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Abstract: We consider the problem of jointly estimating multiple related
directed acyclic graph (DAG) models based on high-dimensional data from
each graph. This problem is motivated by the task of learning gene regula-
tory networks based on gene expression data from different tissues, devel-
opmental stages or disease states. We prove that under certain regularity
conditions, the proposed �0-penalized maximum likelihood estimator con-
verges in Frobenius norm to the adjacency matrices consistent with the
data-generating distributions and has the correct sparsity. In particular,
we show that this joint estimation procedure leads to a faster convergence
rate than estimating each DAG model separately. As a corollary, we also
obtain high-dimensional consistency results for causal inference from a mix
of observational and interventional data. For practical purposes, we pro-
pose jointGES consisting of Greedy Equivalence Search (GES) to estimate
the union of all DAG models followed by variable selection using lasso to
obtain the different DAGs, and we analyze its consistency guarantees. The
proposed method is illustrated through an analysis of simulated data as
well as epithelial ovarian cancer gene expression data.
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1. Introduction

Directed acyclic graph (DAG) models, also known as Bayesian networks, are
widely used to model causal relationships in complex systems across various
fields such as computational biology, epidemiology, sociology, and environmen-
tal management [1, 12, 31, 36, 40]. In these applications we often encounter
high-dimensional datasets where the number of variables or nodes greatly ex-
ceeds the number of observations. While the problem of structure identification
for undirected graphical models in the high-dimensional setting is quite well
understood [35, 26, 11, 5, 46], such results are just starting to become available
for directed graphical models. The difficulty in identifying DAG models can be
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attributed to the fact that searching over the space of DAGs is NP-complete in
general [6].

Methods for structure identification in directed graphical models can be di-
vided into two categories and hybrids of these categories. Constraint-based meth-
ods, such as the prominent PC algorithm, first learn an undirected graph from
conditional independence relations and in a second step orient some of the
edges [15, 40]. Score-based methods, on the other hand, posit a scoring crite-
rion for each DAG model, usually a penalized likelihood score, and then search
for the network with the highest score given the observations. An example is
the celebrated Greedy Equivalence Search (GES) algorithm, which can be used
to greedily optimize the �0-penalized likelihood such as the Bayesian Informa-
tion Criterion (BIC) [7]. High-dimensional consistency guarantees were recently
obtained for the PC algorithm [20] and for score-based methods [24, 29, 45].

Existing methods have focused on estimating a single directed graphical
model. However, in many applications we have access to data from related
classes, such as gene expression data from different tissues, cell types or states [25,
38], different developmental stages [3], different disease states [42], or from dif-
ferent perturbations such as knock-out experiments [9]. In all these applications,
one would expect that the underlying regulatory networks are similar to each
other, since they stem from the same species, individual or cell type, but also
have important differences that drive differentiation, development or a certain
disease. This raises an important statistical question, namely how to jointly es-
timate related directed graphical models in order to effectively make use of the
available data.

Various methods have been proposed for jointly estimating undirected Gaus-
sian graphical models. To preserve the common structure, Guo et al. [16] sug-
gested to use a hierarchical penalty and Danaher et al. [8] suggested the use of
a generalized fused lasso or group lasso penalty. While both approaches achieve
the same convergence rate as the individual estimators, Cai et al. [4] were able to
improve the asymptotic convergence rate of joint estimation using a weighted
constrained �∞/�1 minimization approach. Bayesian methods have been pro-
posed for this problem as well [33]. Related works also include [28], where it is
assumed that the networks differ only locally in a few nodes and [22, 39], where
the assumption is that the networks are ordered and related by continuously
changing edge weights.

In this paper, we propose a framework based on �0-penalized maximum likeli-
hood estimation for jointly estimating related directed Gaussian graphical mod-
els. We show that the joint �0-penalized maximum likelihood estimator (MLE)
achieves a faster asymptotic convergence rate as compared to the individual
estimators. In addition, by viewing interventional data as data coming from a
related network, we show that the interventional BIC scoring function proposed
in [17] can be obtained as a special case of the joint �0-penalized maximum
likelihood approach presented here. Our theoretical consistency guarantees also
explain the empirical findings of [17], namely that estimating a DAG model
from interventional data usually leads to better recovery rates as compared to
estimating a DAG model from the same amount of purely observational data.
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These theoretical results are based on the global optimum of �0-penalized max-
imum likelihood estimation. To overcome the computational bottleneck of this
optimization problem we propose a greedy approach (jointGES ) for solving this
problem by extending GES [7] to the joint estimation setting. We analyze its
properties from a theoretical point of view and test its performance on synthetic
data and gene expression data from epithelial ovarian cancer.

The remainder of this paper is structured as follows. In Section 2, we re-
view some relevant background related to DAG models and introduce notation
for the joint DAG estimation problem studied in this paper. In Section 3, we
present the joint �0-penalized maximum likelihood estimator and jointGES, an
adaptation of GES for solving this optimization problem. Section 4 establishes
results regarding the statistical consistency of the �0-penalized MLE and joint-
GES. Section 5 presents the implications for learning DAG models from a mix
of observational and interventional data. In Section 6, we illustrate the perfor-
mance of our proposal in a simulation study and an application to the analysis
of gene expression data. We conclude with a short discussion in Section 7. The
proofs of supporting results are contained in the Appendix.

2. Preliminaries

In Section 2.1 we introduce DAG models, in particular linear structural equation
models, and discuss statistical features enjoyed by random vectors following
these models. In Section 2.2 we briefly review existing approaches for estimating
a single directed graphical model from observational data. Finally, Section 2.3
describes a setting where multiple related directed graphical models exist.

2.1. Directed acyclic graphs and linear structural equation models

Let G = (V,E) denote a DAG with vertices V = [p] = {1, · · · , p} and di-
rected edges E ⊆ V × V , where |G| denotes the cardinality of E. Let A ∈ R

p×p

be the adjacency matrix specifying the edge weights of the underlying DAG
G, i.e., Aij �= 0 if and only if (i, j) ∈ E. Also, let ε ∼ N (0,Ω) denote a p-
dimensional multivariate Gaussian random variable with zero mean and diag-
onal covariance matrix Ω. In this work, we assume that the observed random
vector X = (X1, · · · , Xp) ∈ R

p is generated according to the following linear
structural equation model (SEM).

X = ATX + ε. (1)

Hence X follows a multivariate Gaussian distribution with zero mean and co-
variance matrix Σ, where the inverse covariance (or precision) matrix Θ = Σ−1

is given by

Θ = (I −A)Ω−1(I −A)T . (2)
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Let Paj(G) denote the parents of node j in G; then it follows from (1) that the
distribution of X factorizes as

P(X) =

p∏
j=1

P(Xj |XPaj(G)).

Such a factorization of P according to G is equivalent to the Markov assumption
with respect to G [23, Theorem 3.27]. Formally, given j, k ∈ V and an arbitrary
subset of nodes S ⊂ V \ {j, k}, then

j is d-separated from k | S in G ⇒ Xj ⊥⊥ Xk|XS in P. (3)

If the implication (3) holds bidirectionally, then P is said to be faithful [40] with
respect to G. Note that there exist DAGs G1 and G2 that encode the same d-
separations and hence the same conditional independence relations. Such DAGs
are said to belong to the same Markov equivalence class.

A consequence of the acyclicity of G is that there exists at least one permu-
tation π of [p] such that Aij = 0 for all π(i) ≥ π(j). Putting it differently, if the
rows and columns of A are reordered according to π, then the resulting matrix
is strictly upper triangular. Hence, if such a permutation π is known a priori,
one can obtain the SEM parameters (A,Ω) from Θ according to the following
steps [cf. (2)]. First, we reorder Θ according to π. Then, we perform on the re-
ordered Θ an upper-triangular-plus-diagonal Cholesky decomposition to obtain
(A′,Ω′). Finally, we revert the ordering by permuting the rows and columns
of A′ and Ω′ according to π−1 and obtain the sought (A,Ω). For an arbitrary
permutation π and a given Θ, we denote by (Aπ,Ωπ) the Cholesky decomposi-
tion parameters obtained from the procedure just described. Alternatively, one
can obtain (Aπ,Ωπ) by solving p linear regressions [cf. (1)]. More precisely, we
can obtain each column of Aπ by regressing Xj only on those Xi such that
π(i) < π(j) for all j. Once Aπ is obtained, one can estimate the variance of ε
in (1) to get Ωπ. In the remainder of the paper, we denote by (A0,Ω0) and Θ0

the true parameters of the data-generating SEM and the associated precision
matrix, respectively. Moreover, we denote by (A0π,Ω0π) the SEM parameters
obtained from the described procedure when the true precision matrix Θ0 is
used. Notice that (A0,Ω0) = (A0π,Ω0π) if π is any permutation consistent with
the true underlying DAG G0. The DAG Gπ corresponding to the non-zero entries
of Aπ is known as the minimal I-MAP (independence map) with respect to π.
The minimal I-MAP with the fewest number of edges is called minimal-edge
I-MAP [45]. If P is faithful with respect to a DAG G, then G is a minimal-edge
I-MAP of P [34, 45].

Furthermore, it has been shown in [32] that all DAGs in a Markov equiva-
lence class share the same skeleton – i.e., the set of edges when directions are
ignored – and v-structures. A v-structure is a triplet (j, k, �) ⊆ V such that
(j, k), (�, k) ∈ E but j and � are not connected in either direction. This moti-
vates the representation of a Markov equivalence class as a completely partially
directed acyclic graph (CPDAG), which is a graph containing both directed and
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undirected edges [2]. A directed edge means that all DAGs in the Markov equiv-
alence class share the same direction for this edge whereas an undirected edge
means that both directions for that specific edge are present within the class.
In the same way, one can represent a subset of a Markov equivalence class via
a partially directed acyclic graph (PDAG), where the directions of the edges
are only determined by the graphs within the subset. In particular, some undi-
rected edges in a CPDAG would become directed edges in a PDAG representing
a subset of the class. Notice that both DAGs and CPDAGs are special cases of
PDAGs, where the former represents a single graph and the latter represents
the whole equivalence class.

To consistently estimate causal DAG models in high dimensions, the �0-
penalized maximum likelihood estimation approach [45], the high-dimensional
PC method [20] and the ARGES method [29] have been proposed. These meth-
ods have high-dimensional guarantees under different conditions, and are thus
not directly comparable. In particular, the theoretical guarantees of �0-penalized
maximum likelihood estimation requires the so-called “beta-min” condition [45];
the high-dimensional PC algorithm requires the “strong faithfulness” condi-
tion [20]; and ARGES requires the “strong faithfulness” condition as well as
additional conditions. For further discussions on the strength of different condi-
tions, especially the “beta-min” and “strong faithfulness” conditions, we refer
the readers to Remark 4.10 and [45, Section 4.3.2].

2.2. �0-penalized maximum likelihood estimation for a single DAG
model

We denote by X̂ ∈ R
n×p the observed data, where each row of X̂ represents a

realization of the random vector X. We say that we are in the low-dimensional
setting if asymptotically p remains a constant as n → ∞. By contrast, whenever
p → ∞ as n → ∞, we say that we are in the high-dimensional setting. Assuming
faithfulness, Chickering [7] shows that GES outputs a consistent estimator in
the low-dimensional setting by optimizing the following objective – also known
as the Bayesian information criterion (BIC) –

(Â, Ω̂) := argmax
A∈A,Ω∈D+

�n(X̂;A,Ω)− λ2‖A‖0, (4)

where λ2 = 1
2
logn
n , A denotes the set of all valid adjacency matrices associated

with DAGs, D+ is the set of non-negative diagonal matrices, and �n is the
likelihood function

�n(X̂;A,Ω) := −trace

(
X̂T X̂

n
· (I −A)Ω−1(I −A)T

)

+ log det
(
(I −A)Ω−1(I −A)T

)
. (5)

In the high-dimensional setting, van de Geer and Bühlmann [45] give consis-
tency guarantees for the global optimum of (4) when the collection A is further
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constrained to contain only adjacency matrices with at most d incoming edges
for each node, where d = O(n/ log p). More precisely, they show that there ex-
ists some parameter λ2 
 log p

n such that the optimum (Â, Ω̂) in (4) converges in
Frobenius norm to (A0π̂,Ω0π̂) for increasing n and p, where π̂ is a permutation
consistent with Â, i.e.,

‖Â−A0π̂‖2F + ‖Ω̂− Ω0π̂‖2F = O
(
λ2|G0|

)
. (6)

Notice, however, that (6) does not guarantee statistical consistency since π̂ need
not be a permutation consistent with the true underlying DAG. Moreover, (6)
does not hold for every permutation π̂ consistent with Â, but [45] shows the
existence of at least one such permutation. In addition, it is shown in [45] that
the number of non-zero elements in Â, A0π̂, and A0 are all of the same order of
magnitude, i.e., |Ĝ| 
 |G0π̂| 
 |G0|.

