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Abstract: We investigate a flexible two-component semiparametric mix-
ture of regressions model, in which one of the conditional component distri-
butions of the response given the covariate is unknown but assumed sym-
metric about a location parameter, while the other is specified up to a scale
parameter. The location and scale parameters together with the proportion
are allowed to depend nonparametrically on covariates. After settling identi-
fiability, we provide local M-estimators for these parameters which converge
in the sup-norm at the optimal rates over Hölder-smoothness classes. We
also introduce an adaptive version of the estimators based on the Lepski-
method. Sup-norm bounds show that the local M-estimator properly esti-
mates the functions globally, and are the first step in the construction of
useful inferential tools such as confidence bands. In our analysis we develop
general results about rates of convergence in the sup-norm as well as adap-
tive estimation of local M-estimators which might be of some independent
interest, and which can also be applied in various other settings. We inves-
tigate the finite-sample behaviour of our method in a simulation study, and
give an illustration to a real data set from bioinformatics.
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1. Introduction

Practitioners are frequently interested in modelling the effect of a d-dimensional
explanatory vector X on a response random variable Y by using a regression
model estimated from a random sample (Xi, Yi)1≤i≤n of (X,Y ). To allow vary-
ing parameters for different groups of observations, finite mixtures of regressions
(FMRs) have been suggested in the literature. Statistical inference for paramet-
ric FMR models using a moment generating function method was first intro-
duced by Quandt and Ramsey (1978). An approach based on the expectation-
maximization (EM) algorithm was suggested by De Veaux (1989) in the two-
component case. Zhu and Zhang (2004) established the asymptotic theory for
testing for the number of components in parametric FMR models. More recently,
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Städler et al. (2010) proposed an �1-penalized method based on a Lasso-type
estimator for a high-dimensional FMR model with d � n.

To gain further flexibility, various authors suggested the use of semipara-
metric FMR models. Hunter and Young (2012) studied the identifiability of an
m-component semiparametric FMR model and numerically investigated an EM
algorithm for estimating its parameters. Bordes et al. (2013) showed asymp-
totic normality of a semiparametric estimator in a two-component mixture of
linear regressions. Huang and Yao (2012) and Huang et al. (2013) considered a
semiparametric linear and nonlinear FMR model with Gaussian noise in which
means, variances and mixing proportions depend on covariates nonparametri-
cally. They established also the asymptotic normality of their local maximum
likelihood estimator and investigated a modified EM-type algorithm. Recently
Butucea et al. (2017) proposed a Fourier based approach to deal with a new
semiparametric topographical mixture model able to capture the characteris-
tics of dichotomously shifted response-type experiments. See also Compiani and
Kitamura (2016) for an overview on semiparametric mixtures with a focus on
econometric applications.

In this paper we investigate a two-component FMR model, in which one of
the conditional component distributions is unknown but assumed symmetric
about a location parameter μ, while the other is specified up to some scale
parameter σ. The location parameter μ, the scale parameter σ as well as the
proportion p are allowed to depend nonparametrically on the covariates. After
settling identifiability, we provide local M-estimators for these parameters which
converge in the sup-norm at the optimal rates over Hölder-smoothness classes.
We also introduce an adaptive version of the estimators based on the Lepski-
method, see Lepskii (1992).

Sup-norm bounds show that the local M-estimator properly estimates the
functions globally, and allow for a slight additional smoothing of the estimated
functions in order to obtain continuous estimates without deteriorating the rates
of convergence. Further, uniform rates are the first step for the construction of
confidence bands which are a very useful inferential tool, see e.g. Chernozhukov
et al. (2014).

Inspired by Butucea et al. (2017), the contrast that we use in the estimation
procedure is based on characteristic functions, thus simplifying the approach in
Bordes and Vandekerkhove (2010) which requires an additional smoothing when
building the contrast. We also develop general useful technical tools based on
the Bernstein-inequality in Giné et al. (2000) when the contrast has the form of
a U-statistic.

In our analysis we develop general results about rates of convergence in the
sup-norm as well as adaptive estimation of local M-estimators which might be
of some independent interest, and which could potentially also be applied in
other settings, e.g. to the models in Butucea et al. (2017) or in Huang and Yao
(2012).

The paper is organized as follows. In Section 2 we formally introduce the
model. Section 3 deals with identifiability of the parameters, for which we pro-
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vide some general results. Section 4 introduces the estimation methodology and
in particular develops the contrast function underlying the M-estimator. In Sec-
tion 5 we obtain optimal rates of convergence in the sup-norm for our estimators,
while Section 6 deals with adaptivity. In Section 7 we provide results of some
numerical experiments, and also analyze the ChipMix data set from Martin-
Magniette et al. (2008) which was previously analyzed in Bordes et al. (2013)
using linear FMRs. Section 8 presents our general theory for local M-estimators
as well as technical tools for contrasts in the form of U-statistics. In Section 9 we
provide a discussion of various possible extensions of our method and analysis.
Finally, Sections 10–13 contain the technical proofs.

2. Two-component mixture of location-scale regressions

We consider the following nonparametric regression model

Yi = Wi

(
μ(Xi) + ε1,i

)
+
(
1−Wi

)
σ(Xi)ε2,i , i ≥ 1,

for sequences of independent and identically distributed (i.i.d.) random vectors
(Xi)i∈N supported on a compact set I ⊂ R

d, d ≥ 1, and i.i.d. random variables
(Yi)i∈N, (Wi)i∈N, (ε1,i)i∈N and (ε2,i)i∈N. The explanatory variables Xi and the
response variables Yi are assumed to be observable while the latent variables
Wi and the error variables ε1,i and ε2,i are not. The covariates Xi are assumed
to have a probability density function (pdf), denoted by � : I → (0,∞), with
respect to the Lebesgue measure. The unknown location and scaling functions
μ : I → R and σ : I → (0,∞) partially determine the distributional relationship
between the explanatory and response variables along with the unknown mixing
function p : I → (0, 1). Finally conditionally on {Xi = x}, the variables Wi are
assumed to have a Bernoulli-distribution with parameter p(x), that is

P(Wi = 1|Xi = x) = p(x) and P(Wi = 0|Xi = x) = 1− p(x) .

Further we assume that conditionally on {Xi = x}, the vectors ε1,i and ε2,i
have zero-symmetric conditional pdfs, denoted respectively fx and f̄ , where f̄
is assumed to be known and not to depend on x, while fx is unknown and may
depend on x. If we furthermore have the conditional independence relations

ε1,i ⊥⊥ Wi|Xi and ε2,i ⊥⊥ Wi|Xi ,

the random vectors (Yi, Xi) have the following joint density

fY,X(y, x) := f
ϑ(·)
Y |X(y|x)�(x) (2.1)

=

[
1− p(x)

σ(x)
f̄
( y

σ(x)

)
+ p(x)fx

(
y − μ(x)

)]
· �(x) , (y, x) ∈ R× I ,

where the functional parameter

ϑ(x) = (p(x), σ(x), μ(x), fx)

collects all the x-local quantities to be estimated from the data.
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3. Identifiability

Regarding the identifiability problem, it is enough to consider model (2.1) with-
out covariate as we aim to estimate the various parameter-functions for each
given value of x. Our identification strategy and results will be similar to those
in Bordes et al. (2006) and Hohmann and Holzmann (2013). We suppose that
both the known pdf f̄ as well as the unknown pdf f are zero-symmetric and
have finite third-order moments. Hence, we consider mixtures of the following
form

fmix(y;ϑ) = (1− p)f̄(y/σ)/σ + pf(y − μ) , y ∈ R , (3.1)

where
ϑ = (p, σ, μ, f)� ∈ [0, 1]× (0,∞)× R× E3,

and f̄ ∈ E3 with

E3 = {f : R → [0,∞) | f even,
∫
f(x) dx = 1,

∫
|x|3f(x) dx < ∞} .

Note that we may assume that f̄ is normalized, that is
∫
y2 f̄2(y)dy = 1. In the

following we provide two sets of identifiability assumptions. The results rely on
the symmetry of the component pdfs. Indeed f is symmetric if and only if its
characteristic function or Fourier transform

ϕf (t) =

∫
exp(itz)f(z) dz , t ∈ R,

is real-valued.
Our first assumption imposes a constraint on the true mixing parameter p∗

but requires only mild conditions on the component pdfs f̄ and f∗.

Assumption 1. The true model parameter ϑ∗ = (p∗, σ∗, μ∗, f∗)
� and the com-

ponent pdf f̄ satisfy

(I1) μ∗ ∈ R\{0}, p∗ ∈ (1/2, 1) and σ∗ ∈ (0,∞),
(I2) f̄ ∈ E3 and ϕf̄ > 0,
(I3) f∗ ∈ E3 and ϕf∗ > 0.

The second assumption does not impose a restriction on the mixing parameter
but rather depends on the relationship of both component densities f̄ and f∗.
That is, the characteristic functions of these densities need to be distinguishable
in the tails in one of the following manners.

Condition 1. We consider the two following conditions:

(C1) For large t ∈ R it holds that ϕf∗(t) 	= 0 and for all σ > 0, we have

lim
t→∞

ϕf̄ (σt)

ϕf∗(t)
= 0 .
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(C2) For large t ∈ R it holds that ϕf∗(t) 	= 0, ϕf̄ (t) 	= 0 and for all σ > 0, we
have

lim
t→∞

ϕf∗(t)

ϕf̄ (σt)
= 0 , lim

t→∞

ϕf̄ (σt)

ϕf̄ (σ
′t)

= 0 , ∀ 0 < σ′ < σ .

Example 1.

(i) Condition (C1) holds when f∗ ∼ Laplace(μ1, σ1) and f̄ ∼ N (μ2, σ
2
2).

(ii) Condition (C2) holds when f̄ ∼ t(ν) and f∗ ∼ N (μ1, σ
2
1).

(iii) When both component densities are Gaussian, none of the conditions are
satisfied. Identification is however still possible under Assumption 1.

Admissible unknown component pdfs f∗ are aggregated in the class of func-
tions

E f̄
3 = {f ∈ E3 : (f̄ , f) meets one of the conditions (C1) or (C2)} .

The second identifiability assumption is as follows.

Assumption 2. The model parameter ϑ∗ = (p∗, σ∗, μ∗, f∗)
� and the known

component density f̄ fulfill

(I′1) μ∗ ∈ R\{0}, p∗ ∈ (0, 1), σ∗ ∈ (0,∞),
(I′2) f̄ ∈ E3,
(I′3) f∗ ∈ E f̄

3 .

We can now state the following identifiability theorem, the proof of which is
provided in Section 10.

Theorem 3.1 (Identifiability). If Assumption 1 or 2 holds we have the following
identifiability property. If ϑ satisfies fmix(y;ϑ∗) = fmix(y;ϑ) for almost all y ∈ R

then ϑ = ϑ∗.

Remark 1. It is important to notice that in both identifiability results, the tech-
nical conditions are only imposed on the true parameter ϑ∗ = (p∗, σ∗, μ∗, f∗)

�.
Identification is then ensured within the whole class of parameters.

4. Estimation methodology

We first present our estimation methodology in the model (3.1) without covari-
ates. The approach to build a contrast function based on Fourier transformation
is inspired by Butucea and Vandekerkhove (2014). In particular, as opposed to
Bordes et al. (2006) and Bordes and Vandekerkhove (2010) we do not require an
additional smoothing parameter for the indicator to obtain a smooth contrast
function. Hence, in this restricted setting our approach yields asymptotically
normally distributed estimators at

√
n-rate without additional smoothing.

Specifically, first assume that the observations Yj have density fmix(y;ϑ∗) as
in (3.1), where f̄ , f∗ ∈ E3 and

θ∗ = (p∗, σ∗, μ∗)
� ∈ (0, 1)× (0,∞)× R\{0} , ϑ∗ = (θ�∗ , f∗)

� .
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The characteristic function of fmix(·;ϑ∗) is given by

ϕfmix(·;ϑ∗)(t) = (1− p∗)ϕf̄ (σ∗t) + p∗ e
itμ∗ ϕf∗(t) .

Now, since f∗ is symmetric, p∗ϕf∗(t) is real-valued for all t ∈ R and so is(
ϕfmix(·;ϑ∗)(t)− (1− p∗)ϕf̄ (σ∗ t)

)
e−itμ∗ . (4.1)

Since ϕfmix(·;ϑ∗)(t) e
−itμ∗ is the characteristic function of Y − μ∗, we get that

the imaginary part of (4.1) satisfies

0 = 
((

ϕfmix(·;ϑ∗)(t)− (1− p∗)ϕf̄ (σ∗ t)
)
e−itμ∗

)
= Eϑ∗

[
sin
(
(Y − μ∗) t

)]
+ (1− p∗)ϕf̄ (σ∗ t) sin(tμ∗) (4.2)

for all t ∈ R, where we used that ϕf̄ (σ∗ t) is real-valued since f̄ is symmetric,
and where Eϑ∗ denotes the expectation with respect to the distribution Pϑ∗

which has density fmix(y;ϑ∗) with respect to Lebesgue measure. Hence, setting
H : R× R× [0, 1]× (0,∞)× R → [−2, 2],

H(y, t, θ) = sin
(
(y − μ) t

)
+ (1− p)ϕf̄ (σ t) sin(μt), (4.3)

we can define the contrast function

M(θ;ϑ∗) :=

∫
R

E
2
ϑ∗

[
H(Y, t, θ)

]
q(t) dt (4.4)

for some strictly positive density q that is chosen a priori. We have the following
identification result for this contrast.

Proposition 4.1 (Contrast property). Let Assumption 1 or 2 hold. Then the
function M(·;ϑ∗) : [0, 1] × (0,∞) × R → [0, 4] defined in (4.4) is a discrepancy
function, that is for θ ∈ [0, 1]× (0,∞)× R, we have

M(θ;ϑ∗) = 0 ⇐⇒ θ = θ∗ =
(
p∗, σ∗, μ∗

)�
.

The proof is provided in Section 10. An estimator θ̂n for θ is based on mini-
mizing an empirical version of the contrast given by the U-statistic

Mn(θ) =
1

n (n− 1)

∑
1≤j 	=k≤n

∫
H(Yj , t, θ)H(Yk, t, θ)q(t) dt .

An analysis similar to that in Butucea and Vandekerkhove (2014) shows that

under appropriate assumptions, the estimator θ̂n is asymptotically normally
distributed. Let us return to the regression model (2.1). Our general estimation
strategy is then analogous to that in Butucea et al. (2017). For the x-local
parameter

θ∗(x) :=
(
p∗(x), σ∗(x), μ∗(x)

)� ∈ (0, 1)× (0,∞)× R\{0}
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and
ϑ∗(x) = (θ�∗ (x), f

∗
x)

�, with f∗
x ∈ E3,

Assumption 1 or 2 is imposed globally. The asymptotic contrast is given by

M(θ, x; γ) :=

∫
R

E
2
γ

[
H(Y, t, θ)

∣∣X = x
]
q(t) dt · �2(x) , (4.5)

where again Eγ denotes the expectation with respect to the distribution Pγ ,
which is the probability measure from the underlying statistical model, i.e. for
any Borelian A ∈ R× I:

Pγ

(
(Y,X) ∈ A

)
=

∫
A

f
ϑ∗(·)
Y |X (y|x)�(x) d(y, x) , γ =

(
ϑ∗(·), �

)
.

In order to estimate the contrastM , we use a U-statistic type estimator localized
at x,

Mn(θ, x;h) =
1

n (n− 1)

∑
1≤j 	=k≤n

(∫
H(Yj , t, θ)H(Yk, t, θ)q(t) dt (4.6)

·Kh(Xj − x)Kh(Xk − x)
)
,

whereK : Rd → R is a kernel function and h ∈ (0,∞) is a bandwidth parameter.

The estimator θ̂n : I → R
3 of the parameter function θ∗(·) is then defined as

the pointwise minimizer of (4.6), that is

θ̂n(x;h) ∈ argmin
θ∈Θ

Mn(θ, x;h) , (4.7)

where Θ is a suitable compact subset of (0, 1)× (0,∞)×R\{0} that we specify
below.

