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1. Introduction

Most of the practical problems involving extreme events are inherently multi-
variate. Consequently, being able to estimate the extremal dependence between
random variables is useful. To this aim, we can either use some extremal coeffi-
cients, that give a representative picture of the full dependency structure (see,
e.g., Ledford and Tawn, 1997), or functions, such as the spectral distribution
function or the stable tail dependence function, that provide a full characteri-
zation of the extreme dependence between variables. We refer to Beirlant et al.
(2004) and de Haan and Ferreira (2006), and the references therein, for more
details. In this paper, we will focus on the stable tail dependence function, which
can be defined as follows.

For any arbitrary dimension d, let pY p1q, . . . , Y pdqq be a random vector with
continuous marginal distribution functions F1, . . . , Fd. The stable tail depen-
dence function is defined for each yi P R`, i “ 1, . . . , d, as

lim
tÑ8

tP
´

1 ´ F1pY p1q
q ď t´1y1 or . . . or 1 ´ FdpY pdq

q ď t´1yd
¯

“ Lpy1, . . . , ydq, (1.1)

provided that this limit exists. We refer to Huang (1992), and de Haan and
Ferreira (2006) for more details.

Several estimators for L have been proposed in the literature, see, e.g., Huang
(1992), Drees and Huang (1998), Fils-Villetard et al. (2008), Bücher et al. (2014),
but as usual in the extreme value framework, the classical estimators are affected
by bias, which often complicates their practical application. To solve this issue,
Fougères et al. (2015) and Beirlant et al. (2016) have introduced bias-corrected
estimators and they have established the main properties of their estimators as
stochastic processes.

Taking care of the bias is important, but in practical applications, we are
also often faced with the presence of covariates in addition to the random vec-
tor pY p1q, . . . , Y pdqq. It is thus important to be able to estimate the stable tail
dependence function when random covariates X are present, i.e., to consider
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the regression situation with a multivariate response. In that case, we want to
describe the extremal dependence between the variables pY p1q, . . . , Y pdqq given
some observed value x for the covariate X P R

p. Thus, the notion of condi-
tional stable tail dependence function Lp¨|xq can be introduced and the classical
framework (1.1) can be extended into

lim
tÑ8

tP
´

1 ´ F1pY p1q
|Xq ď t´1y1 or . . . or 1 ´ FdpY pdq

|Xq ď t´1yd

ˇ

ˇ

ˇ
X “ x

¯

“ Lpy1, . . . , yd|xq, (1.2)

where Fjp¨|xq, j “ 1, . . . , d, denote the continuous conditional distribution func-
tion of Y pjq given X “ x. To the best of our knowledge, the estimation of
the conditional stable tail dependence function has only been studied very re-
cently by Escobar-Bach et al. (2018b), where a local estimator was proposed
and its weak convergence as a stochastic process was established. In related
work, Gardes and Girard (2015) introduced an estimator for the conditional
tail copula and studied its finite dimensional convergence. However, being in
the regression context, of course does not solve the bias problem of the estima-
tor of Lp¨|xq. Thus, combining bias-correction and regression will be the subject
of this paper. As far as we know, this topic is completely new in the literature.

The remainder of the paper is organized as follows. In Section 2, we introduce
our bias-corrected estimator of the conditional stable tail dependence function
and we establish its weak convergence as a stochastic process, the covariate
being fixed. Then in Section 3, we illustrate the performance of this estimator
on a small simulation study where we compare it with two alternatives, that
are not asymptotically unbiased. Section 4 is devoted to a data analysis of air
pollution measurements. All the proofs are postponed to Section 5.

2. Estimators and convergence results

Denote pY,Xq :“ pY p1q, . . . , Y pdq, Xq, a random vector satisfying (1.2), and let
pY1, X1q, . . . , pYn, Xnq, be independent copies of pY,Xq, where X has density
function f . We introduce a local estimator for L, based on an empirical version
of the left-hand side of (1.2), for large values of t. As is usual in the extreme value
context, we consider an intermediate sequence k “ kn, i.e., k Ñ 8 as n Ñ 8

with k{n Ñ 0. Since the margins Fjp¨|xq appearing in (1.2) are unknown in
practice, we have to replace them by estimators such as the empirical kernel
estimator

pFn,jpy|xq :“

řn
i“1 Kcpx ´ Xiq1ltY pjq

i ďyu
řn

i“1 Kcpx ´ Xiq
, j “ 1, . . . , d,

where Kcp¨q :“ Kp¨{cq{cp with K a density function on R
p, and c :“ cn is

a positive non-random sequence satisfying cn Ñ 0 as n Ñ 8. Denote with
y :“ py1, . . . , ydq a vector of the positive quadrant R

d
`. According to Escobar-
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Bach et al. (2018b)

pLkpy|xq :“

1
k

řn
i“1 Kh px ´ Xiq 1l!1´ pFn,1pY

p1q
i |Xi qď k

n
y1 or ... or 1´ pFn,dpY

pdq
i |Xi qď k

n
yd

)

1
n

řn
i“1 Khpx ´ Xiq

with h :“ hn a positive non-random sequence satisfying hn Ñ 0 as n Ñ 8, is an
estimator of the conditional stable tail dependence function Lpy|xq. Note that in
pFn,jpy|xq and pLkpy|xq the same kernel function K has been used, but they can
of course be taken different. As in Escobar-Bach et al. (2018b), the bandwidths

for pFn,j and pLk are though different. This non-parametric estimator of Lp¨|xq

is in construction similar to the estimator for the conditional copula function
introduced in Veraverbeke et al. (2011). The purpose of the two papers is dif-
ferent though. In our paper we study the asymptotic properties of an estimator
of extreme tail dependence, while in Veraverbeke et al. (2011), focus was on the
asymptotic behavior of an estimator for the conditional copula function.

The aim of the paper is to propose an asymptotically unbiased estimator
for Lp¨|xq. To the best of our knowledge this topic has not been considered
previously in the literature in the regression context, in contrast to the clas-
sical framework without covariates where we can mention the contributions of
Fougères et al. (2015) and Beirlant et al. (2016).

The main results of the paper will be derived as stochastic weak convergence
results for processes in y P rε, T sd, for any ε ą 0 and T ą ε, but with the
covariate argument fixed, meaning that we will focus our study only around one
reference position x0 P IntpSXq, the interior of the support SX of f , assumed
to be non-empty. To this aim, we need to introduce some conditions mentioned
below and well-known in the extreme value framework. Let }.} be some norm
on R

p, and denote by Bxpτq the closed ball with respect to }.}, centered at x
and with radius τ ą 0. The event At,y is defined for any t ą 0 and y P R

d
` as

At,y :“
!

