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Abstract: With the large amounts of modern financial and econometric
data available from disparate informational sources, it becomes increasingly
critical to develop inferential tools for the impact of exogenous factors on
volatility of financial time series. We develop a new Local Covariate Trend
test (LOCOT) for the significance of an exogenous covariate in the autore-
gressive conditional heteroscedastic volatility model, where the covariate
effect can be nonlinear. The new LOCOT statistic is based on an artificial
high-dimensional one-way ANOVA where the number of factor levels in-
creases with the sample size. We derive asymptotic properties of the new
LOCOT statistic and show its competitive finite sample performance in a
broad range of simulation studies. We illustrate utility of the new testing
approach in application to volatility analysis of three major cryptoassets
and their relationship with the prices of gold and the S&P500 index.
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1. Introduction

Since its inception by Engle (1982), a family of Autoregressive Conditional Het-
eroscedasticity (ARCH) models remains the primary tool to model volatility of
financial time series (see overviews by Beyaztas et al., 2018; Brenner et al., 1996;
Fabozzi et al., 2014; May and Herce, 2002, and references therein). In many real
scenarios, volatility of financial processes is driven by some exogenous variables
(Engle and Patton, 2001). For example, news intensity is recently shown to ex-
hibit a noticeable impact on volatilities of stock prices and currency exchanges
(Chua and Tsiaplias, 2019; Sadik et al., 2018; Sidorov et al., 2014).

A natural question then arises on whether we can test for the effects of
exogenous factors in volatility. Addressing this important question allows us to
assist in appropriate data and model selection as well as in improving volatility
forecasting. Remarkably, despite its high importance in applications, hypothesis
testing and inference for exogenous covariates in conditional heteroscedastic
models remain yet a substantially under-explored area. The primary goal of this
paper is to develop a hypothesis test for the significance of exogenous covariates
in autoregressive conditional heteroscedastic volatility models where the effect
of the covariate can be nonlinear.

Although trends in the mean due to covariate effects have been widely stud-
ied within ARCH settings, systematic analysis of covariate effects in the volatil-
ity equation of ARCH models has received noticeably less attention (see, e.g.,
Francq and Sucarrat, 2017; Han, 2015; Han and Kristensen, 2014, and references
therein). In turn, most available results on the covariates in the family of ARCH
models focus on parameter estimation algorithms and their associated asymp-
totic properties rather than on hypothesis testing (Chatterjee and Das, 2003;
Han and Park, 2008; Hansen et al., 2012; Robert, 2002; Sucarrat et al., 2016).
A notable effort in this direction has been undertaken by Francq et al. (2019)
who consider a class of asymmetric GARCH models with multiple exogenous
covariates with linear effects. While the primary focus of Francq et al. (2019) is
still on parameter estimation rather than hypothesis testing, their approach also
allows us to perform hypothesis testing for the significance of the exogenous vari-
ables using the asymptotic distribution of the estimators, which is shown to be
multivariate normal under some regularity conditions. Most recently, a related
approach in a form of likelihood ratio statistic for testing whether GARCH-X
reduces to GARCH is proposed by Pedersen and Rahbek (2019). Nevertheless,
to the best of our knowledge, no other approaches on hypothesis testing for
effects of exogenous covariates in the volatility equation of ARCH models have
been proposed in the literature, even for the case of linear effects.

In this paper we introduce a new Local Covariate Trend testing (LOCOT)
approach for the significance of an exogenous covariate in an ARCH volatility
model, where the covariate effect is a nonparametric functional. The proposed
testing framework allows us to test for a broad range of nonlinear effects of an
exogenous covariate on volatility dynamics. The new LOCOT statistic is based
on recent new developments of high-dimensional one-way ANOVA where the
number of factor levels increases with the sample size. The key idea is to mea-
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sure the local effect of the covariate on the residuals of the null model in small
neighborhoods of time, so that if different neighborhoods exhibit significantly
different average effects, then there likely exists an overall covariate effect. Since
the neighborhoods are small relatively to the sample size, both linear and non-
linear effects can be detected (Lyubchich and Gel, 2016; Lyubchich et al., 2013;
Wang et al., 2008; Zambom and Akritas, 2014). The proposed new LOCOT ap-
proach is validated through extensive simulations which indicate a competitive
performance of the new method both in terms of size and power of the test. Fur-
thermore, the new approach is illustrated in application to detecting the impact
of exogenous factors such as Gold prices and Standard & Poor’s 500 Index on
volatilities of the top three main crypto-assets, namely, Bitcoin, Litecoin, and
Ethereum.

The remainder of the paper is as follows. In Section 2, we introduce the new
LOCOT statistic for assessing the significance of the exogenous variable in the
autoregressive conditional heteroscedastic model. The asymptotic distribution
of the LOCOT statistic under the null and local alternative hypotheses with
some regularity conditions are presented in Section 3. Section 4 presents a wide
range of simulation results on the level and power of the test statistic compared
to that of Francq et al. (2019). Finally, Section 5 illustrates an application of
LOCOT to volatility analysis of three major crypto-assets.