5. Optimal rate of convergence in the supremum norm

In this section we derive the convergence rate of the estimator θ̂n(x;h) for the un-
derlying parameter functions p∗(·), μ∗(·), σ∗(·) over Hölder smoothness classes.
We focus on the supremum norm error for the following reasons. First, although
the estimator is defined as a pointwise minimizer in (4.7), convergence in the
sup-norm shows that it properly estimates the parameter functions p∗(·), μ∗(·),
σ∗(·) in a global way. Second, a sup-norm bound allows to slightly smooth the
estimated functions in order to obtain continuous estimates, without deterio-
rating the rates of convergence. Third, uniform rates are the first step for the
construction of confidence bands which are a very useful inferential tool, see
e.g. Chernozhukov et al. (2014).

Our technical analysis is based on general results for local M-estimators ob-
tained in Section 8.1, and hence is quite different from that in Butucea et al.
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(2017) who prove pointwise asymptotic normality using undersmoothing. In-
deed, our approach could also be applied to their model to obtain similar results
as in Theorems 5.1 and 6.1 below.

We investigate estimation over Hölder-smoothness classes of functions. De-
note the set of Hölder smooth functions on I with Hölder parameter α > 0 and
Hölder constant L > 0 taking values in some set U by

H(α,L, U) :=
{
f : I → U | f is continuous and �α�-times differentiable in int(I),

∀ |k| = �α�, x, y ∈ int(I) : |∂kf(x)− ∂kf(y)| ≤ L‖x− y‖α−
α�

∀ 1 ≤ |k| ≤ �α� : ‖∂kf‖∞ ≤ L
}
.

Here �α� = max{k ∈ N0 | k < α} and we use the standard multi-index notation
for multivariate derivatives, i.e. for k = (k1, . . . , kd), we write ∂

kf = ∂k1
1 . . . ∂kd

d f
and |k| = k1 + . . .+ kd. Note that if U is bounded we have that

sup
f∈H(α,L,U)

‖f‖∞ ≤ max{− inf U, supU} < ∞.

We suppose that p∗(·), μ∗(·), σ∗(·) and �(·) are Hölder smooth with the same
parameters α and L > 0. Specifically, for given Up ⊂ (0, 1), Uμ ⊂ R\{0},
Uσ ⊂ (0,∞), U� ⊂ (0,∞) we consider the set of parameters

Γ(α) =
{
γ = (θ�∗ (·), �(·))� | � ∈ H(α,L, U�), θ∗ = (p∗, μ∗, σ∗)

�with (5.1)

p∗ ∈ H(α,L, Up), μ∗ ∈ H(α,L, Uμ), σ∗ ∈ H(α,L, Uσ)
}
.

For convenience the sets Up, Uσ, Uμ, U� in the definition of Γ(α) in (5.1) are
assumed to be compact rectangular sets. We shall take Θ in the definition (4.7)

of the estimator θ̂n(x;h) to be

Θ = Up × Uσ × Uμ. (5.2)

Note that we excluded the conditional density f∗
x of ε1 given {X = x} from

the parameter set. Indeed we of course do not assume that this is known, but
in their present form the rates are not uniform with respect to this parameter.
Extensions are possible but would result in still higher technical complexity.

Assumption 3.

(M1) The identification Assumption 1 or 2 is fulfilled for all x ∈ I.
(M2) For each y we have that f∗

· (y) ∈ H(α,L(y), U) for some integrable and
bounded function L(·) and some compact set U ⊂ [0,∞). In addition, for
x ∈ I the characteristic function ϕf∗

x
of the density f∗

x is strictly positive.
(M3) The known component density f̄ fulfils (I2) and the functions y �→ yf̄(y),

f̄ and ∂2ϕf̄ are bounded and we have that lim|t|→∞ t∂ϕf̄ (t) = 0.

(K1) The kernel K : Rd → R is Lipschitz continuous with Lipschitz constant
LK > 0 and has support [−1, 1]d.
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(K2) The kernel K is of order α, i.e. for all |k| ≤ �α� it holds that∫
zkK(z) dz =

∫
zk1
1 · . . . · zkd

d K(z) dz = 0 .

(K3) The probability density q has a finite third absolute moment and is
bounded.

Theorem 5.1 (Main result: Rate of convergence). Under Assumption 3, given

a compact rectangle J ⊂ int(I), if we let hn ∼
(
logn
n

) 1
2α+d , we have that

lim
η→∞

lim sup
n→∞

sup
γ∈Γ(α)

Pγ

((
n

logn

) α
2α+d

sup
x∈J

∥∥θ̂n(x;hn)− θ∗(x)
∥∥ ≥ η

)
= 0 .

Thus, the estimator θ̂n(·;hn) has the convergence rate
(
logn
n

) α
2α+d in the sup-

norm for convergence in probability over the parameter set Γ(α). A classic result
from Stone (1982) states that this rate is optimal for nonparametric regression
in d dimensions over Hölder smoothness classes. The proof of Theorem 5.1 which
relies on the theory presented in Section 8.1 is given in Section 11.

6. Adaptive estimation

In Theorem 5.1, the choice of the bandwidth hn ∼
(
logn
n

) 1
2α+d requires a-priori

knowledge of the smoothness parameter α. In this section we shall make the
estimator θ̂n(x;h) in (4.7) adaptive w.r.t. this parameter by using the Lepski-
method, see Lepskii (1992), Lepski and Spokoiny (1997) and Golubev et al.
(2001).

We shall use an indirect approach and choose an adaptive bandwidth based
on the gradients of the contrast functions in (4.5) and (4.6),

Sn(θ, x;h) = ∂θMn(θ, x;h) , S(θ, x; γ) = ∂θM(θ, x; γ), (6.1)

where ∂θ = (∂p, ∂σ, ∂μ)
�. We let

h(α) = hn(α) = (log n/n)1/(2α+d) and r(α) = rn(α) = h(α)α

which we consider over a grid of smoothness parameters

αk = a+ k
b− a

N
, k = 0, . . . , N ,

where N = �log n� = min{k ∈ N | k > logn}, and set

hk = h(αk), rk = r(αk).

For a sufficiently large constant CLep < ∞ we consider the Lepski choice

k̂ = max
{
0 ≤ k ≤ N | sup

x∈I,θ∈Θ

∥∥Sn(θ, x;hk)− Sn(θ, x;hl)
∥∥ ≤ CLeprl
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∀ 0 ≤ l ≤ k
}
,

which leads to the estimator

θ̂adn (x) = argmin
θ∈Θ

Mn(θ, x;hk̂) .

In order to make use of the highest possible smoothness order b, we need the
following assumption.

(K̃2) The kernel K is of order �b�.
Theorem 6.1 (Main result: Adaptive rate of convergence). Let 0 < a < b < ∞
and let K be a kernel fulfilling Assumptions (K1) and (K̃2). Then, under As-
sumptions (M1)–(M3) and (K3), for any compact rectangular set J ⊂ int(I)
and for sufficiently large CLep > 0 we have that

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

((
n

logn

) α
2α+d

sup
x∈J

∥∥θ̂adn (x)− θ∗(x)
∥∥ ≥ η

)
= 0 .

The proof of this theorem, which is given in Section 11, is again based on a
general adaptivity result for local M-estimators obtained in Section 8.1.

7. Simulations and real data illustration

7.1. Simulations

We propose in this section to investigate the finite sample size properties, in the
supremum norm sense, of the functional estimator

θ̂n(x;hn) = (p̂n(x), σ̂n(x), μ̂n(x))

over two models (M1) and (M2) described below in dimension d = 1. Com-
monly to both models we choose

p(x) = 0.75− 0.15 sin
(x
4

)
, μ(x) = 1.5 +

1

2
sin
(x
2

)
,

σ(x) =
1

2
+

1

4
sin
(x
4

)
,

and

(M1 : Gaussian)X ∼ N (3, 7), ε1,i|Xi = x ∼ N
(
0,

1

4

)
, ε2,i ∼ N (0, 1),

(M2 : Laplace)X ∼ N (3, 7), ε1,i|Xi = x ∼ Laplace(0,
1

2
√
2
), ε2,i ∼ N (0, 1).
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Notice that we set the variance of ε1,i| {Xi = x} equal to 1/4 in both mod-
els (M1) and (M2) for fair comparison. Identifiability also of model (M1) is
guaranteed by Theorem 3.1 since Assumption 1 is satisfied.

The density q in the empirical contrast Mn(ϑ, x;h) in (4.6) is a N (0, 1) dis-
tribution, the kernel K(·) = 1/2(1− |x|)I−1≤x≤1 (triangular kernel) and

hn = κ

[
1.06×

(
σ̂X + σ̂Y

2

)
n−1/5

]
, (7.1)

where κ is a smoothness/scaling parameter the influence of which is to be tested.
The general form within brackets is a sort of rule of thumb. Thus we refrain from
implementing the Lepski search and instead manually investigate the influence
of the bandwidth over a suitable grid of values. The initialization is done at:
p(x)initial = p(x) + unif(−0.1, 0.1), μinitial = μ(x) + unif(−0.25, 0.25) and
σinitial = σ(x) + unif(−0.1, 0.1) for model (M1).

We compute our estimator θn(·, hn) over a testing grid

G = {xk = −10 + k; 1 ≤ k ≤ K = 25} ,
which is basically the interval [−5, 10] divided in cells of size 0.05. Note that
the distribution N

(
0, 1

4

)
of the covariates assigns relatively small mass to the

interval [−5,−2], so that we may expect that the estimation accuracy in this
region is not particularly high.

In Figure 1, respectively Figure 4, we present the behavior of the supremum
error distribution over the location, scaling and proportion functions in model
(M1), respectively model (M2), for n = 4000, 10, 000 and 20, 000 and index
values of κ defined in (7.1). In Figure 2, resp. 3, we display one single run
performance for sample size n = 4000, resp. n = 10, 000 and 100 Monte Carlo
iterations, under κ = 4 and 10, to illustrate the influence of the sample size n
and the scaling parameter κ on our method.

Comments on Figures 1–4. We remark first that, despite the fact that the
variance of the second component is common to models (M1) and (M2), the
performances in terms of bias and variance of the supremum norm are dramat-
ically better for model (M2). While this seems to be somewhat in contrast
to our theory since the Gaussian density is much smoother than the Laplace
density, we suspect that the effect is due to better separability of the two densi-
ties (Gaussian and Laplace) in model (M2) as compared to model (M1) (both
Gaussian). Further, Figures 2 and 3 show the positive impact of the sample size
on the largest estimation deviation over the different parameter functions. We
clearly see that the estimated curves better “hold onto” the target curves when
the sample size increases from 4,000 to 10,000. Let us finally notice that the
most difficult parameter to control is the scaling as illustrated in Figures 2 (b)
and 3 (b) by the quite large amplitude of the oscillations along the graphs.

7.2. Application to NimbleGen high density array

We consider the NimbleGen high density array dataset analyzed by Martin-
Magniette et al. (2008) and by Bordes et al. (2013). The aim of these authors
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Fig 1. Under model (M1), behavior of the supremum error distribution over the location,
scaling and proportion, functions (rows) for n = 4000, 10, 000 and 20, 000 (columns). The
index under each boxplot corresponds to the value of κ, involved in (7.1), under which the
supremum empirical distribution is obtained.

was to fit a simpler linear model than (2.1), where basically p(x) = p ∈ (0, 1)
is fixed, the location function μx = α + βx where α and β are respectively
the intercept and slope of the second component linear regression function, and
the scaling function σ(x) = σ is known. Originally the dataset, produced by a
two color ChIP-chip experiment, consists of n = 176, 343 observations (xi, ỹi).
A parametric mixture of linear regressions with two unknown components was
fitted first to the data by Martin-Magniette et al. (2008) under the assumption
of normal errors using an EM approach. More details can be found in Van-
dekerkhove (2013). The latter author suggests to fix the estimates for intercept
and slope (the values are 1.47 and 0.82) of the first component from the fully
parametric fit in Martin-Magniette et al. (2008), and then to apply the trans-
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Fig 2. One single run fitting example under model (M1): left column, resp. right column, is
obtained for n = 4000 and κ = 4, resp. κ = 10.

formation yi = ỹi − (1.47 + 0.82xi) to obtain a dataset (xi, yi) that fits into
the setting considered in this work with a centered first component. See also
Section 9 for a discussion on how to include an additional location into the first,
unknown component for our model. We use κ = 1 in (7.1) for the bandwidth
choice. Moderately varying this parameter did not strongly affect the resulting
estimator. The transformed dataset scatter plot is displayed in Figure 5 along
with the linear regression functions obtained by Martin-Magniette et al. (2008)
(blue dashed line) and by Bordes et al. (2013) (blue solid line) and the nonlinear
regression function fitted by our method (red solid line). Let us also recall that
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Fig 3. One single run fitting example under model (M1): left column, resp. right column, is
obtained for n = 10, 000 and κ = 4, resp. κ = 10.

the estimated value of p found by these authors is very similar and about 0.35. In
Figure 6 we display the graph of (x, y) �→ 1/σ̂n(x)f(y/σ̂n(x)) over a (x, y)-grid
to illustrate the influence of the scaling on the first component shape popula-
tion. In Figure 7 we display successively the results obtained on the location,
scaling and proportion functions over 10 model fitting attempts, sourcing every
time different 10, 000-size samples from the transformed NimbleGen dataset.

Comments on Figure 5–7. We can observe on Figure 5 that the estimated
location function obtained by our method is clearly below the regression lines
proposed by Martin-Magniette et al. (2008) (blue dashed line) and Bordes et al.
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Fig 4. Under model (M2), behavior of the supremum error distribution over the proportion,
scaling and location functions (rows) for n = 4000, 10, 000 and 20, 000 (columns). The index
under each boxplot corresponds to the value of κ, involved in (7.1), under which the supremum
empirical distribution is obtained.

(2013) (blue solid line). The consequence of this is that our method implicitly
considers that the unknown component has a more spread out distribution, due
to the symmetry assumption, than the one obtained by the previous authors.
This remark also implies that there is a stronger overlap between the first and
the second component which explains that the clearly visible less dense area
lying over the interval [9, 13] is the result of an overlap of a dominant second
component (the upper part of the scatter plot keeps being constantly dense)
and a weak first component as it is validated by the pattern of the proportion
parameter estimates displayed in Figure 7 (c). Further we can observe in Figure
5 that the first component shrinks slightly over the interval [10, 13] which is also
detected by our method as it is demonstrated on Figure 7 (b).
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Fig 5. The transformed NimbleGen dataset along with the linear regression functions obtained
Martin-Magniette et al. (2008) (blue dashed line), Bordes et al. (2013) (blue solid line) and
the nonlinear regression function fitted by our method (red solid line).

Fig 6. The graph associated to the NimbleGen dataset of the mapping (x, y) �→
1/σ̂n(x)f(y/σ̂n(x)) over a (x, y)-grid.

8. Local M-estimators and U-processes

8.1. General estimation theory for local M-estimators

In this section we develop rates of convergence and adaptive estimation for
general local M-estimators. The proofs of the results in this section are given in
Section 12.
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Fig 7. Plots of 10 estimation attempts based on samples of size n = 10, 000 from the trans-
formed NimbleGen dataset along with their average function.

Let Γ(α), α ∈ [a, b] be sets which index statistical models (Pγ)γ∈Γ(α) on some

measurable space. Let I ⊂ R
d be a compact rectangle, and let Θ ⊆ R

m.
Suppose that the deterministic contrast function M(·, ·; γ) : Θ × I → R is

uniquely minimized in its first argument by θ∗(x; γ), i.e.