1 ´ F1pY p1q
|X q ď t´1y1 or . . . or 1 ´ FdpY pdq

|X q ď t´1yd

)

.

First order condition: The limit in (1.2) exists for all x P SX and y P R
d
`,

and the convergence is uniform on r0, T sd ˆ Bx0pτq for any T ą 0 and a τ ą 0.

Second order condition: For any x P SX there exist a positive function αp¨|xq

such that αpt|xq Ñ 0 as t Ñ 8 and a non null function Mp¨|xq such that for all
y P R

d
`

lim
tÑ8

1

αpt|xq
ttP pAt,y |X “ x q ´ Lpy|xqu “ Mpy|xq,

uniformly on r0, T sd ˆ Bx0pτq for any T ą 0 and a τ ą 0.

Third order condition: For any x P SX there exist a positive function βp¨|xq

such that βpt|xq Ñ 0 as t Ñ 8 and a non null function Np¨|xq such that for all
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y P R
d
`

lim
tÑ8

1

βpt|xq

"

tP pAt,y |X “ x q ´ Lpy|xq

αpt|xq
´ Mpy|xq

*

“ Npy|xq,

uniformly on r0, T sd ˆ Bx0pτq for any T ą 0 and a τ ą 0, and where N is not
a multiple of M .

Note that these assumptions imply that the functions αp¨|xq and βp¨|xq are
both regularly varying with indices ρpxq and ρ1pxq respectively which are non
positive. In the sequel we assume that both indices are negative. Remark also
that the functions Lp¨|xq, Mp¨|xq and Np¨|xq have a homogeneity property, that
is Lpay|xq “ aLpy|xq,Mpay|xq “ a1´ρpxqMpy|xq,Npay|xq “ a1´ρpxq´ρ1

pxqNpy|xq

for all a ą 0 and all y P R
d
`.

Due to the regression context, we need some Hölder-type conditions.

Assumption pFmq. There exist MFj ą 0 and ηFj ą 0 such that |Fjpy|xq ´

Fjpy|zq| ď MFj }x ´ z}
ηFj , for all y P R, all px, zq P SX ˆ SX and j “ 1, . . . , d.

Assumption pDq. There exist Mf ą 0 and ηf ą 0 such that |fpxq ´ fpzq| ď

Mf }x ´ z}ηf , for all px, zq P SX ˆ SX .

Assumption pLq. There exist ML ą 0 and ηL ą 0 such that |Lpy|xq´Lpy|zq| ď

ML}x ´ z}ηL , for all px, zq P Bx0pτq ˆ Bx0pτq, τ ą 0, and y P r0, T sd, T ą 0.

Assumption pAq. There exist Mα ą 0 and ηα ą 0 such that |αpt|xq ´αpt|zq| ď

Mα}x ´ z}ηα , for all px, zq P SX ˆ SX and t ě 0.

Assumption pBq. There exist Mβ ą 0 and ηβ ą 0 such that |βpt|xq ´βpt|zq| ď

Mβ}x ´ z}ηβ , for all px, zq P SX ˆ SX and t ě 0.

Assumption pMq. There exist M ą 0 and ηM ą 0 such that |Mpy|xq ´

Mpy|zq| ď M}x ´ z}ηM , for all px, zq P Bx0pτq ˆ Bx0pτq, τ ą 0, and y P

r0, T sd, T ą 0.

Also a condition is required on the kernel function K.

Assumption pKq. K is a bounded density function on R
p with support SK

included in the unit ball of Rp with respect to the norm }.}. Moreover, we assume
that there exists δ,m ą 0 such that B0pδq Ă SK and Kpuq ě m for all u P

B0pδq, and K belongs to the linear span (the set of finite linear combinations)
of functions k ě 0 satisfying the following property: the subgraph of k, tps, uq :
kpsq ě uu, can be represented as a finite number of Boolean operations among
sets of the form tps, uq : qps, uq ě ϕpuqu, where q is a polynomial on R

p ˆR and
ϕ is an arbitrary real function.

The latter assumption is common, and used already in, e.g., Giné and Guillou
(2002) and Escobar-Bach et al. (2018a,b), and allows to measure the discrepancy
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between the conditional distribution function Fjp¨|xq and its empirical kernel

version pFn,jp¨|xq.

2.1. Asymptotic result for pLkp¨|x0q under a third order condition

Escobar-Bach et al. (2018b) have established the weak convergence of pLkpy|x0q

as a stochastic process in y P r0, T sd and for a fixed covariate position x0 P

R
p, under the second order condition. In order to construct an asymptotically

unbiased estimator for Lp¨|x0q, the third order condition is required and thus
we need to know if under this new condition, a similar convergence result can
be stated.

For any T ą 0, let Dpr0, T sdq be the space of functions on r0, T sd that are
right-continuous and have left-hand limits. All our weak convergence results will
be derived in the Skorohod space Dpr0, T sdq equipped with the sup norm.

Theorem 2.1. Assume the third order condition, y Ñ Mpy|xq continuous on
r0, T sd and px, yq Ñ Npy|xq continuous on Bx0pτq ˆ r0, T sd, with Bx0pτq Ă SX .
Also suppose that there exists b ą 0 with fpxq ě b, @x P SX Ă R

p and f
bounded. Under pFmq, pDq, pLq, pAq, pBq, pMq, pKq, and assuming that there
exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λptu P B0p1q : x ´ cu P SXuq ą ε,

where λ denotes the Lebesgue measure, consider sequences k Ñ 8, h Ñ 0 and
c Ñ 0 as n Ñ 8 such that k{n Ñ 0 with

?
khp hminpηf ,ηL,ηαq

ÝÑ 0,
?
khp αpn{k|x0qhminpηM ,ηβq

ÝÑ 0,
?
khp αpn{k|x0q ÝÑ 8,

?
khp αpn{k|x0qβpn{k|x0q ÝÑ μ1px0q P R`,

and for some q ą 1 and 0 ă η ă minpηF1 , ..., ηFd
q

n

c

hp

k
max

˜

c

| log c|q

ncp
, cη

¸

ÝÑ 0. (2.1)

Then the process
!?

khp
´

pLkpy|x0q ´ Lpy|x0q ´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q

´α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0q

¯

, y P r0, T s
d
)

weakly converges in Dpr0, T sdq towards a tight centered Gaussian process tBpyq,
y P r0, T sdu, for any T ą 0, with covariance structure given by

Cov
`

Bpyq, Bpy1
q
˘

“
}K}22

fpx0q

`

Lpy|x0q ` Lpy1
|x0q ´ Lpy _ y1

|x0q
˘

,
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where y, y1 P r0, T sd and }K}2 :“
b

ş

SK
K2puqdu.

