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Abstract: High dimensional time series receive considerable attention re-
cently, whose temporal and cross-sectional dependency could be captured
by the vector autoregression (VAR) model. To tackle with the high di-
mensionality, penalization methods are widely employed. However, theo-
retically, the existing studies of the penalization methods mainly focus on
i.i.d data, therefore cannot quantify the effect of the dependence level on
the convergence rate. In this work, we use the spectral properties of the
time series to quantify the dependence and derive a nonasymptotic upper
bound for the estimation errors. By focusing on the nonconcave penalization
methods, we manage to establish the oracle properties of the penalized VAR
model estimation by considering the effects of temporal and cross-sectional
dependence. Extensive numerical studies are conducted to compare the fi-
nite sample performance using different penalization functions. Lastly, an
air pollution data of mainland China is analyzed for illustration purpose.
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1. Introduction

Penalized estimation methods are fundamental to explore the dataset with high
dimensions. Particularly, it is becoming an increasingly popular tool to analyze
the data in the fields of genomics, economics, neuroscience with abundant infor-
mation. To facilitate the analysis, a reasonable assumption is that only a small
number of covariates are associated with the response. Under this framework,
to select the important covariates, the penalized regression estimation is usually
conducted as follows,

min
β∈Rp

1

2N

∥∥Y −Xβ
∥∥2 + p∑

j=1

pλ(βj), (1.1)

where Y ∈ RN is the response vector, X ∈ RN×p is the design matrix, and β =
(β1, · · · , βp)

� ∈ Rp is the regression coefficient. Here pλ(·) is the penalization
function with the tuning parameter λ. Popular choices of penalization functions
include L1 penalty [23], SCAD penalty [8], MCP penalty [26] and many others.

Despite the usefulness of the penalized regression method (1.1), its appli-
cations mainly focus on the i.i.d data [8, 10]. However, in practice, data with
complex dependence structures are frequently encountered. One of the partic-
ular types, the high dimensional time series data receives great attention. For
example, in economics, structural analysis and economic trend prediction typ-
ically require for a large number of macroeconomic variables [6, 1]; in finance,
efficient risk management and quantification usually pull for numerous financial
statements [11, 17]; in social network analysis, network influences are estimated
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among social media users by user dynamic behaviors [29, 27]. To model the
dynamics of such type of the time series data, the vector autoregression (VAR)
model is usually built and estimated. In a typical setting, a p-dimensional time
series requires at least p2 parameters of the transition matrix to be estimated,
which are easily much larger than the number of time periods T (i.e., sample
size). As a result, the estimation is infeasible unless we assume certain type
of low dimensional structures. As we mentioned before, one of the most typi-
cal assumptions is the sparsity assumption. This enables us to incorporate the
penalization regression framework (1.1) into the VAR model estimation.

Due to the special dependency structure of the high dimensional time series
model, the theoretical framework of (1.1) should be reformulated. Particularly,
the quantification of the temporal and cross-sectional dependence should be
taken into consideration when studying the theoretical properties. In a recent
paper of [2], they use the spectral properties to quantify the stability of a vector
time series. Using the novel stability measure, they show that the convergence
rate of the L1-penalized (i.e., Lasso) VAR model closely relates to the depen-
dence level of the time series.

Despite the computational attractiveness and competitive ability for predic-
tion, the L1-penalized (i.e., Lasso type) estimator requires more stringent con-
ditions on the design matrix. As an alternative, the nonconcave estimators (e.g.,
SCAD and MCP) receive considerable attentions in recent years [10, 25]. The-
oretically, such type of estimators enjoy the desirable oracle property. Namely,
it could identify the zero coefficients with probability tending to 1, and in the
meanwhile estmate the nonzero coefficients as efficiently as if the sparsity pat-
tern is known in advance. For the i.i.d data, the theoretical properties of the
nonconcave penalized estimator are sufficiently studied [8, 12, 13]. Particularly,
the feature dimensionality is allowed to grow exponentially fast with the sam-
ple size [10]. However, for the data with dependency structures, the theoretical
properties are unknown and need to be investigated.

To fill this gap, in this work, we study the nonconcave penalized VAR model
estimation methods. Particularly, we follow [2] to use the tool of spectral density
to quantify the temporal and cross-sectional dependences of the high-dimen-
sional time series. By using the novel measure of stability, we manage to explain
how the convergence rate of the estimator is related to the dependence level of
the time series. We contribute to the existing theory in the following three folds:
(a) we establish the selection consistency for the high dimensional sparse sta-
ble VAR model by using nonconcave penalty functions, which assumes weaker
condition than the irrepresentable condition; (b) we consider and involve the
dependence measures in the convergence rate of the estimated parameters be-
yond the i.i.d setting in nonconcave penalized estimation; (c) we establish the
oracle properties for the estimated parameters and the asymptotic normality
results are proved, which is not achievable in the L1-penalty setting. Lastly, a
real data example about an air pollution index in mainland China, i.e., PM2.5,
is analyzed using the proposed method.

The rest of the article is organized as follows. Section 2 introduces the non-
concave penalization methods for VAR model estimation. Section 3 investigates
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the theoretical properties of the variable selection as well as the parameter esti-
mation. Numerical studies are given in Section 4. The article is concluded with
a brief discussion in Section 5. All technical details are left to the Appendix.

2. Nonconcave penalization methods in vector autoregression

2.1. Model and notations

Consider a p-dimensional stationary time series vector {Xt} = {(X1t, · · · , Xpt)
�

∈ Rp}, which are collected at time points t = 1, · · · , T . To model the dynamics
of the Xt, we consider a vector autoregression (VAR) model of lag d [VAR(d)]
with serially uncorrelated random errors as

Xt = A1Xt−1 + · · ·+AdXt−d + Et (2.1)

where Et = (ε1t, · · · , εpt)� ∈ Rp independently follows multivariate normal
distribution with mean 0 and covariance cov(Et) = Σe ∈ Rp×p. Here A1, · · · , Ad

are p× p-dimensional unknown transition matrices. They provide deep insights
about the temporal and cross-sectional relationships among the p time series. In
practice, the time series is usually of high dimension. As a result, the number of
estimation parameters, i.e., dp2 could grow polynomially fast with p. To estimate
the model (2.1), we consider here a penalized least squares estimation method.