θ∗(x; γ) = argmin
θ∈Θ

M(θ, x; γ) . (8.1)

The function M(θ, x; γ) is assumed to be a limiting version of a sequence of ran-
dom contrast functions Mn(θ, x;α) under Pγ . In our specific model, the param-
eter α corresponds to the Hölder-degree of smoothness in the previous sections,



Conditional semiparametric mixtures 1833

where Mn(θ, x;α) = Mn(θ, x;hn(α)) is given in (4.6) with hn(α) =
(
logn
n

) 1
2α+d ,

and M(θ, x; γ) in (4.5).

We suppose that Mn(·, x;α) are minimized by some θ̂n(x;α), i.e.

θ̂n(x;α) ∈ argmin
θ∈Θ

Mn(θ, x;α) . (8.2)

Consider the gradients of the contrast functions

Sn(·, ·;α) := ∂θMn(·, ·;α) , S(·, ·; γ) := ∂θM(·, ·; γ) , γ ∈ Γ(α) ,

where ∂θ = (∂θ1 , . . . , ∂θm)�. We formulate a result on rates of convergence in
sup-norm when the nuisance parameter α is known a priori, and subsequently
formulate a Lepski-type method to obtain estimates which are adaptive with
respect to α. We work with the following high-level assumptions.

Assumption 4. Assume that Θ is compact and convex with Θ = int(Θ). For
convenience to avoid boundary issues, assume that the contrast functions are
defined on an open and convex set Ξ ⊃ Θ. Given 0 < a < b < ∞ and α ∈ [a, b],
let (Γ(α), ‖·‖α) be subsets of normed spaces. Further let r(α) = r(α;n) be given
rates of convergence, which tend to ∞ in n for given α, and increase in α for
given n.

(A1) Let (Γ(α), ‖ · ‖α) be compactly nested spaces, i.e. Γ(α) ⊂ Γ(α′) and Γ(α)
is compact with respect to ‖ · ‖α′ whenever α′ < α. Furthermore, Γ(α)
is closed with respect to ‖ · ‖a. Additionally, for any α, αn ↗ α, it holds
that ⋂

n∈N

Γ(αn) = Γ(α) .

(A2) The map (θ, x; γ) �→ M(θ, x; γ) is continuous. Further for every x ∈ I,
α ∈ [a, b], γ ∈ Γ(α), the contrast M(·, x; γ) attains a unique minimum at
θ∗(x; γ), and the map (x; γ) �→ θ∗(x; γ) is continuous.

(A3) For all x ∈ I, α ∈ [a, b], γ ∈ Γ(a), the function M(·, x; γ) is twice contin-
uously differentiable in its first argument and the Hessian matrix

Vx

(
θ∗(x; γ); γ

)
:= ∂θ ∂

�
θ M

(
θ∗(x; γ), x; γ

)
is positive definite. In particular the eigenvalues λ1

x,γ;α ≥ · · · ≥ λm
x,γ;α of

the matrices Vx

(
θ∗(x; γ); γ

)
are positive. Furthermore, the map

(x; γ) �→ Vx(θ∗(x; γ); γ)

is continuous.
(A4) The Hessian matrices Vx(·; γ) are uniformly Lipschitz continuous in θ,

i.e. for all θ, θ′ ∈ Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈I

∥∥Vx(θ; γ)− Vx(θ
′; γ)

∥∥ ≤ LHess‖θ − θ′‖ ,

where the Lipschitz constant LHess < ∞ depends only on Ξ, I, a, b and
Γ(α).
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(A5) The empirical contrast is continuously differentiable in its first argument
and for the gradients

Sn(θ, x;α) := ∂θMn(θ, x;α) , S(θ, x; γ) := ∂θM(θ, x; γ) (8.3)

it holds that for some C∗∗ < ∞,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−2
Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;α)−S(θ, x; γ)
∥∥2] ≤ C∗∗.

(A6) The empirical contrast Mn is uniformly consistent for M , i.e. for ε > 0 it
holds that

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

(
sup

x∈I,θ∈Θ

∣∣Mn(θ, x;α)−M(θ, x; γ)
∣∣ ≥ ε

)
= 0 .

Theorem 8.1 (General rate of convergence: twice differentiable contrast). Un-

der Assumption 4, (A1)–(A6), for any α ∈ [a, b], every sequence θ̂n(x;α) of
minimizers in (8.2) satisfies

lim
δ→∞

lim sup
n→∞

sup
γ∈Γ(α)

Pγ

(
r(α)−1 sup

x∈I

∥∥θ̂n(x;α)− θ∗(x; γ)
∥∥ ≥ δ

)
= 0 .

The result shows that under the conditions of the theorem, the local M-
estimator θ̂n(x;α) inherits its rate of convergence from that of the gradients as
stated in (A5). In our setting, this rate will be the sup-norm rate in d dimensions

over α-Hölder classes, that is r(α) =
(
logn/n

) α
2α+d .

Let us turn to adaptive estimation with respect to α. Our approach will be
to use the Lepski method for the gradients Sn in (8.3) and hence to obtain a
data driven nuisance parameter α̂n ∈ [a, b] so that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
n

logn

) α
2α+d

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ)
∥∥] < ∞ ,

and then to use the estimator θ̂n(x; α̂n). As in Section 6 we let αk = a+ k (b−
a)/N , k = 0, . . . , N = �logn� and rk = r(αk). For the choice

k̂n = k̂ = max
{
0 ≤ k ≤ N | sup

x∈I,θ∈Θ

∥∥Sn(θ, x;αk)− Sn(θ, x;αl)
∥∥ ≤ CLeprl

∀ 0 ≤ l ≤ k
}
, (8.4)

where the Lepski constant CLep < ∞ has to be chosen large enough, we let
α̂n = αk̂ and

θ̂adn (x) = θ̂n(x; α̂n) = argmin
θ∈Θ

Mn(θ, x; α̂n) . (8.5)

The following high-level assumption allows to bound the probability of stop-
ping early in the selection rule (8.4).
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(A7) There is a constant C− > 0 and a monotone function u : [C−,∞) →(
1,∞

)
with u(t) → ∞, t → ∞ so that for every CLep ≥ C−,

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)plj < ∞ ,

where

plj =2Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;αj)− Eγ [Sn(θ, x;αj)]
∥∥ > CLep−3C∗∗

2 rl

)
,

C∗∗ is specified in (A5) and 0 ≤ kn(α) ≤ N − 1 is chosen so that
αkn(α) ≤ α ≤ αkn(α)+1.

Theorem 8.2 (General rate of convergence: Adaptivity). Under Assumption
4, (A1)–(A6) and (A7) for a sufficiently large choice of CLep, the estimator

θ̂adn (·) defined in (8.5) satisfies

lim
η→∞

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

(
r(α)−1 sup

x∈I

∥∥θ̂adn (x)− θ∗(x; γ)
∥∥ ≥ η

)
= 0 .

8.2. Uniform bounds for U-processes

In this section we provide tools which allow us to deal with the stochastic
components in the high-level assumptions (A5), (A6) and (A7) in case the
contrast function is a local U-statistic such as

Mn(θ, x;h) :=
1

n(n− 1)

∑
1≤j 	=k≤n

τ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) . (8.6)

Here τ is a smooth function that is symmetric in its first two arguments, K is
a kernel function and h > 0 is a bandwidth parameter. Proofs for the results in
this section are given in Section 13. The first result will be used to take care of
(A6) as well as of (A5) when applied to the coordinates of the gradient w.r.t. θ.

Theorem 8.3 (Uniform stochastic error for U-statistics). Consider the local U-
statistics Mn(θ, x;h) as in (8.6), where the sequence (Zi)i∈N =

(
(Yi, X

�
i )�

)
i∈N

of i.i.d. random vectors have Lebesgue densities

(y, x) �→ fγ(y|x)�γ(x) , (y, x) ∈ R× I , γ ∈ Γ .

The support I ⊂ R
d of �γ is supposed to be a compact cuboid, and supγ∈Γ ‖�γ‖∞ <

∞. Further, K : Rd → R is a Lipschitz continuous and bounded L2-kernel; for
some non-empty set A, (hn(α))n∈N, α ∈ A, are sequences of bandwidth param-
eters so that

sup
α∈A

hn(α) → 0 , sup
α∈A

logn

nhn(α)d
→ 0 ,
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and τ : R×R×Θ → [0,∞) is a bounded function and Θ ⊂ R
m is a compact

and convex set with Θ = int(Θ). The function τ is symmetric in its first two
arguments and satisfies

sup
z,y

|τ(z, y, ϑ)− τ(z, y, θ)| ≤ Lτ‖ϑ− θ‖ ,

for some constant Lτ < ∞. Then we have for any ρ ∈ [1,∞) and any compact
set J ⊂ int(I) that

lim sup
n→∞

sup
γ∈Γ

sup
α∈A

(
log n

nhn(α)d

)− ρ
2

Eγ

[
sup
x∈J

sup
θ∈Θ

∣∣Mn

(
θ, x;hn(α)

)
− Eγ

[
Mn

(
θ, x;hn(α)

)]∣∣ρ] ≤ C ,

where C < ∞ depends on ‖τ‖∞, Lτ , ‖K‖∞, LK , ρ, I, Θ, but is free from n
and the sequences of bandwidth parameters.

Remark 2. If τ (and hence Mn) take values in R
k (e.g. the gradient of a U-

statistic) it will be enough to check that every coordinate function fulfills the
assumptions of Theorem 8.3.

The next result, which takes care of (A7), is directly formulated for the
gradient.

Lemma 8.4. Let Mn be a U-statistic as in (8.6) that is differentiable in θ. Let
the assumptions of Theorem 8.3 hold for the coordinates of the gradient

Sn(θ, x;h) =
1

n(n− 1)

∑
1≤j 	=k≤n

∂θτ(Yj , Yk, θ)Kh(Xj − x)Kh(Xk − x) .

Then for positive constants c̃1, c̃2 > 0, there is an increasing linear function u
(depending on c̃1, c̃2) such that for sufficiently large values of CLep we have that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃lj < ∞ , where

p̃lj = P

(
sup

x∈J,θ∈Θ
‖Sn(θ, x;hj)− Eγ

[
Sn(θ, x;hj)

]
‖ >

(
c̃1CLep − c̃2

)
rl

)
.

9. Discussion and outlook

Symmetry assumption on f̄ and f
Symmetry of the known component density f̄ and the unknown f play central

roles in our identification (see Section 10) as well as estimation (see Section 4)
strategies. Within the present methodology, extensions to non-symmetric f seem
to be out of reach since in order to devise a contrast as in (4.2) and (4.4), one
needs to derive an equation containing only the observable fmix and the known
f̄ . However, extensions to non-symmetric f̄ while retaining symmetry for f seem
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to be possible: then in the model (3.1) without covariates, we still have that (4.1)
is real-valued, and get the equation

0 = 
((

ϕfmix(·;ϑ∗)(t)− (1− p∗)ϕf̄ (σ∗ t)
)
e−itμ∗

)
= Eϑ∗

[
sin
(
(Y − μ∗) t

)]
+ (1− p∗)

(
ϕf̄(·+μ∗)(σ∗ t)

)
,

from which a contrast function could be constructed.

Uniform inference
As mentioned in the first paragraph of Section 5, uniform rates are a first step

towards inference with respect to the uniform norm, that is the construction of
confidence bands. While details are out of scope for the present paper, a general
strategy could be as follows:

1. Derive a uniform linearization of the estimator of the form

θ̂n(x;h)− θ∗(x) = −
(
∂θ ∂

�
θ M(θ∗, x; γ)

)−1
Sn(θ∗, x;h) + oPγ

( logn
nhd

)
for a suitable undersmoothing choice of h = hn, where the remainder term
is uniform in x ∈ J ,

2. show uniform consistency for the inverse Hessian matrix, and a Gaussian
or bootstrap approximation to the score Sn(θ∗, x;h) together with a limit
theorem or an anticoncentration result, along the lines of Chernozhukov
et al. (2014) or Chen and Kato (2019),

3. show that these results persist if θ∗ is replaced in Sn(θ∗, x;h) and in the

Hessian matrix by the estimator θ̂n(x;h).

Extensions of the model
In view of the application in Section 7.2, it would useful to extend the model

to include a location also in the first, known component, for example in the form

fY,X(y, x) =

[
1− p(x)

σ(x)
f̄
(y − (a� x+ b)

σ(x)

)
+ p(x)fx

(
y − μ(x)

)]
· �(x) ,

where a ∈ Rd, b ∈ R are unknown parameters and (y, x) ∈ R× I, or even with
two fully nonparametric location components

fY,X(y, x) =

[
1− p(x)

σ(x)
f̄
(y − μ1(x)

σ(x)

)
+ p(x)fx

(
y − μ2(x)

)]
· �(x) .

For identification, in the version of the model (3.1) without covariate the tech-
niques from this paper for including the scale and from Hohmann and Holzmann
(2013) for the second location parameter need to be combined. If the model is

fmix(y;ϑ∗) = (1− p∗)f̄
(
(y − μ1,∗)/σ∗

)
/σ∗ + p∗f(y − μ2,∗) , y ∈ R ,
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the contrast can then be built on the equation

0 = Eϑ∗

[
sin
(
(Y − μ2,∗) t

)]
+ (1− p∗)ϕf̄ (σ∗ t) sin

(
t(μ2,∗ − μ1,∗)

)
. (9.1)

Misspecification
As it is common in M-estimation, under misspecification a minimum of the

contrast function is still estimated, but the minimizer does not have a clear inter-
pretation. We did not conduct such a formal robustness analysis here. However,
note that the contrast in (4.4) depends continuously on ϕf̄ in the supremum

norm, so that some stability of the minimizer in terms of misspecfication of f̄
may be expected.

Estimation of fx
An estimate of the unknown component density fx in (2.1) can be obtained

by solving for fx,

fx(y) =
1

p(x)

(
fY |X

(
y + μ(x)|x

)
− 1− p(x)

σ(x)
f
(y + μ(x)

σ(x)

))
, (9.2)

using an estimate of the conditional density fY |X , see e.g. Rosenblatt (1969),

and plugging in our estimate θ̂n(x).
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10. Proofs for Sections 3 and 4

The following simple lemma states that from μ = μ∗ it follows that ϑ = ϑ∗
under the assumptions of Theorem 3.1.

Lemma 10.1. Let ϑi = (pi, σi, μi, fi)
�, i = 1, 2 be two parameter vectors for

the model. If p1 ∈ (0, 1), μ1 = μ2 	= 0, and fmix(y;ϑ1) = fmix(y;ϑ2) for almost
all y ∈ R, then (p1, σ1, μ1) = (p2, σ2, μ2) and f1 = f2 almost everywhere.

As mentioned above we assume that
∫
y2f̄(y) dy = 1.

Proof. Denote by ξi the second order moment of fi, i = 1, 2. Using the symmetry
of f̄ , f1 and f2 leads to the moment equations

p1μ1 = p2μ2 , (10.1)

(1− p1)σ
2
1 + p1(ξ1 + μ2

1) = (1− p2)σ
2
2 + p2(ξ2 + μ2

2) , (10.2)

p1(3ξ1μ1 + μ3
1) = p2(3ξ2μ2 + μ3

2) . (10.3)

Under the assumptions in Lemma 10.1, (10.1)-(10.3) imply that

p1μ1 = p2μ1 , (10.4)

(1− p1)σ
2
1 + p1(ξ1 + μ2

1) = (1− p2)σ
2
2 + p2(ξ2 + μ2

1) , (10.5)

p1(3ξ1μ1 + μ3
1) = p2(3ξ2μ1 + μ3

1) . (10.6)

As μ1 	= 0, (10.4) gives p1 = p2. Then, (10.6) and p1μ1 	= 0 lead to ξ1 = ξ2,
yielding σ1 = σ2 by (10.5) as p1 	= 1. Finally, through

f1(y) =
1

p1
fmix(y + μ1;ϑ1)−

(1− p1)f̄((y + μ1)/σ1)

σ1p1

a.e.
=

1

p2
fmix(y + μ2;ϑ2)−

(1− p2)f̄((y + μ2)/σ2)

σ2p2
= f2(y)

we obtain f1 = f2 almost everywhere, thus ϑ1 = ϑ2.