2. The test statistic

Let εt, t = 1, . . . , T , be observations from{
εt = ztσt

σ2
t = α0 +

∑p
j=1 αjε

2
t−j +m(Xt−1),

(1)

where zt are independent and identically distributed (i.i.d.) random variables
with zero mean, unit variance and Ez4t < ∞. We assume that zt are inde-
pendent of Xt, which are also assumed to be i.i.d.. Model (1) is called an
Autoregressive Conditionally Heteroscedastic Model of order p with exogenous
regressors, or ARCH(p)-m(X) (see, e.g., Engle and Patton, 2001; Han, 2015,
and references therein). Here Xt is an exogenous covariate such that E

(
α0 +

m(Xt−1)
)2

< ∞. Furthermore, α0 + m(Xt) > 0, αj ≥ 0 for 0 ≤ j ≤ p, and

max{1, (Ez4t )
1/2}

(∑p
j=1 αj

)
≤ 1. We assume that E(ε2t |It−1) = σ2

t > 0, where
It−1 is the σ-algebra generated by {εu, Xu, u < t}. These assumptions ensure
existence of strictly stationary solution with finite forth moment for (1). Note
that in the case of GARCH(p, q)-m(X), the assumption

∑p
j=1 αj ≤ 1 is to be

substituted by the condition that the top Lyapunov exponent for a sequence
of matrices C0t associated with GARCH(p, q)-m(X) is strictly negative Francq
et al. (2019) (for the exact form of C0t see Hamadeh and Zaköıan (2011)).

Our goal is to assess the effect of Xt on the volatility of εt and test the
hypothesis

H0 : m(Xt) ∈ SΘ, (2)
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where SΘ = {m(·, θ), θ ∈ Θ} is a parametric family of functions, Θ ⊂ R
p, and

m(·, θ) : θ → R.
By setting vt = ε2t − E(ε2t |It−1) = ε2t − σ2

t , we can re-write (1) under H0 as
an autoregressive model of order p, or AR(p)

ε2t = α0 +

p∑
j=1

αjε
2
t−j +m(Xt−1, θ) + vt. (3)

Note that the error term vt in (3) is no longer independent and identically
distributed, but is white noise with variance

τ = V ar(z2t )E

⎡
⎣α0 +

p∑
j=1

αjε
2
t−j +m(Xt−1, θ)

⎤
⎦
2

= V ar(z2t )
[
α2
0 + E

⎛
⎝ p∑

j=1

αjε
2
t−j

⎞
⎠

2

+ Em2(Xt−1, θ) + 2α0

p∑
j=1

αjE(ε2t−j)

+2α0E
[
m(Xt−1, θ)

]
+ 2E[m(Xt−1, θ)]

p∑
j=1

αjE[ε2t−j ]
]
.

Moreover, vt is a martingale difference since E(vt|Tt−1) = 0, where Tt−1 is a
σ-algebra generated by (vt−1, vt−2, . . .). Note that in view of the assumptions
in (1), Ev2t < ∞.

Note under H0 in (2), we have

E(vt|Xt−1) = E(ε2t − E(ε2t |It−1)|Xt−1) = E(z2t σ
2
t |Xt−1)− E(ε2t |It−1)

= E(α0 +

p∑
j=1

αjε
2
t−j +m(Xt−1)|Xt−1)− α0 −

p∑
j=1

αjε
2
t−j −m(Xt−1)

=

p∑
j=1

αj(E(ε2t−j)− ε2t−j), (4)

which is a function of εt−1, εt−2, . . . and, hence, does not depend on Xt−1. Hence,
the key rationale behind our approach is that testing H0 (2) is equivalent to
testing for a relationship (in terms of conditional mean) between vt and Xt−1.

Now, consider the residuals

v̂t+p = ε2t+p − α̂0 −
p∑

j=1

α̂jε
2
t+p−j −m(Xt+p−1, θ̂), t = 1, . . . , n, n = T − p, (5)

where α̂j and θ̂ are some suitable
√
n-consistent estimators of αj , j = 0, 1, . . . , p

and θ, respectively (Chatterjee and Das, 2003). Under H0 in (2) v̂t is approxi-
mately white noise similar to vt and, as a result, we can develop a test statistic
for (2) based on the strength of the relationship between v̂t and Xt−1.
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Inspired by recent advancements in the theory of high-dimensional anal-
ysis of variance when the number of factor levels goes to infinity (Akritas
and Papadatos, 2004; Wang and Keilegom, 2007), we propose testing for H0

by building a one-way ANOVA design where the factor levels are defined by
n covariate observations in the following way. Let without loss of generality
(Xt−1, v̂t), t = 2, . . . , n be arranged in such a way that Xt1 < Xt2 whenever
t1 < t2. Let (Xt−1, v̂t) be the data from a balanced one-way ANOVA design
with v̂t being the data at “level” Xt−1. Since ANOVA statistics require more
than one observation per factor level, we augment each level by including the
v̂� corresponding to the (kn − 1) covariate values X�−1 closest to Xt−1, for a
fixed constant kn. Here kn represents the number of observations in each factor
level, which we call a window size (see Remark 1 for discussion on a strategy
for automatically choosing the window size kn). Formally, we define windows

Wt =

{
� : |F̂X(X�−1)− F̂X(Xt−1)| ≤

kn − 1

2n

}
, (6)

where F̂X is the empirical cumulative distribution of X. Note that symmet-
ric windows cannot be constructed at the edges, that is, for the lowest and
highest kn values of the covariate. In these cases, asymmetric windows can be
used, which can be shown to have asymptotic negligible effects on the limiting
properties of the test statistic.