2.3. Collection of DAGs

Consider the setting where not all the observed data comes from the same DAG,
but rather from a collection of DAGs {G(k) = (V,E(k))}Kk=1 that share the same
node set V = [p]. In addition, we assume that all DAGs in a collection are
consistent with some permutation π. This precludes a scenario where (i, j) ∈
E(k) and (j, i) ∈ E(k′) for some k �= k′. This is a reasonable assumption in,
e.g., the analysis of gene expression data, where regulatory links may appear or
disappear, but they in general do not change direction.

Denote by {(A(k),Ω(k))}Kk=1 a set of SEMs on the K DAGs {G(k)}Kk=1 and by

{X̂(k)}Kk=1 the data generated from each SEM, where we observe nk realizations

for each DAG G(k). In this way, each row of the data matrix X̂(k) ∈ R
nk×p

corresponds to a realization of the random vector X(k) defined as

X(k) = A(k)TX(k) + ε(k) with ε(k) ∼ N (0,Ω(k)).

Collections of DAGs arise for example naturally when considering data from
perfect (also known as hard) interventions [10]. Consider a non-intervened DAG
G with SEM parameters (A,Ω) [cf. (1)]. Then a perfect intervention on a subset
of nodes Ik ⊂ V gives rise to the interventional distribution

XIk = AIkTXIk + εIk with εIk ∼ N (0,ΩIk),

where AIk
ij = 0 if j ∈ Ik and AIk

ij = Aij otherwise, and the diagonal matrix ΩIk

satisfies ΩIk
ii = Ωii if i �∈ Ik [17, 18]. We denote the DAG given by the non-zero

entries of AIk by GIk .
In accordance with the notation introduced in Section 2.1, we denote by

G(k)
0 and (A

(k)
0 ,Ω

(k)
0 ) the true data-generating DAG and SEM parameters for

class k, respectively, and by π0 a permutation that is consistent with A
(k)
0 for

all classes k ∈ [K]. Moreover, we denote by G(k)
0π and (A

(k)
0π ,Ω

(k)
0π ) the DAG and
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SEM parameters obtained from the Cholesky decomposition of the true precision

matrix Θ
(k)
0 when permuted by π. We denote by Σ

(k)
0 the true covariance matrix

of the SEM for class k, i.e., the inverse of Θ
(k)
0 . Finally, we define Gunion

0 as the

union of all G(k)
0 – i.e., an edge appears in Gunion

0 if it appears in any G(k)
0 – and

Gunion
0π as the union of G(k)

0π . For interventional data, we use (AIk
0 ,ΩIk

0 ) to denote
the true SEM parameters after intervening on targets Ik.

3. Joint estimation of multiple DAGs

We first present a penalized maximum likelihood estimator that is the natural
extension of (4) for the case where a collection of DAGs is being estimated. Since
this involves minimizing ‖·‖0, we then discuss a greedy approach that alleviates
the computational complexity of this estimator.

3.1. Joint �0-penalized maximum likelihood estimator

With d denoting a pre-specified sparsity level and wk = nk/n indicating the
proportion of observed data from DAG k, we propose the following estimator:{

π̂,{(Â(k), Ω̂(k))}Kk=1

}

:= argmax
π,{(A(k),Ω(k))}K

k=1

K∑
k=1

wk�nk
(X̂(k);A(k),Ω(k))− λ2

∥∥∥∥
K∑

k=1

|A(k)|
∥∥∥∥
0

(7)

subject to A(k) ∈ Aπ, ‖A(k)‖∞,0 ≤ d, Ω(k) ∈ D+ ∀k,

where Aπ is the set of all adjacency matrices consistent with permutation π
and the matrix norm ‖ · ‖∞,0 computes the maximum �0-norm across the rows
of the argument matrix. The optimization problem in (7) seeks to maximize a
weighted log-likelihood of the observations (where more weight is given to SEMs
with more realizations) penalized by the support of the union of all estimated

DAGs. To see why this is true, notice that ‖
∑K

k=1 |A(k)|‖0 counts the number

of (i, j) entries for which A
(k)
ij �= 0 for at least one graph k. This penalization

on the union of estimated DAGs promotes overlap in the supports of the dif-
ferent A(k). Regarding the constraints in (7), the first constraint imposes that
all estimated DAGs are consistent with the same permutation π, which is itself
an optimization variable. This constraint is in accordance with our assumption
in Section 2.3 and drastically reduces the search space of DAGs. The second
constraint ensures that the maximum in-degree in all graphs is at most d, and
the last constraint imposes the natural requirement that all noise covariances
are diagonal and non-negative.

Notice that (7) is a natural extension of (4). Indeed, for the case K = 1 the
objective in (7) immediately boils down to that in (4). Moreover, when there
is only one graph and π can be selected freely, the constraint A(1) ∈ Aπ is
effectively identical to A(1) ∈ A, i.e., the constraint in (4). Finally, observe that
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Algorithm 1 JointGES for joint �0-penalized maximum likelihood estimation
of multiple DAGs.

Input: Collection of observations X̂(1) ∈ R
n1×p, · · · , X̂(K) ∈ R

nK×p, sparsity bound d,
penalization parameters λ1 and λ2

Output: Collection of weighted adjacency matrices Â(1), · · · , Â(K)

1: Apply GES to find Ĝunion, an approximate solution to the following optimization problem

argmin
G

p∑
j=1

(
K∑

k=1

wk

[
min

a∈R
|Paj(G)|

log
(
‖X̂(k)

j − X̂
(k)
Paj(G)

a‖22
)]

+ λ2
1|Paj(G)|

)

subject to max
j

|Paj(G)| ≤ d

(8)

2: Estimate the weighted adjacency matrices {Â(k)}Kk=1 consistent with Ĝunion by solving
Kp sparse regressions of the form

â
(k)
j = argmin

a | supp(a)⊆Paj(Ĝunion)

1

nk
‖X̂(k)

j − X̂(k)a‖22 + λ2
2‖a‖1.

in (7) we have included the additional maximum in-degree constraint required
in the high-dimensional setting [cf. discussion after (5)].

3.2. JointGES: Joint greedy equivalence search

The �0 norm as well as the optimization over all permutations π render the
problem of (7) non-convex, thus, hard to solve efficiently. In this section, we
present a greedy approach to find a computationally tractable approximation
to a solution to (7). The algorithm, which we term JointGES, is succinctly
presented in Algorithm 1 and consists of two steps.

In the first step of Algorithm 1 we recover Ĝunion, our estimate of the union
of all the DAGs to be inferred. We do this by finding an approximate solu-
tion to (8) via the implementation of GES [7]. The objective (scoring function)
in (8) consists of two terms. The first term is given by the sum of the log-
likelihoods of the achievable residues when regressing the jth column of X(k),

denominated as X
(k)
j , on X

(k)
Paj(G) for each node j and DAG k. In [45], van

de Geer and Bühlmann show that if we keep the underlying DAG G fixed,
the maximum likelihood estimator proposed in (4) is equivalent to optimizing∑p

j=1

(
min

a∈R
|Paj(G)| log

(
‖X̂j − X̂Paj(G) a‖22

))
. Thus, the first term in (8) cor-

responds to the first term in the objective of (7). The second term penalizes
the size of the parent set of each node in the graph to be recovered, effectively
penalizing the number of edges in the graph. In this way, the scoring function in
(8) promotes a sparse G in the same way that the objective of (7) promotes the
union of all K recovered graphs to have a sparse support. Additionally, it is im-
mediate to see that the scoring function in (8) is decomposable [7], a key feature
that enables the implementation of GES to find an approximate solution. Once
we have obtained the union of all sought DAGs Ĝunion from step 1, in the second
step of our algorithm we estimate the DAGs Ĝ(1), · · · , Ĝ(K) by searching over
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the subDAGs of Ĝunion. More precisely, for each node j we estimate its parents

in Ĝ(k) by regressing X
(k)
j on X

(k)

Paj(Ĝunion)
using lasso, where the support of â

(k)
j

corresponds to the set of parents of j in Ĝ(k).

To summarize, Algorithm 1 recovers K DAGs by first estimating the union
of all these DAGs Ĝunion using GES and then inferring the specific weight adja-
cency matrices Â(k) via a lasso regression, while ensuring consistency with the
previously estimated Ĝunion.

4. Consistency guarantees

The main goal of this section is to provide theoretical guarantees on the consis-
tency of the solution to Problem (7) in the high-dimensional setting. Our main
result is presented in Theorem 4.9; in Section 4.3 we present a laxer statement
of consistency based on milder conditions.

4.1. Statistical consistency of the joint �0-penalized MLE

A series of conditions must hold for our main result to be valid. We begin by stat-
ing these conditions followed by the formal consistency result in Theorem 4.9.
The rationale behind these conditions and their implications are discussed after
the theorem in Section 4.2.

Condition 4.1. All DAGs G(1)
0 , · · · ,G(K)

0 are minimal-edge I-MAPs.

Condition 4.2. There exists a constant σ2
0 that bounds the variance of all the

observed processes, i.e., maxk,i[Σ
(k)
0 ]ii ≤ σ2

0.

Condition 4.3. The smallest eigenvalues of all Σ
(k)
0 are non-zero, i.e.

mink Λmin(Σ
(k)
0 ) = Λmin > 0.

Condition 4.4. There exists some constant α such that, for all k, the maximum
allowable in-degree d in the objective function (7) is bounded as d ≤ αnk/ log p.

Condition 4.5. For all π and j there exist some constants α̃ and cs > 2 such
that

|Paj(Gunion
0π )|+ cs ≤ α̃

(
min

{(
n

K7(log p)3

) 1
3

,
n

K7(logn)2 log p

})
.

Condition 4.6. The number of DAGs K satisfies K = o(log p) and the amount
of data associated with each DAG is comparable in the sense that n1 
 n2 

· · · 
 nK .

Condition 4.7. There exists some constant ct > 0 such that |Gunion
0π | ≤

ct
∑K

k=1 wk|G(k)
0π | for any permutation π.
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Condition 4.8. There exist constants η0 and η1 such that 0 ≤ η1 < 1, 0 <
η20 < (1− η1)/ct, and

∑
i,j

1

{∣∣∣[A(k)
0π ]i,j

∣∣∣ >
√
log p/n

η0

(√
p/|Gunion

0 | ∨ 1

)}
≥ (1− η1)|G(k)

0π |, (9)

for all permutations π and graphs k ∈ [K], where 1{·} denotes the indicator
function and ct is as in Condition 4.7.

With the above conditions in place, the following result can be shown.

Theorem 4.9. If Conditions 4.1–4.8 hold and λ is chosen such that

λ2 
 log p

n

(
p

|Gunion
0 | ∨ 1

)
,

then there exists a constant c > 0 , that depends on cs, such that with probability
1− exp(−cp) the solution to (7) satisfies

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F +

K∑
k=1

wk‖Ω̂(k) − Ω
(k)
0π̂ ‖2F = O

(
λ2|Gunion

0 |
)
. (10)

Furthermore, denoting by Ĝ the union of the graphs Ĝ(k) associated with the K
recovered adjacency matrices Â(k), we have that

|Ĝ| 
 |Gunion
0π̂ | 
 |Gunion

0 |. (11)

The proof of Theorem 4.9 is given in Appendix A.2. To intuitively grasp
the result in the above theorem, assume that the number of edges in Gunion

0 is
proportional to the number of nodes p so that λ2|Gunion

0 | → 0 for increasing n as
long as n > p log p. Hence, under these conditions, (10) guarantees that for the

recovered permutation π̂, the estimated adjacency matrix Â(k) converges to A
(k)
0π̂

in Frobenius norm for all k. This not only implies that both adjacency matrices
have similar structure, but also that the edge weights are similar. Moreover,
from (11) it follows that the number of edges in the estimated graph Ĝ, i.e.,
|Ĝ| is similar to the number of edges in the union of all minimal I-MAPs with
permutation π̂, i.e., |Gunion

0π̂ |. More importantly, |Ĝ| is also similar to the number
of edges in the true union graph |Gunion

0 |. Despite these guarantees, it should be
noted that similar to the results in [45], the permutation π̂ need not coincide
with the permutation π of the true graphs to be recovered.

We now assess the benefits of performing joint estimation of the K DAGs as
opposed to estimating them separately. To do so, we compare the guarantees in
Theorem 4.9 to those developed in [45] for separate estimation. The application
of the consistency bound reviewed in (6) yields that for the separate estimation
ofK DAGs, when we are in the setting where allK DAGs are highly overlapping

(cf. Condition 4.7), by choosing λ such that λ2 
 log p
n

(
p

|Gunion
0 | ∨ 1

)
, one can
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guarantee that

K∑
k=1

wk‖Â(k) −A
(k)

0π̂(k)‖F +

K∑
k=1

wk‖Ω̂(k) − Ω
(k)

0π̂(k)‖2F = O
(
Kλ2 max

k∈[K]
|G(k)

0 |
)
,

(12)

where it should be noted that in the separate estimation the recovered per-
mutation π̂(k) can vary with k. A direct comparison of (10) and (12) reveals
that performing joint estimation improves the accuracy by a factor of K from
Ω(K log p

n ) to Ω( log p
n ). Hence, for joint estimation the accuracy scales with the

total number of samples n, showing that our procedure yields maximal gain from
each observation, even if the data is generated from K different DAGs. More-
over, the result in (10) holds under slightly milder conditions than those needed
for (12) to hold since Condition 4.8 is a relaxed version of the beta-min condition
in [45]. A more detailed discussion about the conditions of Theorem 4.9 is given
next.