2.2. Smoothed estimator for Lp¨|x0q

Inspired by the homogeneity of Lp¨|x0q, consider now the rescaled statistic

pLk,apy|x0q :“
1

a
pLkpay|x0q

for a positive scale parameter a. Our uncorrected (in terms of bias) estimator for
Lp¨|x0q will be the following weighted version of the rescaled statistic, defined
for any r ą 1 and ξ ą 0 as

qLkpy|x0q :“

˜

şr

1
pLξ
k,apy|x0qda

r ´ 1

¸1{ξ

.

The weak convergence of this new estimator as a stochastic process is established
in the following theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1 together with
?
khpα2

pn{k|x0q Ñ μ2px0q P R`

for any r ą 1 and ξ ą 0, we have
?
khp

!

qLkpy|x0q ´ Lpy|x0q ´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0qcpr; ρpx0qq

´α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρpx0q ` ρ1
px0qq ´

α2
pn{k|x0q

2

M2
py|x0q

Lpy|x0q
dpr, ξ; ρpx0qq

*

d
ÝÑ

1

r ´ 1

ż r

1

Bpayq

a
da,

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1
and

cpr; ρpx0qq :“
r1´ρpx0q ´ 1

pr ´ 1qp1 ´ ρpx0qq
,

dpr, ξ; ρpx0qq :“ rcpr; 2ρpx0qq ´ c2pr; ρpx0qqspξ ´ 1q.

Based on this result, in order to construct an asymptotically unbiased estima-
tor for Lp¨|x0q, we need now to estimate ρpx0q and αkpy|x0q :“ αpn{k|x0qMpy|x0q.
This is the aim of the next section.

2.3. Estimation of ρpx0q and αpn{k|x0qMpy|x0q

Let pξ1, ξ2, ξ3, ξ4q P R
4
`, r1 ­“ r2 ą 1 and s ą 0. Now, define

Ipy; r, t; sq :“
1

r ´ 1

ż r

1

Bpasyq

a
da ´

1

t ´ 1

ż t

1

Bpasyq

a
da.
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We propose to estimate ρpx0q by

qρkpx0q :“ 1 ´
1

log s
log

¨

˚

˚

˚

˝

ˆ

şr1
1

pL
ξ1
k,apsy|x0qda

r1´1

˙1{ξ1

´

ˆ

şr2
1

pL
ξ2
k,apsy|x0qda

r2´1

˙1{ξ2

ˆ

şr1
1

pL
ξ3
k,apy|x0qda

r1´1

˙1{ξ3

´

ˆ

şr2
1

pL
ξ4
k,apy|x0qda

r2´1

˙1{ξ4

˛

‹

‹

‹

‚

.(2.2)

Theorem 2.3. Under the assumptions of Theorem 2.1, and additionally as-
suming that M never vanishes except on the axes and that

?
khpα2pn{k|x0q Ñ

μ2px0q P R`, for any pξ1, ξ2, ξ3, ξ4q P R
4
`, r1 ­“ r2 ą 1 and s ą 0, we have

?
khpα

´n

k

ˇ

ˇ

ˇ
x0

¯

"

qρkpx0q ´ ρpx0q `
αpn{k|x0q

2 log s

Mpy|x0q

Lpy|x0q

ˆ

„

s´ρpx0q dpr1, ξ1; ρpx0qq ´ dpr2, ξ2; ρpx0qq

cpr1; ρpx0qq ´ cpr2; ρpx0qq
´

dpr1, ξ3; ρpx0qq ´ dpr2, ξ4; ρpx0qq

cpr1; ρpx0qq ´ cpr2; ρpx0qq

j

`β
´n

k

ˇ

ˇ

ˇ
x0

¯ Npy|x0q

Mpy|x0q

s´ρ1px0q
´ 1

log s

cpr1; ρpx0q ` ρ1
px0qq ´ cpr2; ρpx0q ` ρ1

px0qq

cpr1; ρpx0qq ´ cpr2; ρpx0qq

+

d
ÝÑ ´

sρpx0q´1

log s
Ipy; r1, r2; sq ´

1
log s

Ipy; r1, r2; 1q

Mpy|x0q rcpr1; ρpx0qq ´ cpr2; ρpx0qqs

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Let pξ5, ξ6q P R
2
` and r3 ­“ r4 ą 1. To estimate αkpy|x0q, we propose

qαkpy|x0q :“

ˆ

şr3
1

pL
ξ5
k,apy|x0qda

r3´1

˙1{ξ5

´

ˆ

şr4
1

pL
ξ6
k,apy|x0qda

r4´1

˙1{ξ6

cpr3; qρkpx0qq ´ cpr4; qρkpx0qq
. (2.3)

In the sequel, we denote by c1pr; ρpx0qq the derivative of cpr; ρpx0qq with
respect to ρpx0q, and we use the following notations:

ĂMpy|x0q :“

Mpy|x0q

2Lpy|x0q

ˆ

dpr3, ξ5; ρpx0qq ´ dpr4, ξ6; ρpx0qq

cpr3; ρpx0qq ´ cpr4; ρpx0qq
`
“

c1
pr3; ρpx0qq ´ c1

pr4; ρpx0qq
‰

ˆ

„

s´ρpx0q
rdpr1, ξ1; ρpx0qq ´ dpr2, ξ2; ρpx0qqs ´ rdpr1, ξ3; ρpx0qq ´ dpr2, ξ4; ρpx0qqs

log s rcpr1; ρpx0qq ´ cpr2; ρpx0qqs rcpr3; ρpx0qq ´ cpr4; ρpx0qqs

j˙

rNpy|x0q :“

Npy|x0q

Mpy|x0q

˜

cpr3; ρpx0q ` ρ1
px0qq ´ cpr4; ρpx0q ` ρ1

px0qq

cpr3; ρpx0qq ´ cpr4; ρpx0qq

`
rc1

pr3; ρpx0qq ´ c1
pr4; ρpx0qqsrcpr1; ρpx0q ` ρ1

px0qq ´ cpr2; ρpx0q ` ρ1
px0qqs

rcpr1; ρpx0qq ´ cpr2; ρpx0qqsrcpr3; ρpx0qq ´ cpr4; ρpx0qqs

ˆ
sρ

1px0q
´ 1

log s

¸

.
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Theorem 2.4. Under the assumptions of Theorem 2.3, we have