Intuitively, under H0, there should be no difference in the mean values of the
observations across the factor levels defined by the windows Wt, and hence an
ANOVA F -test can be used. As a result, we propose using the following Local
Covariate Trend test (LOCOT) statistic

Tn = MSTn −MSEn (7)

=
kn

n− 1

n∑
t=1

(v̂t. − v̂..)
2 − 1

n(kn − 1)

n∑
t=1

∑
�∈Wt

(v̂� − v̂t.)
2,

where v̂t. = (1/kn)
∑

�∈Wt
v̂� and v̂.. = (1/nkn)

∑n
t=1

∑
�∈Wt

v̂�. Akritas and
Arnold (2000); Akritas and Papadatos (2004); Boos and Brownie (1995) stud-
ied the asymptotic behavior of

√
n(Fn − 1), where Fn = MSTn/MSEn, when

n goes to infinity. Since MSEn tends to a constant when n → ∞, by Slut-
sky Theorem the asymptotic distribution of

√
n(F − 1) is equivalent to that of√

n(MSTn −MSEn). In Section 3, we show that under some regularity condi-
tions the LOCOT statistic Tn converges to a Normal distribution as n goes to
infinity. Note that Tn can be written as V′AV, where V is the vector of nkn
augmented observations

V = (v̂�, � ∈ W1, . . . , v̂�, � ∈ Wn)

and A is a constant matrix defined in the Appendix.

Remark. To choose an optimal window size kn, we can employ the subsampling
approach of Lyubchich and Gel (2016) based on m-out-of-n resampling (see
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Bickel et al., 2012; Bickel and Sakov, 2008). Another approach for the choice
of kn is to generate B pseudo-datasets, each of which with covariate values
randomly permuted, that is, under the assumption that H0 is true. Then we
select a value of kn that yields the most accurate empirical level of the test. In
our numerical experiments, we employ the permutation-based approach.

3. Asymptotic results

We now turn to asymptotic properties of the new LOCOT statistic Tn (7).
Consider the following conditions:

C1: m(x, θ) is twice continuously differentiable with respect to θ and x and

sup
θ,x

∣∣∣∣ ∂

∂θj
m(x, θ)

∣∣∣∣ < ∞, sup
θ,x

∣∣∣∣ ∂2

∂x2
m(x, θ)

∣∣∣∣ < ∞,

sup
θ,x

∣∣∣∣ ∂2

∂θj∂x
m(x, θ)

∣∣∣∣ < ∞, sup
θ,x

∣∣∣∣ ∂2

∂θj∂θl
m(x, θ)

∣∣∣∣ < ∞, j = 1, . . . , dim(Θ).

C2: Under H0, θ̂ − θ = Op(n
−1/2).

C3: Density fX(·) of covariate X is twice continuously differentiable in a
compact support X with f(x) > 0 for x ∈ X .

C4: τ < ∞.
Conditions C1 and C2 guarantee the convergence rate of the estimator and,

hence, the convergence of the LOCOT statistic which is based on the residuals
v̂t in (5). Condition C3 typically holds for probability density functions with
compact support, and constitutes the only restriction on the covariate X, al-
lowing for a random design for the exogenous covariate X in ARCH-X models.
Next we state a formal result on the asymptotic properties of Tn under H0.

Theorem 1. Assume conditions C1–C4 hold. Then, under H0 in (2), as n →
∞, kn → ∞ and kn is such that k

5/2
n /n1/2 → 0,(

n

kn

)1/2

Tn
d→ N(0, 4τ2/3).

Note that the covariance structure of the volatility defined via the parameters
αj , j = 1, . . . , p (see (1) and (3)) does not affect the asymptotic distribution of
the LOCOT statistic due to the filtering of v̂. We estimate the variance τ of vt
by applying Rice (1984)’s estimator to the filtered data

τ̂ =
1

2(n− 1)

n∑
i=2

(v̂i − v̂i−1)
2.

In view of the
√
n-consistency of α̂j and θ̂, τ̂ is a consistent estimator of τ .

In order to obtain an insight on the power of the proposed LOCOT statistic,
we consider a sequence of local linear alternatives of the following form

Ha : m(x, θ) = θ0 + θ1x+ (nkn)
−1/4h(x). (8)
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Theorem 2 shows that the proposed LOCOT statistic converges to a Normal
distribution under local linear alternatives as in (8), detecting effects at the rate
of (nkn)

−1/4. The shift in the alternative distribution compared to that of the
null hypothesis is seen in the asymptotic mean, which shows that the power of
the test comes from the variability in the local function h(·) departing from the
null model. Similar results can be shown for other parametric forms.

Theorem 2. Assume conditions C1–C4 hold and let h(x) be Lipschitz con-
tinuous. Then, under Ha in (8), as n → ∞, kn → ∞ and kn is such that

k
5/2
n /n1/2 → 0, (

n

kn

)1/2

Tn
d→ N(V ar(h(X)), 4τ2/3).

4. Simulation study

We now assess the finite sample performance of the proposed LOCOT test
for the impact of exogenous covariates on the volatility in ARCH-X models
using Monte Carlo simulations 1. We consider different trend functions of the
exogenous variable and three probability distributions for the noise zt in (1),
with a varying degree of heavy-tailedness. As a competing approach, we consider
the parametric asymptotic χ2-test introduced by Francq et al. (2019) which we
refer to, throughout the text, as the Francq-Thieu test.

We generate a sample of 2,000 observations from the following eight models:
εt = ztσt with

M1 :ARCH(1)−X2 : σ2
t = 0.2 + 0.4ε2t−1 + θ/3(Xt−1 − 2.5)2

M2 :ARCH(2)−X2 : σ2
t = 0.2 + 0.3ε2t−1 + 0.2ε2t−2 + θ/3(Xt−1 − 2.5)2

M3 :ARCH(1)−Xsin(X) :σ2
t = 10.2 + 0.4ε2t−1 + θXt−1 sin(πXt−1/2)

M4 :ARCH(2)−Xsin(X) :σ2
t = 10.2 + 0.3ε2t−1 + 0.2ε2t−2

+ θXt−1 sin(πXt−1/2)