4.2. Conditions for Theorem 4.9

It has been shown in [34] that if a data-generating distribution is faithful with
respect to G, then G must be a minimal-edge I-MAP. By enforcing the latter for
every true graph, Condition 4.1 imposes a milder requirement compared to the
well-established faithfulness assumption [40]. Conditions 4.2–4.4 ensure that we
avoid overfitting and provide bounds for the noise variances. These are direct
adaptations from Conditions 3.1–3.3 in [45]. Condition 4.5 is required to bound
the difference between the sample variances of our observations and the true vari-
ances, and is related to Condition 3.4 in [45] but adapted to our joint inference

setting. Notice that Condition 4.5 is trivially satisfied when p = O
(

n1/3

K7/3 logn

)
.

Condition 4.6 follows from the bounds for sample variances shown in [4]. In-
tuitively, we are imposing the natural restriction that the number of DAGs is
small compared to the number of nodes p in each DAG and the total num-
ber of observations n. Moreover, given that our objective is to draw estimation
power from the joint inference of multiple graphs, we require that each DAG is
associated with a non-vanishing fraction of the total observations.

Condition 4.7 enforces that, for every permutation π, the number of edges in
the union of all recovered graphs is proportional to the weighted sum of the edges

in every graph as K → ∞. In particular, this requires the individual graphs G(k)
0π

to be highly overlapping. To see why this is the case, notice that
∑K

k=1 wk|G(k)
0π |

is upper bounded by the maximum number of edges across graphs G(k)
0π . Con-

sequently, Condition 4.7 enforces the number of edges in the union of graphs
to be proportional to the number of edges in the single graph with most edges,
thus requiring a high level of overlap. Imposing high overlap for all permutations
π might seem too restrictive in some settings. Nonetheless, Condition 4.7 can
sometimes be derived from apparently less restrictive conditions as the following
example illustrates.
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Consider the more relaxed bound |Gunion
0 | ≤ ct

∑K
k=1 wk|G(k)

0 |, which is equiv-
alent to requiring Condition 4.7 to hold but only for permutations consistent
with the true graph Gunion

0 . In the following example, we show that this might
be sufficient for Condition 4.7 to hold. Suppose that Gunion

0 consists of two con-

nected components G′union
0 and G′′union

0 respectively defined on the subsets of

nodes V1 and V2. Moreover, assume that the subDAGs of G(k)
0 over V1 (de-

noted by G′(k)
0 ) are identical for all k. Putting it differently, the differences

between the DAGs G(k)
0 are limited to the second connected component. In ad-

dition, assume that for all possible permutations π2 of nodes V2 we have that
|G′′union

0π2
| ≤ |G′union

0 |. Then, for any permutation π, where we denote by π1 (re-
spectively π2) the restriction of π to the node set V1 (respectively V2), we have

|Gunion
0π | = |G′union

0π1
|+ |G′′union

0π2
| ≤

K∑
k=1

wk|G′(k)
0π1

|+
K∑

k=1

wk|G′(k)
0 | ≤ 2

K∑
k=1

wk|G(k)
0π |,

which shows that Condition 4.7 is satisfied for ct = 2. This example shows that
learning the structure of large components that are common across the different
DAGs is not affected by the changes in the smaller components of these DAGs.
Beyond this example, in Section 6.2, we also provide simulation results to study
the strength of Condition 4.7 for sparse DAG models. Our simulation analysis

shows that, when the G(k)
0 ’s are highly overlapping (recall that this corresponds

to a more relaxed scenario than Condition 4.7 that requires high overlap across

G(k)
0π ’s for all π’s), Condition 4.7 is naturally satisfied with a reasonably small ct.

Despite the above example as well as the empirical analysis, Condition 4.7 might
still be too restrictive for some applications; we discuss a relaxed requirement
and its implications on the consistency guarantees in Section 4.3.

Condition 4.8 requires that, for every permutation π and every graph k, the

value of at least a fixed proportion (1−η1) of the edges in G(k)
0π is above the ‘noise

level’, i.e., the lower bound within the indicator function in (9). Intuitively, if the
true weight of many edges is close to zero then correct inference of the graphs
would be impossible since the true edges would be mistaken with spurious ones.
Thus, it is expected that the weights of a sufficiently large fraction of the edges
have to be sufficiently large. Condition 4.8 is the right formalization of this
intuition. Moreover, notice that a straightforward replication of the beta-min
condition introduced in [45] would have required the ‘noise level’ to scale with√

log p/nk, instead of the smaller scaling of
√

log p/n required in (9). In this
sense, Condition 4.8 (together with Condition 4.1) is a relaxed version of the
extension of the beta-min condition to the setting of joint graph estimation.

Remark 4.10 (Strength of assumptions). Requiring strong assumptions for con-
sistent estimation is a common theme in existing methods for causal inference.
For example, the PC algorithm requires the strong faithfulness assumption [20],
which has been shown to be a very restrictive assumption for high-dimensional
causal graphical models [44]. For a discussion on the comparison between the
strong faithfulness assumption and the beta-min condition for estimating a sin-
gle DAG model, see [45, Section 4.3.2]. In this context, the assumptions pre-
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sented here are in line with or slight relaxations (Conditions 4.1 and 4.8) of
those in state-of-the-art approaches. While it would be interesting in future
work to formally compare Conditions 4.1 and 4.8 to strong faithfulness, our
goal here is not to relax existing assumptions for the estimation of DAG mod-
els, but to show that joint estimation can result in faster rates than separate
estimation of multiple DAGs under comparable assumptions.

4.3. Consistency under milder conditions

As previously discussed, in some settings Condition 4.7 might be too restrictive.
Hence, in this section we present a consistency statement akin to Theorem 4.9
that holds for a milder version of Condition 4.7:

Condition 4.7’. Let ct(π) be some function of π that scales as a constant for
permutations consistent with Gunion

0 and scales as o(K) for all other permuta-

tions such that |Gunion
0π | ≤ ct(π)

∑K
k=1 wk|G(k)

0π | for all π.

Observe that for permutations π consistent with the true union graph Gunion
0 ,

Condition 4.7’ boils down to the previously discussed Condition 4.7. However,
for all other permutations, ct(π) need not be a constant and is allowed to grow
with K. Intuitively, for all permutations not consistent with Gunion

0 we are not

requiring a high level of overlap among all the graphs G(k)
0π . Nonetheless, since

ct(π) = o(K) we do require Gunion
0π to be ‘sparser’ than the extreme case in

which all graphs G(k)
0π are disjoint.

In order to account for the fact that ct depends on the permutation π in
Condition 4.7’, we have to modify Condition 4.8 accordingly, resulting in the
following alternative statement.

Condition 4.8’. Let Cmax := max
π

ct(π), then there exist constants η0 and η1

such that 0 ≤ η1 < 1, 0 < η20 < (1− η1), and

∑
i,j

1

{∣∣∣[A(k)
0π ]i,j

∣∣∣ >
√
Cmax log p/n

η0

(√
p/|Gunion

0 | ∨ 1

)}
≥ (1− η1)|G(k)

0π |,

for all permutations π and graphs k, where 1{·} denotes the indicator function.

The following consistency result holds for the alternative set of conditions.

Theorem 4.11. Under Conditions 4.1–4.6, 4.7’ and 4.8’ and with λ such that

λ2 
 Cmax
log p
n

(
p

|Gunion
0 | ∨ 1

)
, then there exists a constant c > 0 that depends

on cs such that with probability 1− exp(−cp), the solution to (7) satisfies that,
at least for one k ∈ [K],

‖Â(k) −A
(k)
0π̂ ‖2F + ‖Ω̂(k) − Ω

(k)
0π̂ ‖2F = O

(
λ2|G(k)

0 |
)
. (13)
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Furthermore, denoting by Ĝ(k) the graph associated with Â(k) for the k ∈ [K]
satisfying (13), we have that

|Ĝ(k)| 
 |G(k)
0π̂ | 
 |G(k)

0 |. (14)

The proof is given in Appendix A.3. Condition 4.7’ is milder than Condi-
tion 4.7 and this relaxation entails a corresponding loss in the guarantees of
recovery: Comparing (13) and (14) with (10) and (11) immediately reveals that
what could be guaranteed for the ensemble of graphs in Theorem 4.9 can only be
guaranteed for a single graph in Theorem 4.11, thereby explaining the trade-off
in relaxing the conditions.

However, the result in Theorem 4.11 still draws inference power from the
joint estimation of multiple graphs since neither (13) nor (14) can be shown
using existing results for separate estimation. To be more precise, as discussed
in Section 4.2, when performing separate estimation, theoretical guarantees are
based on the assumption that at least a fixed proportion of the edge weights
are above the ‘noise level’, which scales as

√
log p/nk. However, Condition 4.8’

requires the noise level to scale with
√
Cmax log p/n which, given the fact that

Cmax = o(K), is not large enough to achieve the guarantee needed for separate
estimation. In addition, the convergence rate of Ω(Cmax

log p
n ) in (13) is still faster

than the corresponding convergence rate of Ω(K log p
n ) associated with separate

estimation [cf. discussion after (12)]. A potential limitation of Theorem 4.11 is
that, since one cannot know which of the K DAGs achieves such

√
Cmax log p/n

rate and which remains at
√
log p/nk, the result may be of limited utility for

practitioners. However, note that the much weaker Condition 4.7’ helps to illus-
trate that, even in such scenario, joint estimation can be helpful compared with
separate estimation. In addition, it also clarifies which guarantees are lost with
respect to the more stringent scenario when Condition 4.7 holds. In this sense,
although not fully interpretable, this intermediate case provides an idea of how
the guarantees degrade as we start to soften the assumptions.

We end this section with the following remark discussing the consistency
guarantees of jointGES.

Remark 4.12 (Consistency of jointGES). In the low-dimensional setting, by

choosing λ2
1 =

∑K
k=1 wk

lognk

2nk
, assuming faithfulness and assuming that GES

finds the global optimum of (8), it can be inferred from [7] that, in the limit
of large data, the first step in Algorithm 1 is guaranteed to produce a Markov
equivalence class (MEC) M̂ that is within the following set of MECs:

M∗ :=
{
M : there exists a π ∈ Π such that M = M(Gunion

0π )
}

where

Π :=
{
π : ∀k ∈ [K],G(k)

0π ∈ M(G(k)
0 )
}
.

This allows us to recover {M(G(k)
0 )}Kk=1 by successively considering all DAGs

in M̂ as inputs to the second step of Algorithm 1, and selecting the DAG
Ĝunion ∈ M̂ whose output {Ĝ(k)}Kk=1 from step 2 is the sparsest. Then the MECs
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{M(Ĝ(k))}Kk=1 produced from step 2 asymptotically coincide with {M(G(k)
0 )}Kk=1.

Note that no matter which MEC is chosen from the setM∗, by doing edge reduc-
tions in step 2, the final result is always guaranteed to asymptotically converge

to {M(G(k)
0 )}Kk=1. In Example 4.13, we show how Algorithm 1 works for a par-

ticular 3-node instance. In the high-dimensional setting, where even the global
optimum of (7) is not guaranteed to recover the true Gunion

0 (cf. Theorems 4.9
and 4.11), jointGES is in general not consistent. Recently, Maathuis et al. [29]
showed consistency of GES for single DAG estimation in the high-dimensional
setting under more restrictive assumptions than the ones considered here. Al-
though of potential interest, further strengthening the presented conditions to
guarantee consistency of jointGES also in the high-dimensional setting is not
pursued in the current paper.

Example 4.13. We present an example to illustrate how the output from Al-
gorithm 1 works in the low-dimensional regime. Consider the setting where we
have data collected from two causal DAG models on 3 nodes, namely 1 → 2 and
2 ← 3. In the first step, Algorithm 1 will produce either the PDAG 1 → 2 ← 3
or 1 − 2 − 3. Then, no matter which of the two PDAGs is learned in the first
step, by taking it to Step 2, it is guaranteed to asymptotically converge to the
desired output 1 → 2 (or 1 ← 2) as well as 2 → 3 (or 2 ← 3), of which the
MECs are 1− 2 and 2− 3, respectively.

5. Extension to interventions

In this section, we show how our proposed method for joint estimation can be
extended to learn DAGs from interventional data. It is natural to consider learn-
ing from interventional data as a special case of joint estimation since the DAGs
associated with interventions are different but closely related. In this section, we
mimic some of the developments of Sections 3 and 4 but specialized for the case
of interventional data. More precisely, we first propose an optimization problem
akin to (7) and then state the consistency guarantees in the high-dimensional
setting of the associated optimal solution.