?
khpα

´n

k

ˇ

ˇ

ˇ
x0

¯

"

qαkpy|x0q

αpn{k|x0qMpy|x0q
´ 1 ´ α

´n

k

ˇ

ˇ

ˇ
x0

¯

ĂMpy|x0q

´β
´n

k

ˇ

ˇ

ˇ
x0

¯

rNpy|x0q

)

d
ÝÑ

1

cpr3; ρpx0qq ´ cpr4; ρpx0qq

1

Mpy|x0q

"

Ipy; r3, r4; 1q

´
c1

pr4; ρpx0qq ´ c1
pr3; ρpx0qq

cpr1; ρpx0qq ´ cpr2; ρpx0qq

„

sρpx0q´1

log s
Ipy; r1, r2; sq ´

1

log s
Ipy; r1, r2; 1q

j*

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

2.4. Bias correction of qLkpy|x0q

Now we have all the ingredients to construct an asymptotically unbiased estima-
tor for Lp¨|x0q by removing from qLkpy|x0q the bias term where αpn{k|x0qMpy|x0q

together with the second order rate parameter ρpx0q have been estimated exter-
nally, using the same intermediate sequence k “ kn, which is such that k “ opkq.
This idea has been originally proposed by Gomes and co-authors (see, e.g.,
Gomes et al., 2008; Caeiro et al., 2009) in the univariate framework and has the
advantage that the variance of the bias-corrected estimator and the uncorrected
one is the same. Thus, we propose the following bias-corrected estimator for
Lp¨|x0q

Lk,kpy|x0q :“ qLkpy|x0q ´ qαkpy|x0qcpr; qρkpx0qq

ˆ

k

k

˙

qρkpx0q

. (2.4)

Theorem 2.5. Assume the third order condition, M never vanishes except on
the axes, y Ñ Mpy|xq continuous on r0, T sd and px, yq Ñ Npy|xq continuous on
Bx0pτq ˆ r0, T sd, with Bx0pτq Ă SX . Also suppose that there exists b ą 0 with
fpxq ě b, @x P SX Ă R

p and f bounded. Under pFmq, pDq, pLq, pAq, pBq, pMq,
pKq, and assuming that there exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λptu P B0p1q : x ´ cu P SXuq ą ε,

consider sequences k Ñ 8, h Ñ 0, c Ñ 0 as n Ñ 8 and k such that k “ opkq,
k{n Ñ 0, and with

a

khp hminpηf ,ηL,ηαq
ÝÑ 0,

a

khp αpn{k|x0qhminpηM ,ηβq
ÝÑ 0,

?
khp αpn{k|x0q ÝÑ 8,

a

khp αpn{k|x0qβpn{k|x0q ÝÑ μ1px0q P R`
a

khpα2
pn{k|x0q ÝÑ μ2px0q P R`
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and for some q ą 1 and 0 ă η ă minpηF1 , ..., ηFd
q

n

c

hp

k
max

˜

c

| log c|q

ncp
, cη

¸

ÝÑ 0.

Then we have

?
khp

!

Lk,kpy|x0q ´ Lpy|x0q ´ α
´

n
k

ˇ

ˇ

ˇ
x0

¯

β
´

n
k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρpx0q ` ρ1px0qq

´
α2

pn{k|x0q

2
M2

py|x0q

Lpy|x0q
dpr, ξ; ρpx0qq

)

d
ÝÑ

1

r ´ 1

ż r

1

Bpayq

a
da

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Note that this bias-corrected estimator Lk,kp¨|x0q has the same asymptotic

variance as the uncorrected estimator qLkp¨|x0q (see Theorem 2.2). Also, the
conditions on k, k̄, h and c appearing in Theorem 2.5 can be satisfied with
μ1px0q “ μ2px0q “ 0 if one chooses, up to multiplicative constants, k “ nα1 ,
k̄ “ nα2 , h “ n´Δ1 and c “ n´Δ2 , where the parameters satisfy the following
bounds

max

$

&

%

´ρpx0q

´

1 `
2mintηf ,ηL,ηαu

p

¯

´ρpx0q

´

1 `
2mintηf ,ηL,ηαu

p

¯

`
mintηf ,ηL,ηαu

p

,
´2ρpx0q

1 ´ 2ρpx0q
,
1 ´ 2ρpx0q

2 ´ 2ρpx0q
,

1 ´
η

p1 ´ ρpx0qqp2η ` pq

*

ă α1 ă 1, (2.5)

α1 ă α2 ă min

"

rα1p1 ´ 2ρpx0qq ` 2ρpx0qs

ˆ

1 `
2mintηf , ηL, ηαu

p

˙

,

rα1p1 ´ 2ρpx0qq ` 2ρpx0qs

´

1 `
2mintηM ,ηβu

p

¯

´ 2ρpx0q

1 ´ 2ρpx0q
,

α1p1 ´ 2ρpx0qq ´ 2ρ1px0q

1 ´ 2pρpx0q ` ρ1px0qq
,
α1p1 ´ 2ρpx0qq ´ 2ρpx0q

1 ´ 4ρpx0q
, 1

*

, (2.6)

max

"

α2

p ` 2mintηf , ηL, ηαu
,
α2p1 ´ 2ρpx0qq ` 2ρpx0q

p ` 2mintηM , ηβu
,

α2p1 ´ 4ρpx0qq ` 4ρpx0q

p
,
α2 ` 2p1 ´ α2qpρpx0q ` ρ1px0qq

p
,
1 ´ α1

p
,

2pη ` pq ´ α1p2η ` pq

pp2η ` pq

*

ă Δ1 ă
α1p1 ´ 2ρpx0qq ` 2ρpx0q

p
, (2.7)

2 ´ α1 ´ Δ1p

2η
ă Δ2 ă Δ1 ´

1 ´ α1

p
. (2.8)

According to the above, one can start with choosing α1 within its bounds. Then,
given α1, one can choose α2, and so on. It is thus possible to find sequences k,
k̄, h and c satisfying the conditions of the theorem.
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3. Simulation study

Our aim in this section is to illustrate the bias-correcting effect in the estimation
of Lp¨|x0q. We focus on dimensions d “ 2 and p “ 1. We consider the two
models studied in Escobar-Bach et al. (2018b), which both satisfy our third
order condition, together with Assumptions pDq, pLq, pAq, pBq, pMq and pFmq.
In particular, these models are the following:

• Model 1: The bivariate Student distribution with density function

fpY p1q,Y p2qqpy1, y2q “

?
1 ´ θ2

2π

ˆ

1 `
y21 ´ 2θy1y2 ` y22

ν

˙´
ν`2
2

, py1, y2q P R
2,

where θ is the Pearson correlation coefficient. The stable tail dependence
function can be described as

Lpy1, y2|θq “ y1Fν`1

ˆ

py1{y2q
1{ν

´ θ
?
1 ´ θ2

?
ν ` 1

˙

` y2Fν`1

ˆ

py2{y1q
1{ν

´ θ
?
1 ´ θ2

?
ν ` 1

˙

,

where Fν`1 is the distribution function of the univariate Student distri-
bution with pν ` 1q degrees of freedom. Also

Mpy1, y2|θq “ C1

„

y
2{ν`1
1 Fν`3

ˆ

py1{y2q1{ν ´ θ
?
1 ´ θ2

?
ν ` 3

˙

(3.1)

`y
2{ν`1
2 Fν`3

ˆ

py2{y1q1{ν ´ θ
?
1 ´ θ2

?
ν ` 3

˙j

,

Npy1, y2|θq “ C2

„

y
4{ν`1
1 Fν`5

ˆ

py1{y2q1{ν ´ θ
?
1 ´ θ2

?
ν ` 5

˙

(3.2)

`y
4{ν`1
2 Fν`5

ˆ

py2{y1q1{ν ´ θ
?
1 ´ θ2

?
ν ` 5

˙j

,

C1 :“ ´
ν2{ν`1π1{νpν ` 1q

2pν ` 2q

˜

Γ
`

ν
2

˘

Γ
`

ν`1
2

˘

¸2{ν

,

C2 :“
ν4{ν`1π2{νpν ` 1qpν ` 3q

8pν ` 4q

˜

Γ
`

ν
2

˘

Γ
`

ν`1
2

˘

¸4{ν

,

αpt|θq “ t´2{ν ,

βpt|θq “ t´2{ν .

We set θ “ X, where X is uniformly distributed on r0, 1s. In the simu-
lations, we use ν “ 4, which corresponds to ρpx0q “ ρ1px0q “ ´1{2. For
this model we have ηF1 “ ηF2 “ ηf “ ηL “ ηα “ ηβ “ ηM “ 1 and
we set η “ 0.99. Also, the conditions of Theorem 2.5 on k, k̄, h and c
can be satisfied by using the bounds (2.5)-(2.8). For instance, if one takes
α1 “ 0.80, α2 “ 0.81, Δ1 “ 0.54 and Δ2 “ 0.335, then the theoretical
convergence rate is of order n´0.13.
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• Model 2: a particular case of the Archimax bivariate copulas introduced
in Capéraà et al. (2000) and also mentioned in Fougères et al. (2015),
namely:

Cpy1, y2|xq “
�

1 ` Lpy´1
1 ´ 1, y´1

2 ´ 1|xq
(´1

,

where we use for L the asymmetric logistic stable tail dependence function
defined by

Lpy1, y2|xq “ p1 ´ t1qy1 ` p1 ´ t2qy2 `
“

pt1y1q
θx ` pt2y2q

θx
‰1{θx

,

where 0 ď t1, t2 ď 1, and θx :“ minp1{x, 100q, with the covariate X
uniformly distributed on r0, 1s. The marginal distributions are taken to be
unit Fréchet. For this model

Mpy1, y2|xq “ y21B1Lpy1, y2|xq ` y22B2Lpy1, y2|xq ´ L2
py1, y2|xq,

Npy1, y2|xq “ B1Lpy1, y2|xqpy31 ´ 2Lpy1, y2|xqy21q

`B2Lpy1, y2|xqpy32 ´ 2Lpy1, y2|xqy22q `
1

2
B11Lpy1, y2|xqy41

`
1

2
B22Lpy1, y2|xqy42 ` B12Lpy1, y2|xqy21y

2
2 ` L3

py1, y2|xq,

αpt|xq “ t´1,

βpt|xq “ t´1.

Hence ρpx0q “ ρ1px0q “ ´1. In the simulations, different values for the pair
pt1, t2q have been tried but the results seem to be not too much influenced
by them, thus we exhibit only the results in case pt1, t2q “ p0.4, 0.6q which
corresponds to an asymmetric tail dependence function. For this model
we have ηF1 “ ηF2 “ ηf “ ηL “ ηα “ ηβ “ ηM “ 1 and we set η “ 0.99.
The bounds (2.5)-(2.8) are satisfied with, e.g., α1 “ 0.84, α2 “ 0.85, Δ1 “

0.5, Δ2 “ 0.335, leading to a rate of n´0.17.

For each model, we simulate 500 samples of size 1000, and we compare three
estimators of Lp¨|x0q: the two uncorrected estimators, pLkp¨|x0q and its smoothed

version qLkp¨|x0q, and our bias-corrected estimator Lk,kp¨|x0q, at position x0 “

0.3. Concerning the kernel, we always use the bi-quadratic function

Kpuq :“
15

16
p1 ´ u2

q
21ltuPr´1,1su.

Each estimator requires the selection of some tuning parameters. This will
be done as follows.

For the uncorrected estimator pLkp¨|x0q of Escobar-Bach et al. (2018b), we
follow their approach, i.e., we use their cross-validation criterion for both band-
width parameters c1 and c2, corresponding to the marginals approximation, and
for the sequence h, we use

h “
minpc1, c2q

| logpminpc1, c2qq|1.1

k

n
,
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coming from condition (2.1), as described in their paper.

For the uncorrected smoothed estimator qLkp¨|x0q, the pair pr, ξq is selected
in a data-driven way using the homogeneity of the function Lpy|x0q, namely, for
all y and k

pr˚, ξ˚
q :“ argmin

pr,ξqPRˆE

ÿ

tPT

´

qLkpty|x0q ´ tqLkpy|x0q

¯2

,

where R :“ t1.1, 1.2, . . . , 2u, E :“ t1, 2, 3u and T :“ t1{3, 2{3, 1, 4{3, 5{3u. The
grids of values are selected after an extensive simulation study.