Proof of Theorem 3.1. Assume that for some ϑ = (p, σ, μ, f)�

fmix(y;ϑ∗) = fmix(y;ϑ), for almost all y ∈ R. (10.7)

http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=3039977
http://www.ams.org/mathscinet-getitem?mr=2035755
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Taking the Fourier transform in (10.7), using that the Fourier transforms of f̄ ,
f∗, f are real-valued and considering real and imaginary parts separately gives
for all t ∈ R that

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt) + p∗ cos(μ∗t)ϕf∗(t) = p cos(μt)ϕf (t) ,

p∗ sin(μ∗t)ϕf∗(t) = p sin(μt)ϕf (t) .
(10.8)

Multiplying these equations by sin(μt) and cos(μt), respectively, and using the
trigonometric identities yields[
(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt)

]
sin(μt) = p∗ϕf∗(t) sin

(
(μ∗ −μ)t

)
, t ∈ R .

(10.9)
Now, as the first moments of fmix(·;ϑ) and fmix(·;ϑ∗) have to coincide, we have

pμ = p∗μ∗ , (10.10)

which directly implies p, μ 	= 0.
Proof under Assumption 1. According to (10.10), we conclude that t = π

μ is

a zero of the left-hand side of (10.9), giving sin
(
μ∗−μ

μ π
)
= 0 as p∗, ϕf∗ > 0, so

that μ∗−μ
μ ∈ Z. The latter is true if and only if there is a k ∈ Z so that μ∗ = kμ.

By (10.10), we have kp∗ = p, particularly

1 ≤ k ≤ p−1
∗ < 2

because p∗ > 1/2 and p ∈ (0, 1]. Hence, k = 1 and we deduce μ = μ∗, concluding
the proof by Lemma 10.1.

Proof under Assumption 2. Suppose that Condition (C1) holds. Assume t
to be so large that ϕf∗(t) 	= 0 holds. Dividing (10.9) by ϕf∗(t) and taking limits
in t gives

lim
t→∞

p∗ sin
(
(μ∗ − μ)t

)
= 0

according to Condition (C1). As p∗ > 0 and sin is periodic, it follows μ∗ = μ
and since μ∗ 	= 0, we obtain ϑ∗ = ϑ by Lemma 10.1.

Since for μ∗ = μ 	= 0 identification follows directly by Lemma 10.1, we as-
sume μ∗ 	= μ and derive a contradiction to show identification under the other
conditions.

Now suppose that Condition (C2) holds. We need to consider three cases.

Case 1: σ = σ∗. If we divide (10.9) by ϕf̄ (σ∗t) and let t → ∞, the right-hand
side tends to 0 and hence

lim
t→∞

(
(1− p∗)− (1− p)

)
sin(μt) = 0 .

As μ 	= 0, this is only possible if p = p∗, in which case (10.10) implies μ = μ∗,
a contradiction.
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Case 2: σ < σ∗. If we divide (10.9) by ϕf̄ (σt) and let t → ∞, we obtain

lim
t→∞

(1− p) sin(μt) = 0 .

It follows that p = 1 because μ 	= 0, so that (10.9) reduces to

(1− p∗)ϕf̄ (σ∗t) sin(μt) = p∗ϕf∗(t) sin
(
(μ∗ − μ)t

)
, t ∈ R .

Dividing by ϕf̄ (σ∗t) and letting t → ∞ gives limt→∞(1 − p∗) sin(μt) = 0, thus
μ = 0 or p∗ = 1, which is a contradiction.

Case 3: σ > σ∗. If we divide (10.9) by ϕf̄ (σ∗t) and let t → ∞, we get
limt→∞(1− p∗) sin(μt) = 0, which is a contradiction as above.

Proof of Proposition 4.1. Since q > 0, by continuity it suffices to prove the
equivalence

Eϑ∗

[
H(Y, t, θ)

]
= 0, ∀ t ∈ R ⇐⇒ θ = θ∗ =

(
p∗, σ∗, μ∗

)�
.

By (4.2) we have that Eϑ∗

[
H(Y, t, θ∗)

]
= 0, for all t ∈ R.

For the converse, suppose now that θ ∈ [0, 1]× (0,∞)×R is such that for all
t ∈ R,

Eϑ∗

[
H(Y, t, θ)

]
= Eϑ∗

[
sin
(
(Y − μ) t

)]
+ (1− p)ϕf̄ (σ t) sin(tμ) = 0 .

Since

Eϑ∗

[
sin
(
(Y − μ)t

)]
= 

(∫
eit(y−μ)fmix(y;ϑ∗) dy

)
= 

(
ϕfmix(·+μ;ϑ∗)(t)

)
and


(
ϕ 1

σ f̄
(

·+μ
σ

)(t)) = 
(∫

eit(σy−μ)f̄(y) dy

)
= ϕf̄ (σt) sin(−tμ) ,

we conclude that for all t ∈ R,

Eϑ∗

[
H(Y, t, θ)

]
= 

(
ϕ
fmix(·+μ;ϑ∗)− 1−p

σ f̄
(

·+μ
σ

)(t)) = 0 .

Hence, the function

τ(·; θ|ϑ∗) := fmix(·+ μ;ϑ∗)−
1− p

σ
f̄

(
·+ μ

σ

)
is symmetric about zero. Taking the Fourier transforms on both sides of

1− p

σ
f̄
( ·
σ

)
+ τ(· − μ; θ|ϑ∗) = fmix(·;ϑ∗)
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once again yields equation (10.8), i.e.

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt) + p∗ cos(μ∗t)ϕf∗(t) = p cos(μt)ϕτ(·;θ|ϑ∗)(t) ,

p∗ sin(μ∗t)ϕf∗(t) = p sin(μt)ϕτ(·;θ|ϑ∗)(t) .

Multiplying the first equation by sin(μt) and the second one by cos(μt) once
again gives[

(1− p∗)ϕf̄ (σ∗t)− (1− p)ϕf̄ (σt)
]
sin(μt) = p∗ϕf∗(t) sin

(
(μ∗ − μ)t

)
.

As Assumption 1 is fulfilled we can repeat the proof of Theorem 3.1 starting
after (10.9). Note that we cannot use Theorem 3.1 to confirm the result be-
cause τ(·; θ|ϑ∗) does not have to be a density. The same method works under
Assumption 2. Finally the contrast property for M is straightforward since q is
a strictly positive weight function over R.

11. Proofs of Theorems 5.1 and 6.1

11.1. Outline

In this section we provide the proofs of Theorems 5.1 and 6.1. The strategy is
to check the assumptions (A1)–(A6) as well as (A7) in Section 8.1 for our
particular model, and then to apply Theorems 8.1 and 8.2.

Assumption (A1) is satisfied for Hölder classes if the diameter of the domain
I is ≤ 1. The general case can be deduced by rescaling. Hölder spaces are indeed
compactly nested, see (Driver, 2003, Theorem 5.14).

The continuity in Assumption (A2) follows from the form (4.5) of the con-
trast together with (11.7) for the conditional expectation, as well as the conti-
nuity assumptions in our model. Uniqueness of the minimizer (in fact the zero)
follows from Proposition 4.1 applied to the conditional density of Y given X, as
well as the assumed positivity of q in (4.4).

The remainder of the section is organized as follows. The main lemmas which
take care of (A3)–(A7) are stated in Section 11.2. Technical lemmas concerning
derivatives of the contrast in our model are presented in Section 11.3. The proofs
of the main Lemmas 11.1 and 11.2 are then given in Section 11.4.

11.2. Main Lemmas

We choose some open rectangle Ξ with closure Ξ contained in (0, 1)× (0,∞)×
R\{0} which contains the parameter set Θ in (5.2), Θ ⊂ Ξ.

To prove (A3) and (A4), let Vx(θ; γ) denote the Hessian matrix of M(·, x; γ)
in (4.5) evaluated at θ.

Lemma 11.1. Let 0 < a ≤ b < ∞. Under Assumptions (M2), (M3), (K3),
Conditions (A3) and (A4) hold for any compact rectangle J ⊂ int(I). That is:
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(i) For all x ∈ J , α ∈ [a, b], γ ∈ Γ(α), the matrix Vx(θ∗(x); γ) is positive
definite.

(ii) The Hessian matrices Vx are uniformly Lipschitz continuous in θ, i.e. for
all θ, θ′ ∈ Ξ, we have

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J

‖Vx(θ; γ)− Vx(θ
′; γ)‖ ≤ C‖θ − θ′‖1 ,

where C depends only on Ξ, I and q.

The following lemma then takes care of (A5), (A6) and (A7). In its state-
ment, for the uniform rate for (A5) we discuss separately the bias and variance
components for the gradients Sn

(
θ, x;h

)
in (6.1).

Lemma 11.2. Let 0 < a ≤ b < ∞. Under Assumptions (M2), (M3), (K3),

for some kernel K fulfilling Assumptions (K1) and (K̃2) and sequences of
bandwidth parameters hn(α), α ∈ [a, b] so that

sup
α∈[a,b]

hn(α) → 0, sup
α∈[a,b]

logn

nhn(α)d
→ 0 ,

Conditions (A5), (A6) and (A7) hold for any compact cuboid J ⊂ int(I). To
be specific on (A5), we have for any compact retangle J ⊂ int(I)

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
x∈J,θ∈Θ

hn(α)
−α
∥∥Eγ

[
Sn

(
θ, x;hn(α)

)]
− S(θ, x; γ)

∥∥ ≤ C∗ ,

(11.1)

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(a)

(
logn

nhn(α)d

)−1

Eγ

[
sup

x∈J,θ∈Θ

∥∥Sn

(
θ, x;hn(α)

)
(11.2)

− Eγ

[
Sn

(
θ, x;hn(α)

)]∥∥2] ≤ CSTOCH .

The constant C∗ > 0 depends only on a, b, the function classes Γ(α), Θ, I, q
and K; the constant CSTOCH > 0 depends only on ‖K‖∞, LK , U�, I, Θ but is
free from a and b.

Particularly, when hn(α) =
(
logn
n

) 1
2α+d , there is a constant C > 0 so that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

(
logn

n

)− 2α
2α+d

Eγ

[
sup

x∈J,θ∈Θ

∥∥Sn

(
θ, x;hn(α)

)
− S(θ, x; γ)

∥∥2] ≤ C .

The proofs of Lemmas 11.1 and 11.2 are given in Section 11.4.

11.3. Derivatives associated with the contrast function

The following lemma lists the derivatives of the function H(y, t, θ) in (4.3), as
well as some useful bounds.
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Lemma 11.3. The derivatives of the function H(y, t, θ) in (4.3) are given by

∂pH(y, t, θ) =− ϕf̄ (σt) sin(μt) ,

∂σH(y, t, θ) = t(1− p)∂ϕf̄ (σt) sin(μt) ,

∂μH(y, t, θ) =− t cos
(
(y − μ)t

)
+ t(1− p)ϕf̄ (σt) cos(μt) .

Under Assumption (M3), there is a constant C > 0 depending only on Ξ
and f̄ so that for all t ∈ R, θ, θ̃ ∈ Ξ we have

(i) supy,t∈R supθ∈Ξ |H(y, t, θ)| ≤ C,

(ii) supy∈R supθ∈Ξ

∥∥∂θH(y, t, θ)
∥∥ ≤ C

(
1 + |t|

)
,

(iii) supy∈R supθ∈Ξ

∥∥∂θ ∂�
θ H(y, t, θ)

∥∥ ≤ C
(
1 + t2

)
,

(iv) supy∈R

∣∣H(y, t, θ)−H(y, t, θ̃)
∣∣ ≤ C

(
1 + |t|

)
‖θ − θ̃‖,

(v) supy∈R

∥∥∂θH(y, t, θ)− ∂θH(y, t, θ̃)
∥∥ ≤ C

(
1 + t2

)
‖θ − θ̃‖,

(vi) supy∈R

∥∥∂θ ∂�
θ H(y, t, θ)− ∂θ ∂

�
θ H(y, t, θ̃)

∥∥ ≤ C
(
1 + |t|3

)
‖θ − θ̃‖.

Proof of Lemma 11.3. The derivatives of H(y, t, θ) are obtained by straight-
forward calculation. Properties (i)-(iii) are immediate from the fact that the
functions sin, cos, ϕf̄ , ∂ϕf̄ and ∂2ϕf̄ are bounded. For (iv)-(vi), we additionally
use the Lipschitz continuity of sin, cos, ϕf̄ , ∂ϕf̄ and ∂2ϕf̄ . In particular, the
Lipschitz continuity of t �→ exp(it) with Lipschitz constant 1 yields∣∣∂kϕf̄ (σt)− ∂kϕf̄ (σ

′t)
∣∣ ≤ ∫ ∣∣ exp(iσty)− exp(iσ′ty)

∣∣ · ∣∣ikykf̄(y)∣∣dy
≤ |t| |σ − σ′|

∫
|y|k+1f̄(y) dy , k = 0, 1, 2 . (11.3)

Let us now turn to the derivatives of the asymptotic contrast M(θ, x; γ) in
(4.5) and its Hessian Vx(θ; γ).

Lemma 11.4. We have under our assumptions that

∂θM(θ, x; γ) =2

∫
Eγ

[
H(Y, t, θ)

∣∣∣X = x
]
· Eγ

[
∂θH(Y, t, θ)

∣∣∣X = x
]
q(t) dt · �2(x) ,

Vx(θ; γ) =2

∫ (
Eγ

[
∂θH(Y, t, θ)

∣∣∣X = x
]�

Eγ

[
∂θH(Y, t, θ)

∣∣∣X = x
]

(11.4)

+ Eγ

[
H(Y, t, θ)

∣∣∣X = x
]
· Eγ

[
∂2
θ2H(Y, t, θ)

∣∣∣X = x
])

q(t) dt · �2(x) ,

where

Eγ

[
∂pH(Y, t, θ)

∣∣∣X = x
]
=− ϕf̄ (σt) sin(μt) , (11.5)

Eγ

[
∂σH(Y, t, θ)

∣∣∣X = x
]
= t(1− p)∂ϕf̄ (σt) sin(μt) ,

Eγ

[
∂μH(Y, t, θ)

∣∣∣X = x
]
= t cos(μt)

(
(1− p)ϕf̄ (σt)−

(
1− p∗(x)

)
ϕf̄

(
σ∗(x)t

))
− p∗(x)tϕf∗

x
(t) cos

(
(μ∗(x)− μ)t

)
, (11.6)
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Eγ

[
∂2
p2H(Y, t, θ)

∣∣∣X = x
]
= 0 ,

Eγ

[
∂p∂σH(Y, t, θ)

∣∣∣X = x
]
=− t∂ϕf̄ (σt) sin(μt) ,

Eγ

[
∂p∂μH(Y, t, θ)

∣∣∣X = x
]
=− tϕf̄ (σt) cos(μt) ,

Eγ

[
∂2
σ2H(Y, t, θ)

∣∣∣X = x
]
= t2(1− p)∂2ϕf̄ (σt) sin(μt) ,

Eγ

[
∂σ∂μH(Y, t, θ)

∣∣∣X = x
]
= t2(1− p)∂ϕf̄ (σt) cos(μt) ,

Eγ

[
∂2
μ2H(Y, t, θ)

∣∣∣X = x
]
=− t2Eγ

[
sin
(
(Y − μ)t

)∣∣∣X = x
]

− t2(1− p)ϕf̄ (σt) sin(μt) .

Proof of Lemma 11.4. We have that

Eγ

[
sin
(
(Y − μ)t

)∣∣∣X = x
]

=

∫

(
exp

(
i(y − μ)t

))(1− p∗(x)

σ∗(x)
f̄
( y

σ∗(x)

)
+ p∗(x)f

∗
x

(
y − μ∗(x)

))
dy

=
(
1− p∗(x)

)
sin(−μt)ϕf̄

(
σ∗(x)t

)
+ p∗(x) sin

(
(μ∗(x)− μ)t

)
.ϕf∗

x
(t) .