To facilitate the discussion, we first rewrite the model (2.1) in a vector form as

follows. Define X̃t = (X�
t , X�

t−1, · · · , X�
t−d+1)

�∈Rdp. Let Y = (XT , · · · , Xd)
�∈

RN×p, X = (X̃T−1, · · · , X̃d−1)
� ∈ RN×dp, and E = (ET , · · · , Ed)� ∈ RN×p,

where N = T − d+1. In addition, define B = (A1, · · · , Ad)
� ∈ Rdp×p to be the

parameter matrix. Then we have

vec(Y) = vec(XB) + vec(E) = (Ip ⊗ X )β + vec(E), (2.2)

where β = vec(B). By the vector form in (2.2), the VAR model could be rep-
resented in a general regression form. Define Y = vec(Y) and Z = Ip × X ∈
Rp(T−d+1)×q, where q = dp2. Then one could rewrite the VAR model (2.1) as
a regression model with q-dimensional predictors as Y = Zβ + vec(E). To es-
timate the parameter, we minimize the following regularized least squares type
objective function, which yields the penalized least squares estimator as

β̂ = arg min
β∈Rq

1

N
‖Y − Zβ‖2 +

q∑
j=1

pλ(|βj |), (2.3)

where pλ(·) is the penalization function and λ ≥ 0 is the corresponding reg-
ularization parameter. A popular choice of pλ(·) is the L1-regularization, i.e.,
pλ(δ) = λ|δ|, which could result in a Lasso type estimator. This approach and
corresponding statistical properties are studied by [2]. In this work, we restrict
pλ(·) in the family of nonconcave penalization functions. Popular nonconcave
penalization functions include the SCAD penalty [8], MCP penalty [26] and
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many others. Their function forms are visualized in Figure 1 and given in the
numerical studies; see equation (4.1) and (4.2). See [21] for a comprehensive
discussion. To facilitate the discussion, we define the following notations.

Fig 1. The SCAD (a = 3.7) and MCP (a = 1.5) penalty functions with the regularization
parameter λ = 1. The penalty function forms are given by (4.1) and (4.2) respectively.

Notation Throughout this paper, we denote the cardinality of a set S by
|S|. In addition, let Sc be the complement of the set S. For a vector v =
(v1, · · · , vp)� ∈ Rp, let ‖v‖q = (

∑p
j=1 v

q
j )

1/q for q > 0. For convenience we
omit the subindex when q = 2. Denote supp(v) as the support of the vector.
Particularly, we use ‖v‖0 to denote |supp(v)| =

∑p
j=1 1(vj �= 0) and ‖v‖max to

denote maxj vj . In addition, denote vS as a sub-vector of v as vS = (vj : j ∈
S)� ∈ R|S|. For arbitrary matrix M = (mij) ∈ Rp1×p2 , denote MS = (mi,j :
1 ≤ i ≤ p1, j ∈ S) as the sub-matrix with columns in S. In addition, let M (S1,S2)

be the sub-matrix of M as M (S1,S2) = (mij : i ∈ S1, j ∈ S2) for two sets S1

and S2. We further write M (S,S) as M (S) for simplicity. Furthermore, denote
‖M‖∞ = max1≤i≤p1(

∑p2

j=1 |mij |) and ‖M‖max = max1≤i≤p1,1≤j≤p2 |mij |. For
a symmetric or Hermitian matrix A, we use λmax(A) and λmin(A) respectively
as its maximum and minimum eigenvalues. For arbitrary two sequences {aN}
and {bN}, denote aN � bN to mean that aN/bN → ∞ as N → ∞ and � the
otherwise. Lastly, we use ei to denote the ith unit vector.

2.2. Measure of stability

Consider a p-dimensional VAR(d) time series model (2.1). Assume it is centered
and covariance stationary. As a result, we could define the autocovariance func-
tion as ΓX(h) = cov(Xt, Xt−h). Generally, the autocovariance function charac-
terizes the temporal and cross-sectional dependence for the VAR(d) model.

Since Xt is a vector time series, it is of particular interest to investigate the
stability properties of {Xt}. In the classical time series analysis, the temporal
dependence is usually controlled by imposing some mixing conditions [14]. In
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the context of VAR model, this sums to assuming that λ
1/2
max(A�A) < 1 [20, 19,

16]. However, this condition might be restrictive and can be violated even by
many stable VAR models. In addition, it fails to capture all the cross-sectional
dependence in the high dimensional setting. In this work, we adopt the idea
of [2] to use the spectral density of {Xt} to establish the measure of stability.
Specifically, we assume the VAR(d) model satisfies the following condition.

(C1) The spectral density function

fX(θ) =
1

2π

∞∑
l=−∞

ΓX(l) exp(−ilθ), θ ∈ [−π, π]

exists, and its maximum eigenvalue is bounded on [−π, π], i.e.,

M(fX) = ess supθ∈[−π,π]λmax(fX(θ)) < ∞. (2.4)

The spectral density function fX(θ) has close relationship with the autocovari-
ance function ΓX(l). If we have

∑∞
l=0 ‖ΓX(l)‖2 < ∞, then the spectral density

exists. Furthermore, the spectral density is bounded, continuous, and the essen-
tial supremum, i.e., M(fX), is actually its maximum. Generally, the existence
of the spectral density will facilitate the following representation,

ΓX(l) =

∫ π

−π

fX(θ)eilθdθ.

The maximum eigenvalue of the spectral density function (2.4) could be a mea-
sure of stability of the process. Typically higher M(fX) implies a less stable
process.

For the VAR(d) process, the spectral density function has a closed form.