M5 :ARCH(1)−X : σ2
t = 0.2 + 0.4ε2t−1 + θXt−1

M6 :ARCH(2)−X : σ2
t = 0.1 + 0.3ε2t−1 + 0.2ε2t−2 + θXt−1

and the following two GARCH(1,1)-m(X) models

M7 :GARCH(1, 1)−X2 : σ2
t = 0.2 + 0.4ε2t−1 + 0.3σ2

t−1 + θ/3(Xt−1 − 2.5)2

M8 :GARCH(1, 1)−XSin(X) : σ2
t = 20.2 + 0.3ε2t−1 + 0.3σ2

t−1

+ θXt−1 sin(πXt−1/2)

where zt are independent and identically distributed random variables, following
a standard Normal N(0,1), Laplace, and t-Student distribution with 7 degrees of
freedom. The exogenous covariate Xt is independent and identically distributed

1The code is to be available from the R package funtimes and from the authors.
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following a uniform distribution U(0, 5). The number of Monte Carlo simula-
tions is 1,000. The first four ARCH models (i.e., M1–M4) and the two GARCH
models (i.e, M7 and M8) have nonlinear functions of the exogenous covariate
in the volatility component, while the ARCH(1)-X models M5 and M6 have
linear functions of covariate. To estimate model parameters, we use the quasi-
maximum likelihood method of Francq et al. (2019).

Table 1 shows the results for the empirical levels of the tests under H0 :
m(X, θ) = 0 (i.e., all considered ARCH-X and GARCH-X models with θ = 0).
As Table 1 indicates, both the proposed LOCOT and Francq-Thieu statistics
achieve empirical levels very close to a nominal level α of 0.05 for all eight models
and all three error distributions.

Table 1

Rejection rates for the LOCOT and Francq-Thieu statistics under H0 for nominal level α of
0.05.

LOCOT Francq-Thieu test
Laplace Normal t-Student Laplace Normal t-Student

ARCH(1)-X2 .052 .055 .046 .047 .046 .051
ARCH(1)-XSin(X) .046 .055 .056 .055 .047 .052
ARCH(2)-X2 .044 .056 .049 .051 .057 .036
ARCH(2)-XSin(X) .053 .047 .044 .054 .055 .050
ARCH(1)-X .055 .055 .046 .066 .046 .051
ARCH(2)-X .047 .050 .051 .044 .056 .052
GARCH(1,1)-X2 .051 .060 .045 .052 .047 .049
GARCH(1,1)-XSin(X) .050 .045 .051 .051 .049 .043

The empirical power functions of the LOCOT and Francq-Thieu statistics
are depicted in Figs. 1-4. Note that since the signal-to-noise ratio is dictated
by parameter θ, higher values of θ are associated with stronger deviations from
H0 and, hence, are expected to imply higher power of the tests. Figures 1-4
suggest that the new LOCOT method delivers higher power to detect nonlinear
alternatives for all models under all error distributions. More specifically, when
the models contain a quadratic function of the exogenous variable (i.e., Figs. 1a,
2a and 3a), LOCOT exhibits a rapidly increasing power function as θ increases;
in contrast, the Francq-Thieu statistic fails to detect any deviations from H0

for all three considered error distributions. For the models with the exogenous
variable in the form of XSin(X) (i.e., Figs. 1b, 2b and 3b), while both the
LOCOT and Francq-Thieu statistics deliver increasing power functions, LOCOT
tends to substantially outperform the Francq-Thieu approach, especially when
the error distribution is Normal. Since the Francq-Thieu statistic is designed to
detect linear alternatives (Francq et al., 2019), as expected, the Francq-Thieu
approach yields higher rate of power increase than LOCOT for the ARCH-X
models M5 and M6 with linear effects of the exogenous covariate (see Fig. 4a
and 4b, respectively).

Overall, our simulation studies indicate that the LOCOT statistic is a highly
competitive approach to detect nonlinear effects of the exogenous covariate on
volatility within the ARCH framework.
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Fig 1. Empirical power of the LOCOT and Francq-Thieu (FT) statistics to detect nonlinear
exogenous effects in ARCH(1) models in respect to varying θ. Empirical power curve with
respect to the strength of the non-additive signal θ. Left: ARCH(1)-X2, right: ARCH(1)-
XSinX.

Fig 2. Empirical power of the LOCOT and Francq-Thieu (FT) statistics to detect nonlinear
exogenous effects in ARCH(2) models in respect to varying θ.
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Fig 3. Empirical power of the LOCOT and Francq-Thieu (FT) statistics to detect nonlinear
exogenous effects in GARCH models in respect to varying θ.

Fig 4. Empirical power of the LOCOT and Francq-Thieu (FT) statistics to detect linear
exogenous effects in ARCH(1) models in respect to varying θ.
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5. Trends in volatility of cryptocurrencies

With the introduction of Bitcoin in 2009 (Nakamoto, 2008), blockchain technol-
ogy have witnessed an ever increasing boom of interest in areas as diverse as food
regulatory compliance, secure management of electronic health records, and fi-
nancial cryptomarket. While the range of blockchain applications continues to
grow, cryptocurrencies remain one of the primary spots of interest. Remarkably,
not only did the recent sharp raises and falls of Bitcoin not diminish attention
to digital assets but in contrast led to a gain of interest – primarily due to
unparalleled opportunities to raise a fast fortune in the yet unregulated Wild
West of digital instruments. However, the unprecedented investment opportu-
nities in cryptocurrencies go hand in hand with a high risk of losing everything
overnight.

In this paper we aim to enhance our understanding of the potential factors
behind dynamics of cryptocurrency volatility. In particular, we are interested
in whether exogenous variables such as Gold prices and Standard & Poor’s 500
Index (S&P 500) exhibit an impact on volatilities of one of the top three main
crypto assets, namely, Bitcoin, Litecoin, and Ethereum. While some recent stud-
ies assess dynamics of Bitcoin Blau (2018); Cermak (2017); Chu et al. (2017);
Dyhrberg (2016), volatility of Litecoin and particularly Ethereum remain largely
understudied.