Recall from Section 2.3 that the true adjacency matrix AIk
0 of the SEM

associated with an intervention on the nodes Ik is identical to the true adjacency
matrix A0 of the non-intervened model except that [AIk

0 ]ij = 0 for all j ∈ Ik. In
this way, our assumption that there exists a common permutation π consistent
with all DAGs under consideration (cf. Section 2.3) is automatically satisfied for
interventional data. Additionally, assuming that we observe samples X̂Ik from
K different models corresponding to the respective intervention on the nodes in
{Ik}Kk=1, the knowledge of the intervened nodes can be incorporated into our
optimization problem as follows [cf. (7)].{

π̂,Â, Ω̂, {(ÂIk , Ω̂Ik)}Kk=1

}

= argmax
π,A,Ω,{(AIk ,ΩIk )}K

k=1

K∑
k=1

wk�nk
(X̂Ik ;AIk ,ΩIk)− λ2 ‖A‖0 (15a)
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subject to A ∈ Aπ, ‖A‖∞,0 ≤ d, Ω ∈ D+, (15b)

AIk
ij = Aij ∀j �∈ Ik, AIk

ij = 0 ∀j ∈ Ik, (15c)

ΩIk
jj = Ωjj ∀j �∈ Ik, ΩIk ∈ D+. (15d)

From the solution of (15) we obtain an estimate for the non-intervened SEM
(Â, Ω̂) as well asK estimates for the corresponding intervened models (ÂIk , Ω̂Ik).
The objective in (15a) is equivalent to that in (7) where we leverage the fact
that the union of all intervened graphs results in the non-intervened one under
the implicit assumption that no single node has been intervened in every exper-
iment. Alternatively, if some nodes were intervened in all experiments, objective
(15a) would still be valid since enforcing zeros in the unobservable portions of
A does not affect the recovery of the intervened adjacency matrices AIk . The
constraints in (15b) impose that A has to be consistent with permutation π and
with bounded in-degree, and Ω has to be a valid covariance matrix for uncor-
related noise. Putting it differently, (15b) enforces for the non-intervened SEM
what we impose separately for all SEMs in (7). The constraints in (15c) impose
the known relations between the intervened and the non-intervened adjacency
matrices. Finally, (15d) constrains the matrices ΩIk to be consistent with the
base model on the non-intervened nodes while still being a valid covariance on
the intervened ones.

Even though it might seem that in (15) we are estimating K + 1 SEMs (the
base case plus the K intervened ones), from the previous reasoning it follows
that the effective number of optimization variables is significantly smaller. To
be more specific, for a given π, once A is fixed then all the adjacency matrices
AIk are completely determined. Moreover, for a fixed Ω, the only freedom in
ΩIk corresponds to the diagonal entries associated with intervened nodes in
Ik. In this way, it is expected that for a given number of samples, the joint
estimation of K SEMs obtained from interventional data [cf. (15)] outperforms
the corresponding estimation from purely observational data [cf. (7)].

Recalling that we denote by (AIk
0π̂,Ω

Ik
0π̂) the parameters recovered from the

Cholesky decomposition of the true precision matrix ΘIk
0 under the assumption

of consistency with permutation π̂, the following result holds.

Corollary 5.1. If Conditions 4.1–4.8 hold and λ is chosen as λ2 

log p
n

(
p

|G0| ∨ 1
)
, then there exist constants c1, c2 > 0 such that with probabil-

ity 1− c1 exp(−c2p), the solution to (15) satisfies

K∑
k=1

wk‖ÂIk −AIk
0π̂‖2F = O(λ2|G0|). (16)

Furthermore, denoting by Ĝ the graph associated with the recovered adjacency
matrix Â for the non-intervened model, we have that

|Ĝ| 
 |G0π̂| 
 |G0|. (17)

The proof is given in Appendix A.4. A quick comparison of Theorem 4.9 and
Corollary 5.1 seems to indicate that the consistency guarantees of observational
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and interventional data are very similar. However, recovery from interventional
data is strictly better as we argue next. As discussed after Theorem 4.9, the
results presented do not guarantee that the permutation π̂ recovered coincides
with the true permutation of the nodes. In principle, one could recover a spurious
permutation π̂ (different from the true permutation π) that correctly explains
the observed data [cf. (10) and (16)] and leads to sparse graphs [cf. (11) and
(17)]. However, the more interventions we have, the smaller the set of spurious
permutations π̂ that can be recovered, as we illustrate in the following exam-
ple. Figure 1 portrays the existence of a spurious permutation that could be
recovered from observational data but cannot be recovered from interventional
data. More precisely, Figure 1(a) presents the two true DAGs that we aim to
recover, where the second one is obtained by intervening on node 2. By contrast,
Figure 1(b) shows the DAGs that are obtained when performing Cholesky de-
compositions on the true precision matrices under the spurious permutation π1.
Notice that the sparsity levels of the DAGs in both figures are the same. In
general, one could recover π1 instead of π0 from observational data, but one
would never recover π1 from interventional data. To see this, simply notice from
the figure that [AI2

0π1
]32 �= 0 whereas for the interventional estimate [ÂI2 ]32 = 0

[cf. (15c)], thus, the error terms in (16) cannot vanish for π̂ = π1. This exam-
ple also indicates that it is preferable to intervene on multiple targets in the
same experiment instead of doing interventions one at a time. This observation
is in accordance with new genetic perturbation techniques, such as Perturb-
seq [9].

From a practical perspective, the objective in (15) corresponds to the same
scoring function as GIES [17]. Therefore, GIES can be used to obtain an approx-
imate solution to (15). A simulation study using GIES was performed in [17,
Section 5.2] showing that in line with the theoretical results obtained in this
section, not only identifiability increases, but also the estimates obtained using
interventional data are better than with the same amount of purely observa-
tional data.

Fig 1. Interventional data can avoid the recovery of spurious permutations. (a) True DAGs
to be recovered. (b) DAGs obtained from the Cholesky decomposition consistent with π1. The
spurious permutation π1 does not satisfy (16) for cases where node 2 is intervened.
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6. Experiments

In this section, we present numerical experiments on both synthetic (Section 6.1)
and real (Section 6.3) data that support our theoretical findings. We also provide
an empirical analysis to study the strength of Condition 4.7 for sparse DAG
models in Section 6.2.

6.1. Performance evaluation of joint causal inference

We analyze the performance of the joint recovery of K different DAGs where
we vary K ∈ {3, 5, 8} and n ∈ {600, 900, 1200}. For all experiments, we set the
number of nodes p = 100. In addition, we selected the number of samples from
each DAG to be the same, i.e., n1 = . . . = nK = n/K. For each experiment, the
true DAGs were constructed in two steps. First, we generated a core graph that
is shared among the K DAGs under consideration. We did this by generating a
random graph from an Erdős-Rényi model with 100 edges in expectation, and
then oriented the edges according to a random permutation of the nodes. Then
we sampled eprivate ∈ {30, 60} additional private edges uniformly at random.
Each such edge was assigned uniformly at random to one of the K DAGs,
thereby keeping the total number of private edges across all K DAGs to be

Fig 2. Simulation results when we set the private-to-core edge ratio to 0.3. (a)–(c) Average
SHD as a function of the scaling constant c for joint and separate GES with n = 600, 900, 1200
respectively; (d)–(f) Average ROC curve obtained by varying the tuning parameters with
n = 600, 900, 1200. JointGES consistently achieves a better performance across all settings.
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Fig 3. Simulation results when we set the private-to-core edge ratio to 0.6. (a)–(c) Average
SHD as a function of the scaling constant c for joint and separate GES with n = 600, 900, 1200
respectively; (d)–(f) Average ROC curve obtained by varying the tuning parameters with
n = 600, 900, 1200. JointGES consistently achieves a better performance across all settings.

eprivate. This procedure results in the generation of a collection of true underlying

DAGs G(1)
0 , . . . ,G(K)

0 with a private-to-core edge ratio of 0.3 and 0.6 respectively.

Associated with each DAG, we generated a true adjacency matrix A
(k)
0 and a

true diagonal error covariance matrix Ω
(k)
0 . For the latter, we drew each error

variance independently and uniformly from the interval [1, 2.25]. Regarding the
adjacency matrices, we drew the edge weights independently and uniformly from
[−1,−0.1]∪ [0.1, 1] to ensure that they are bounded away from zero. Notice that
we did not put any constraints on the edge weights that are in the shared core
structure for different DAGs: the same edge can change its weight in different
DAGs, or even flip sign.

We randomly generated 100 collections of DAGs and data associated with
them. We then estimated the DAGs from the data via two different methods:
a joint estimation procedure using jointGES presented in Algorithm 1 and a
separate estimation procedure using the well-established GES method [7].

To assess performance of the two algorithms, we considered two standard
measures, namely the structural Hamming distance (SHD) [43] and the receiver
operating characteristic (ROC) curve. SHD is a commonly used metric based
on the number of operations needed to transform the estimated DAG into the
true one [20, 43]. Hence, a smaller SHD value indicates better performance. The
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ROC curve plots the true positive rate against the false positive rate for different
choices of tuning parameters. The results are shown in Figures 2 and 3. Notice
that for plotting SHD, we selected the �0-penalization parameter λ2

1 = c log p
n

with scaling constant c ∈ {1, 2, 3, 4, 5} in both joint and separate estimation
and then plotted average SHD as a function of the scaling constant c averaged
over the K DAGs to be recovered and the 100 realizations. The penalization
parameter λ2 in the second step of the joint estimation procedure was chosen
based on 10-fold cross validation. We plotted the average ROC curve where for
each choice of tuning parameter, we computed the true positive and false positive
rates by averaging over the K DAGs to be recovered and the 100 realizations.
It is clear from the two figures that in general joint inference achieves better
performance, which matches our theoretical results in Section 4.

However, Figures 2 (a)–(c) and 3 (a)–(c) show also that jointGES performs
worse than separate estimation for small scaling constants (c = 1). Note that
this is in line with our theoretical findings in Theorem 4.11, which imply that
whenever Condition 4.7 – which sometimes is a restrictive assumption – is vio-
lated, we need to choose a larger penalization parameter.

6.2. Simulation analysis of Condition 4.7

In this section we provide simulation results to empirically study the strength of
Condition 4.7. We follow the same procedure as in Section 6.1 to generate a col-
lection of DAGs, except that we set p ∈ {10, 30, 50} and K ∈ {3, 5, 8, 10, 13, 15}.
Then for each randomly generated {G(k)

0 }Kk=1, we randomly select 10000 permu-
tations and estimate the corresponding ct by ct := maxπ∈Π |Gunion

0π |/(
1
K

∑K
k=1 |G

(k)
0π |
)
.

In Figure 4 we present the estimated value of ct as a function of K for
p = 10, 30, 50. Note that for each setting, we plotted the estimated ct by av-

Fig 4. Averaged ct across 100 realizations. (a) is the curve when the private-to-core edge ratio
is chosen as 0.3; (b) corresponds to the curve with private-to-core edge ratio of 0.6.
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eraging over 100 realizations. The figure shows that if the private-to-core edge
ratio is below 0.6, Condition 4.7 holds with ct ≤ 3, even for very large K = 15.

This implies that when the true DAGs {G(k)
0 }Kk=1 are highly overlapping, Con-

dition 4.7 can usually be satisfied with a reasonably small constant ct. This
is in line with the results from Section 6.1, where we showed that jointGES

significantly outperforms the separate estimation approaches.

6.3. Gene regulatory networks of ovarian cancer subtypes

To assess the performance of the proposed joint �0-penalized maximum like-
lihood method on real data, we analyzed gene expression microarray data of
patients with ovarian cancer [42]. Patients were divided into six subtypes of
ovarian cancer, labeled as C1-C6, where C1 is characterized by significant dif-
ferential expression of genes associated with stromal and immune cell types
and with a lower survival rate as compared to the other 5 subtypes. We hence
grouped the subtypes C2-C6 together and our goal was to infer the differences
in terms of gene regulatory networks in ovarian cancer that could explain the
different survival rates. The gene expression data in [42] includes the expression
profile of n = 83 patients with C1 subtype and n = 168 patients with other sub-
types. We implemented our jointGES algorithm (Algorithm 1) to jointly learn
two gene regulatory networks: one corresponding to the C1 subtype GC1 and an-
other corresponding to the other five subtypes together GC2−6. In addition, as
in [4], we focused on a particular pathway, namely the apoptosis pathway. Using
the KEGG database [21, 30] we selected the genes in this pathway that were
associated with at most two microarray probes, resulting in a total of p = 76
genes.

Table 1 lists the number of edges discovered by jointGES as well as for two
separate estimation methods, namely using the GES [7] and PC [40] algorithms.
All three methods were combined with stability selection [27] in order to increase
robustness of the output and provide a fair comparison. As expected, the two
graphs inferred using jointGES share a significant proportion of edges, whereas
the overlap is markedly smaller for the two separate estimation methods. Inter-
estingly, under all estimation methods the network for the C1 subtype contains
fewer edges than the network of the other subtypes, thereby suggesting that GC1

could lack some important links that are associated with patient survival.
To obtain more insights into the relevance of the obtained networks, we ana-

lyzed the inferred hub nodes in the three networks. For our analysis we defined
as hub nodes those nodes for which the sum of the in- and out-degree was larger
than some threshold T in the union of the two DAGs, where T was chosen such
that there are at most 5 hub nodes discovered by each method. For jointGES,
this union is given by Ĝunion, the graph identified in the first step of Algo-
rithm 1. The hub nodes identified by jointGES are CAPN1, CTSD, LMNB1,
CSF2RB, BIRC3. Among these, CAPN1 [13], CTSD [41], LMNB1 [37], and
BIRC3 [19] have been reported as being central to ovarian cancer in the exist-
ing literature. In addition, CSF2RB was also discovered by joint estimation of
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Table 1

Number of edges in the DAGs estimated by different methods for the gene regulatory
network of subtype C1 (|GC1|) and all other subtypes (|GC2−6|). The last column shows the

number of edges shared between both inferred graphs.