Define A(z) = Ip −
∑d

j=1 Ajz
j . For the VAR(d) process [22, 3] it holds

fX(θ) =
1

2π

(
A−1(e−iθ)

)
Σe

(
A−1(e−iθ)

)∗
.

Other than M(fX), the lower extremum of the spectral density is also crucial
when dealing with the dependence of the design matrix in the high dimensional
setting, i.e.,

m(fX) = ess infθ∈[−π,π]λmin(fX(θ)).

The maximum and minimum of eigenvalue of the spectral density provide im-
portant bounds on the dependence of the process X = (X1, · · · , XT )

� ∈ RT×p.
Define ΥX = cov(vec(X�)) ∈ R(Tp)×(Tp). Then it holds that [2]

2πm(fX) ≤ λmin(ΥX) ≤ λmax(ΥX) ≤ 2πM(fX), (2.5)

which is free from the sample size N . Furthermore, for a stationary VAR(d)
process M(fX) and m(fX) could be further bounded by a closed form as

M(fX) ≤ 1

2π

λmax(Σe)

μmin(A)
, m(fX) ≥ 1

2π

λmin(Σe)

μmax(A)
, (2.6)
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where

μmax(A) = max
|z|=1

λmax(A∗(z)A(z)), μmin(A) = min
|z|=1

λmin(A∗(z)A(z)).

Note that the closed form of M(fX) and m(fX) of VAR(d) model clearly sepa-
rates the two types of dependencies of {Xt}: the temporal dependence captured
by the transition matrices Aj , and the additional cross-sectional dependence
characterized by Σe.

Remark 1. Note that the VAR(d) model could be re-expressed as a VAR(1)
model as follows. Specifically, we have

X̃t = Ã1X̃t−1 + Ẽt

where

Ã1 =

⎛⎜⎜⎜⎜⎜⎝
A1 A2 · · · Ad−1 Ad

Ip 0 · · · 0 0
0 Ip · · · 0 0
...

...
. . .

...
...

0 0 · · · Ip 0

⎞⎟⎟⎟⎟⎟⎠ , Ẽt =

⎛⎜⎜⎜⎝
Et
0
...
0

⎞⎟⎟⎟⎠ .

Define Ã = Idp − Ã1z and μmax(Ã) and μmin(Ã) could be defined accordingly.

The process {X̃t} is stable if and only if the process {Xt} is stable [20].

3. Theoretical properties

3.1. Local optimality

In a general framework, note that the VAR estimation is equivalent to the
following optimization

arg min
β∈Rq

−β�γ̂Z + 2−1β�Γ̂Zβ, (3.1)

where γ̂Z = (Ip ⊗ X�)Y/N , and Γ̂Z = Z�Z/N = (I ⊗ X�X/N). By using the
regularization, it leads to

Qp(β) = −β�γ̂Z + 2−1β�Γ̂Zβ +

q∑
j=1

pλ(|βj |). (3.2)

The solution is then given by β̂ = argminβ∈Rq Qp(β).
In this section, we discuss the theoretical properties of the penalized least

squares estimator. The first concern is whether the resulting estimator attains
local optimality. We first discuss the existence of the local minimizer of (3.2). It is
closely related to the form of the penalty function pλ(·). Define ρλ(t) = λ−1pλ(t).
We then give the characterization of the function ρλ(t) as in the condition (C2).
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(C2) Assume ρλ(t) is increasing and concave in [t,∞) with a continuous deriva-
tive ρ′λ(t) and ρλ(0+) > 0. In addition, ρ′λ(t) is increasing in λ ∈ (0,∞)
and ρ′λ(0+) is not related to λ.

Following [21] and [26], we define the local concavity of the penalty function
ρλ(t) at v = (v1, · · · , vq)� ∈ Rq as

κ(ρ; v) = lim
ε→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−ρ′λ(t2)− ρ′λ(t1)

t2 − t1
. (3.3)

Since it is assumed that ρλ(·) takes a concave form by Condition (C2), we have
κ(ρ; v) ≥ 0. Moreover, if the second order derivative of ρλ(t) exists, one could de-
rive that κ(ρ; v) = max1≤j≤q −ρ′′(|vj |). Define ρ(v) = (ρ(v1), · · · , ρ(vq))� ∈ Rq,
where ρ(vj) = sgn(vj)ρ

′(|vj |). The following proposition establishes conditions
for the strict local minimizer of the objective function.

Proposition 1 (Local Minimizer). Assume pλ(·) satisfies Condition (C2). Then

β̂ ∈ Rq is a strict local minimizer with probability tending to 1 if

Z�
S Y − Z�

S Zβ̂ −NλNρ(β̂S) = 0 (3.4)

(NλN )−1‖Z�
Sc(Y − Zβ̂)‖∞ < ρ′(0+) (3.5)

λmin(Z
�
S ZS) > NλNκ(ρ, β̂S). (3.6)

as N → ∞, where S = supp(β) is the index set for the nonzero coefficients.

The proof is given in Appendix A.2. Specifically, Condition (3.4) and (3.6)

ensure that β̂ is a strict local minimizer when constraint on the ‖β‖0-dimensional
subspace {β ∈ Rp : βSc = 0}. Condition (3.5) further makes sure that the sparse

solution β̂ is strict local minimizer on the whole space Rq.
Under the framework of strict local minimizer, we discuss the theoretical

properties of the nonconcave penalized VAR estimator. The main difficulty here
from the i.i.d case is that one need to take the temporal as well as the cross-
sectional dependency into consideration. To this end, the deviation bounds for
the design matrix and error terms are firstly established in Section 3.2, which
are essential tools to develop the oracle properties. Next, the oracle properties
are given in Section 3.3.

3.2. Deviation bounds

In this section, we establish some deviation bounds for both the design ma-
trix and the error terms. The deviation bounds are important for deriving the
asymptotic properties of the nonconcave penalized estimator. Particularly, it
gives conditions for the design matrix and error terms to behave properly. We
first give the results of the design matrix.