We collect Bitcoin, Litecoin, and Ethereum daily data from their respec-
tive blockchains using their official software. We have installed the core wallets
of Bitcoin (2018) and Litecoin (2018) that downloaded the entire Bitcoin and
Litecoin blockchain data from September, 2016 to June, 2018. In turn, we use
the EthR library (Collier, 2019) to query Ethereum blocks through the Go
Ethereum Client (i.e., Geth), and our set contains all the Ethereum data from
September, 2016 to June, 2018. Gold prices were obtained from the Perth Mint
website (PerthMint, 2019), and the S&P 500 Index data from the Yahoo Finance
website (Yahoo, 2019).

To assess volatility of cryptoassets, we consider a time series of log-returns
Yt, i.e., Yt = log(Coinpricet) − log(Coinpricet−1), where Coinpricet is price
of the cryptoasser (i.e., Bitcoin, Litecoin, or Ethereum) on day t. In turn, Xt

denotes the exogenous information, that is, either daily records of Gold price or
S&P500, on day t.

Our primary interest is to assess whether conventional market indicators such
as Gold price and S&P500 exhibit an impact on the dynamics of crypto-market
volatility. That is, given{

Yt = ztσt

σ2
t = α0 + α1Y

2
t−1 +m(Xt−1),

(9)

we are interested in testing the hypothesis

H0 : m(Xt) ∈ SΘ,

H1 : m(Xt) 
⊂ SΘ. (10)
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Here we consider three different tests: H1
0 : m1(Xt) = Xt, H

2
0 : m2(Xt) =

[(Xt − μX)/σX ]2, and H3
0 : m3(Xt) = log(Xt), where μX and σ2

X are the mean
and variance of X1, . . . , Xt respectively.

We address the hypotheses (10) using our proposed nonparametric LOCOT
statistic and the Francq-Thieu test, starting from a family of linear trends.
Table 2 presents the summary of our results. As the new LOCOT approach
suggests, Gold prices appear to show no effect on the volatility of Bitcoin and
Ethereum but exhibit a statistical significant trend in the volatilities of Litecoin.
In turn, S&P500 yields a marginal result on the border of significance (i.e., p-
value of 0.09) for daily Bitcoin volatility.

While we cannot affirmatively attribute these findings to one cause, there are
a number of potential explanations to these findings. First, around 30% of illicit
trade is done using cryptocurrencies, and the usage of particularly Litecoin in
such criminal activities has recently increased. As a result, Litecoin may be used
in money laundering schemes to convert gold (Mcquad, 2017). Second, in some
countries, e.g., in Russia, Litecoin is used to hide assets. While Bitcoin is too big
and is less likely to be sensitive to Gold transactions in such activities, trading
Gold may still impact Litecoin price (Roberts, 2018). Third, Litecoin appears to
be less widely used for consumer tech purchases than Bitcoin and Ethereum and
more as a speculative instrument, hence Litecoin may have more intrinsic ties to
the financial market. Forth, historically lower transaction costs of Litecoin over
Bitcoin and Ethereum may draw hedgefunds and investment managers to buy
and sell large quantities of Litecoin in portfolios mixed with safe haven assets
like gold, in order to boost returns, while holding gold.

Remarkably, the Francq-Thieu test does not detect any trends in the volatili-
ties of Bitcoin, Litecoin and Ethereum associated with Gold prices and S&P500
for any of the functions considered.

An interesting next research step in this direction is to assess potential trends
and their causes in volatility dynamics of blockchain transaction graph char-
acteristics such as chainlets (Dey et al., 2020), topological signatures (Abay
et al., 2019; Gidea et al., 2020; Li et al., 2020) and more conventional network
summaries (Kurbucz, 2019). Such graph summaries may serve a early warn-
ing signal of the crypto-asset health and as such be an important investment
indicator (Dixon et al., 2019).

6. Discussion and future work

Despite the increasing interest to quantifying the impact of exogenous factors
in financial time series, analysis of exogenous covariates in volatility equations
of the ARCH family yet remains largely under-studied. In this paper we have
developed a new nonparametric Local Covariate Trend test (LOCOT) statistic
for assessing the significance of an exogenous covariate as a volatility component
in ARCH models, based on the high-dimensional one-way ANOVA F -test. We
have derived asymptotic properties of the new LOCOT statistic under the null
and alternative hypotheses. Our extensive simulation studies have indicated
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Table 2

Summary of the trend in volatility tests for Bitcoin, Litecoin, or Ethereum, driven by the
exogenous factors Gold price and S&P500 Index. The daily data are recorded from

September, 2016 to September, 2018.

p-values
Method Coin Gold Prices S&P500

m1(Xt) Bitcoin 0.221 0.093
LOCOT Litecoin 0.014 0.391

Ethereum 0.667 0.669
Bitcoin 0.766 0.313

Franc & Thieu Litecoin 0.805 0.594
Ethereum 0.923 0.450

m2(Xt) Bitcoin 0.112 0.759
LOCOT Litecoin 0.038 0.273

Ethereum 0.882 0.661
Bitcoin 0.478 0.999

Franc & Thieu Litecoin 0.999 0.998
Ethereum 0.998 0.998

m3(Xt) Bitcoin 0.221 0.093
LOCOT Litecoin 0.014 0.391

Ethereum 0.667 0.669
Bitcoin 0.998 0.999

Franc & Thieu Litecoin 0.899 0.878
Ethereum 0.999 0.844

high competitiveness of the LOCOT approach for detection of a broad range
of nonlinear exogenous effects in volatility of conditionally heteroscedastic time
series. Furthermore, we have illustrated the new approach in application to
analysis of volatility of three major cryptocurrencies and their relationship with
such exogenous factors as gold and S&P prices.