Method |GC1| |GC2−C6| |GC1 ∩ GC2−C6|
JointGES 50 73 48

GES 68 101 32
PC 14 30 9

undirected graphical models on this data set [4]. The hub nodes discovered by
GES are ATF4, BIRC2, CSF2RB, TUBA1C, MAPK3, while PC only discovered
the hub node CSF2RB. While we were not able to validate the relevance of any
of these genes for ovarian cancer in the literature, interestingly, CSF2RB has
been identified as a hub node by all methods, thereby suggesting this gene as
an interesting candidate for future genetic intervention experiments.

7. Discussion

In this paper we presented jointGES, an algorithm for the joint estimation of
multiple related DAG models from independent realizations. Joint estimation
is of particular interest in applications where data is collected not from a sin-
gle DAG, but rather multiple related DAGs, such as gene expression data from
different tissues, cell types or from different interventional experiments. Joint-
GES first estimates the union of DAGs Ĝunion by applying a greedy search to
approximate the joint �0-penalized maximum likelihood estimator and then it
uses variable selection to discover each DAG as a subDAG of Ĝunion. From an al-
gorithmic perspective, jointGES is to the best of our knowledge the first method
to jointly estimate related DAG models in the high-dimensional setting. From
a theoretical perspective, we presented consistency guarantees on the joint �0-
penalized maximum likelihood estimator, and showed that the accuracy bound
scales with the total number of samples, rather than the number of samples
from each DAG that would be achieved by separately estimating each DAG. As
a corollary to this result, we obtained consistency guarantees for �0-penalized
maximum likelihood estimation of a causal graph from a mix of observational
and interventional data. Finally, we validated our results via numerical exper-
iments on simulated and real-world data, showing that the proposed jointGES
algorithm for joint inference outperforms separate-inference approaches using
well-established algorithms such as PC and GES.

The present work serves as a platform for the potential development of mul-
tiple future directions. These directions include: i) relaxing the assumption that
all DAGs must be consistent with the same underlying permutation; ii) extend-
ing jointGES to the setting where the samples come from K related DAGs but
it is unknown a priori which particular DAG each sample comes from; this is
for example of interest in the analysis of gene expression data from tumors or
tissues that consist of a mix of cell types; iii) extending jointGES to allow for
latent confounders.
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Appendix A: Theoretical analysis of statistical consistency results

In the following, we develop the proofs of Theorems 4.9 and 4.11. To facilitate
understanding, we first provide a high-level explanation of the rationale behind
the proof. If we have data generated from a single DAG and we are given a per-
mutation π consistent with the true DAG a priori, then we can estimate (Â, Ω̂)
by performing p regressions as explained in Section 2.1. By contrast, when the
permutation is unknown and we need to consider all the possible permutations,
the total number of regressions to run increases to p · p!. However, these re-
gressions are not independent and, intuitively, by bounding the noise level of a
subset of these regressions, we can derive bounds for the noise on the other ones.
We characterize the ‘noise level’ of these regressions by analyzing the asymptotic
properties of three random events. More precisely, whenever these events hold
– and we show that they hold with high probability –, the noise is small enough
so that the error of the �0-penalized maximum likelihood estimator can also be
bounded. Finally, we use this upper bound in the error to show that the recov-
ered graph converges to a minimal I-MAP that is as sparse as the true DAG.

The remainder of the appendix is organized as follows. In Section A.1 we de-
fine the three random events previously mentioned and show that each of them
holds with high probability. Section A.2 then leverages the definition of these
events to prove Theorem 4.9, our main result. In Section A.3 we prove Theo-
rem 4.11, which relaxes some of the conditions of Theorem 4.9, but uses similar
proof techniques. Finally, Section A.4 fleshes out the proof of Corollary 5.1, our
result applicable to the setting for interventional data.

Throughout the appendix, we use the following notation. Let âj denote the

j-th column of Â and ω̂j denote the j-th diagonal entry of Ω̂. Also, denote
by a0jπ and ω0jπ the j-th column of A0π and the j-th diagonal entry of Ω0π,
respectively.

A.1. Random events

As in [45], our proofs of Theorems 4.9 and 4.11 are based on a set of random
events. However, the events considered here differ from those in [45] since, as
explained in Section 4.1, a naive application of the guarantees in [45] to the joint
estimation scenario does not achieve the desired learning rates [cf. discussion
after (12)]. Intuitively, the rate gain achieved here comes from the assumption
that all DAGs are consistent with a permutation, allowing us to effectively
reduce the size of the search space.

In our proofs we consider three random events E1, E2, and E3 that are respec-
tively stated – along with proofs showing that they hold with high probability
– in Sections A.1.1, A.1.2, and A.1.3.

A.1.1. Random event E1

Let ε
(k)
jπ ∈ R

n denote the residual when regressing X
(k)
j on X

(k)
S with S =

{i |π(i) < π(j)}, i.e., ε(k)jπ := X
(k)
j −X(k)T a

(k)
0jπ. Similarly, let ε̂

(k)
jπ ∈ R

n denote
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the regression residual from the sampled data, i.e., ε̂
(k)
jπ := X̂

(k)
j −X̂(k)a

(k)
0jπ. Con-

sider a generic set {A(k)}Kk=1 of adjacency matrices consistent with a given per-

mutation π, where the columns of A(k) are denoted by A(k) := (a
(k)
1 , . . . , a

(k)
p ),

and let Gunion denote the union of the support of A(1), . . . , A(K). Then, event
E1 is defined as

E1 :=

{
2

p∑
j=1

K∑
k=1

wk

nk

∣∣∣ε̂(k)Tjπ X̂(k)(a
(k)
j − a

(k)
0jπ)
∣∣∣

≤ δ1

p∑
j=1

K∑
k=1

wk

nk

∥∥∥X̂(k)(a
(k)
j − a

(k)
0jπ)
∥∥∥2
2
+ λ2

1

(
|Gunion|+ |Gunion

0π |
)
/δ1,

∀permutationsπ , and ∀ {A(k)}Kk=1 consistent withπ
}
,

(18)

for some constant δ1 > 0 and some λ1 

√
(log p)/n. On random event E1 a

uniform inequality holds across all K DAGs for the sample correlation between

the regression residual ε
(k)
jπ and any random variable spanned by the random

vector X
(k)
S , i.e., X(k)T v for any v ∈ R

p with vi = 0 for all i �∈ S. Notice
that for convenience for further steps of the analysis, this generic vector v is

written as a
(k)
j − a

(k)
0jπ in (18). Furthermore, for simplicity in the rest of this

appendix, we denominate the space spanned by X
(k)
S as the projection space

of ε
(k)
jπ . Intuitively, one could foresee E1 holding since the expected correlation

between the regression residual ε
(k)
jπ and XS is equal to zero, and therefore the

sample correlation can be upper bounded by a sum of terms that converge to
zero as n → ∞ as in (18).

We now show that random event E1 holds with high probability, a result
stated in Theorem A.2. Essential towards proving this result is the observation

that, since the random variable X(k)T (a
(k)
j − a

(k)
0jπ) lies within the projection

space of ε
(k)
jπ , these two random variables are independent. We can therefore

deal with the randomness in ε̂
(k)
jπ and X̂

(k)
S separately, one at a time. To for-

mally leverage this observation, we rely on Lemma 7.4 of [45], stated next for
completeness.

Lemma A.1 ([45, Lemma 7.4]). Let Z be a fixed n×m matrix and e1, · · · , en
be independent N (0, σ2

e)-distributed random variables. Then for all t > 0

P

(
sup

‖Za‖2
2/n≤1

|eTZa|/n ≥ σe(
√

2m/n+
√

2t/n)

)
≤ exp(−t).

Based on the above lemma and recalling that Aπ denotes the set of adjacency
matrices consistent with a given permutation π, we can show the following
result.
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Theorem A.2. Assume that Conditions 4.2 and 4.6 hold, then for all t > 0
and all δ1 > 0,

P

(
max
π

sup
{A(k)}K

k=1∈Aπ

2

p∑
j=1

K∑
k=1

wk

nk

∣∣∣ε̂(k)Tjπ X̂(k)(a
(k)
j − a

(k)
0jπ)
∣∣∣

−δ1

p∑
j=1

K∑
k=1

wk

nk

∥∥∥X̂(k)(a
(k)
j − a

(k)
0jπ)
∥∥∥2
2

≥ 16σ2
0(t+ 2 log p)(|Gunion|+ |Gunion

0π |)
nδ1

)
≤ exp(−t).

Proof. Let ε̂jπ and a0jπ be the concatenated vectors ε̂jπ := (ε̂
(1)T
jπ , . . . , ε̂

(K)T
jπ )T

and a0jπ := (a
(1)T
0jπ , . . . , a

(K)T
0jπ )T . Also, define the block diagonal matrix

X̂ := diag(X̂(1), · · · , X̂(K)).

We denote by Ajπ ⊂ R
pK the set containing all vectors that can be formed by

vertically concatenating the jth columns a
(k)
j for all k and satisfy

Ajπ :=
{
aj ∈ R

pK | ∀i, if ∃k such that a
(k)
i,j �= 0, then X

(k)
i ⊥⊥ ε

(k)
jπ for all k

}
.

Based on this, and recalling that Paj(·) denotes the set of parent nodes of j in
the argument graph, we define the random event Bjπ as

Bjπ :=

{
∃aj ∈ Ajπ : sup

‖X̂(aj−a0jπ)‖2
2/n≤1

∣∣∣ε̂TjπX̂(aj − a0jπ)
∣∣∣ /n (19)

≥ σ0

(√
2K(|Paj(Gunion)|+ |Paj(Gunion

0π )|)
n

+

√
2(t+ |Paj(Gunion

0π )| log p+ 2 log p)

n

)}
.

Combining the facts that: i) aj − a0jπ may have at most K(|Paj(Gunion)| +
|Paj(Gunion

0π )|) non-zero entries, and ii) the variance of each element of ε̂jπ is
upper bounded by σ2

0 (cf. Condition 4.2), we may apply Lemma A.1 to show
that

P(Bjπ) ≤ exp
(
−t− |Paj(Gunion

0π )| log p− 2 log p
)
.

As can be seen from (19), event Bjπ depends exclusively on the set of parents
of node j in Gunion

0π . Putting it differently, if for two permutations π1 and π2

node j has the same set of parents in Gunion
0π1

and Gunion
0π2

, then the random events
Bjπ1 and Bjπ2 coincide, since Ajπ, a0jπ and ε̂jπ would all be the same for
π ∈ {π1, π2}. If we denote by Πj(m) the set of permutations where node j has
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exactly m parents in Gunion
0π , then there are at most

(
p
m

)
unique events Bjπ for

all π ∈ Πj(m). We therefore obtain that

P

⎛
⎝ ⋃

π∈Πj(m)

Bjπ

⎞
⎠ ≤

(
p

m

)
exp (−t−m log p− 2 log p) ≤ exp (−t− 2 log p) .

Applying a union bound on the events Bjπ across all nodes j and permutations
π yields that

P

⎛
⎝⋃

j

⋃
π

Bjπ

⎞
⎠ ≤

p∑
j=1

p−1∑
m=1

P

⎛
⎝ ⋃

π∈Πj(m)

Bjπ

⎞
⎠ ≤ p2 exp (−t− 2 log p) = exp(−t).

(20)

Combining (20) and (19) it follows that with probability at least 1 − exp(−t),
for all j, π and all aj ∈ Ajπ,

|ε̂TjπX̂(aj − a0jπ)|
‖X̂(aj − a0jπ)‖2

≤ σ0

(√
2K(|Paj(Gunion)|+ |Paj(Gunion

0π )|)

+
√
2(t+ |Paj(Gunion

0π )| log p+ 2 log p)

)
.

Based on the collection of adjacency matrices {A(k)}Kk=1 ∈ Aπ we define another

collection {A′ (k)}Kk=1 where each column a′
(k)
j is given by

a′
(k)
j =

{
a
(k)
j if ε̂

(k)T
jπ X̂(k)(a

(k)
j − a

(k)
0jπ) ≥ 0,

2a
(k)
0jπ − a

(k)
j otherwise.