By (3.6), we know that the strict local minimizer requires the minimum eigen-
value of Z�

S ZS is well bounded. Define ω = c1λ/c2λ, where c1λ =
λ−1
max(Σe)μmin(A) and c2λ = λ−1

min(Σe)μmax(A). We have the following propo-
sition.
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Proposition 2. Consider a stable VAR(d) model (2.1) and its vectorization
form (2.2). Assume Condition (C1) holds. We have

P
{
λmin(Z

�
S ZS) > 2−1Nc−1

2λ

}
≥ 1− 2 exp{−cN min(1, ω2) + s log 21} (3.7)

P
{
λmax(Z

�
S ZS) < 2Nc−1

1λ

}
≥ 1− 2 exp{−cN + s log 21} (3.8)

as N → ∞, where c is a positive constant.

The proof of Proposition 2 is given in Appendix A.3. By s = o(N min{1, ω2}),
one could conclude 2−1Nc−1

2λ < λmin(Z
�
S ZS) ≤ λmax(Z

�
S ZS) < 2Nc−1

1λ by (3.7)
and (3.8) with probability tending to 1.

Besides the eigenvalue bound of the design matrix, the maximum absolute
value bound is another important bound we need to quantify. This could be
critical for deriving the variable selection consistency. Let ΓX̃(0) ∈ Rdp×dp be

the covariance of X̃t. Recall that Z = Ip ⊗ X and define ΓZ = N−1E(Z�Z).
Given the results in Proposition 2, we are able to derive the bounds for the
maximum absolute value of (Z�

S ZS)
−1 and Z�

ScZS in the following proposition.

Proposition 3. Consider a stable VAR(d) model (2.1) and its vectorization
form (2.2). Assume Condition (C1) holds. We have

P
{
‖(Z�

S ZS)
−1‖∞ ≤ cμ

}
≥ 1− 2 exp{−cN min(1, ω2) + s log 21} (3.9)

P
{
‖Z�

ScZS‖max ≤ cΓ

}
≥ 1− 6 exp{−cN min(ν2, ν) + log q + log s} (3.10)

where

cμ = 2N−1s1/2c2λ, cΓ = N‖Γ(Sc,S)
Z ‖max +N max{‖Γ(Sc,S)

Z ‖max, c
−1
1λN

−δ}
(3.11)

ν = 1/3max{c1λ‖Γ(Sc,S)
Z ‖max, N

−δ},

with 0 ≤ δ < 1/2 being a positive constant. The autocovariance matrix ΓZ can

be expressed as ΓZ = Ip ⊗ ΓX̃(0), with vec(ΓX̃(0)) = (I − Ã1 ⊗ Ã1)
−1vec(Σ̃e)

and Σ̃e = diag(Σe,0p×p, · · · ,0p×p) ∈ R(pd)×(pd).

The proof of Proposition 3 is given in Appendix A.4. Proposition 3 establishes
the upper bound of ‖(Z�

S ZS)
−1‖∞ and ‖Z�

ScZS‖max respectively, which essen-
tially restricts the covariance level among the covariates. Furthermore, one could
obtain that ‖Z�

ScZS(Z
�
S ZS)

−1‖∞ ≤ ‖Z�
ScZS‖max‖(Z�

S ZS)
−1‖∞ is bounded by

cμcΓ with high probability under certain conditions, where cμ and cΓ involve the
dependence measures of the VAR model. For simple stable VAR(1) models with
no dynamic and cross-sectional dependences (e.g., A1 = 0.5Ip and Σe = σ2

eIp),
it can be verified that cμ = O(s1/2/N) and cΓ = O(N), thus cμcΓ = O(s1/2).

Note that the positive constant δ is involved in the left side as well as the
right side of (3.10). A higher δ will possibly result in a tighter upper bound
of ‖Z�

ScZS‖max, and in the meanwhile smaller probability in the right side. If
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c1λ‖Γ(Sc,S)
Z ‖max ≤ N−δ and log q = o(N1−2δ), then one could conclude that

cΓ ≤ 2c−1
1λN

1−δ and the probability for the event {‖Z�
ScZS‖max ≤ cΓ} will tend

to 1 as N → ∞. Next, one may note that ‖Γ(Sc,S)
Z ‖max could be very related to

the irrepresentable assumption of the i.i.d case [28], while for the VAR model it
involves the dependence structures explicitly. We further give a comment about

the ‖Γ(Sc,S)
Z ‖max in the following remark.

Remark 2. Note that ΓZ takes a block diagonal structure. Generally, we have

‖Γ(Sc,S)
Z ‖max ≤ λmax(ΓZ) ≤ c−1

1λ . Therefore we could obtain that ‖Z�
ScZS‖max

is bounded by 2Nc−1
1λ with high probability, where higher c−1

1λ implies higher
dependence levels. The upper bound given by (3.10) is tighter. To see this, one

could express ‖Γ(Sc,S)
Z ‖max by

‖Γ(Sc,S)
Z ‖max = max

1≤j≤p

{
max

i1 	=i2,Bi1j 	=0,Bi2j 	=0
|ΓX̃,i1i2

(0)|
}
.

It can be then concluded that, if for any column j of B, there exists at most

one element Bij �= 0 for 1 ≤ i ≤ pd, then we have ‖Γ(Sc,S)
Z ‖max = 0 and we then

have the upper bound as cΓ = c−1
1λN

1−δ in (3.11). Hence, as one can see, the
dependence level of the VAR model is explicitly involved here compared to the
irrepresentable assumptions.

Lastly, we establish the upper bound for the error terms. For the vector
formed stable VAR(d) model (2.2), define ξ = Z�(Y − Zβ) = vec(X�E). Then
the convergence rate of the penalized VARmodel estimator is largely determined
by how concentrate ξ is around 0. In addition note ξ ∈ Rq naturally constitutes
a high dimensional vector. As a result, it is important to control the diverging
rate of ‖ξ‖∞. Specifically, we have the following proposition.