Therefore, from the definition of H(y, t, θ) in (4.3) we deduce that

Eγ

[
H(Y, t, θ)

∣∣∣X = x
]
= sin(μt)

(
(1− p)ϕf̄ (σt)−

(
1− p∗(x)

)
ϕf̄

(
σ∗(x)t

))
+ p∗(x) sin

(
(μ∗(x)− μ∗)t

)
ϕf∗

x
(t). (11.7)

Taking derivatives under the integral gives (11.4). The derivatives (11.5)–(11.6)
are obtained by straightforward computation.

11.4. Proofs of Lemmas 11.1 and 11.2

Proof of Lemma 11.1. (i) Let us start by showing that for each given x ∈ J , the
Hessian matrix Vx(θ∗(x); γ) is positive definite.

Because Eγ

[
H(Y, t, θ∗(x))

∣∣X = x
]
= 0 for t, (11.4) reduces to

Vx(θ∗(x); γ)

= 2

∫
Eγ

[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]�

Eγ

[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
q(t) dt · �2(x) .

When inserting the true parameter θ∗(x), the derivatives (11.5)–(11.6) reduce
to

Eγ

[
∂pH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
= −ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

)
,

Eγ

[
∂σH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
= t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

)
,

Eγ

[
∂μH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
= −tp∗(x)ϕf∗

x
(t) .
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Since M(·, x; γ) attains a minimum at θ∗(x), the Hessian matrix Vx(θ∗(x); γ)
is positive semidefinite. So assume there is a v� = (v1, v2, v3) ∈ R

3 so that

0 = v�Vx(θ∗(x); γ)v = 2

∫ (
Eγ

[
∂θH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
v
)2

q(t) dt · �2(x) .

Since q, � > 0 and the function t �→ Eγ

[
∂θH(Y, t, θ∗(x))

∣∣∣X = x
]
is continuous,

we conclude

0 = v1Eγ

[
∂pH

(
Y, t, θ∗(x)

)∣∣∣X = x
]
+ v2Eγ

[
∂σH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

+ v3Eγ

[
∂μH

(
Y, t, θ∗(x)

)∣∣∣X = x
]

= − v1ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

)
+ v2t

(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

)
− v3tp∗(x)ϕf∗

x
(t) (11.8)

=: g(t)

for all t ∈ R. It remains to show that v = 0.

First note that the first and second summand in (11.8) are zero for t ∈ π
μ∗(x)

Z.

Hence, we have v3 = 0 as ϕf∗
x
, p∗(x) > 0. Since g is zero on R, so is its first

derivative, which exists as f̄ and f∗
x have finite third moments. Now let us

differentiate g at t = 0. The derivative is determined by

∂t

(
− ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

))∣∣∣
t=0

=− μ∗(x)ϕf̄ (0) cos(0) = −μ∗(x) ,

∂t

(
t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

))∣∣∣
t=0

= 0 ,

∂t

(
− tp∗(x)ϕf∗

x
(t)
)∣∣∣

t=0
=− p∗(x) ,

giving

v1 = − p∗(x)

μ∗(x)
v3 ,

because μ∗(x), p∗(x) 	= 0. Minding v3 = 0, we derive v1 = 0. And since the
function

t �→ t
(
1− p∗(x)

)
∂ϕf̄

(
σ∗(x)t

)
sin
(
μ∗(x)t

)
is non-zero in a neighbourhood around 0 excluding 0, we get v2 = 0 by (11.8),
so that the matrix Vx(θ∗(x); γ) is indeed positive definite.

(ii) This is immediate from (11.4), the Lipschitz continuity of the derivatives
in Lemma 11.4, and the fact that q has finite moments of order up to 3.

Before turning to the proof of Lemma 11.2 we show two lemmas which are
required to deal with the bias in (11.1). The first lemma gives a well-known
bound on the bias when using higher-order kernels for functions from Hölder
classes.
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Lemma 11.5. Let 0 < a ≤ b < ∞, K : Rd → R be a kernel of order b with
support [−1, 1]d; I ⊂ R

d, U ⊂ R be compact with I = int(I) as well as L > 0.
Then, for any compact cuboid J ⊂ int(I), there is some constant 0 < CHol < ∞
depending only on [a, b], L, U and K so that

sup
α∈[a,b]

sup
h∈(0,∞)

h−α sup
�∈H(α,L,U)

sup
x∈J

∣∣∣∣ ∫ (�(x)− �(x+ hz)
)
K(z) dz

∣∣∣∣ ≤ CHol .

Proof. Fix any � ∈ H(α,L, U), x ∈ J , α ∈ [a, b] and h ∈ (0,∞). Using the
Taylor expansion of order �α� of � around x and using that K is a kernel of
order b, we get for some τ ∈ [0, 1] and independently of �, x, α, n and h that∣∣∣∣ ∫ K(z)

(
�(hz + x)− �(x)

)
dz

∣∣∣∣
≤
∣∣∣∣ ∑
|k|∈{1,...,
α�−1}

h|k|

k!
∂k�(x)

∫
K(z)zk dz︸ ︷︷ ︸

=0

∣∣∣∣
+

∣∣∣∣ ∑
|k|=
α�

h
α�

k!

∫
zkK(z)∂k�(x+ τhz) dz

∣∣∣∣
=

∣∣∣∣ ∑
|k|=
α�

h
α�

k!

∫
zkK(z)

(
∂k�(x+ τhz)− ∂k�(x)

)
dz

∣∣∣∣
≤

∑
|k|=
α�

Lhατα−
α�

k!

∫
‖z‖α|K(z)| dz

=
Ld
α�τα−
α�hα

�α�!

∫
‖z‖α|K(z)| dz

≤ Ldbhα

�a�!

∫
‖z‖a|K(z)| dz

≤CHolh
α

because according to the multinomial theorem, we have∑
0≤k1,...,kd≤m

k1+...+kd=m

1

k1! . . . kd!
=

1

m!
· (1 + . . .+ 1︸ ︷︷ ︸

d times

)m .

Lemma 11.6. If the kernel K fulfills Assumptions (K1) and (K̃2), then under
Assumptions (M2), (M3), for any compact rectangle J ⊂ int(I) there exists a
C > 0 such that

sup
∗

h−α sup
x∈J,θ∈Θ

∣∣∣Eγ

[
H(Y, t, θ)

∣∣X = x
]
−
(
Eγ

[
H(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)
∣∣∣

≤ C
(
1 + |t|

)
,
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sup
∗

h−α sup
x∈J,θ∈Θ

∣∣∣Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]

−
(
Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)
∣∣∣ ≤ C

(
1 + t2

)
,

where the suprema indexed with ∗ are taken over α ∈ [a, b], γ ∈ Γ(α), h ∈ (0,∞).

Proof of Lemma 11.6. Consider the first statement. For α ∈ [a, b], γ ∈ Γ(α),
h ∈ (0,∞) and x ∈ J we estimate∣∣∣∣Eγ

[
H(Y, t, θ)

∣∣X = x
]
−
(
Eγ

[
H(Y, t, θ)

∣∣X = ·
]
∗Kh

)
(x)

∣∣∣∣
=

∣∣∣∣ ∫ (Eγ

[
H(Y, t, θ)

∣∣X = x
]
− Eγ

[
H(Y, t, θ)

∣∣X = z + x
])
Kh(z) dz

∣∣∣∣
=

∣∣∣∣ ∫ (Eγ

[
sin
(
(Y − μ)t

)∣∣X = x
]
− Eγ

[
sin
(
(Y − μ)t

)∣∣X = z + x
])

Kh(z) dz

∣∣∣∣
(by (11.7))

=

∣∣∣∣ ∫ ( sin(−μt)
(
1− p∗(x)

)
ϕf̄

(
σ∗(x)t

)
− sin(−μt)

(
1− p∗(z + x)

)
ϕf̄

(
σ∗(z + x)t

)
+ sin

(
(μ∗(x)− μ)t

)
p∗(x)ϕf∗

x
(t)− sin

(
(μ∗(z + x)− μ)t

)
p∗(z + x)ϕf∗

z+x
(t)
)

Kh(z) dz

∣∣∣∣
≤ C̄

(
1 + |t|

) ∣∣∣∣ ∫ ((p∗(x)− p∗(z + x)
)

+
(
σ∗(x)− σ∗(z + x)

)
+
(
μ∗(x)− μ∗(z + x)

))
Kh(z) dz

∣∣∣∣ (11.9)

+ C̄

∣∣∣∣ ∫ (ϕf∗
x
(t)− ϕf∗

z+x
(t)
)
Kh(z) dz

∣∣∣∣ , (11.10)

where the inequality follows from the boundedness of characteristic functions
by 1, by boundedness and Lipschitz continuity of sin, cos, by compactness of Ξ
and by (11.3) for k = 0.

The term (11.9) is treated directly by Lemma 11.5, which gives a standard
bias estimate for Hölder functions using higher-order kernels. The term (11.10)
is handled by the fact that x �→ f∗

x(y) is Hölder-α-smooth with Hölder constant
L(y) that is integrable in y so that Hölder-α-smoothness extends to the family
of characteristic functions (ϕf∗

x
)x∈I . Note that the k-th partial derivatives of

f∗
· (y) are bounded by L(y), |k| ≤ �α� so that Lemma 11.5 is applicable again.
The second estimate follows by similar calculations.

Proof of Lemma 11.2. First let us prove (11.2). We shall show that the assump-
tions of Theorem 8.3 are fulfilled. The gradient of the empirical contrast Mn is
given by

Sn(θ, x;h) =
2

n(n− 1)

∑
1≤j 	=k≤n

∫
H(Yj , t, θ)∂θH(Yk, t, θ)q(t) dt

Kh(Xj − x)Kh(Xk − x) .
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According to Lemma 11.3 (i), (ii), (iv) and (v), each of the coordinates of the
function

θ �→
∫

H(Yj , t, θ)∂θH(Yk, t, θ)q(t) dt

fulfils all of the assumptions postulated on the function τ in Theorem 8.3, from
which we obtain (11.2).

Second, let us prove (11.1). We will show that for all θ, x, α, γ, h, we have∥∥Eγ

[
Sn(θ, x;h)

]
− S(θ, x; γ)

∥∥
≤ 2

∫ ∥∥∥∥((Eγ

[
H(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x) ·

((
Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)

− �2(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]
· Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥q(t) dt (11.11)

�hα.

Let us make a zero addition of the term

�(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]
·
((

Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)

within the norm in (11.11). Since � is bounded by supU� and the functions H
and ∂θH(·, t, ·)/(1+ |t|) are uniformly bounded according to Lemma 11.3 (i) and
(ii), it is enough to examine occurring differences. We estimate∣∣∣∣((Eγ

[
H(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)− �(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]∣∣∣∣ (11.12)

≤
∣∣∣∣((Eγ

[
H(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)− �(x)

((
Eγ

[
H(Y, t, θ)

∣∣X = ·
])

∗Kh

)
(x)

∣∣∣∣
+

∣∣∣∣�(x)((Eγ

[
H(Y, t, θ)

∣∣X = ·
])

∗Kh

)
(x)− �(x)Eγ

[
H(Y, t, θ)

∣∣X = x
]∣∣∣∣ ,

where the first summand is treated by Lemma 11.3 (i) and the fact that � is
Hölder-α-smooth, so that by Lemma 11.5,∣∣(� ∗Kh

)
(x)− �(x)

∣∣ � hα .

The second summand is dealt with by Lemma 11.6 so that

(11.12) � hα
(
1 + |t|

)
.

Analogously, we derive that∥∥∥∥((Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)− �(x)Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥

≤
∥∥∥∥((Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
]
�
)
∗Kh

)
(x)− �(x)

((
Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
])

∗Kh

)
(x)

∥∥∥∥
+

∥∥∥∥�(x)((Eγ

[
∂θH(Y, t, θ)

∣∣X = ·
])

∗Kh

)
(x)− �(x)Eγ

[
∂θH(Y, t, θ)

∣∣X = x
]∥∥∥∥
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�hα(1 + t2
)
.

Since q has finite third moments, (11.1) follows. Together, (11.1) and (11.2)
imply (A5). Lemma 8.4 directly gives (A7). Finally, (A6) is obtained similarly
but simpler than (A5). This concludes the proof of the lemma.

12. Proofs for Section 8.1

This section provides the proofs for Theorems 8.1 and 8.2. It is organized
as follows. In Section 12.1, in Theorems 12.1 and 12.2 we extend results in
van der Vaart and Wellner (1996) for consistency and rates of convergence of
M-estimators, specifically (van der Vaart and Wellner, 1996, Theorem 3.2.3)
and (van der Vaart and Wellner, 1996, Corollary 3.2.5) by making them uni-
form over the probability model as well as introducing a covariate parameter x.
The proof of Theorem 8.1 in Section 12.2 then requires to check the assumptions
of Theorem 12.2. For the adaptive result, Theorem 8.2, we show in Lemma 12.3
that the Lepski-choice adaptively estimates the gradient of the contrast. Then
Theorem 12.2 can again be used to obtain the adaptive rate of convergence for
θ̂adn (·). Finally, the proofs of Theorems 12.1 and 12.2 are provided in Section
12.3.

12.1. Consistency and rates of uniform convergence for
M-estimators

We start with the following general results on consistency and uniform rates of
convergence, the proofs of which are provided in Section 12.3. We fix a parameter
value α, and drop it in the notation, and also write Γ = Γ(α). For brevity, we
shall also often write θ∗ = θ∗(x, γ) for the minimizer in (8.1).

Theorem 12.1 (Uniform consistency). Let Θ be a normed space with norm ‖·‖
and assume that

lim
n→∞

sup
γ∈Γ

Pγ

(
sup
θ∈Θ

sup
x∈I

∣∣Mn(θ, x)−M(θ, x; γ)
∣∣ ≥ η

)
= 0 , η > 0,

as well as that

(∗) for all ε > 0 there is an η > 0 so that for every θ ∈ Θ, x ∈ I, γ ∈ Γ with
M(θ, x; γ)−M(θ∗, x; γ) < η we have ‖θ − θ∗‖ < ε.

Then the estimator θ̂n(·) is uniformly consistent, i.e. for all ε > 0, we have

lim
n→∞

sup
γ∈Γ

Pγ

(
sup
x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ ε

)
= 0 .

The following theorem is a generalization of (van der Vaart and Wellner, 1996,
Theorem 3.2.5) that gives conditions for uniform convergence rates uniformly
over the model parameters γ for possibly unidentifiable models.
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Theorem 12.2 (Rate of convergence: General result in sup-norm). Let the
following assumptions be satisfied.

(i) There is an η > 0 and constants C1, C2 > 0 so that for every ε ≤ η,

inf
γ∈Γ

inf
x∈I

inf
∗

[
M(θ, x; γ)−M(θ∗(x; γ), x; γ)

]
≥ C1ε

2,

lim sup
n→∞

sup
γ∈Γ

sup
ε≤η

tn,γ
φn(ε)

Eγ

[
sup
x∈I

sup
∗

∥∥Wn(θ, x; γ)−Wn(θ∗, x; γ)
∥∥] ≤ C2 ,

where the third infimum is taken over {θ ∈ Θ : ‖θ − θ∗‖ = ε}, the fourth
supremum is taken over {θ ∈ Θ : ‖θ − θ∗‖ ≤ ε} and θ∗ is the mini-
mizer of M(·, x; γ). Furthermore, Wn(θ, x; γ) := Mn(θ, x) − M(θ, x; γ),
φn : (0,∞) → (0,∞) are functions so that φn(·)/·α is decreasing for some
α < 2 and tn,γ → ∞ for every γ ∈ Γ.

(ii) For all δ > 0, we have supγ∈Γ Pγ

(
supx∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ δ

)
= o(1).

If sequences (rn,γ) satisfy r2n,γφ(1/rn;γ) ≤ tn,γ for all n, γ as well as infγ rn,γ →
∞, then

lim
δ→∞

lim sup
n→∞

sup
γ∈Γ

Pγ

(
rn,γ sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ δ

)
= 0 .