Notice that the positions of the non-zero entries in a′
(k)
j − a

(k)
0jπ coincide with

those in a
(k)
j − a

(k)
0jπ. By also using the fact that

‖X̂(aj − a0jπ)‖22 =

K∑
k=1

‖X̂(k)(a
(k)
j − a

(k)
0jπ)‖22

=

K∑
k=1

‖X̂(k)(a′
(k)
j − a

(k)
0jπ)‖22 = ‖X̂(a′j − a0jπ)‖22,

we have that for all j and π with probability at least 1− exp(−t), it holds that

∑K
k=1 |ε̂

(k)T
jπ X̂(k)(a

(k)
j − a

(k)
0jπ)|

‖X̂(aj − a0jπ)‖2
=

∑K
k=1 |ε̂

(k)T
jπ X(k)(a′

(k)
j − a

(k)
0jπ)|

‖X̂(a′j − a0jπ)‖2

=
|ε̂TjπX̂(a′j − a0jπ)|
‖X̂(a′j − a0jπ)‖2

≤ σ0

(√
2K(|Paj(Gunion)|+ |Paj(Gunion

0π )|)
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+
√

2(t+ |Paj(Gunion
0π )| log p+ 2 log p)

)
.

In the above expression we may use that ab ≤ δ1a
2 + b2/δ1 for all δ1, a, b > 0 in

order to obtain

2|ε̂TjπX̂(a′j − a0jπ)| ≤ δ1‖X̂(a′j − a0jπ)‖22 + (21)

4σ2
0

(√
2K(|Paj(Gunion)|+ |Paj(Gunion

0π )|)

+
√
2(t+ |Paj(Gunion

0π )| log p+ 2 log p)

)2

/δ1.

By combining this with the fact that ∀a, b > 0, (a + b)2 ≤ 2(a2 + b2) and the
fact that K = o(log p) from Condition 4.6, we get that(√

2K(|Paj(Gunion)|+ |Paj(Gunion
0π )|) +

√
2(t+ |Paj(Gunion

0π )| log p+ 2 log p)

)2

≤ 4(t+ 2 log p)(|Paj(Gunion)|+ |Paj(Gunion
0π )|). (22)

By replacing (22) back into (21), we obtain that

2|ε̂TjπX̂(a′j − a0jπ)|/n ≤δ1‖X̂(a′j − a0jπ)‖22/n

+
16σ2

0(t+ 2 log p)(|Paj(Gunion)|+ |Paj(Gunion
0π )|)

nδ1
.

Rewriting the absolute value in the left-hand side as the sum of the correspond-
ing K absolute values and adding the above inequality for j = 1, . . . , p we get
that, with probability at least 1− exp(−t),

2

p∑
j=1

K∑
k=1

wk|ε̂(k)Tjπ X̂(k)(a
(k)
j − a0

(k)
jπ )|/nk

≤
p∑

j=1

(
δ1‖X̂(aj − a0jπ)‖22/n+

16σ2
0(t+2 log p)(|Paj(Gunion)|+|Paj(Gunion

0π )|)
nδ1

)
.

Finally, by noticing that ‖X̂(aj − a0jπ)‖22/n =
∑K

k=1 wk‖X̂(k)(a
(k)
j −a

(k)
0jπ)‖22/nk

we recover the statement of the theorem, thereby concluding the proof.

A.1.2. Random event E2

Let ω
(k)
0jπ denote the j-th diagonal entry of Ω

(k)
0π , then E2 holds whenever the

empirical variances of all ε
(k)
jπ , i.e., ‖ε̂(k)jπ ‖22/nk are close to the true variances

ω
(k)
0jπ, where

E2 :=

⎧⎨
⎩

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω

(k)
0jπ

ω
(k)
0jπ

)2

≤ 4λ2
2

(
p+ |Gunion

0π |
)⎫⎬⎭ , (23)
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for some λ2 

√

(log p)/n. Mimicking the development for event E1, we now
show that E2 also holds with high probability. This result is stated in Theo-
rem A.4. Similar to the proof of Theorem A.2, we first consider the asymptotic
property for a particular node j and permutation π, and then leverage this to
get a uniform bound across all permutations and nodes. For this proof, we use
the following lemma stated in [4], which also follows from [47]. After the lemma,
we formally state our result.

Lemma A.3 ([4, Lemma 2]). Suppose X1, · · · , Xn are K-dimensional random
vectors satisfying EXi = 0 and ‖Xi‖2 ≤ M for 1 ≤ i ≤ n. We have for any
β > 0 and x > β

P(‖
∑n

i=1 Xi‖2 ≥ x) ≤P

(
‖N‖2 ≥ (x− β)/λ1/2

max

)
+ c1K

5/2 exp(−c2K
−5/2β/M),

where λmax is the largest eigenvalue of Cov(
∑n

i=1 Xi), N is a K-dimensional
standard normal random vector and c1, c2 are positive constants.

Theorem A.4. Assume Conditions 4.5 and 4.6 hold, then there exist constants
c1, c2, c3 > 0 such that

P

(
∃π :

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω

(k)
0jπ

ω
(k)
0jπ

)2

≥ c1
csp log p+ |Gunion

0π | log p
n

)

≤ c2 exp(−c3 log p),

where cs is the constant defined in Condition 4.5.

Proof. We begin by analyzing the asymptotic properties of ε
(k)
jπ for all k given a

fixed permutation π and node j. More specifically, consider the following random
event

Cjπ :=

⎧⎨
⎩

K∑
k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω

(k)
0jπ

ω
(k)
0jπ

)2

≥ c21
log p (|Paj(Gunion

0π )|+ cs)

n

⎫⎬
⎭ , (24)

for some positive constant c1. Following the proof of Theorem 1 in [4], we define

u
(k)
t as follows:

u
(k)
t :=

⎧⎨
⎩

√
wk

nk

(
[ε̂

(k)
jπ ]

2

t
−ω

(k)
0jπ

ω
(k)
0jπ

)
if t ≤ nk,

0 otherwise.

Denoting by ut = (u
(1)
t , · · · , u(K)

t )T the random vector collecting all u
(k)
t , by

definition it follows that

K∑
k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω

(k)
0jπ

ω
(k)
0jπ

)2

=

∥∥∥∥∥
n∑

t=1

ut

∥∥∥∥∥
2

2

.
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A straightforward substitution in (24) allows us to rewrite the event Cjπ as

Cjπ :=

{∥∥∥∥∥
n∑

t=1

ut

∥∥∥∥∥
2

≥ c1λn

}
with λ2

n :=
log p (|Paj(Gunion

0π )|+ cs)

n
. (25)

Notice that in order to apply Lemma A.3 to bound the probability of occurrence
of Cjπ, we would need ‖ut‖2 to be smaller than a constant M , which is not true
in general. Hence, we split Cjπ into two subevents, enabling the utilization of
Lemma A.3. More precisely, whenever the following random event holds

Fa :=
{
|u(k)

t | ≤ λ−1
n K1/2−a/n, ∀t, k

}
,

then the �2 norm of ut is bounded as follows:

‖ut‖2 ≤ Ma := λ−1
n K1−a/n,

where a is a free parameter that will be fixed later in the proof. In detail, we
bound the probability of Cjπ according to

P(Cjπ) ≤ P(Cjπ|Fa)P(Fa) + P(¬Fa), (26)

where we use Lemma A.3 to bound P(Cjπ|Fa) and where P(¬Fa) can be esti-
mated from the chi-squared tail bound [14].

We first focus on bounding P(Cjπ|Fa). For this, we introduce a new variable
ũt obtained by truncating the tail of ut. Formally, recalling that 1{·} denotes

the indicator function, we have that ũt := (ũ
(1)
t , · · · , ũ(K)

t ) where

ũ
(k)
t := u

(k)
t 1

{
|u(k)

t | ≤ λ−1
n K1/2−a/n

}
− E

[
u
(k)
t 1

{
|u(k)

t | ≤ λ−1
n K1/2−a/n

}]
.

Notice that whenever the random event Fa holds, then ut and ũt follow the

same distribution except for a shift v
(k)
t := E

[
u
(k)
t 1

{
|u(k)

t | ≤ λ−1
n K1/2−a/n

}]
.

Putting it differently, the distribution of u
(k)
t −ũ

(k)
t is a constant v

(k)
t whenever we

are on the random event Fa. This implies that ‖
∑n

t=1 ut‖2 ≤ n maxt,k |v(k)t |+
‖
∑n

t=1 ũt‖2.
Therefore, if we can guarantee that n|v(k)t | = o(1)λn for all t and k, then

there must exist a constant 0 < δ < 1 such that if we are on the random event
Fa, ‖

∑n
t=1 ut‖2 ≥ c1λn implies that ‖

∑n
t=1 ũt‖2 ≥ (1 − δ)c1λn. Equivalently,

we may write

P(Cjπ|Fa)P(Fa) ≤ P

(∥∥∥∥∥
n∑

t=1

ũt

∥∥∥∥∥
2

≥ (1− δ)c1λn

∣∣∣∣∣Fa

)
P(Fa) (27)

≤ P

(∥∥∥∥∥
n∑

t=1

ũt

∥∥∥∥∥
2

≥ (1− δ)c1λn

)
,



Joint estimation of multiple DAGs 2469

where the second inequality follows from Bayes’ theorem, and we can bound the
last term by applying Lemma A.3 since ũt is bounded by definition. We now

show that, indeed, n|v(k)t | = o(1)λn for all t and k. From the cumulative tail
bound of a chi-squared random variable with one degree of freedom we have

that P(u
(k)
t ≥ l) ≤ exp(−ηnl/

√
K) for some constant η > 0. Based on this, we

can estimate the scale of v
(k)
t with respect to p and n as

|v(k)t |=
∣∣∣E [u(k)

t 1
{
|u(k)

t | ≤ λ−1
n K1/2−a/n

}]∣∣∣
=
∣∣∣E [u(k)

t 1
{
|u(k)

t | > λ−1
n K1/2−a/n

}]∣∣∣ ≤ exp
(
−η′λ−1

n K−a
)

for some 0 < η′ < η, where the second equality follows from the fact that u
(k)
t

has zero mean. Notice that in the last inequality, u
(k)
t has been absorbed into the

exponential term. As |v(k)t | decays exponentially with respect to λ−1
n , we have

that n|v(k)t | = o(1)λn. Having justified this, we may now apply Lemma A.3 to the
rightmost term in (27) in order to bound P(Cjπ|Fa)P(Fa). From the definition
of ũt it follows that λmax{Cov(

∑n
t=1 ũt)} ≤ λmax{Cov(

∑n
t=1 ut)}. Furthermore,

since the variables u
(k)
t are independently distributed for all t, we have that

var

(
n∑

t=1

u
(k)
t

)
=

wk

nk
var

⎛
⎝ [ε̂

(k)
jπ ]

2

t
− ω

(k)
0jπ

ω
(k)
0jπ

⎞
⎠ ≤ c2/n

for some constant c2 > 0. This also implies that λmax{Cov(
∑n

t=1 ũt)} ≤ c2/n.
Applying Lemma A.3, where we select x = (1 − δ)c1λn, β = δ′x for some
arbitrary positive constant 0 < δ′ < 1 and, M = λ−1

n K1−a/n, it follows that

P

(∥∥∥∥∥
n∑

t=1

ũt

∥∥∥∥∥
2

≥ (1− δ)c1λn

)
≤ exp(−c3(nλ

2
n −K))

+ exp

(
2

5
logK − c4K

a− 7
2nλ2

n

)
,

for some constants c3, c4 > 0 that increase if constant c1 is increased. In addition,
by choosing a = 7/2, there must exist a large enough c1 such that c3, c4 > 1
and therefore

P

(∥∥∥∥∥
n∑

t=1

ũt

∥∥∥∥∥
2

≥ (1− δ)c1λn

)
(28)

≤ exp(−nλ2
n) = exp(−|Paj(Gunion)| log p− cs log p).

Replacing (28) into (27) gives us the sought exponential bound for the first
summand in (26).

We are now left with the task of finding a bound for P(¬Fa). By relying on the
fact that n(1) 
 · · · 
 n(K) (cf. Condition 4.6), we get that (maxk nk)K ≤ c5n
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for some constant c5 and therefore

P(¬Fa) ≤ c5n max
1≤k≤K,1≤l≤n

P

{
|u(k)

t | ≥ λ−1
n K1/2−a/n

}
.

Following this, in order to bound the probability that ¬Fa holds we further rely

on the tail bound of the chi-squared random variable u
(k)
t to obtain

P(¬Fa) ≤ c5n exp
(
−ηλ−1

n K−a
)
= c5 exp

(
logn− ηλ−1

n K−a
)
.

Recalling the definition of λn from (25), Condition 4.5 implies that

λ−1
n

K7/2
≥ log p(|Paj(Gunion)|+ cs)/α̃

3
2 and

√
α̃

λ−1
n

K7/2
≥ log n. (29)

By recalling that we have fixed a = 7
2 , it follows that there exists a constant η′

such that

P(¬Fa) ≤ c5 exp
(
log n− ηλ−1

n K−a
)

≤ c5 exp
(√

α̃λ−1
n K−a − ηλ−1

n K−a
)
≤ c5 exp

(
−η′λ−1

n K−a
)
,

where we have used the second inequality in (29). Furthermore, by leveraging
the first inequality in (29) we obtain that

P(¬Fa) ≤ c5 exp
(
−η′λ−1

n K−a
)
≤ c5 exp

(
−η′ log p (|Paj(Gunion)|+ cs)/α̃

3
2

)
,

thus obtaining an exponential bound for the second summand in (26).
Having found exponential bounds for both summands in (26), it follows that

for c1 > 0 sufficiently large and α̃ sufficiently small we have that

P(Cjπ) ≤ (1 + c5) exp(−|Paj(Gunion)| log p− cs log p).