Proposition 4. Assumes Condition (C1) holds. We then have

P
{
‖ξS‖∞ > c

−1/2
1 Q(β,Σe)

√
N logN

}
≤ 6s/N (3.12)

P
{
‖ξSc‖∞ > Q(β,Σe)uN

√
N
}
≤ 6(q − s) exp(−c1u

2
N ), (3.13)

as N → ∞, where uN = c
−1/2
1 Nα(logN)1/2 with α ∈ [0, 1/2] and

Q(β,Σe) = c0

{
λmax(Σe) +

λmax(Σe)

μmin(A)
+

λmax(Σe)μmax(A)

μmin(A)

}
with c0 as a finite positive constant.

The proof of Proposition 4 is given in Appendix A.5. By Proposition 4, the
concentration of ξ around 0 is affected not only by the sample size and the pa-
rameter dimension, but also by the temporal and contemporaneous dependence
of the time series. As we mentioned before, the temporal and contemporaneous
dependencies are characterized by A and Σe respectively. Particularly, the error
bound is lower when the eigenvalues of A and Σe behave more uniformly, i.e.,
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λmax(Σe) and μmax(A) are smaller, and in the meanwhile λmin(Σe) and μmin(A)
are larger. This results in a less spiky spectrum and leads to lower temporal and
cross-sectional dependencies, i.e., lower Q(β,Σe) [2].

3.3. Oracle property

Given the bounds on the design matrix as well as the error bounds, we establish
the oracle properties of the nonconcave penalized VAR estimator in this section.
The weak oracle property is firstly given, which is introduced by [21]. It has two
folds of meaning: (a) first, with probability tending to 1 the nonzero coefficients

could be estimated to be exact 0 (i.e., β̂Sc = 0), and (b) second, the estimator
is consistent in the sense of L∞ loss. Although the weak property does not
give the asymptotic distribution of the estimator, it provides insights about the
asymptotic behaviors of the penalized estimator. The following conditions are
assumed.

(C3) (Dependence) Assume cμcΓ =

2c2λs
1/2

[
‖Γ(Sc,S)

Z ‖max+max{‖Γ(Sc,S)
Z ‖max, c

−1
1λN

−δ}
]

≤ min
{
C
ρ′(0+)

ρ′(dN )
, O(Nα)

}
, (3.14)

where C ∈ (0, 1), 0 < δ < 1/2− α, and 0 ≤ α < 1/2.
(C4) (Minimum Signal) Assume

dN ≥ N−γ logNQ(β,Σe), λN � N−(1/2−α) logNQ(β,Σe)

p′λN
(dN ) = o{c−1

2λQ(βS ,Σe)s
−1/2N−γ logN}.

(C5) (Penalty Concavity) Define κ0 = maxδ∈N0 κ(ρ; δ), where N0 = {θ ∈
Rs : ‖θ − βS‖∞ ≤ dN}. Assume λNκ0 = o(c−1

2λ ).

First, Condition (C3) imposes restrictions on the correlation level between
ZS and ZSc as well as the temporal and cross-sectional dependence. In the i.i.d
case, it is typical to directly assume ‖Z�

ScZS(Z
�
S ZS)

−1‖∞ is bounded by the
right side [10]. For the VAR model, we could obtain the upper bound from

Proposition 3, which involves ‖Γ(Sc,S)
Z ‖max explicitly. Generally, ‖Γ(Sc,S)

Z ‖max is
bounded by c−1

1λ . Therefore the left hand (i.e., cμcΓ) is bounded by 4s1/2ω−1,
where larger ω−1 implies higher dependence. For a simple VAR(1) model with
A1 = 0.5Ip and Σe = σ2

eIp, we will have ω = O(1). In this situation, Condition
(C3) requires 4s1/2 ≤ min{cρ′(0+)/ρ′(dN ), O(Nα)}. However, for general stable
VARmodels, the situations can be more complicated. According to [2], even with
the same spectral radius of the transition matrix, the dependence measures

(e.g., c2λ and ‖Γ(Sc,S)
Z ‖max) could still be quite different and might lead to

different convergence behaviours of the estimated parameters. Next, the upper
bound Cρ′(0+)/ρ′(dN ) in (3.14) is closely related to the penalty form. If the
L1 penalty is used, then it requires the left side of (3.14) is strictly less than 1.



1424 Xuening Zhu

In such a case, this condition could lead to the strong irrepresentable condition
proposed by [28], which is restrictive in practice. While for nonconcave penalty
function, e.g., SCAD penalty, the upper bound could grow to ∞, which makes
this condition easier to satisfy.

Next, Condition (C4) sets the assumption about the minimum signal and the
tuning parameter λN , which is critical for deriving the converging rate of the
estimator. The requirements are mostly the same with the i.i.d case, except that
it further includes terms related to the dependency measures, e.g., Q(βS ,Σe)
[10]. Specifically, in the VARmodel setting, the condition for the minimum signal
dN is more restrictive. For instance, if the dynamic as well as the cross sectional
dependence is higher, then it will lead to higher Q(βS ,Σe), thus requires the
signal strength stronger enough to be detected.

Lastly, Condition (C5) guarantees the local optimality of the estimator. The
condition corroborates with the λmin(Z

�
S ZS) condition in the i.i.d case [10],

which regularizes the multilinearity of ZS . In the VAR model, the λmin(Z
�
S ZS)

is connected to the dependence measure c2λ by (3.7), which results in Condition
(C5). This condition can be easily satisfied by the SCAD type condition when
λN � dN , which leads to κ0 = 0 with sufficiently large N . We then establish
the weak oracle property as follows.