In the future, we plan to advance the proposed LOCOT approach to a mul-
tivariate case, as well as to integrate LOCOT with variable selection criteria.

Appendix

Proof of Theorem 1. The proof of is given for p = 1 and θ univariate. The case
where p > 1 and multivariate θ can be shown using similar steps.

Write the null hypothesis residuals as

v̂t = ε2t − α̂0 − α̂1ε
2
t−1 −m(Xt−1, θ̂)

= ε2t − α0 − α1ε
2
t−1 −m(Xt−1, θ)− (α̂0 − α0)− (α̂1 − α1)ε

2
t−1

−(m(Xt−1, θ̂)−m(Xt−1, θ))

= vt − (α̂0 − α0)− (α̂1 − α1)ε
2
t−1 − (m(Xt−1, θ̂)−m(Xt−1, θ)).

Let V = (v̂�, � ∈ W1, . . . , v̂�, � ∈ Wn), αV =
(
(α̂1 − α1)ε

2
�−1, � ∈ W1, . . ., (α̂1 −

α1)ε
2
�−1, � ∈ Wn

)
, vV = (v�, � ∈ W1, . . . , v�, � ∈ Wn), and mV = ((m(X�−1, θ̂)−

m(X�−1, θ)), � ∈ W1, . . . , (m(X�−1, θ̂)−m(X�−1, θ)), � ∈ Wn). The statistic Tn =
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MSTn −MSEn can be written as

T = V′AV = v′
V AvV + (α̂0 − α0)

2e′1Ae1 + α′
V AαV +m′

V AmV (11)

+2v′
V Ae1(α̂0 − α0) + 2v′

V AαV + 2v′
V AmV

+2(α̂0 − α0)e
′
1AαV + 2(α̂0 − α0)e

′
1AmV + 2α′

V AmV ,

where e1 = (1, 1, . . . , 1) is a n by 1 vector of ones and

A =
nkn − 1

n(n− 1)kn(kn − 1)
⊕n

i=1 Jkn − 1

n(n− 1)kn
Jnkn − 1

n(kn − 1)
Inkn , (12)

where Ir is a identity matrix of dimension r, Jr is a r × r matrix of 1’s and ⊕
is the Kronecker sum or direct sum.

In what follows, using steps similar to those in Wang and Keilegom (2007), we

show that asymptotic distribution of n1/2k
−1/2
n v′

V AvV converges to a normal

distribution and all other terms are op(n
−1/2k

1/2
n ). First, note that

v′
V AvV =

1

n(kn − 1)

n∑
i=1

n∑
t1 �=t2

vt1vt2I(t1, t2 ∈ Wi)

and since vt is white noise E(v′
V AvV ) = 0. Hence, variance of v′

V AvV can then
be computed as

E(v′
V AvV )

2

=
1

n2(kn − 1)2

n∑
i1=1

n∑
i2=1

n∑
t1 �=�1

n∑
t2 �=�2

E(vt1v�1vt2v�2)I(t1, �1 ∈ Wi1 , t2, �2 ∈ Wi2)

=
1

n2(kn − 1)2

n∑
i1=1

n∑
i2=1

n∑
t �=�

τ2I(t, � ∈ Wi1 ∩Wi2)

→
{
4τ2/3 if kn → ∞.
2(2kn−1)
3(kn−1) τ

2 if kn is fixed.

To show asymptotic normality of v′
V AvV , we express v′

V AvV as follows

v′
V AvV =

1

n

n∑
i=1

Ai =
1

n
Sn,

where Ai = (1/(kn − 1))
∑

t1 �=t2
vt1vt2I(t1, t2 ∈ Wi), and define

Uni = A(i−1)(bn+ln)+1 + . . .+A(i−1)(bn+ln)+bn

Vni = A(i−1)(bn+ln)+bn+1 + . . .+Ai(bn+ln),

i = 1, . . . , rn, where bn ∼ n2/3k
1/3
n , ln ∼ kn, rn ∼ n/bn = n1/3k

−1/3
n , so that

Sn =

rn∑
i=1

Uni +

rn∑
i=1

Vni.
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Using steps mimicking those in Wang et al. (2008), we can show that
∑rn

i=1 Vni =
op((nkn)

−1/2). Since Uni are uncorrelated, normality Uni is established using the
ρ-mixing theorem in (Peligrad, 1987).

For the third term on the right hand side of (11), note that

√
n

kn
α′
V AαV =

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)
(α̂1 − α1)

2
n∑

i=1

(∑
�∈Wi

ε2�−1

)2

(13)

−
√

n

kn

kn
n(n− 1)

(α̂1 − α1)
2

(
n∑

i=1

ε2i−1

)2

−
√

n

kn

kn
n(kn − 1)

(α̂1 − α1)
2

n∑
i=1

ε4i−1.

In view of the ARCH model in equation (2.1) of the main paper and given that
ε2t can be represented as an AR(1) process in equation (2.3) in the main paper,
we find that E(ε2t ) = α0/(1 − α1) and E(ε4t ) < ∞ by the assumptions of the
model. Hence, using the fact that (α̂1 − α1) = Op(n

−1/2), the third therm on

the right hand side of (13) is Op(n
−1/2k

−1/2
n n−1n) = op(1). The second term

on the right hand side of (13) is Op(n
−3/2k

1/2
n n−1n2) = Op(n

−1/2k
1/2
n ) = op(1).