Following an argument based on union bounds similar to the one presented in
the proof of Theorem A.2, we have that

P

⎛
⎝ K∑

k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω

(k)
0jπ

ω
(k)
0jπ

)2

≤ c1
log p (|Paj(Gunion)|+ cs)

n
, ∀ j, π

⎞
⎠

≥ 1− P

⎛
⎝ p⋃

j=1

p⋃
m=1

⋃
π∈Πj(m)

Cjπ

⎞
⎠ ≥ 1− (1 + c5) exp(−(cs − 2) log p)

for some constant c1 > 0. It is immediately implied from the previous expression
that

P

⎛
⎝∃π :

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ ‖22/nk − ω0

(k)
jπ

ω0
(k)
jπ

)2

≥c1
csp log p+ |Gunion

0π | log p
n

⎞
⎠

≤(1 + c5) exp(−(cs − 2) log p),

thus recovering the statement of the theorem (since cs > 2 by Assumption 4.5)
after accordingly renaming the constants on the right-hand side.
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A.1.3. Random event E3

Event E3 is defined as the intersection of 2K events that we denote by {E(k)
3a }Kk=1

and {E(k)
3b }Kk=1, where events E(k)

3a and E(k)
3b are specific to the kth SEM. More

specifically, event E(k)
3a ensures that all the estimated noise variances ω̂

(k)
j asso-

ciated with the kth SEM are finite and bounded away from zero. Formally, we
define the following events for k = 1, . . . ,K:

E(k)
3a :=

{
min

(
ω̂
(k)
j , 1/ω̂

(k)
j

)
≥ 1/β2, for j = 1, . . . , p

}
, (30)

for some β > 0. Event E(k)
3b imposes a universal lower bound on the norm

achievable by any linear combinations of the data associated with the k-th DAG.
Mathematically, we consider the ensuing events for k = 1, . . . ,K:

E(k)
3b :=

{
‖X̂(k)v‖2/

√
nk ≥

(
δ3 − λ

(k)
3

√
‖v‖0

)
‖v‖2, ∀v ∈ R

p
}
, (31)

for some δ3 > 0 and λ
(k)
3 


√
(log p)/nk. Based on (30) and (31) we define

events E(k)
3 := E(k)

3a ∩ E(k)
3b , and

E3 :=
K⋂

k=1

E(k)
3 . (32)

Leveraging the fact that Condition 4.4 enforces the maximum in-degree of each

G(k)
0π to be at most αnk/ log p for some positive constant α, we can generalize

Lemmas 7.5 and 7.7 from [45] into the following lemma.

Lemma A.5 ([45, Lemmas 7.5 and 7.7]). Assume Conditions 4.2, 4.3, 4.4
and 4.5 hold and that

3
√
Λmin/4−

√
2(t+ log p)

n
− 3σ0

√
α+ α̃ ≥ 1/β > 0,

for some t > 0. Based on this, define

λ
(k)
3 := 3σ0

√
log p

nk
, and δ3 := 3

√
Λmin/4−

√
2(t+ log p)

nk
.

Then P(E(k)
3 ) ≥ 1− 5 exp(−t) and on E(k)

3 it holds that

‖X̂(k)(a
(k)
j − a

(k)
0jπ̂)‖2/

√
nk ≥ ‖a(k)j − a

(k)
0jπ̂‖2/β2. (33)

Lemma A.5 shows that under certain conditions the events E(k)
3 hold with

high probability, thus playing a role analogous to that of Theorem A.2 for event
E1 and Theorem A.4 for event E2.

With the events E1, E2, and E3 defined and having shown under which con-
ditions these hold with high probability, in the next section we leverage these
events to prove Theorem 4.9.
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A.2. Proof of Theorem 4.9

A.2.1. Bounds on new probability space

Through direct manipulation of the likelihood function, in Lemma A.6 we show

that the global optimum (Â(k), Ω̂(k))Kk=1 converges to the SEMs (A
(k)
0π̂ ,Ω

(k)
0π̂ )Kk=1,

where π̂ is some permutation consistent with the estimated adjacency matrices
Â(1), · · · , Â(K).

Lemma A.6. Assume we are on E1∩E2∩E3 and Condition 4.2 holds. Consider
a regularizer in (7) satisfying λ2 > λ2

1/δ1 + λ2
2/δ2 with 0 < δ1 < 1/β2 and

0 < δ2 < 1/(2β2σ2
0). Then,

{
π̂, {(Â(k), Ω̂(k))}Kk=1

}
the global optimum of (7),

satisfies(
1

β2
− δ1

) p∑
j=1

K∑
k=1

wk‖X(k)(â
(k)
j − a

(k)
0jπ̂)‖22/nk (34)

+

(
1

2β4σ4
0

− δ2

) p∑
j=1

K∑
k=1

wk

(
ω̂
(k)
j − ω0

(k)
j

ω̂
(k)
j

)2

+

(
λ2 − λ2

1

δ1
− λ2

2

δ2

)
|Ĝ| ≤ λ2|Gunion

0 |+ λ2
2(p+ |Gunion

0π̂ |)
δ2

+
λ2
1|Gunion

0π̂ |
δ1

.

Proof. By definition, the global optimum must satisfy

K∑
k=1

wk�nk
(X̂(k); Â(k), Ω̂(k))− λ2|Ĝ| ≥

K∑
k=1

wk�nk
(X̂(k);A

(k)
0 ,Ω

(k)
0 )− λ2|Gunion

0 |.

(35)

Let π̂ denote any permutation consistent with all Â(k). Since the value of the

likelihood �nk
(X̂(k);A

(k)
0 ,Ω

(k)
0 ) is completely determined by the precision matri-

ces {Θ(k)
0 }Kk=1, it then follows that the likelihood function �nk

(X̂(k);A
(k)
0 ,Ω

(k)
0 )

and the function �nk
(X̂(k);A

(k)
0π̂ ,Ω

(k)
0π̂ ) achieve the same value. We therefore re-

place the former by the latter in (35) and expand the definition of the likelihood
function in (5) to obtain

p+

p∑
j=1

K∑
k=1

wk log ω̂
(k)
j + λ2|Ĝ|

≤
p∑

j=1

K∑
k=1

wk

‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

+

p∑
j=1

K∑
k=1

wk logω
(k)
0jπ̂ + λ2|Gunion

0 |.

Basic manipulations transform the above expression into the following inequality

p∑
j=1

K∑
k=1

wk log

(
ω̂
(k)
j

ω
(k)
0jπ̂

)
+ λ2|Ĝ| ≤

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)
+ λ2|Gunion

0 |.

(36)
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Since we are on E3, we have that 1/ω̂
(k)
j ≤ β2 [cf. (30)]. By combining this with

Condition 4.2 we can further bound ω
(k)
0jπ̂/ω̂

(k)
j ≤ β2σ2

0 . Then, using the Taylor

expansion log(1+x) ≤ x−x2/(2(1+t)2), for −1 < x ≤ t, we can further replace

log

(
ω̂

(k)
j

ω
(k)
0jπ̂

)
in (36) to obtain

p∑
j=1

K∑
k=1

wk

(
ω̂
(k)
j − ω

(k)
0jπ̂

ω̂
(k)
j

)
+

1

2β4σ4
0

(
ω
(k)
0jπ̂

ω̂
(k)
j

− 1

)2

+ λ2|Ĝ|

≤
p∑

j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)
+ λ2|Gunion

0 |. (37)

Finally, using the fact that X̂
(k)
j = ε̂

(k)
jπ̂ + X̂(k)a

(k)
0jπ̂, we also rewrite ω̂

(k)
j as

ω̂
(k)
j = ‖X̂(k)

j − X̂(k)â
(k)
j ‖22/nk

= ‖X̂(k)(â
(k)
j − a

(k)
0jπ̂)‖22/nk − 2ε̂

(k)T
jπ̂ X̂(k)(â

(k)
j − a

(k)
0jπ̂)/nk + ‖ε̂(k)j ‖22/nk.

By replacing the above into (37), we get that

p∑
j=1

K∑
k=1

wk

‖X̂(k)(â
(k)
j − a

(k)
0jπ̂)‖22/nk

ω̂
(k)
j

+
1

2β4σ4
0

p∑
j=1

K∑
k=1

wk

(
ω̂
(k)
j − ω

(k)
0jπ̂

ω̂
(k)
j

)2

+λ2|Ĝ|

≤ 2

p∑
j=1

K∑
k=1

wk

ε̂
(k)T
jπ̂ X̂(k)(â

(k)
j − a

(k)
0jπ̂)/nk

ω̂
(k)
j

+

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)

−
p∑

j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω̂
(k)
j

)
+ λ2|Gunion

0 |. (38)

In order to further bound the expression in (38), notice that the first summand
in the right hand side of the inequality corresponds to the sum of all empirical
correlation coefficients. Leveraging that we are under the assumption that E1
holds [cf. (18)], we have that

2

p∑
j=1

K∑
k=1

wk

ε̂
(k)T
jπ̂ X̂(k)(â

(k)
j − a

(k)
0jπ̂)/nk

ω̂
(k)
j

≤ δ1

p∑
j=1

K∑
k=1

wk‖X̂(k)(â
(k)
j − a

(k)
0jπ̂)‖22/nk +

λ2
1

δ1
|Ĝ|. (39)

In order to bound the second and third terms, we first restate their difference
as follows

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω̂
(k)
j

)
−wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)
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=

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω
(k)
0jπ̂

)(
ω
(k)
0jπ̂ − ω̂

(k)
j

ω̂
(k)
j

)
. (40)

Next, by using Cauchy-Schwarz inequality, i.e.

|
n∑

i=1

uivi|2 ≤
n∑

j=1

|uj |2
n∑

k=1

|vk|2,

we further bound (40) as∣∣∣∣∣∣
p∑

j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω̂
(k)
j

)
−

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)∣∣∣∣∣∣
≤

⎛
⎝ p∑

j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω
(k)
0jπ̂

)2
⎞
⎠

1/2⎛
⎝ p∑

j=1

K∑
k=1

wk

(
ω
(k)
0jπ̂ − ω̂

(k)
j

ω̂
(k)
j

)2
⎞
⎠

1/2

.

(41)

From the fact that event E2 holds [cf. (23)], we can upper bound the first of the

two factors in the right-hand side of (41) by 2
√
λ2
2(p+ |Gunion

0 (π̂)|). Further,
relying on the inequality 2ab ≤ a2/δ2 + δ2b

2 for any δ2 > 0, it follows that∣∣∣∣∣∣
p∑

j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk − ω

(k)
0jπ̂

ω̂
(k)
j

)
−

p∑
j=1

K∑
k=1

wk

(
‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

− 1

)∣∣∣∣∣∣ (42)

≤ λ2
2(p+ |Gunion

0 (π̂)|)
δ2

+ δ2

p∑
j=1

K∑
k=1

wk

(
ω
(k)
0jπ̂ − ω̂

(k)
j

ω̂
(k)
j

)2

.

By replacing (39) and (42) into (38), we recover (34), as we wanted to show.

From Lemma A.6 it follows that the global optimum of (7) corresponds to a
minimal I-MAP, but no claim is made about the sparsity level of this I-MAP. In
order to show that the solution is indeed sparse, we must rely on Conditions 4.7
and 4.8. In Lemma A.7 we show that |Gunion

0π̂ | cannot be much larger than |Ĝ|.
Then, in Thm. A.8 we further show how to cancel out |Gunion

0π̂ | with |Ĝ| in (34)
to obtain our main result.

Lemma A.7. Assume Condition 4.7 holds and let λ̃ > 0 be such that

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F ≤ λ̃2|Gunion

0π̂ |. (43)

Consider constants η1, η2 with 0 ≤ η1 < 1 and 0 < η22ct < 1 − η1 such that∑
i,j 1

{∣∣∣[A(k)
0π̂ ]i,j

∣∣∣ ≥ λ̃/η2

}
≥ (1− η1)|G(k)

0π̂ |. Then, it follows that

|Ĝ| ≥ 1− η1 − η22ct
ct

|Gunion
0π̂ |.
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Proof. Let N (k) and M(k) be the sets of entries satisfying

N (k) := {(i, j) : |[A(k)
0π̂ ]i,j | ≥ λ̃/η2}

and

M(k) := {(i, j) : |[Â(k)]i,j − [A
(k)
0π̂ ]i,j | ≥ λ̃/η2}.

From these definitions it follows that

K∑
k=1

wk|N (k) ∩M(k)| λ̃
2

η22
≤

K∑
k=1

wk

∑
(i,j)∈N (k)∩M(k)

|[Â(k)]i,j − [A
(k)
0π̂ ]i,j |2

≤
K∑

k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F .