For the bias-corrected estimator Lk,kp¨|x0q, also a data-driven method has

been used for all the parameters involved. More precisely, Lk,kp¨|x0q defined in

(2.4) is based on the uncorrected smoothed estimator qLkp¨|x0q computed with
pr˚, ξ˚q from which we remove the bias, based on estimates qαkp¨|x0q and qρkpx0q,
derived according to the following algorithm:
Step 1. Let y˚ “ p0.5, 0.5q, s “ 0.4 and k “

X

n0.999
\

. Note that this heuristic

choice of k works well for a wide range of distributions, and also in practical
applications;
Step 2. Note that qρkpx0q is an estimate of ρpx0q, and as such is independent
of y. Define R :“ tpr1, r2q P R2 : r1 ‰ r2u, Ξ :“ tpξ1, ξ2, ξ3, ξ4q P E4 : ξ1 “

ξ3, ξ2 “ ξ4u and denote qρkpx0, y
˚, r1, r2, ξ1, ξ2, ξ3, ξ4q :“ qρkpx0q as in (2.2) for all

pr1, r2q P R, pξ1, ξ2, ξ3, ξ4q P Ξ and y “ y˚. Then, find pr˚
1 , r

˚
2 , ξ

˚
1 , ξ

˚
2 q the values

of pqr1, qr2, qξ1, qξ2q P R ˆ E2 minimizing the criterion

ÿ

pr1,r2,ξ1,ξ2qPRˆE2

´

qρk

´

x0, y
˚, qr1, qr2, qξ1, qξ2, qξ1, qξ2

¯

´ qρk
`

x0, y
˚, r1, r2, ξ1, ξ2, ξ1, ξ2

˘

¯2

.

The estimate qρkpx0q in (2.4) is finally computed as qρkpx0, y
˚, r˚

1 , r
˚
2 , ξ

˚
1 , ξ

˚
2 , ξ

˚
1 , ξ

˚
2 q;

Step 3. Let qαkp¨, r3, r4, ξ5, ξ6|x0q :“ qαkp¨|x0q as defined in (2.3). We use the
homogeneity of Mp¨|x0q in order to select the parameters pr3, r4, ξ5, ξ6q. More
precisely, qαkp¨|x0q in (2.4) is computed as qαkp¨, r˚

3 , r
˚
4 , ξ

˚
5 , ξ

˚
5 |x0q where

pr˚
3 , r

˚
4 , ξ

˚
5 q

:“ argmin
pr3,r4,ξ5qPRˆE

ÿ

tPT

´

qαkpty˚, r3, r4, ξ5, ξ5|x0q ´ t1´qρ
k

px0q
qαkpy˚, r3, r4, ξ5, ξ5|x0q

¯2

.

In the latter, qρkpx0q is the value obtained in Step 2.
First, in order to assess the theoretical result provided by Theorem 2.5, we

show in Figure 1 the associated normal QQ-plots for the two models, three
different sample sizes n “ 1000, 5000 and 10000, and the theoretical choices of
the parameters k, k, h, c induced by the conditions of Theorem 2.5. Here y “

p0.4, 0.6q and x0 “ 0.3, but similar plots can be obtained for other y´positions
and values of the covariate x0. From these normal QQ-plots, we can see that the
linearity in the plots improves with increasing the sample size n and the points
are getting closer to the diagonal, though there remains some curvature in the
QQ-plot for Model 2, even for n “ 10000.

Next, in order to assess the effect of replacing the unknown margins by esti-
mators, we plot in Figure 2 the empirical quantiles of the normalized estimator
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Fig 1. Normal QQ-plots of Lk,kp0.4, 0.6|0.3q, correctly normalized, in accordance with The-

orem 2.5 for Model 1 (first row) and Model 2 (second row) and three values of the sample
size: n “ 1000 (first column), n “ 5000 (second column), n “ 10000 (third column).

pLkp0.4, 0.6|0.3q (see Theorem 2.1) with estimated margins versus those obtained
with the true margins. Again the QQ-plots have been constructed with the the-
oretical choices of k, h and c and two different sample sizes: n “ 1000 (left
column) and n “ 5000 (right column). As is clear from Figure 2, the similarity
between the two quantiles in Model 1 is better than in Model 2, and as expected,
increasing the sample size improves the results, with points getting closer to the
diagonal. Again, similar results can be obtained for other y´positions and values
of the covariate x0.

Finally, in Figure 3, we show the sample mean (left) and the empirical mean

squared error (MSE, right) of pLkpy|x0q (dotted line), qLkpy|x0q (dashed line) and
Lk,kpy|x0q (full line) as a function of k in case of Model 1 with x0 “ 0.3 and
four possible values of y, corresponding to the different rows: from the top to
the bottom, y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q and p0.8, 0.2q, respectively. The
horizontal line on the left panel represents the true value of Lpy|x0q. Figure 4
concerns Model 2 and the same values of x0 and y. Based on these simulations,
we can draw the following conclusions:

• Our estimator Lk,kpy|x0q clearly outperforms the two alternatives. In
terms of bias, the sample means show very stable paths as a function of
k, close to the true value. In terms of MSE, it is still competitive, almost
always better than pLkpy|x0q and qLkpy|x0q, or otherwise at least similar,
and again very stable as a function of k. Those are very nice features since
in our case, the selection of k is not very crucial, while it is for pLk and qLk.
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Fig 2. Empirical quantiles of the normalized estimator pLkp0.4, 0.6|0.3q with estimated margins
versus those obtained with the true margins for Model 1 (first row) and Model 2 (second row)
and two values of the sample size: n “ 1000 (left column) and n “ 5000 (right column).

• For Model 2, the estimation is more difficult for y far away from the
diagonal, whereas for Model 1, it does not depend on y.

• Different values of the covariate x0 have been tried, but since the perfor-
mance of our bias-corrected estimator Lk,kpy|x0q does not seem to depend
on the position in the covariate space, the figures are not included in the
paper.

4. Application to air pollution data

In this section, we illustrate the practical applicability of our bias-corrected esti-
mator on a dataset of air pollution measurements. We consider the data collected
by the United States Environmental Protection Agency (EPA), publicly avail-
able at https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download files.html.
The dataset contains daily measurements of, among others, maximum tem-
perature, ground-level ozone, carbon monoxide and particulate matter concen-
trations, for the period 1999 to 2013, and this for stations spread over the U.S.
Monitoring levels of these pollutants is of crucial importance, as extreme temper-
ature and high levels of pollutants like ground-level ozone and particulate matter
pose a major threat to human health. We estimate the stable tail dependence
function for the variables temperature and ozone concentration, conditional on
time and location, where the latter is expressed by latitude and longitude. In
the estimation, the covariates are standardised to the interval r0, 1s, and the

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
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Fig 3. Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: pLkpy|0.3q (dotted

line), qLkpy|0.3q (dashed line), Lk,kpy|0.3q (full line) as a function of k for different values of

y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.3q.

tuning parameters are selected with the algorithm described in Section 3. In
order to keep the computational time requirements under control, the tuning
parameters selected at steps 1. to 3. of the algorithm are computed with a ran-
dom sampling of size r0.1ns where n “ 127328 refers to the initial sample size.
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Fig 4. Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: pLkpy|0.3q (dotted

line), qLkpy|0.3q (dashed line), Lk,kpy|0.3q (full line) as a function of k for different values of

y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.3q.