Finally, the first term on the right hand side of (13) is Op(n
−1/2k

−3/2
n n−1nk2n) =

Op(n
−1/2k

1/2
n ) = op(1). Similarly, using 1’s instead of εt in (13), the second term

on the right hand side of (11) is shown to be of order op(1).

For the sixth term on the right hand side of (11), note that

√
n

kn
v′
V AαV =

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)
(α̂1 − α1)

n∑
i=1

∑
k∈Wi

vk
∑
�∈Wi

ε2�−1 (14)

−
√

n

kn

kn
n(n− 1)

(α̂1 − α1)

n∑
i=1

vi

n∑
�=1

ε2�−1 −
√

n

kn

kn
n(kn − 1)

(α̂1 − α1)

n∑
i=1

viε
2
i−1.

Using the fact that ε2t = α0 + α1ε
2
t−1 + vt and vt is white noise, it is

easy to see that E(vtε
2
t−1) = 0, and E(

∑n
t=1 vtε

2
t−1)

2 =
∑n

t=1 E(v2t ε
4
t−1)

+2
∑

t<� E(vtε
2
t−1v�ε

2
�−1) = n(α2

0τ+τ2)/(1−α2
1−2α0α1τα0/(1−α1))+0 = O(n).

Hence, the last term on the right hand side of (14) is of order

Op(n
−1/2k

−1/2
n n−1/2n1/2) = op(1). By the Marcinkiewicz-Zygmund inequal-

ity for weakly dependent processes (Dedecker et al. (2007) – Theorem 4.1),∑n
i=1 ε

2
t−1 = Op(n

1/2), and by the Martingale CLT
∑n

i=1 vi = Op(n
1/2),

so that the second term on the right hand side of (14) is of order

Op(n
−3/2k

1/2
n n−1/2n1/2n1/2) = op(1). Similarly, the first term on the right hand

side of (14) is of order Op(n
−1/2k

−3/2
n n−1/2nk

1/2
n k

1/2
n ) = op(1).

First note that using Lemma 1.0.2 in Zambom and Akritas (2014), we have

that |xi+1−xj+1| = Op(knn
−1/2). Then, by assumptions C2 and C3, |m(xi, θ̂)−

m(xj , θ)| ≤ supx,θ
∣∣(∂2/∂θ∂x)m(x, θ)

∣∣ |θ̂ − θ||xi+1 − xj+1| = Op(n
−1/2n−1/2kn)

uniformly in 1 ≤ i ≤ n and j ∈ Wi. Now express the seventh term on the right
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hand side of (11)
√

n
kn

v′
V AmV as

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)

n∑
i=1

∑
k∈Wi

vk
∑
�∈Wi

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
n(n− 1)

n∑
i=1

vi

n∑
�=1

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
n(kn − 1)

n∑
i=1

vi(m(Xi−1, θ̂)−m(Xi−1, θ))

=

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)

n∑
i=1

(m(Xi−1, θ̂)−m(Xi−1, θ))
∑
k∈Wi

vk

−
√

n

kn

kn
n(n− 1)

n∑
i=1

vi

n∑
�=1

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
n(kn − 1)

n∑
i=1

vi(m(Xi−1, θ̂)−m(Xi−1, θ))

+

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)
Op(n

−1k2n)

n∑
i=1

∣∣∣∣∣
∑
k∈Wi

vk

∣∣∣∣∣ . (15)

Since vt is white noise, using the CLT and the Mean Value Theorem it follows
that (15) is equal to

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)
Op(n

−1k3n)

n∑
i=1

|vi|

−
√

n

kn

kn
n(n− 1)

n∑
i=1

vi

n∑
�=1

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
(n− 1)

n∑
i=1

vi(m(Xi−1, θ̂)−m(Xi−1, θ))

=

√
n

kn

kn
n− 1

(θ̂ − θ)

n∑
k=1

(
∂

∂θ
m(Xk−1, θ)−

1

n

n∑
i=1

∂

∂θ
m(Xi−1, θ)

)
vk

+

√
n

kn

kn
2(n− 1)

(θ̂ − θ)2
n∑

k=1

(
∂2

∂θ2
m(Xk−1, θ̃)−

1

n

n∑
i=1

∂2

∂θ2
m(Xi−1, θ̃)

)
vk

+

√
n

kn
Op(n

−1k3n) = Op(n
−1/2k1/2n ) +Op(n

−1/2k5/2n ).
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Now re-write the fourth term in (11) m′
V AmV as√

n

kn
m′

V AmV

=

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)

n∑
i=1

(∑
�∈Wi

(m(X�−1, θ̂)−m(X�−1, θ))

)2

−
√

n

kn

kn
n(n− 1)

(
n∑

i=1

(m(Xi−1, θ̂)−m(Xi−1, θ))

)2

−
√

n

kn

kn
n(kn − 1)

n∑
i=1

(m(Xi−1, θ̂)−m(Xi−1, θ))
2. (16)

Hence, the last term on the right hand side of (16) is of order

Op(n
−1/2k

−1/2
n nn−1/2) = op(1), while the second term is of order

Op(n
−3/2k

1/2
n (nn−1/2)2) = op(1) and the first term is of order

Op(n
−1/2k

−3/2
n n(knn

−1/2)2) = op(1).
Now consider the last term on the right hand side of (11)√
n

kn
α′
V AmV =

√
n

kn

(nkn − 1)

n(n− 1)kn(kn − 1)
(α̂1 − α1) (17)

×
n∑

i=1

∑
k∈Wi

ε2k−1

∑
�∈Wi

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
n(n− 1)

(α̂1 − α1)

n∑
i=1

ε2i−1

n∑
�=1

(m(X�−1, θ̂)−m(X�−1, θ))

−
√

n

kn

kn
n(kn − 1)

(α̂1 − α1)

n∑
i=1

ε2i−1(m(Xi−1, θ̂)−m(Xi−1, θ)).