12.2. Proofs of Theorems 8.1 and 8.2

Proof of Theorem 8.1. We need to check the assumptions of Theorem 12.2 for

φn = id and tn,γ = rn,γ = rn .

We obviously have that tn,γ → ∞, t �→ φn(t)/t
3
2 = t−

1
2 is decreasing on

(0,∞), r2n,γφn(1/rn,γ) = rn,γ = tn,γ .

First, observe that there is a bounded open set Θ ⊂ Ξ̃ ⊂ Ξ so that

dist(Θ, ∂ Ξ̃) =: ε̄ > 0 .

Indeed, assume ε̄ = 0, then there is a sequence (θn)n∈N ⊂ Θ so that

dist(θn, ∂ Ξ̃) → 0. As Θ is compact, there is a subsequence (θnk
)k∈N of (θn)n∈N

so that θnk
→ θ̄ ∈ Θ. Since θ �→ dist(θ, ∂ Ξ̃) is continuous, ∂ Ξ̃ is closed and

dist(θnk
, ∂ Ξ̃) → 0, we deduce θ̄ ∈ ∂ Ξ̃, a contradiction. We can without loss of

generality assume that Ξ̃ is convex as the convex hull of Ξ̃ is bounded and a
subset of Ξ.

Fix some ε < ε̄. Then for any γ ∈ Γ, x ∈ I,{
θ ∈ Ξ : ‖θ − θ∗(x; γ)‖ ≤ ε

}
⊂ Ξ .
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Let us prove the first point of (i). For any γ ∈ Γ, x ∈ I, a second-order Taylor
approximation around θ∗(x; γ) yields for every θ ∈ Ξ with ‖θ − θ∗(x; γ)‖ = ε
the existence of a ξx,θ,γ ∈ [θ, θ∗(x; γ)] so that

inf
γ∈Γ

inf
x∈I

inf
θ∈Θ:

‖θ−θ∗‖=ε

[
M(θ, x; γ)−M(θ∗, x; γ)

]
≥ inf

γ∈Γ
inf
x∈I

inf
θ∈Ξ:

‖θ−θ∗‖=ε

[
M(θ, x; γ)−M(θ∗, x; γ)

]
= inf

γ∈Γ
inf
x∈I

inf
θ∈Ξ:

‖θ−θ∗(x;γ)‖=ε

[
M(θ, x; γ)−M

(
θ∗(x; γ), x; γ

)]
≥ inf

γ∈Γ,x∈I
inf
θ∈Ξ:

‖θ−θ∗(x;γ)‖=ε

1

2

(
θ − θ∗(x; γ)

)�
Vx

(
θ∗(x; γ); γ

)(
θ − θ∗(x; γ)

)
− sup

γ∈Γ,x∈I
sup

‖θ−θ∗(x;γ)‖
=ε

∣∣∣∣12(θ − θ∗(x; γ)
)�(

Vx

(
θ∗(x; γ); γ

)
− Vx

(
ξx,θ,γ ; γ

))(
θ − θ∗(x; γ)

)∣∣∣∣
≥ inf

γ∈Γ
inf
x∈I

1

2
ε2λm

x,γ − LHess

2
ε3 ,

according to (A3) and (A4), where λm
x,γ is the smallest eigenvalue of

Vx

(
θ∗(x; γ); γ

)
. Since eigenvalues of a matrix depend continuously on its en-

tries, the entries of the Hessian matrices Vx

(
θ∗(x; γ); γ

)
depend continuously on

(x; γ) by (A3), so that we can deduce

inf
γ∈Γ

inf
x∈I

λm
x,γ > 0

by compactness of Γ× I, cf. (A1). Conclude by choosing η ≤ ε̄ small enough.

Let us prove the second part of (i).
By applying the fundamental theorem of calculus on the path [θ, θ∗] using

the functions

t �→ Wn

(
θ + t

‖θ−θ∗‖ · (θ∗ − θ), x; γ
)
, t ∈ [0, ‖θ − θ∗‖],

gives for any n, γ that

sup
x∈I

sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

∣∣Wn(θ, x; γ)−Wn

(
θ∗(x; γ), x; γ

)∣∣
≤ sup

x∈I
sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

∫ ‖θ−θ∗‖

0

∣∣∣∣ ∂∂tWn

(
θ + t

‖θ−θ∗‖ · (θ∗ − θ), x; γ
)∣∣∣

t=s

∣∣∣∣ds
≤ ε sup

x∈I
sup
θ∈Θ:

‖θ−θ∗(x;γ)‖≤ε

sup
ϑ∈[θ,θ∗]

∣∣∣∂ θ∗−θ
‖θ−θ∗‖

Wn(ϑ, x; γ)
∣∣∣

≤ ε sup
x∈I

sup
θ∈Θ

∥∥Sn(θ, x)− S(θ, x; γ)
∥∥
1
,
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where we bounded the directional derivatives by the gradient. Hence, the second
part of (i) is given directly by (A5).

We will prove (ii), i.e. the uniform consistency of θ̂n(·), by using Theorem
12.1. As uniform consistency of the contrast Mn is given by (A6), only (∗) in
the assumptions of Theorem 12.1 needs to be proved.

Assume (∗) does not hold. Then there is an ε > 0 so that for any sequence
ηn → 0, we find xn ∈ I, θn ∈ Θ, γn ∈ Γ so that for every n ∈ N

M(θn, xn; γn)−M
(
θ∗(xn; γn), xn; γn

)
< ηn ,

∥∥θn − θ∗(xn; γn)
∥∥ ≥ ε . (12.1)

As Θ × I × Γ is compact according to (A1), there is a subsequence(
(θnk

, xnk
, γnk

)
)
k∈N

of
(
(θn, xn, γn)

)
n∈N

converging to a point (θ′, x′, γ′) ∈ Θ×
I × Γ. By continuity of (θ, x; γ) �→ M(θ, x; γ) that is given by (A2),we have
M(θ′, x′; γ′) = M(θ∗(x

′; γ′), x′; γ′). Now, according to the right-hand side of
(12.1), we have∥∥θ′ − θ∗(x

′; γ′)
∥∥ ≥ lim inf

k→∞

∥∥θnk
− θ∗(xnk

; γnk
)
∥∥ ≥ ε ,

a contradiction as θ �→ M(θ, x′; γ′) is only minimized at θ∗(x
′; γ′).

The main ingredient in the proof of Theorem 8.2 is the following lemma.

Lemma 12.3. Under the assumptions of Theorem 8.1 we have that

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1
Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ)
∥∥]

≤(CLep + C∗∗) exp(d(b− a)) .

Proof of Theorem 8.2. Using Lemma 12.3, the proof works analogously to the
one of Theorem 8.1. We shall apply Theorem 12.2 for Mn(·, ·) := Mn(·, ·; α̂n),
Sn(·, ·) := Sn(·, ·; α̂n) and Γ =

{
(α, γ) : α ∈ [a, b], γ ∈ Γ(α)

}
, which is compact

with respect to max{| · |, ‖ ·‖a}, cf. Lemma 12.4 below. Further set rn,γ = tn,γ =
r(α)−1, φn = id, η = ε∗.

In order to prove uniform consistency of the estimator θ̂adn (·), we first use
(A6), yielding

lim
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

Pγ

(
sup

x∈I,θ∈Θ

∣∣Mn(θ, x; α̂n)−M(θ, x; γ)
∣∣ ≥ ε

)
= 0 , ε > 0,

and then proceed analogously to the proof of Theorem 8.1

Lemma 12.4. Under Assumption (A1), the set Γ =
{
(α, γ) : α ∈ [a, b], γ ∈

Γ(α)
}
is compact with respect to max{| · |, ‖ · ‖a}.
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Proof of Lemma 12.4. As [a, b]×Γ(a) is compact with respect to max{|·|, ‖·‖a},
it is enough to show that Γ is a closed subset thereof. Let

(
(αn, γn)

)
n

⊂ Γ
converge to some (α∗, γ∗) ∈ [a, b]× Γ(a). If there is a subsequence (nk) so that
αnk

≥ α∗ for all k ∈ N, then

γnk
∈ Γ(αnk

) ⊂ Γ(α∗) , for all k ∈ N

and since Γ(α∗) is closed with respect to ‖ · ‖a, we have

γ∗ = lim
k→∞

γnk
= lim

n→∞
γn ∈ Γ(α∗) .

Hence, assume that there is an n∗ ∈ N so that for all n ≥ n∗, we have αn < α∗.
Without loss of generality assume αn ↗ α∗. Then, for any ñ ∈ N and any n ≥ ñ,
we have

γn ∈ Γ(αn) ⊂ Γ(αñ) ,

so that particularly γ∗ ∈ Γ(αñ) for all ñ ∈ N. Since
⋂

n∈N
Γ(αn) = Γ(α∗), the

assertion follows.

Proof of Lemma 12.3. Let for all α ∈ [a, b], 0 ≤ kn(α) ≤ N −1 so that βkn(α) ≤
α ≤ βkn(α)+1. Then we have for any α ∈ [a, b], γ ∈ Γ(α)

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥]

≤Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≤kn(α)−1

]
(12.2)

+ Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≥kn(α)

]
. (12.3)

The term (12.3) can be handled by a zero-addition of the term Sn(θ, x;βkn(α))
within the supremum, i.e.

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≥kn(α)

]
≤Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− Sn(θ, x;βkn(α))
∥∥1k̂≥kn(α)

]
+ Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βkn(α))− S(θ, x; γ)
∥∥1k̂≥kn(α)

]
�CLeprkn(α) + C∗rkn(α)

=(CLep + C∗)rkn(α) ,

where we used that Γ(α) ⊂ Γ(βkn(α)).

Now let us show that the convergence rates rkn(α) and r(α) are asymptotically
equivalent by deriving that for all n, α,

1 ≤
rkn(α)

r(α)
=

(
n

logn

) α
2α+d−

βkn(α)
2βkn(α)+d

≤
(

n

logn

)d(α−βkn(α))
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≤nd(α−βkn(α)) ≤ nd b−a
log n = exp(d(b− a)) < ∞ ,

where we used that the net over [a, b] grows logarithmically. We get the desired
bound on (12.3), i.e.

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1
Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≥kn(α)

]
≤(CLep + C∗) exp(d(b− a)) .

Next let us examine (12.2). By using Cauchy-Schwarz’ inequality, we get for all
α ∈ [a, b], γ ∈ Γ(α) that

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≤kn(α)−1

]
=

kn(α)−1∑
j=0

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− S(θ, x; γ)
∥∥1k̂=j

]

≤
kn(α)−1∑

j=0

(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− S(θ, x; γ)
∥∥)2]) 1

2

Pγ(k̂ = j)
1
2

≤ sup
a≤β≤α

(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ)
∥∥)2]) 1

2 ·
kn(α)−1∑

j=0

Pγ(k̂ = j)
1
2 .

By definition of k̂, we have

Pγ(k̂ = j) ≤
j∑

l=0

Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
≤
(
j + 1

)
max

l=0,...,j
Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
� log(n) max

l=0,...,j
Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj+1)− Sn(θ, x;βl)
∥∥ > CLeprl

)
,

as the set of grid points grows logarithmically in n. Hence, we further deduce
by index shifting that

Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βk̂)− S(θ, x; γ)
∥∥1k̂≤kn(α)−1

]
≤ sup

a≤β<α

(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ)
∥∥)2]) 1

2

· log(n) 3
2 sup
0≤l<j≤kn(α)

Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Sn(θ, x;βl)
∥∥ > CLeprl

) 1
2

In order to treat the last factor, we first observe that for l < j we have rj ≤ rl,
yielding

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l<j≤kn(α)

r−1
l sup

x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;βl)

]
− Eγ

[
Sn(θ, x;βj)

]∥∥
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≤ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r−1
l sup

0≤l<kn(α)

sup
x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;βl)

]
− S(θ, x; γ)

∥∥
+ lim sup

n→∞
sup

α∈[a,b]

sup
γ∈Γ(α)

sup
0≤j≤kn(α)

r−1
j sup

x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;βj)

]
− S(θ, x; γ)

∥∥
≤ 2 lim sup

n→∞
sup

α∈[a,b]

sup
γ∈Γ(α)

r(α)−1 sup
x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;α)

]
− S(θ, x; γ)

∥∥
≤ 2C∗∗

because Γ(α) ⊂ Γ(βj). Hence, there is an n0 ∈ N so that for all n ≥ n0,
0 ≤ l < j ≤ kn(α), we have

sup
α∈[a,b]

sup
γ∈Γ(α)

r−1
l sup

x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;βl)

]
− Eγ

[
Sn(θ, x;βj)

]∥∥ ≤ 3C∗∗ .

Subsequently, deduce that for any n ≥ n0, α ∈ [a, b], γ ∈ Γ(α), 0 ≤ l < j ≤
kn(α), we have

Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Sn(θ, x;βl)
∥∥ > CLeprl

)
≤Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ

[
Sn(θ, x;βj)

]
)
∥∥

+ sup
x∈I,θ∈Θ

∥∥Eγ

[
Sn(θ, x;βl)

]
− Eγ

[
Sn(θ, x;βj)

]∥∥
+ sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βl)− Eγ

[
Sn(θ, x;βl)

]∥∥ > CLeprl

)
≤Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ

[
Sn(θ, x;βj)

]∥∥
+ sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βl)− Eγ

[
Sn(θ, x;βl)

]∥∥ > (CLep − 3C∗∗)rl

)
≤Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ

[
Sn(θ, x;βj)

]∥∥ > CLep−3C∗∗

2 rl

)
+ Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βl)− Eγ

[
Sn(θ, x;βl)

]∥∥ > CLep−3C∗∗

2 rl

)
≤ 2 max

i∈{j,l}
Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βi)− Eγ

[
Sn(θ, x;βi)

]∥∥ > CLep−3C∗∗

2 rl

)
.

In summary we obtain

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1
Eγ

[
sup

x∈I,θ∈Θ

∥∥Sn(θ, x; α̂n)− S(θ, x; γ)
∥∥]

≤ (CLep + C∗) exp(d(b− a))

+ C∗ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
a≤β≤α

r(α)−1
(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;β)

− S(θ, x; γ)
∥∥)2]) 1

2 · log(n)
3
2 sup

0≤l≤j≤kn(α)

p
1
2
lj ,
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where

plj =2Pγ

(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;βj)− Eγ [Sn(θ, x;βj)]
∥∥ > CLep−3C∗∗

2 rl

)
.

It remains to show that

0 = lim sup
n→∞

{
sup

α∈[a,b]

sup
γ∈Γ(α)

sup
a≤β≤α

r(α)−1
(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x;β)− S(θ, x; γ)
∥∥)2]) 1

2

(12.4)

· log(n)
3
2 sup

0≤l≤j≤kn(α)

p
1
2
lj

}
. (12.5)

The factor (12.4) is asymptotically dominated by the rate r(a)r(b)−1 as can
be seen by inserting r(β)r(β)−1 so that

(12.4) ≤ r(a)r(b)−1 sup
α∈[a,b]

sup
γ∈Γ(α)

r(α)−1
(
Eγ

[(
sup

x∈I,θ∈Θ

∥∥Sn(θ, x)− S(θ, x; γ)
∥∥)2]) 1

2
,

where the supremum is asymptotically bounded by C∗∗ according to (A5). The
second factor (12.5) can be dealt with by

sup
α∈[a,b]

sup
γ∈Γ(α)

log(n)
3
2 sup
0≤l≤j≤kn(α)

p
1
2

lj

≤ log(n)
3
2n−u(CLep)/2 sup

α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)/2p
1
2

lj

and as u(CLep)/2 > b
2b+d − a

2a+d , we get

r(a)r(b)−1 log(n)
3
2n−u(CLep)/2 =

(
n

logn

) b
2b+d− a

2a+d

log(n)
3
2n−u(CLep)/2 = o(1) ,

concluding the proof of (12.4).