As kernel function K˚, we use the following generalisation of the bi-quadratic
kernel K:

K˚
px1, x2, x3q :“

3
ź

i“1

Kpxiq,
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where x1, x2, x3, refer to the covariates time, latitude and longitude, respec-
tively, in standardised form. Note that K˚ has as support the unit ball with
respect to the max-norm on R

3.

We report here only the results at two different time points, January 15,
2007 and June 15, 2007, and for two locations, Fresno and Los Angeles (both

in California). In Figure 5, we show the estimates mediantrLkpt, 1 ´ t|xq, k “

n{4, ¨ ¨ ¨ , n{2u, with a range of k´values based on 25 equally spaced integers,

where rLk is either Lk,k (full line), pLk (dotted line) or qLk (dashed line), for
the cities Fresno (top row) and Los Angeles (bottom row) on January 15, 2007
(first column) and June 15, 2007 (second column). For both stations, the bias-
corrected estimate for the stable tail dependence function indicates a stronger
extreme dependence between temperature and ozone concentration in winter
than in summer. In winter the extreme dependence in Fresno is stronger than in
Los Angeles. The results obtained with the uncorrected estimators pLk and qLk

are typically similar to each other, and correspond more or less with the analysis
reported in Escobar-Bach et al. (2018b). The estimate Lk,k differs considerably

from pLk and qLk for Fresno, winter and Los Angeles, summer. Note that in
these cases, the bias-corrected estimate tends to be higher than the uncorrected
estimates, indicating a weaker extremal dependence. This was also observed in
the simulation experiment, where the bias-corrected estimator tends to be larger
(and closer to the true value) than the uncorrected estimators. The observed
discrepancy indicates that estimation of tail dependence between temperature
and ozone concentration can suffer from bias, and therefore it is recommended
to use the bias-corrected estimator in order to get a better estimate of the stable
tail dependence function.

5. Proofs

5.1. Proof of Theorem 2.1

We follow the lines of proof of Theorems 2.1 and 2.3 in Escobar-Bach et al.
(2018b). The only difference lies in the fact that, under the third order condition,
we have

n

k
P
`

An{k,y|X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

“ α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

Mpy|x0 ´ huq ` α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

Npy|x0 ´ huq

`α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k
|x0 ´ hu

¯

ˆ

$

’

’

’

’

&

’

’

’

’

%

n

k
P
`

An{k,y |X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

αpn{k|x0 ´ huq
´ Mpy|x0 ´ huq

β pn{k|x0 ´ huq
´ Npy|x0 ´ huq

,

/

/

/

/

.

/

/

/

/

-

,
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Fig 5. Air pollution data: Estimates of mediantrLkpt, 1 ´ t|xq, k “ n{4, ¨ ¨ ¨n{2u, with a range
of k´values based on 25 equally spaced integers, for Fresno (top) and Los Angeles (bottom)
on January 15, 2007 (first column) and June 15, 2007 (second column).

where

sup
yPr0,T sd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

k
P
`

An{k,y |X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

αpn{k|x0 ´ huq
´ Mpy|x0 ´ huq

β pn{k|x0 ´ huq
´ Npy|x0 ´ huq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
yPr0,T sd,xPBx0 pτq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

k
P
`

An{k,y |X “ x
˘

´ Lpy|xq

αpn{k|xq
´ Mpy|xq

β pn{k|xq
´ Npy|xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

since for n large enough x0 ´ hu P Bx0pτq. This leads to

n

k
P
`

An{k,y|X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

“ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0 ´ huq ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

rNpy|x0 ´ huq ` op1qs

`

”

α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

´ α
´n

k

ˇ

ˇ

ˇ
x0

¯ı

Mpy|x0 ´ huq

`

”

α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯ı

rNpy|x0 ´ huq ` op1qs

“ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0q

`O
´

α
´n

k

ˇ

ˇ

ˇ
x0

¯

hηM ^ηβ
¯

` O phηαq ` o
´

α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯¯

,
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where the error terms are all independent from y.

5.2. Proof of Theorem 2.2

Using Theorem 2.1, the homogeneity properties of the functions Lp¨|x0q,Mp¨|x0q,
Np¨|x0q, and the Skorohod representation (but keeping the same notation), we
have

pLk,apy|x0q
d
“ Lpy|x0q ` α

´n

k

ˇ

ˇ

ˇ
x0

¯

a´ρpx0qMpy|x0q

` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

a´ρpx0q´ρ1px0qNpy|x0q

`
1

?
khp

Bpayq

a
`

1

a
o

ˆ

1
?
khp

˙

,

where the o´term is almost surely and uniform in a and y. This implies that
for any r ą 1 and ξ ą 0, under the assumptions of Theorem 2.2, we have by the
Skorohod representation and a straightforward application of Taylor’s theorem
that

şr

1
pLξ
k,apy|x0qda

r ´ 1
d
“ Lξ

py|x0q ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

ξLξ´1
py|x0qMpy|x0qcpr; ρpx0qq

`α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

ξLξ´1
py|x0qNpy|x0qcpr; ρpx0q ` ρ1

px0qq

`α2
´n

k

ˇ

ˇ

ˇ
x0

¯ ξpξ ´ 1q

2
Lξ´2

py|x0qM2
py|x0qcpr; 2ρpx0qq

`
1

?
khp

ξ

r ´ 1
Lξ´1

py|x0q

ż r

1

Bpayq

a
da ` o

ˆ

1
?
khp

˙

.

Theorem 2.2 follows then from another application of Taylor’s theorem.

5.3. Proof of Theorem 2.3

According to Theorem 2.2, using the homogeneity properties of the functions
Lp¨|x0q,Mp¨|x0q, Np¨|x0q, and the Skorohod representation, we have

˜

şr

1
pLξ
k,apsy|x0qda

r ´ 1

¸1{ξ

d
“ sLpy|x0q ` α

´n

k

ˇ

ˇ

ˇ
x0

¯

s1´ρpx0qMpy|x0qcpr; ρpx0qq

`α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

s1´ρpx0q´ρ1px0qNpy|x0qcpr; ρpx0q ` ρ1
px0qq

`α2
´n

k

ˇ

ˇ

ˇ
x0

¯ s1´2ρpx0q

2

M2
py|x0q

Lpy|x0q
dpr, ξ; ρpx0qq

`
1

?
khp

1

r ´ 1

ż r

1

Bpasyq

a
da ` o

ˆ

1
?
khp

˙

.