The second term is of order Op(n
−3/2k

1/2
n n−1/2n1/2nn−1/2) = op(1). Since vi

is white noise, the third term is of orderOp(n
−1/2k

−1/2
n n−1/2n1/2n−1/2) = op(1).

The first term is of order Op(n
−1/2k

−3/2
n n−1/2nk

1/2
n knn

−1/2) = op(1).
That the remainder of the terms on the right hand side of (11) converge in

probability to zero can be shown using similar steps.

Proof of Theorem 2. Under the alternative hypothesis in (3.7) of the main pa-
per, the residuals are

v̂t = ε2t − α̂0 − α̂1ε
2
t−1 −

(
θ̂0 + θ̂1Xt−1

)
= ε2t − α0 − α1ε

2
t−1 −

(
θ0 + θ1Xt−1 + (nkn)

−1/4h(Xt−1)
)
− (α̂0 − α0)

−(α̂1 − α1)ε
2
t−1 −

(
θ̂0 + θ̂1x−

[
θ0 + θ1Xt−1 + (nkn)

−1/4h(Xt−1)
])
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= vt − (α̂0 − α0)− (α̂1 − α1)ε
2
t−1 − (θ̂0 − θ0)

−(θ̂1 − θ1)Xt−1 + (nkn)
−1/4h(Xt−1).

Then, the statistic Tn = MSTn −MSEn can be written as

T = V′AV = v′
V AvV + (α̂0 − α0)

2e′1Ae1 + α′
V AαV (18)

+(θ̂0 − θ0)
2e′1Ae1 + θ′V AθV + (nkk)

−1/2h′
V AhV + 2v′

V Ae1(α̂0 − α0)

+2v′
V AαV + 2v′

V Ae1(θ̂0 − θ0) + 2v′
V AθV + 2(nkn)

−1/4v′
V AhV

+2(α̂0 − α0)e
′
1AαV + 2(α̂0 − α0)e

′
1Ae1(θ̂0 − θ0) + 2(α̂0 − α0)e

′
1AθV

+2(nkn)
−1/4(α̂0 − α0)e

′
1AhV + 2α′

V Ae1(θ̂0 − θ0) + 2α′
V AθV

+2(nkn)
−1/4α′

V AhV + 2(θ̂0 − θ0)e
′
1AθV + 2(nkn)

−1/4(θ̂0 − θ0)e
′
1AhV

+(nkn)
−1/4θ′V AhV

where θV and hV are defined as αV but with (θ̂1 − θ1)X�−1 and h(X�−1) re-
spectively instead of (α̂1 − α1)ε

2
�−1

By Theorem 1, n1/2k
−1/2
n v′

V AvV converges in distribution to a N(0, 4τ2/3)

and the 2, 3, 7, 8, and 12th terms are op(n
1/2k

−1/2
n ). Using similar steps, it can

be shown that the 4, 5, 9, 10, 13, 14, 16, 17, and 19th terms are op(n
1/2k

−1/2
n ).

Consider now the 11th term in (18) and note that

n1/2k−1/2
n (nkn)

−1/4v′
V AhV

=
n1/4

k
−3/4
n

nkn − 1

n(n− 1)kn(kn − 1)

n∑
i=1

∑
k∈Wi

vk
∑
�∈Wi

h(X�−1)

+
n1/4

k
−3/4
n

kn
n(n− 1)

n∑
i=1

vi

n∑
�=1

h(X�−1) +
n1/4

k
−3/4
n

kn
n(kn − 1)

n∑
i=1

vih(Xi−1) (19)

Using Lemma 1.0.2 in Zambom and Akritas (2014) and the Lipschitz continuity
of h(·), the sum in the first term in (19) is

kn

n∑
i=1

[
h(Xi−1) +Op

(
kn√
n

)] ∑
k∈Wi

vk ≤ kn

n∑
i=1

[ ∑
k∈Wi

h(Xk−1)

]
vi

+k2nOp

(
kn√
n

) n∑
i=1

|vi| = k2n

n∑
i=1

vih(Xi−1) +Op(k
3
nn

1/2).

Furthermore, we find

n1/2k−1/2
n (nkn)

−1/4v′
V AhV

=
n1/4

k
−3/4
n

nkn
n− 1

[(
1

n

n∑
i=1

vih(Xi−1)

)
−
(
1

n

n∑
i=1

h(Xi−1)

)(
1

n

n∑
i=1

vi

)]

+
n1/4

k
−3/4
n

Op

(
k2n
n1/2

)
,



Test for covariate trend in volatility models 2547

which goes to 0 in probability, since E(L) = 0 and V ar(L) = O(n−1). Hence,
L = Op(n

−1/2), where

L =

(
n−1

n∑
i=1

vih(Xi−1)

)
−
(
n−1

n∑
i=1

h(Xi−1)

)(
n−1

n∑
i=1

vi

)
.

The 15, 18, 20 and 21st terms in (18) can be shown to be op(1) using similar
steps.

Now, the 6th term in (18) can be re-written as

n1/2k−1/2
n (nkk)

−1/2h′
V AhV

=
n

n− 1

⎡
⎣( 1

n

n∑
i=1

h2(Xi−1)

)
−
(
1

n

n∑
i=1

h(Xi−1)

)2
⎤
⎦+Op

(
k2n
n1/2

)

p→ V ar(h(X)).
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