7)7(T)dD1 dD2dT

f'r<7'0 fBz Jge f( y(l) ) (|77 (G| 7)) 7 (T)dI dFodT
- fT>7'0 w(T)dT

exp{—c’slog(n/s)} [ f32 fl\ﬂl 03l <r/iog(TS) ™ (V1 |7)m (9| T) 7 (T)d 1 dIodT
_ f7'>7'0 7w (T)dT
“exp{—c"slog(n/s)} fnSTSTo 7(r)dr
<exp{—c"slog(n/s)} (A.22)

for any positive ¢’ and ¢”, where 7 = (s/n)1+«/2)/(@=1) " and the second
inequality follows by the condition max [} = max |07| < (n/ s5)w/(5e),
Combining (A.19)—(A.22), we have that E*7(B,|D,) < exp{—c""slog(n/s)}
for some positive ¢’ if n and 1’ are small enough.
These results conclude the theorem.
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