Theorem 1 (Weak Oracle Property). Let log q = O(N2α) and s =
o{min(Nω2, c−2

2λN
1−2γ logN)} and 0 < γ ≤ 1/2 and α defined in Condition

(C3). Assume Conditions (C1)–(C5) hold. Then there exists a nonconcave pe-

nalized least squares estimator β̂ such that for sufficiently large N , with proba-
bility tending to 1, we have
(a) (Sparsity). β̂Sc = 0;

(b) (L∞ loss). ‖β̂S − βS‖∞ ≤ Q(β,Σe)N
−γ logN .

The proof of Theorem 1 is given in Appendix B.1. Note that the parameter
dimension q is allowed to grow exponentially fast with the sample size N , and
the growth rate is controlled by α. In addition, the dependence term Q(β,Σe)

is involved in the upper bound of the L∞ loss of ‖β̂S −βS‖∞. This implies that
the time process with lower temporal and cross-sectional dependencies could
lead to a tighter upper bound. When γ = 1/2, this result corroborates with the
finding of [2] for the L1 penalty. Lastly, one might note the convergence rate is
slightly slower than Op(

√
s/N) in the i.i.d case under L2 loss. This is because

here we use the L∞ loss in the derivation of the consistency rate.
Next, we establish the oracle properties of the nonconcave penalized VAR

estimator. Let αλ = Q(β,Σe)λmax(Σe)c2λ. We first establish the existence of
the nonconcave penalized VAR estimator and its convergence rate. To this end,
we need the following condition.

(C6) Assume

dN � λN � αλ max{c−1
1λ

√
s/N,N (α−1)/2(logN)1/2}.

and p′λN
(dN ) = O(N−1/2αλc

−1/2
2λ ). In addition, assume λNκ0 = o(c−1

2λ ).
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The Condition (C6) gives the minimal signal strength for the nonconcave pe-
nalized VAR estimator to achieve

√
s/N -consistency. Due to the assumption

dN � λN , the SCAD type penalties satisfy the condition on p′λN
(dN ) since

p′λN
(dN ) = 0. However, for L1 penalty, we have

p′λN
(dN ) = λN � αλ max{c−1

1λ

√
s/N,N (α−1)/2(logN)1/2}.

This contradicts with the assumption p′λN
(dN ) = O(N−1/2αλc

−1/2
2λ ). This ex-

plains that the L1 penalized estimator could not achieve the consistency rate of
Op(

√
s/N) even with low dependence levels. Compared to the i.i.d case [10], the

condition involves further requirements on the minimum signal with respect to
the dependence levels, i.e., αλ. Specifically, higher dependence levels will result
in a higher αλ, thus will require dN to be larger to be detected. We give the
convergence rate for the nonconcave penalized VAR estimator as follows.

Theorem 2 (Existence of Nonconcave Penalized VAR Estimator). Assume
log q = O(Nα) and s = o(N min(1, ω2)), where α ∈ [0, 1/2). In addition, assume
the VAR(d) process (2.1) is stable and Conditions (C1)–(C6) hold. There exists

a strict local minimizer β̂, then with probability tending to 1 as N → ∞, the
nonconcave penalized likelihood estimator satisfies β̂Sc = 0; and ‖β̂S − βS‖ ≤
αλ

√
sN−1/2 with probability tending to 1.

The proof of Theorem 2 is given in Appendix B.2. Under the signal strength
dN , the Theorem 2 states the parameter dimension that the nonconcave pe-
nalized VAR estimation method could handle. Note that the dependence term
αλ is also involved in the upper bound of ‖β̂S − βS‖. This partially explains
how the temporal and cross-sectional dependence affects the convergence rate of
‖β̂S − βS‖. We further investigate the asymptotic normality of the nonconcave
penalized VAR estimator, which is stated as follows.

Theorem 3 (Oracle Property). Assume Conditions (C1)–(C6) hold. In addi-
tion, assume p′λN

(dN ) = o(s−1/2N−1/2c−1
2λ λmin(Σe)) and s = o(N min(1, ω2)).

Under the conditions of Theorem 2, with probability tending to 1 and N → ∞,
for a stable VAR(d) process, the nonconcave penalized likelihood estimator sat-
isfies:

(a) (Sparsity). β̂Sc = 0;

(b) (Asymptotic Normality). Let AN ∈ Rm×s satisfying ANA�
N → G as

N → ∞, where m is any fixed integer, and G is a m×m nonnegative symmetric
matrix. It holds that as N → ∞

√
NANΣ

−1/2
S (β̂S − βS) →d N(0, G), (3.15)

where ΣS = (Γ
(S)
Z )−1Γ

(S)
Ze (Γ

(S)
Z )−1 with ΓZe = Σe ⊗ ΓX̃(0).

The proof of Theorem 3 is given in Appendix B.3. Note that from Theorem 3,
if s is finite, then by setting AN = Is, we could obtain the asymptotic normality
of β̂S − βS directly.
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In practice, one may consider to further conduct inference based on (3.15).

Define Zt = Ip⊗X̃t ∈ Rdp2×p, Êt = Xt−Z
(S)�
t−1 β̂S and Ê = (ÊT , · · · , ÊT−d+1)

� ∈
RN×p. Let Γ̂Z = Ip⊗Γ̂X̃(0) and Γ̂Ze = Σ̂e⊗Γ̂X̃(0), where Γ̂X̃(0) = X�X/N and

Σ̂e = Ê�Ê/N . Then a natural estimator of ΣS is Σ̂S = (Γ̂
(S)
Z )−1Γ̂

(S)
Ze (Γ̂

(S)
Z )−1.

We then establish the following theorem for the consistency of the Σ̂S .

Theorem 4. Assume all the conditions in Theorem 3 hold. Further assume
that p = o(N) and s = o{N min(1, ω2, c1λα

−1
λ λ−1

max(Σe), c
4
λc

−6
2λ λ

−1
max(Σe))}. Then

we have AN Σ̂SA
�
N − ANΣSA

�
N →p 0 as N → ∞, where AN ∈ Rm×s satisfying

ANA�
N → G as N → ∞, m is any fixed integer, and G is a m×m nonnegative

symmetric matrix.