Leveraging inequality (43) and Condition 4.7 we further have that

K∑
k=1

wk|N (k) ∩M(k)| ≤ η22 |Gunion
0π̂ | ≤ η22ct

K∑
k=1

wk|G(k)
0π̂ |. (44)

Notice that for all (i, j)-th entries in the set N (k) ∩ M(k)C it must be that

|[Â(k)]i,j | > 0. Hence, N (k) ∩M(k)C corresponds to a subset of non-zero entries

of Â(k), which in turn corresponds to a subset of edges in Ĝ. From this we can
infer that

|Ĝ|=
K∑

k=1

wk|Ĝ|≥
K∑

k=1

wk|N (k)∩M(k)C |=
K∑

k=1

wk(|N (k)| − |N (k) ∩M(k)|)

≥ (1− η1 − η22ct)

K∑
k=1

wk|G(k)
0π̂ |,

where the last inequality follows by combining (44) with the definition of η1 in
the statement of the lemma. The proof concludes by replacing Condition 4.7 in
the above inequality.

Theorem A.8. Assume Conditions 4.1, 4.7 and 4.8 hold, and suppose that
there exist constants δB and 0 < δs < 1 as well as λ and λ0 that scale as
λ2 
 λ2

0 
 log p
n (p/|Gunion

0 | ∨ 1) such that

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F + λ2δs|Ĝ| ≤ λ2|Gunion

0 |+ λ2
0|Gunion

0π̂ |. (45)

If the constant η0 in Condition 4.8 is sufficiently small, then there exist constants
δ′s, cg, c

′
g > 0 such that

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F + (λ2δs − λ2

0δ
′
s)|Ĝ| ≤ λ2|Gunion

0 | (46)



2476 Y. Wang et al.

and

|Ĝ| ≥ cg|Gunion
0π̂ | ≥ c′g|Gunion

0 |. (47)

Proof. Using Conditions 4.1 and 4.7, we have that |Gunion
0 | ≤ ct max

k
|G(k)

0 | ≤
ct |Gunion

0π̂ |. Suppose that for some λ̃ > 0 one has that λ̃2 
 λ2 
 λ2
0 and λ̃2δB ≥

λ2ct + λ2
0, then it follows from (45) that

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F ≤ λ2|Gunion

0 |+ λ2
0|Gunion

0π̂ | ≤ λ̃2δB |Gunion
0π̂ |.

Let η2 be a constant defined as η2 := η0λ̃/
√

log p
n (p/|Gunion

0 | ∨ 1), then we can

rewrite Condition 4.8 as∑
i,j

1
{∣∣∣[A(k)

0π̂ ]i,j

∣∣∣ ≥ λ̃/η2

}
≥ (1− η1)|G(k)

0π̂ |.

Moreover, for η0 sufficiently small, η2 is also guaranteed to satisfy 0 < η22ct < 1−
η1. We could therefore apply Lemma A.7 and get that |Ĝ| ≥ 1−η1−η2

2ct
ct

|Gunion
0π̂ |,

which completes the proof of (47) by choosing cg =
1−η1−η2

2ct
ct

and c′g = cg · ct.
Notice that in order to apply Lemma A.7, it is required that η22ct < 1 − η1,
which is guaranteed by the assumption that η0 is sufficiently small. Leveraging

the first inequality in (47), we can replace λ2
0|Gunion

0π̂ | in (45) by
λ2
0ct

1−η1−η2
2ct

|Ĝ| in
order to obtain

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F +

(
λ2δs −

λ2
0ct

1− η1 − η22ct

)
|Ĝ| ≤ λ2|Gunion

0 |. (48)

Notice that (48) coincides with the sought expression (46) upon substituting
δ′s = ct/(1− η1 − ctη

2
2).

A.2.2. Proof of Theorem 4.9

It follows from Theorem A.2, Theorem A.4, and Lemma A.5 that there exist

constants λ1, λ2 with λ2
1 
 λ2

2 
 log p
n as well as some λ

(k)
3

2

 log p

nk
for all k such

that with probability 1 − exp(−c log p) for some constant c > 0, the random
event E1 ∩ E2 ∩ E3 occurs.

We may then apply Lemma A.6 to show that there exist constants δB , δW
such that with high probability, for any λ > 0 satisfying λ2 > λ2

1/δ1 + λ2
2/δ2, it

holds that

δBβ
2

p∑
j=1

K∑
k=1

wk‖X(k)(â
(k)
j − a

(k)
0jπ̂)‖22/nk+δW

K∑
k=1

wk‖Ω̂(k) − Ω
(k)
0π̂ ‖2F + λ2δs|Ĝ|
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≤ λ2|Gunion
0 |+ λ2

2(p+ |Gunion
0π̂ |)

δ2
+

λ2
1|Gunion

0π̂ |
δ1

. (49)

Note that compared with Lemma A.6, we have replaced
∑p

j=1

(
ω̂

(k)
j −ω0

(k)
j

ω̂
(k)
j

)2

by

‖Ω̂(k)−Ω
(k)
0π̂ ‖2F . This follows from combining the facts that

∑p
j=1(ω̂

(k)
j −ω0

(k)
j )2

is equal to ‖Ω̂(k) − Ω
(k)
0π̂ ‖2F and that 1

ω̂
(k)
j

is bigger than 1/β2 on the random

event E3. In addition, the constants β, σ0, δ1 and δ2 in Lemma A.6 have been

absorbed into the new constants δB and δW . We also replaced λ2 − λ2
1

δ1
− λ2

2

δ2
by

λ2δs for some 0 < δs < 1.
By applying Lemma A.5 [cf. (33)] we may bound the first summand on the

left-hand side of (49) by δB
∑K

k=1 wk‖Â(k) −A
(k)
0π̂ ‖2F . Furthermore, replacing λ1

and λ2 by some λ0 that scales as λ2
0 
 log p

n (p/|Gunion
0 | ∨ 1), we obtain that

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F+δW

K∑
k=1

wk‖Ω̂(k) − Ω
(k)
0π̂ ‖2F + λ2δs|Ĝ|

≤ λ2|Gunion
0 |+ λ2

0|Gunion
0π̂ |. (50)

By applying (50), we have that for a constant η0 small enough, (46) and (47)
in Theorem A.8 hold by choosing λ such that λ2 
 log p

n (p/|Gunion
0 | ∨ 1) and

λ2δs > λ2
0δ

′
s. Moreover, from (46) we further infer that

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F + λ2δ′′s |Ĝ| ≤ λ2|Gunion

0 |, (51)

where the constant δ′′s is chosen such that λ2δ′′s = λ2δs − λ2
0δ

′
s in (46). From

(51) it can thus be inferred that |Ĝ| ≤ |Gunion
0 |/δ′′s . Combining this with (47)

and the fact that |Gunion
0π̂ | ≥ c′g/cg|Gunion

0 |, we recover the first part of (11)

in the statement of the theorem, i.e., |Ĝ| 
 |Gunion
0π̂ |. For the relation between

|Gunion
0π̂ | and |Gunion

0 |, we use that |Gunion
0π̂ | ≤ |Ĝ|/cg ≤ |Gunion

0 |/(δ′′s · cg) and
|Gunion

0π̂ | ≥ c′g/cg|Gunion
0 |. Finally, to recover (10) we combine (50) with (11),

which concludes the proof.

A.3. Proof of Theorem 4.11

We first introduce a lemma that will be instrumental in proving Theorem 4.11
and that can be obtained directly from Lemmas 7.2 and 7.3 in [45].

Lemma A.9 ([45, Lemmas 7.2 and 7.3]). Suppose for some δB , δs, λ0, λ > 0 one

has that δB‖Â(k)−A
(k)
0π̂ ‖2F +λ2δs|Ĝ(k)| ≤ λ2|G(k)

0 |+λ2
0|G

(k)
0π̂ |. Let λ̃2δB ≥ λ2+λ2

0

and assume that
∑

i,j 1
{∣∣∣[A(k)

0π̂ ]i,j

∣∣∣ ≥ λ̃/η2

}
≥ (1− η1)|G(k)

0π̂ |. Then

δB‖Â(k) −A
(k)
0π̂ ‖2F +

(
λ2δs −

λ2
0

1− η1 − η22

)
|Ĝ(k)| ≤ λ2|G(k)

0 |
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and

|Ĝ(k)| ≥ (1− η1 − η22)|G
(k)
0π̂ | ≥ (1− η1 − η22)|G

(k)
0 |.

In order to show Theorem 4.11, we begin the proof just like for Theorem 4.9 in
Section A.2.2 until we get to expression (50). It then follows from Condition 4.7’

and |Ĝ| ≥
∑K

k=1 wk|Ĝ(k)| that there exists some λ′ 2
0 
 Cmax

log p
n (p/|Gunion

0 | ∨ 1),
where Cmax is defined in Condition 4.8, such that for any λ > 0,

δB

K∑
k=1

wk‖Â(k) −A
(k)
0π̂ ‖2F + δW

K∑
k=1

wk‖Ω̂(k) − Ω
(k)
0π̂ ‖2F + λ2δs

K∑
k=1

wk|Ĝ(k)|

≤ λ2ct(π0)

K∑
k=1

wk|G(k)
0 |+ λ′ 2

0

K∑
k=1

wk|G(k)
0π̂ |.

Let λ′ 2 := λ2 · ct(π0) and δ′s := δs/ct(π0), it then follows that there must exist
at least one k such that for any λ′ > 0,

δB‖Â(k) −A
(k)
0π̂ ‖2F + δW ‖Ω̂(k) − Ω

(k)
0π̂ ‖2F + λ′ 2δ′s|Ĝ(k)| ≤ λ′ 2|G(k)

0 |+ λ′ 2
0 |G(k)

0π̂ |

Since according to Condition 4.7’, ct(π) scales as a constant for permutations
consistent with Gunion

0 , we have that δ′s is still a constant and λ′ 
 λ. In this
case, it follows from Lemma A.9 and Condition 4.8’ that there exists some
constant 0 < δs < 1 and δ′s > 0 such that by choosing λ′ such that λ′ 

Cmax

log p
n (p/|Gunion

0 | ∨ 1) and λ′ 2δs > λ′ 2
0 δ′s, it holds that

δB‖Â(k) −A
(k)
0π̂ ‖2F +

(
λ′ 2δs − λ′ 2

0 δ′s
)
|Ĝ(k)| ≤ λ′ 2|G(k)

0 |.

It also follows from Lemma A.9 that |Ĝ(k)| ≥ cg|G(k)
0π̂ | ≥ cg|G(k)

0 | for some positive
constant cg. Mimicking the arguments employed in the proof of Theorem 4.9
from (51) until the end of the proof, one can show that expressions (13) and
(14) in the statement of Theorem 4.11 hold true, which completes the proof.

A.4. Proof of Corollary 5.1

The following lemma is instrumental in proving the corollary.

Lemma A.10. [18, Lemma 4] Given fixed G, the maximum likelihood estimator
in (15) can be written as

p+

p∑
j=1

(
min

a∈R
|Paj(G)|

n−j

n
log

( ∑
k:j 
∈Ik

nk

n−j
‖X̂(k)

j − X̂
(k)
Paj(G) · a‖

2
2/nk

)

+
∑

k:j∈Ik

wk log
(
‖X̂(k)

j ‖22/nk

))

where n−j is the total number of samples where node j is not intervened on,
i.e., n−j =

∑
k:j 
∈Ik

nk.
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Recall that in the interventional setting Gunion
0 is given by the true graph G0

of the non-intervened model, and that the K models (A
(k)
0 ,Ω

(k)
0 ) to be inferred

correspond to the interventional models (AIk
0 ,ΩIk

0 ). Denoting by (π̂, Â, Ω̂) the

(non-intervened) global optimum of (15), let ω̂
(k)
j denote the empirical variance

of the random variable X
(k)
j − X(k)âj if j ∈ Ik and the empirical variance of

X
(k)
j otherwise. It follows from Lemma A.10 that the global optimum satisfies

p+

p∑
j=1

⎛
⎝n−j

n
log

⎛
⎝ ∑

k:j 
∈Ik

nk

n−j
ω̂
(k)
j

⎞
⎠+

∑
k:j∈Ik

wk log ω̂
(k)
j

⎞
⎠+ λ2|Ĝ|

≤
p∑

j=1

K∑
k=1

wk

‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

+

p∑
j=1

K∑
k=1

wk logω
(k)
0jπ̂ + λ2|Gunion

0 |.

Then, applying the inequality log(
∑K

k=1 wkak) ≥
∑K

k=1 wk log ak for any

choices of a1, . . . , aK > 0 and w1, . . . , wK > 0 with
∑K

k=1 wk = 1, we obtain

p+

p∑
j=1

K∑
k=1

wk log ω̂
(k)
j + λ2|Ĝ| ≤

p∑
j=1

K∑
k=1

wk

‖ε̂(k)jπ̂ ‖22/nk

ω
(k)
0jπ̂

+

p∑
j=1

K∑
k=1

wk logω
(k)
0jπ̂ + λ2|Gunion

0 |.

Hence Corollary 5.1 directly follows from the proof of Theorem 4.9.
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