Several Taylor series expansions allow us to achieve the proof of Theorem 2.3.
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5.4. Proof of Theorem 2.4

Consider the decomposition

qαkpy|x0q “

ˆ

şr3
1

pL
ξ5
k,a

py|x0qda

r3´1

˙1{ξ5

´

ˆ

şr4
1

pL
ξ6
k,a

py|x0qda

r4´1

˙1{ξ6

cpr3; ρpx0qq ´ cpr4; ρpx0qq

ˆ

"

1 `
rcpr3; ρpx0qq ´ cpr3; qρkpx0qqs ´ rcpr4; ρpx0qq ´ cpr4; qρkpx0qqs

cpr3; qρkpx0qq ´ cpr4; qρkpx0qq

*

“: T1 t1 ` T2u .

From Theorem 2.2
T1

αpn{k|x0qMpy|x0q

d
“ 1 ` β

´n

k

ˇ

ˇ

ˇ
x0

¯ Npy|x0q

Mpy|x0q

cpr3; ρpx0q ` ρ1
px0qq ´ cpr4; ρpx0q ` ρ1

px0qq

cpr3; ρpx0qq ´ cpr4; ρpx0qq

` α
´n

k

ˇ

ˇ

ˇ
x0

¯ Mpy|x0q

Lpy|x0q

dpr3, ξ5; ρpx0qq ´ dpr4, ξ6; ρpx0qq

2rcpr3; ρpx0qq ´ cpr4; ρpx0qqs

`
1

?
khpαpn{k|x0qMpy|x0q

1
r3´1

şr3
1

Bpayq

a
da ´

1
r4´1

şr4
1

Bpayq

a
da

cpr3; ρpx0qq ´ cpr4; ρpx0qq

` o

ˆ

1
?
khpαpn{k|x0q

˙

and by a Taylor series expansion

T2
d
“

rc1pr4; ρpx0qq ´ c1pr3; ρpx0qqspqρkpx0q ´ ρpx0qq

cpr3; ρpx0qq ´ cpr4; ρpx0qq
p1 ` op1qq.

Combining these results leads to Theorem 2.4.

5.5. Proof of Theorem 2.5

From Theorem 2.2, we have

Lk,kpy|x0q
d
“ Lpy|x0q `

˜

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρ
k

px0q
¸

cpr; ρpx0qq

´qαkpy|x0q

ˆ

k

k

˙

qρ
k

px0q

pcpr; qρkpx0qq ´ cpr; ρpx0qqq

`α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρpx0q ` ρ1
px0qq

`
α2

pn{k|x0q

2

M2
py|x0q

Lpy|x0q
dpr, ξ; ρpx0qq `

1
?
khp

1

r ´ 1

ż r

1

Bpayq

a
da ` o

ˆ

1
?
khp

˙

.

Now remark that, by the mean value theorem, for rρkpx0q an intermediate value
between qρkpx0q and ρpx0q

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρkpx0q
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“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙ρpx0q
+

´qαkpy|x0q

ˆ

k

k

˙

rρkpx0q

log
k

k

`

qρkpx0q ´ ρpx0q
˘

.

Using Theorems 2.3 and 2.4, we can thus deduce that

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρ
k

px0q

d
“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

´ α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙ˆ

k

k

˙ρpx0q
+

Mpy|x0q

´qαkpy|x0q

ˆ

k

k

˙

rρ
k

px0q

log
k

k
pqρkpx0q ´ ρpx0qq ` o

ˆ

1
?
khp

˙

d
“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

´ α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙ˆ

k

k

˙ρpx0q
+

Mpy|x0q ` o

ˆ

1
?
khp

˙

.

Recall that αp.|x0q is regularly varying with index ρpx0q ă 0, which means that
αpy|x0q “ yρpx0q�αpy|x0q where �αp¨|x0q is a slowly varying function at infinity.
Following the lines of proof of Theorem 2 in Beirlant et al. (2016), this implies
that

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρkpx0q

d
“

ˆ

k

k

˙ρpx0q

α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

β

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

$

&

%

	αpn{k|x0q

	αpn{k|x0q
´ 1

βpn{k|x0q

,

.

-

Mpy|x0q ` o

ˆ

1
?
khp

˙

“ O

˜

ˆ

k

k

˙ρpx0q

α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

β

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

¸

` o

ˆ

1
?
khp

˙

“ o

ˆ

1
?
khp

˙

.

Consequently, since we have also by Theorem 2.3

qαkpy|x0q

ˆ

k

k

˙

qρkpx0q
`

cpr; qρkpx0qq ´ cpr; ρpx0qq
˘

“ O

˜

ˆ

k

k

˙

qρkpx0q
1

?

khp

¸

“ o

ˆ

1
?
khp

˙

,

and thus Theorem 2.5 follows.
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Capéraà, P., Fougères, A.L. and Genest, C. (2000). Bivariate distribu-
tions with given extreme value attractor. Journal of Multivariate Analysis,
72, 30–49. MR1747422

Drees, H. and Huang, X. (1998). Best attainable rates of convergence for
estimators of the stable tail dependence function. Journal of Multivariate
Analysis, 64, 25–47. MR1619974

Escobar-Bach, M., Goegebeur, Y. and Guillou, A. (2018a). Local robust
estimation of the Pickands dependence function. Annals of Statistics, 46,
2806–2843. MR3851756

Escobar-Bach, M., Goegebeur, Y. and Guillou, A. (2018b). Local esti-
mation of the conditional stable tail dependence function. Scandinavian Jour-
nal of Statistics, 45, 590–617. MR3858948

Fils-Villetard, A., Guillou, A. and Segers, J. (2008). Projection estima-
tors of Pickands dependence functions. Canadian Journal of Statistics, 36,
369–382. MR2456011

Fougères, A.L., de Haan, L. and Mercadier, C. (2015). Bias correction
in multivariate extremes. Annals of Statistics, 43, 903–934. MR3325714

Gardes, L. and Girard, S. (2015). Nonparametric estimation of the condi-
tional tail copula. Journal of Multivariate Analysis, 137, 1–16. MR3332795
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