Then proof of Theorem 4 is given in Appendix B.4. Note that it further re-
quires the condition of p = o(N) and s = o{N min(1, ω2, c1λα

−1
λ λ−1

max(Σe), c
4
λc

−6
2λ

λ−1
max(Σe))}. That is mainly because the estimation of Σe requires to estimate

O(p2) parameters. It then needs larger sample size to obtain a consistent es-
timate. In addition, higher dependence levels also have influences. Specifically,
higher dependences will imply larger αλ, λmax(Σe), c2λ, c

−1
1λ values, thus restrict

s to be smaller.
To examine the performance of the nonconcave penalized VAR estimation,

we conduct a number of numerical studies, which are discussed in details in the
following section.

4. Numerical study

4.1. Simulation models

In this section, we evaluate the finite sample performance of the nonconcave
penalized VAR model. To generate the data, we first generate the transition
matrix A1 = (a1,ij) ∈ Rp×p, which has about 5% nonzero off-diagonal entries.
Specifically, we set the off-diagonal nonzero elements to be 0.3, and all the
diagonal elements to be 0.5. Following [2], we generate the innovation process
using Gaussian process with the following three covariance structures Σe:
(1) Block I: Σe = (σe,ij) ∈ Rp×p with σe,ii = 1, σe,ij = ρ if 1 ≤ i �= j ≤ p/2,
and σe,ij = 0 otherwise.
(2) Block II: Σe = (σe,ij) ∈ Rp×p with σe,ii = 1, σe,ij = ρ if 1 ≤ i �= j ≤ p/2 or
p/2 < i �= j ≤ p, otherwise σe,ij = 0.
(3) Toeplotz: Σe = (σe,ij) ∈ Rp×p with σe,ij = ρ|i−j|. Here larger ρ values
indicate that the innovation processes have higher correlation with each other.

4.2. Implementation of the algorithm

For comparison, we implement the following algorithms. They are, the Lasso
estimator [23, 2], the adaptive Lasso (ALasso) estimator [30, 4], the SCAD
estimator ((4.1) with a = 3.7) proposed by [8], and MCP estimator ((4.2) with
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a = 1.5) proposed by [26]. Specifically, the penalty functions of SCAD and MCP
are given as below, namely

pSCAD

λ,a (θ) =

⎧⎪⎨⎪⎩
λθ θ ≤ λ,

(a− 1)−1{aλθ − 0.5(θ2 + λ2)} λ < θ ≤ aλ,

2−1(a− 1)−1λ2(a2 − 1) θ > aλ,

(4.1)

and

pMCP

λ,a (θ) =

{
λθ − (2a)−1θ2 θ ≤ aλ,

2−1aλ2 θ > aλ.
(4.2)

Furthermore, in the numerical study, to make the computation more feasible
and increase the efficiency, we use screening method to reduce the parameter
dimension before we conduct the model selection and estimation. Specifically,
we use the SIS method proposed by [9] on the regression form (2.2) of the VAR
model and keep the q∗ = 200 covariates with highest absolute correlations with
the response variable.

Lastly, to optimize the objective function (3.2), we use the local linear ap-
proximation (LLA) algorithm proposed by [31]. To choose the tuning parameter,
the HBIC criterion [25] is employed, which expresses as

HBIC(λ) = �(θ̂M) + |Mλ|
CN log(q)

N
, (4.3)

where Mλ = {(i, j) : â1,ij �= 0} denotes the selected set, and CN = log{log(N)}
is slowly diverging with N .

4.3. Performance measurements and simulation results

We then evaluate the sparse recovery and estimation accuracy of the nonconcave
penalized VAR model. For each simulation setting, we consider (1) Medium

VAR (p = 30, d = 1, T = 80, 120), and (2) Large VAR (p = 50, d = 1, T =
100, 150) respectively. In addition, we set ρ = 0.5, 0.6 respectively to reflect
different levels of dependences. To obtain a reliable evaluation, the experiment
is replicated for R = 500 times.

Denote the estimation of the transition matrix A1 of the rth replication as

Â
(r)
1 = (â

(r)
1,ij). We first investigate the sparse recovery property of the noncon-

cave penalized VAR model. With to this regard, we consider two measurements.
First, the true positive value (TP) is defined by the number of nonzero edges es-

timated to be nonzero, i.e., TP =
∑R

r=1

∑
i,j I(â

(r)
1,ija1,ij �= 0). Second, the false

positive value (FP) is defined as the number of zero edges incorrectly estimated

to nonzero, i.e., FP =
∑R

r=1

∑
i,j I(a1,ij = 0, â1,ij �= 0). Next, we evaluate

the estimation accuracy. To this end, we calculate the root mean square error
(RMSE) for the transition matrix A1 as RMSEA = (‖Â1 −A1‖2F /p2)1/2, where
‖ · ‖F denotes the Frobenius norm of a matrix.
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Table 1

Simulation Results with 500 Replications for Example 1. The true positive number (TP),
false positive number (FP), and the RMSEA are reported for different dependence levels

(i.e., ρ = 0.5 and ρ = 0.6).

ρ = 0.5 ρ = 0.6
p T TP FP RMSEA TP FP RMSEA

30 80 Lasso 34.3 60.3 0.054 33.1 53.9 0.056
SCAD 29.4 5.3 0.050 28.4 5.7 0.053
MCP 27.9 3.6 0.051 27.0 4.4 0.054
ALasso 29.5 4.9 0.048 28.5 5.5 0.051

30 120 Lasso 35.9 41.9 0.045 35.2 38.8 0.046
SCAD 33.4 2.0 0.031 32.7 2.3 0.034
MCP 33.0 2.0 0.032 32.3 2.5 0.035
ALasso 33.7 2.2 0.031 32.9 2.4 0.034

50 100 Lasso 53.3 57.5 0.040 49.9 55.1 0.043
SCAD 49.0 5.4 0.034 45.1 6.4 0.040
MCP 48.1 6.5 0.036 44.3 7.7 0.041
ALasso 50.2 6.7 0.033 46.1 7.4 0.039