12.3. Proofs of Theorems 12.1 and 12.2

Proof of Theorem 12.1. We have that

0 ≤ sup
x∈I

[
M
(
θ̂n(x), x; γ

)
−M

(
θ∗(x; γ), x; γ

)]
≤ sup

x∈I

[
M
(
θ̂n(x), x; γ

)
−Mn

(
θ̂n(x), x

)]
+ sup

x∈I

[
Mn

(
θ̂n(x), x

)
−M

(
θ∗(x; γ), x; γ

)]
≤ sup

θ∈Θ
sup
x∈I

|M(θ, x; γ)−Mn(θ, x)|

+ sup
x∈I

[
Mn

(
θ∗(x; γ), x

)
−M

(
θ∗(x; γ), x; γ

)]
(θ̂n(x) minim. of Mn)



Conditional semiparametric mixtures 1859

≤ 2 sup
θ∈Θ

sup
x∈I

|M(θ, x; γ)−Mn(θ, x)| . (12.6)

Fix ε > 0. Because of (∗) there is an η > 0 so that for any γ ∈ Γ, the inequality

sup
x∈I

[
M(θ̂n(x), x; γ)−M(θ∗(x; γ), x; γ)

]
< η

implies
sup
x∈I

∥∥θ̂n(x)− θ∗(x; γ)
∥∥ < ε ,

which implies{
sup
x∈I

∥∥θ̂n(x)− θ∗(x; γ)
∥∥ ≥ ε

}
⊂
{
sup
x∈I

[
M(θ̂n(x), x; γ)−M(θ∗(x; γ), x; γ)

]
≥ η
}

⊂
{
sup
θ∈Θ

sup
x∈I

|M(θ, x; γ)−Mn(θ, x)| ≥ η/2
}
,

where we used (12.6) in the second step. Thus, by uniform consistency of the
random functions Mn,

lim
n→∞

sup
γ∈Γ

Pγ

(
sup
x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ ε

)
= 0 .

The proof of Theorem 12.2 is similar to (van der Vaart and Wellner, 1996,
Theorem 3.2.5).

Proof of Theorem 12.2. For every n ∈ N, x ∈ I, γ ∈ Γ, we define a partition of
Θ by

⋃
j∈Z

Sjnxγ , where

Sjnxγ =
{
θ ∈ Θ : 2j−1 < rn,γ‖θ − θ∗‖ ≤ 2j

}
.

Let us define for any N,n ∈ N, γ ∈ Γ the sets

ANnγ :=
{
rn,γ sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ > 2N

}
and show that limN→∞ lim supn→∞ supγ∈Γ Pγ(ANnγ) = 0. In order to do that,
we show for any η > 0 the inequality

Pγ(ANnγ) ≤
∑
j≥N

2j≤ηrn,γ

Pγ

(
sup
x∈I

sup
θ∈Sjnxγ

[
Mn(θ∗, x)−Mn(θ, x)

]
≥ 0

)

+ Pγ

(
2 sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ η

)
.

(12.7)

Therefore, let

ω ∈
⋂
j≥N

2j≤ηrn,γ

{
sup
x∈I

sup
θ∈Sjnxγ

min
θ∗∈Sx;γ

[
Mn(θ∗, x)−Mn(θ, x; γ)

]
< 0

}
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∩
{
2 sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ < η

}
. (12.8)

Then, for all j ≥ N with 2j ≤ ηrn,γ and all x ∈ I we have θ̂n(x)(ω) /∈ Sjnxγ

because θ̂n(x) minimizes Mn(·, x). Hence, for all x ∈ I, either

rn,γ
∥∥θ̂n(x)(ω)− θ∗

∥∥ ≤ 2N−1 or rn,γ
∥∥θ̂n(x)(ω)− θ∗

∥∥ > 2lγ , (12.9)

where lγ = max{j ≥ N : 2j ≤ ηrn,γ} if such an lγ exists. The latter case needs
to be disproved. Therefore, assume that for some x ∈ I, J ≥ N with 2J > ηrn,γ ,
we have

rn,γ
∥∥θ̂n(x)(ω)− θ∗

∥∥ > 2J−1 .

Then,

2J−1 < rn,γ
∥∥θ̂n(x)(ω)− θ∗

∥∥ < rn,γη/2 < 2J−1 ,

according to the right-hand side of (12.8), a contradiction. Hence,

rn,γ sup
x∈I

∥∥θ̂n(x)(ω)− θ∗
∥∥ ≤ 2N−1 ≤ 2N

according to (12.9), giving ω ∈ Ac
Nnγ and via subadditivity we deduce (12.7).

The second summand on the right-hand side of (12.7) converges uniformly over
all γ ∈ Γ to zero for all η > 0 according to assumption (ii), i.e.

lim
n→∞

sup
γ∈Γ

Pγ

(
2 sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ η

)
= 0 . (12.10)

Hence, it remains to handle the first term in (12.7). Choose η > 0 so that
Assumption (i) of the theorem is fulfilled. Then, because every θ∗(x; γ) ∈ Sx;γ

minimizes M(·, x; γ), for any j ≥ N so that 2j ≤ ηrn,γ , which is equivalent to
2j/rn,γ ≤ η and any γ ∈ Γ, we have

sup
x∈I

sup
θ∈Sjnxγ

[
M(θ∗, x; γ)−M(θ, x; γ)

]
= sup

x∈I
sup

ε∈
(
2j−1/rn,γ2j/rn,γ

] sup∗
[
M
(
θ∗(x; γ), x; γ

)
−M(θ, x; γ)

]
= sup

ε∈
(
2j−1/rn,γ ,2j/rn,γ

] sup
x∈I

sup
∗

[
M
(
θ∗(x; γ), x; γ

)
−M(θ, x; γ)

]

≤C1 sup
ε∈
(
2j−1/rn,γ ,2j/rn,γ

]−ε2 = −C1

(
2j−1

rn,γ

)2

according to the first part of (i), where the suprema indexed with ∗ are taken
over

{
θ ∈ Θ : ‖θ − θ∗‖ = ε

}
. Now, (12.7), (12.10), the display above and

Markov’s inequality give

lim
N→∞

lim sup
n→∞

sup
γ∈Γ

Pγ(ANnγ)
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= lim
N→∞

lim sup
n→∞

sup
γ∈Γ

Pγ

(
rn,γ sup

x∈I

∥∥θ̂n(x)− θ∗
∥∥ ≥ 2N

)
≤ lim

N→∞
lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ

(
sup
x∈I

sup
θ∈Sjnxγ

[
Mn(θ∗, x)−Mn(θ, x)

]
≥ 0
)

= lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ

(
sup
x∈I

sup
θ∈Sjnxγ

[
Wn(θ∗, x; γ)−Wn(θ, x; γ)

+M(θ∗, x; γ)−M(θ, x; γ)
]
≥ 0
)

≤ lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ

(
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|

+ sup
x∈I

sup
θ∈Sjnxγ

[
M(θ∗, x; γ)−M(θ, x; γ)

]
≥ 0
)

≤ lim
N→∞

lim sup
n→∞

sup
γ∈Γ

∑
j≥N

2j≤ηrn,γ

Pγ

(
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)| ≥ C1
22j−2

r2n,γ

)

≤ lim
N→∞

lim sup
n→∞

∑
j≥N

sup
γ∈Γ

1 2j

rn,γ
≤η

r2n,γ

C122j−2
Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
.

(12.11)

We will use the second point in Assumption (i) of the theorem in order to
treat the lim supn→∞ term in (12.11) for fixed N ∈ N by Fatou’s lemma for the
counting measure on {N,N + 1, . . .}. To be precise, we need to show that the
summands in (12.11) are uniformly bounded in n ≥ n0 by a function in j ≥ N
that is summable for some n0 ∈ N.

The second point in (i) gives

lim sup
n→∞

sup
γ∈Γ

sup
j≥N

2j

rn,γ
≤η

tn,γ

φn(2j/rn,γ)
Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
≤ C2.

In particular, for any κ > 0, there is an n0 ∈ N so that for every γ ∈ Γ, n ≥ n0,
j ≥ N with 2j ≤ ηrn,γ , we have

Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]
≤
(
C2 + κ

)
φn(2

j/rn,γ)

tn,γ
.

Hence, for every γ ∈ Γ, n ≥ n0, j ≥ N with 2j ≤ ηrn,γ , the summands in
(12.11) can be treated by

r2n,γ
C122j−2

Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]

≤
r2n,γ

C122j−2

(
C2 + κ

)
φn(2

j/rn,γ)

tn,γ
. (12.12)
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Since the function φn(·)/·α is decreasing, for any z ≥ 1, y > 0, we have

φn(zy)

zαyα
≤ φn(y)

yα
so that φn(zy) ≤ zαφn(y) .

As 2j ≥ 1, this implies

(12.12) ≤
r2n,γ

(
C2 + κ

)
2jαφn(1/rn,γ)

C122j−2tn,γ
≤

4
(
C2 + κ

)
C1

·
(

1

22−α

)j

,

which clearly is summable in j ≥ N . Hence, we can apply Fatou’s lemma, so
that for some κ independent of N , we have

(12.11)

≤ lim
N→∞

∑
j≥N

lim sup
n→∞

sup
γ∈Γ

1 2j

rn,γ
≤η

r2n,γ

C122j−2
Eγ

[
sup
x∈I

sup
θ∈Sjnxγ

|Wn(θ∗, x; γ)−Wn(θ, x; γ)|
]

≤ lim
N→∞

∑
j≥N

4
(
C2 + κ

)
C1

·
(

1

22−α

)j

= 0 .

13. Proofs for Section 8.2

Proof of Theorem 8.3. We will drop dependence of the bandwidth parameters
on α and n for convenience but point out where it comes into play. Throughout
the proof we use the notation an � bn if there is a constant C > 0 and an
n0 ∈ N so that for all n ≥ n0 we have an ≤ Cbn and the constant depends only
on ‖τ‖∞, Lτ , ‖K‖∞, LK , ρ, J , Θ, Γ or A. All calculations below hold for each
γ ∈ Γ.

We use the classical Hoeffding decomposition to write the centered U-statistic
Mn(θ, ·;h) − Eγ [Mn(θ, ·;h)] as a canonical U-statistic and a linear process as
follows

Mn(θ, x;h)− Eγ [Mn(θ, x;h)] =
1

n(n− 1)

∑
1≤j 	=k≤n

Un

(
Zj , Zk, θ, x;h

)
+
2

n

n∑
j=1

[
u∗
n(Zj , θ, x;h)− Eγ

[
un(Z1, Z2, θ, x;h)

]]
(13.1)

= : T 1
n(θ, x;h) + T 2

n(θ, x;h) ,

where for z = (z1, z
�
2 )�, w = (w1, w

�
2 )

� ∈ R× J ,

Un(z, w, θ, x;h) :=un(z, w, θ, x;h)− u∗
n(z, θ, x;h)− u∗

n(w, θ;x;h)

+ Eγ [un(Z1, Z2, θ, x;h)] ,

un(z, w, θ, x;h) := τ(z1, w1, θ)Kh(z2 − x)Kh(w2 − x) ,
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u∗
n(z, θ, x;h) :=Eγ [un(Z1, z, θ, x;h)] = Eγ

[
τ(z1, Y1, θ)Kh(X1 − x)

]
·Kh(z2 − x) .

Since s �→ sρ is convex, we have that

∣∣Mn(θ, x;h)− Eγ [Mn(θ, x;h)]
∣∣ρ ≤ 2ρ

∣∣∣∣12T 1
n(θ, x;h) +

1

2
T 2
n(θ, x;h)

∣∣∣∣ρ
≤ 2ρ−1

(
|T 1

n(θ, x;h)|ρ + |T 2
n(θ, x;h)|ρ

)
. (13.2)

Let us deal with the term T 1
n in (13.2). The linear process T 2

n in (13.2) is dealt
with similarly by using the classical Bernstein inequality. Now, for a sequence
δn → 0 specified below, there are nets Θn × Jn ⊂ Θ× J so that

sup
x∈J

inf
y∈Jn

‖x− y‖ < δn , sup
ϑ∈Θ

inf
θ∈Θn

‖ϑ− θ‖ < δn , #(Θn × Jn) ≤ CΘ,Jδ
−d−m
n ,

(13.3)
where CΘ,J is independent of n. Then

sup
x∈J,θ∈Θ

|T 1
n(θ, x;h)|ρ

≤ 2ρ−1

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

|T 1
n(θ, x;h)− T 1

n(ϑ, y;h)|
)ρ

+ 2ρ−1
(

sup
x∈Jn,ϑ∈Θn

|T 1
n(ϑ, x;h)|

)ρ
.

(13.4)

For the first term in (13.4) we have that

Eγ

[(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

|T 1
n(θ, x;h)− T 1

n(ϑ, y;h)|
)ρ]

≤ 3ρ−1
Eγ

[(
1

n(n− 1)

∑
1≤j 
=k≤n

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣un(Zj , Zk, θ, x;h)

− un(Zj , Zk, ϑ, y;h)
∣∣)ρ]

(13.5)

+ 3ρ−1
Eγ

[(
2

n

n∑
j=1

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣u∗
n(Zj , θ, x;h)− u∗

n(Zj , ϑ, y;h)
∣∣)ρ]

(13.6)

+ 3ρ−1

(
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣Eγ

[
un(Z1, Z2, θ, x;h)− un(Z1, Z2, ϑ, y;h)

]∣∣∣∣
)ρ

. (13.7)

Let us bound these terms. The summands in (13.5) are bounded by

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣τ(Yj , Yk, ϑ) ·
(
Kh(Xj − x)Kh(Xk − x)−Kh(Xj − y)Kh(Xk − y)

)∣∣∣∣
+ sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣∣[τ(Yj , Yk, ϑ)− τ(Yj , Yk, θ)
]
·Kh(Xj − y)Kh(Xk − y)

∣∣∣∣ ,
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of which the first factor in the first summand is bounded by ‖τ‖∞. The first
kernel terms are handled by the equality ab− cd = ab− ac+ ac− cd, ‖Kh‖∞ =
‖K‖∞ 1

hd and the fact that K is Lipschitz continuous, i.e.

sup
x,y∈J

‖x−y‖≤δn

|Kh(Xj − x)−Kh(Xj − y)| ≤ LK
1

hd
· δn
h

,

yielding

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣τ(Yj , Yk, ϑ) ·
(
Kh(Xj − x)Kh(Xk − x)−Kh(Xj − y)Kh(Xk − y)

)∣∣
≤ 2‖τ‖∞LK‖K‖∞

δn
h2d+1

.

By using the Lipschitz continuity of τ in its third argument, we derive for the
second summand that

sup
x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

∣∣∣[τ(Yj , Yk, ϑ)− τ(Yj , Yk, θ)
]
·Kh(Xj − y)Kh(Xk − y)

∣∣∣
≤ Lτδn sup

x,y∈J

‖x−y‖≤δn

∣∣Kh(Xj − y)Kh(Xk − y)
∣∣ ≤ Lτ‖K‖2∞

δn
h2d

.

Hence,

(13.5) ≤ 3ρ−1

(
2‖τ‖∞LK‖K‖∞

δn
h2d+1

+ Lτ‖K‖2∞
δn
h2d

)ρ

� δρn
h(2d+1)ρ

.

Using similar arguments, we observe that the summands in (13.6) are bounded
by

sup
x∈J,ϑ,θ∈Θ
‖ϑ−θ‖≤δn

∣∣u∗
n(Zj , ϑ, x;h)− u∗

n(Zj , θ, x;h)
∣∣+ sup

x,y∈J,θ∈Θ
‖x−y‖≤δn

∣∣u∗
n(Zj , θ, x;h)− u∗

n(Zj , θ, y;h)
∣∣

≤ ‖K‖∞Lτ‖�γ‖∞δn
hd

+
‖τ‖∞‖�γ‖∞LKδn

h2d
+

‖τ‖∞‖K‖2∞LKδn
h2d+1

.

Thus, we conclude (13.6) � δρn
h(2d+1)ρ .

Together these estimates give the following bound on the discretization error
in (13.4)

Eγ

[
2ρ−1

(
sup

x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

|T 1
n(θ, x;h)− T 1

n(ϑ, y;h)|
)ρ]

� δρn
h(2d+1)ρ

.

Now consider the second term in (13.4). First we notice that T 1
n(θ, x;h) is

a canonical U-Statistic in Z1, . . . , Zn because Un is symmetric in its first two
arguments. In order to bound the error

sup
x∈Jn,θ∈Θn

|T 1
n(θ, x;h)| ,
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we will need to examine the tail behaviour of |T 1
n(θ, x;h)|, which can be done

by means of the Bernstein-type inequality for canonical U-statistics introduced
by Giné et al. (2000, p. 15), which we state as Lemma 13.1 below. In order to
derive the terms A,B,C described in (13.9), we first observe that when taking
the expectation of a term involving a random Kh term, we lose one factor 1

hd

by integration, e.g.

Eγ

[∣∣Kh(X1 − x)
∣∣] ≤‖�γ‖∞ , Eγ

[
K2

h(X1 − x)
]
≤ 1

hd
‖�γ‖∞

∫
K2 � 1

hd
.

This yields

A = ‖Un‖∞ � ‖un‖∞ ≤ ‖τ‖∞
‖K‖2∞
h2d

� 1

h2d
,

B2 =n
∥∥Eγ

[
U2
n(Z1, ·, θ, x;h)

]∥∥
∞ � n

∥∥Eγ

[
u2
n(Z1, ·, θ, x;h)

]∥∥
∞ � n

h3d
.

The same arguments apply to C2 defined in Lemma 13.1, giving

C2 =n(n− 1)
(
Eγ [u

2
n(Z1, Z2, θ, x;h)] + 4Eγ [un(Z1, Z2, θ, x;h)u

∗
n(Z1, θ, x;h)]

+ 4
(
Eγ [un(Z1, Z2, θ, x;h)]

)2
+ 4Eγ [u

∗
n
2(Z1, θ, x;h)]

+ 4Eγ [u
∗
n(Z1, θ, x;h)u

∗
n(Z2, θ, x;h)]

)
�n(n− 1)Eγ

[∣∣un(Z1, Z2, θ, x;h)
∣∣]‖un‖∞ � n2

h2d
.

Now, Lemma 13.1 and the monotonicity of the exponential function give for
any θ, x, h, γ and any ω > 0 that

Pγ

(
|T 1

n(θ, x;h)| > ω
)

=Pγ

(∣∣∣∣ ∑
1≤j 	=k≤n

Un(Zj , Zk, θ, x;h)

∣∣∣∣ > n(n− 1)ω

)

�T exp

(
− 1

T
min

{
n(n− 1)hdω

n
,

(
n(n− 1)h

3d
2 ω√

n

) 2
3

,
(
n(n− 1)h2dω

) 1
2

})
≤T exp

(
− 1

T
nhdω

)
1ω∈[0,1) + T exp

(
− 1

T
nhdω

1
2

)
1ω∈[1,∞)

for T > 0 some universal constant. We apply the estimate

E[|W |ρ] ≤ aρ +

∫ ∞

a

ρωρ−1
P(|W | > ω) dω , a > 0

to W = supx∈Jn,θ∈Θn
|T 1

n(θ, x;h)|
(

nhd

logn

) 1
2 and obtain

Eγ

[
sup

x∈Jn,θ∈Θn

|T 1
n(θ, x;h)|ρ

]
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≤
( logn
nhd

) ρ
2

[
aρ +

∫ ∞

a

ρωρ−1
∑

x∈Jn,θ∈Θn

Pγ

(
|T 1

n(θ, x;h)| >
( logn
nhd

) 1
2
ω
)
dω

]

≤
( logn
nhd

) ρ
2

[
aρ + CΘ,Jδ

−d−m
n

∫ ∞

a

ρωρ−1T exp
(
− T

nhd

( logn
nhd

) 1
2
ω
)
1
ω∈
[
0,
(

nhd

log n

)1/2) dω
+ CΘ,Jδ

−d−m
n

∫ ∞

a

ρωρ−1T exp
(
− 1

T
nhd

( log n
nhd

) 1
4
ω

1
2

)
1[(

nhd

log n

)1/2
,∞
)(ω) dω]

�
( logn
nhd

) ρ
2

[
aρ + CΘ,Jδ

−d−m
n

∫ max
{(

nhd

log n

)1/2
,a
}

a

ρωρ−1T exp
(
− 1

T
log(n)ω

)
dω

+ CΘ,Jδ
−d−m
n

∫ ∞

max
{(

nhd

log n

)1/2
,a
} ρωρ−1T exp

(
− 1

T
log(n)ω

1
2

)
dω

]
, (13.8)

where we used

nhd

(
logn

nhd

) 1
2

=

(
nhd

logn

) 1
2

logn , nhd

(
logn

nhd

) 1
4

=

(
nhd

logn

) 3
4

logn

and the fact that supα
logn

nhn(α)d
→ 0 implies infα nhn(α)

d ≥ log n for large enough
n.

The integrals on the right-hand side of (13.8) are handled by the representa-
tion for the incomplete rho integral, i.e. for l ∈ N, a > 0∫ ∞

a

ωl exp(−ω) dω = l! exp(−a)

l∑
k=0

ak

k!
.

For a choice of a ≥ 1 that will be specified later on and l := �ρ− 1�, this and a
substitution yield∫ max

{(
nhd

log n

)1/2
,a
}

a

ρωρ−1T exp
(
− T−1 log(n)ω

)
dω

≤
∫ ∞

a

ρωlT exp
(
− T−1 log(n)ω

)
dω

= ρ
T l+2l!

log(n)l+1

l∑
k=0

((
T−1 log(n)a

)k
k!

)
· exp(−T−1 log(n)a)

� n−T−1a

logn
.

By using the transformation ω �→ ω2T 2

log(n)2 , we get∫ ∞

max
{(

nhd

log n

) 1
2 ,a
} ρωρ−1T exp

(
− T−1 log(n)ω

1
2

)
dω

≤
∫ ∞

max
{(

nhd

log n

) 1
2 ,a
} ρωlT exp

(
− T−1 log(n)ω

1
2

)
dω
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=

∫ ∞

max
{(

nhd

log n

) 1
4 ,a

1
2

}
T−1 logn

2ρT 2l+3

(logn)2l+2
ω2l+1 exp

(
− ω
)
dω

=
2ρT 2l+3

(logn)2l+2
(2l + 1)!

2l+1∑
k=0

(
max

{(
nhd

logn

) 1
4 , a

1
2

}
T−1 logn

)k
k!

· exp
(
−max

{(
nhd

logn

) 1
4

, a
1
2

}
T−1 logn

)
� 1

logn
b2l+1
n n−T−1bn

�n−c ,

where bn = max
{(

nhd

logn

) 1
4 , a

1
2

}
converges to ∞ so that the last bound holds for

any c > 0.

By choosing δn = n
−T−1a
d+m , a ≥ 1 so large that independently of α,

δρn
hn(α)(2d+1)ρ

= n−T−1aρ
d+m hn(α)

−(2d+1)ρ �
(

log n

nhn(α)

) ρ
2

,

c > T−1a and using that supα
logn

nhn(α)d
→ 0 implies supα

1
hn(α)d

� n
logn , we get

Eγ

[
sup

x∈J,θ∈Θ
|T 1

n(θ, x;h)|ρ
]
� δρn

h(2d+1)ρ
+
( logn
nhd

) ρ
2
+
( logn
nhd

) 1
2
δ−d−m
n

(
n−T−1a

logn
+ n−c

)
�
( logn
nhd

) ρ
2
+
( logn
nhd

) ρ
2 · 1

log n

�
( logn
nhd

) ρ
2
,

concluding the considerations of supx∈J,θ∈Θ |T 1
n(θ, x;h)|ρ.

Lemma 13.1 (Giné et al. (2000, p. 15)). Let (Zn)n be a sequence of i.i.d. Rd-
valued random variables, defining a canonical U-statistic Un with bounded canon-
ical kernel χ : R2d → R, i.e. for all x, y ∈ R

d

Un =
∑

1≤j 	=k≤n

χ(Zj , Zk) , χ(x, y) = χ(y, x) ,

E[χ(Z1, x)] =

∫
Rd

χ(z, x) dPZ1(z) = 0 .

Then there is a universal constant T > 0 so that for any ω > 0, we have

P
(∣∣Un

∣∣ > ω
)
≤ T exp

(
− T−1 min

{
ω

C
,

(
ω

B

) 2
3

,

(
ω

A

) 1
2
})

,



1868 H. Werner et al.

where

A := ‖χ‖∞, B2 := n
∥∥E[χ2(Z1, ·)

]∥∥
∞, C2 := n(n− 1)E

[
χ2(Z1, Z2)

]
.

(13.9)

Proof of Lemma 8.4. For brevity we introduce the function ψ(CLep) := c̃1CLep−
c̃2 and note that ψ grows linearly in CLep. Using the decomposition in (13.1)
yields

p̃lj =Pγ

(
sup

x∈J,θ∈Θ
‖Mn(θ, x;hj)− Eγ [Mn(θ, x;hj)]‖ > ψ(CLep)rl

)
≤Pγ

(
sup

x∈J,θ∈Θ
‖T 1

n(θ, x;hj)‖ > ψ(CLep)rl/2
)

+ Pγ

(
sup

x∈J,θ∈Θ
‖T 2

n(θ, x;hj)‖ > ψ(CLep)rl/2
)

=: p̃1lj + p̃2lj .

We shall focus on the probabilities p̃1lj , the p̃2lj are dealt with similarly and in
fact simpler.

We use a discretization as in (13.3) and estimate

Pγ

(
sup

x∈J,θ∈Θ
‖T 1

n(θ, x;hj)‖ > ψ(CLep)h
αl

l /2
)

≤Pγ

(
sup

x∈Jn,θ∈Θn

‖T 1
n(θ, x;hj)‖ > ψ(CLep)h

αl

l /4
)

(13.10)

+ Pγ

(
sup

x,y∈J,ϑ,θ∈Θ

‖x−y‖,‖ϑ−θ‖≤δn

‖T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)‖ > ψ(CLep)h
αl

l /4

)
.

(13.11)

The term (13.10) can by handled by Bernstein’s inequality for U-statistics,
cf. Lemma 13.1, just like we did in the proof of Theorem 8.3 and the fact
that hj ≥ hl, whence

Pγ

(
sup

x∈Jn,θ∈Θn

‖T 1
n(θ, x;hj)‖ > ψ(CLep)h

αl

l /4
)

≤
∑

x∈Jn,θ∈Θn

Pγ

(
‖T 1

n(θ, x;hj)‖ > ψ(CLep)h
αl

l /4
)

≤
∑

x∈Jn,θ∈Θn

Pγ

(
‖Un(Z1, Z2, θ, x;hj)‖ > n(n− 1)ψ(CLep)h

αl

l /4
)

≤CΘ,Jδ
−d−m
n

{
T exp

(
− T−1nhd

jψ(CLep)h
αl

l /4
)
1ψ(CLep)h

αl
l /4∈[0,1)

+ T exp
(
− T−1nhd

j

√
ψ(CLep)h

αl

l /4
)
1ψ(CLep)h

αl
l /4∈[1,∞)

}
≤CΘ,Jδ

−d−m
n

{
T exp

(
− T−1nψ(CLep)h

αl+d
l /4

)
1ψ(CLep)h

αl
l /4∈[0,1)
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+ T exp
(
− T−1n

√
ψ(CLep)h

αl/2+d
l /2

)
1ψ(CLep)h

αl
l /4∈[1,∞)

}
. (13.12)

By using hl =
(
logn
n

) 1
2αl+d , we get that

nh
αl/2+d
l ≥ nhαl+d

l =n
( logn

n

) αl+d

2αl+d ≥ n logn

n
= logn

yielding

(13.12) ≤CΘ,JTδ
−d−m
n

(
n−T−1ψ(CLep)/4 + n−T−1

√
ψ(CLep)/2

)
≤2CΘ,JTδ

−d−m
n n−T−1

√
ψ(CLep)/2 , (13.13)

because ψ(CLep) ≥ 4. The term (13.11) is handled by arguments similar to the
ones found in the proof of Theorem 8.3. Using Markov’s inequality, hj ≥ hl

and the arguments used to treat (13.5)–(13.7) for ρ = 1 that showed that the

expectation in the following display is O(δnh
−2d−1
j ), we deduce that there is a

constant C̃ so that

lim sup
n→∞

sup
∗

δ−1
n hαl+2d+1

l Pγ

(
sup
∗∗

∥∥T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)
∥∥ >

ψ(CLep)h
αl
l

4

)
≤ lim sup

n→∞
sup
∗

4δ−1
n h2d+1

j

ψ(CLep)
Eγ

[
sup

x,y∈J,ϑ,θ∈Θ
‖x−y‖,‖ϑ−θ‖≤δn

∥∥T 1
n(θ, x;hj)− T 1

n(ϑ, y;hj)
∥∥] < C̃ < ∞ ,

(13.14)

where the supremum ∗ is taken over α ∈ [a, b], γ ∈ Γ(α), 0 ≤ l ≤ j ≤ kn(α),
and the supremum ∗∗ over x, y ∈ J, ϑ, θ ∈ Θ, ‖x− y‖, ‖ϑ− θ‖ ≤ δn.

Now set

C− = c̃−1
1

[
c̃2 + 4 + 64T 2(d+m)2 max

{(
1

2(d+m)− 1

)2

,

(
b+ 2d+ 1

2a+ d
+ 1

)2}]
,

u(CLep) =
T−1

√
c̃1CLep − c̃2

8(d+m)
,

where T is the universal constant in Lemma 13.1.
Combining (13.13) and (13.14) yields

lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

nu(CLep)p̃1lj

≤ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,JT nu(CLep)δ−d−m
n n−T−1

√
ψ(CLep)/2 (13.15)

+ lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−2d−1
l , (13.16)
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which will be finite by choosing

δn = δn(CLep) = n−T−1√ψ(CLep)

4(d+m) = n−T−1√c̃1CLep−c̃2
4(d+m) .

In order to treat (13.15), we see that

logn

(
nu(CLep)δ−d−m

n n−T−1
√

ψ(CLep)/2
)

≤ T−1
√

ψ(CLep)

8(d+m)
+

T−1
√
ψ(CLep)

4
− T−1

√
ψ(CLep)

2

=−
(
2(d+m)− 1

)
T−1

√
ψ(CLep)

8(d+m)

≤−
(
2(d+m)− 1

)
T−1

√
c̃1C− − c̃2

8(d+m)

≤− 1

because

C− ≥ c̃−1
1

[
c̃2 + T 2

(
8(d+m)

2(d+m)− 1

)2]
.

Hence, for all CLep ≥ C−, we have

(13.15) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

2CΘ,JT nu(CLep)δ−d−m
n n−T−1

√
ψ(CLep)/2

≤ lim sup
n→∞

n−1 = 0.

Concerning (13.16). Because

h−αl−2d−1
l =

(
n

logn

)αl+2d+1

2αl+d

≤ n
b+2d+1
2a+d ,

we have

logn

(
nu(CLep)δnh

−αl−2d−1
l

)
≤ T−1

√
ψ(CLep)

8(d+m)
− T−1

√
ψ(CLep)

4(d+m)
+

b+ 2d+ 1

2a+ d

= − T−1
√

ψ(CLep)

8(d+m)
+

b+ 2d+ 1

2a+ d

≤ − T−1
√

c̃1C− − c̃2

8(d+m)
+

b+ 2d+ 1

2a+ d
≤ −1

because

C− ≥ c̃−1
1

[
c̃2 + 64T 2(d+m)2

(
b+ 2d+ 1

2a+ d
+ 1

)2]
.
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Hence, for all CLep ≥ C−, we have

(13.16) = lim sup
n→∞

sup
α∈[a,b]

sup
γ∈Γ(α)

sup
0≤l≤j≤kn(α)

C̃ nu(CLep)δnh
−αl−2d−1
l

≤ lim sup
n→∞

n−1 = 0 ,

concluding the proof.
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