50 150 Lasso 57.2 52.2 0.031 54.5 49.9 0.033
SCAD 55.2 2.6 0.022 52.3 3.5 0.027
MCP 54.9 3.0 0.023 51.8 4.2 0.028
ALasso 55.6 2.8 0.022 52.5 3.0 0.026

The simulation results are given in Tables 1–3. First, under higher depen-
dency levels, the performances of both sparsity recovery as well as model estima-
tion are affected and worse than the lower dependence levels. That corroborates
with the theoretical properties established in this work. Second, comparably
speaking, while the true positive numbers are similar for all the methods, the
nonconcave penalization methods are capable to achieve lower false positive
number, which leads to a more parsimonious model. For instance, in Example
2 with p = 50, T = 100 and ρ = 0.5 (i.e., Table 2), the SCAD penalty is able to
control the FP at about 5.8, while the FP for the Lasso method is 58.3, which
is almost 10 times larger than the SCAD method. In the meanwhile, in terms
of the estimation accuracy, the nonconcave penalization methods could obtain
relatively lower estimation errors. For example, the RMSE for the MCP penal-
ized VAR model is about 0.020 with p = 50, T = 150, and ρ = 0.6 in Example
3 (i.e., Table 3), which is much smaller than the Lasso method with RMSE =
0.032.

Lastly, one could observe that the adaptive Lasso is also a competitive meth-
od, which also has better performance than the Lasso method in terms of the
finite sample performance. Compared to the nonconcave penalization method,
we would like to comment that the nonconcave penalty is typically more flexi-
ble than the adaptive Lasso approach. That is because, an element being es-
timated as zero (e.g., by SCAD penalty) can escape from zero in the next
iteration; while the adaptive Lasso absorbs zeros in each iteration, and al-
ways results in sparser solutions than the initial values [7]. Therefore in prac-
tice the adaptive Lasso method requires to set the initial values more care-
fully.
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Table 2

Simulation Results with 500 Replications for Example 2. The true positive number (TP),
false positive number (FP), and the RMSEA are reported for different dependence levels

(i.e., ρ = 0.5 and ρ = 0.6).

ρ = 0.5 ρ = 0.6
p T TP FP RMSEA TP FP RMSEA

30 80 Lasso 33.4 54.7 0.057 31.6 50.1 0.061
SCAD 28.1 5.1 0.053 26.4 6.3 0.060
MCP 26.6 4.6 0.056 25.1 6.3 0.062
ALasso 28.0 5.4 0.052 26.1 6.3 0.059

30 120 Lasso 35.5 42.2 0.047 34.5 41.6 0.050
SCAD 32.6 2.0 0.034 31.2 2.7 0.040
MCP 32.3 2.4 0.035 30.8 3.4 0.042
ALasso 32.7 2.1 0.034 31.1 2.6 0.040

50 100 Lasso 49.9 58.3 0.044 44.1 54.7 0.049
SCAD 45.0 5.8 0.040 38.8 6.7 0.048
MCP 44.3 7.4 0.041 38.2 8.6 0.049
ALasso 45.9 6.6 0.038 39.5 7.1 0.046

50 150 Lasso 55.5 56.9 0.034 50.7 52.7 0.038
SCAD 52.5 2.4 0.026 47.0 2.9 0.034
MCP 52.2 3.4 0.027 46.6 4.0 0.035
ALasso 52.9 2.4 0.026 47.3 2.6 0.034

Table 3

Simulation Results with 500 Replications for Example 3. The true positive number (TP),
false positive number (FP), and the RMSEA are reported for different dependence levels

(i.e., ρ = 0.5 and ρ = 0.6).

ρ = 0.5 ρ = 0.6
p T TP FP RMSEA TP FP RMSEA

30 80 Lasso 35.3 72.1 0.053 34.9 67.2 0.054
SCAD 30.1 5.1 0.047 29.5 5.1 0.050
MCP 28.6 2.8 0.048 28.0 3.3 0.050
ALasso 30.2 4.4 0.045 29.5 4.9 0.048

30 120 Lasso 36.4 48.5 0.043 36.3 46.3 0.045
SCAD 33.7 1.3 0.028 33.3 1.6 0.031
MCP 33.6 1.3 0.029 33.0 1.6 0.032
ALasso 34.0 1.7 0.029 33.5 1.9 0.031

50 100 Lasso 56.1 50.4 0.043 55.7 55.7 0.043
SCAD 52.4 5.0 0.029 51.5 5.6 0.031
MCP 51.3 5.2 0.031 50.2 6.0 0.033
ALasso 54.0 6.9 0.028 53.2 7.6 0.030

50 150 Lasso 58.9 28.5 0.038 59.2 53.1 0.032
SCAD 57.2 2.2 0.018 56.9 2.7 0.019
MCP 57.2 2.8 0.019 56.5 3.0 0.020
ALasso 58.2 2.8 0.018 57.8 3.1 0.019

4.4. Air pollution data analysis

In recent years, the air pollution has become a more and more serious prob-
lem in mainland China. Along with this issue, the PM2.5 index becomes a
popular tool to quantify the air pollution level. It refers to the particle with
aerodynamic diameters less than 2.5 micrometers. Particularly, high concen-
tration of PM2.5 could lead to severe clinical symptoms, such as lung morbid-
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ity, respiratory and so on [18, 5]. It yields an important question to under-
stand the distribution and diffusion pattern of the PM2.5 spatially and tempo-
rally.

4.4.1. Data description

The PM2.5 data are collected from p = 29 provincial capital cities in mainland
China. The daily PM2.5 index (unit: μg/m3) is reported for one year from 2015-
01-01 to 2015-12-31 with T = 365. Figure 2 illustrates the time series of average
PM2.5 over all cities in the whole year. A higher level of PM2.5 index could be
captured during January to March and October to December. To visualize the
spatial distribution pattern of the PM2.5, we plot the average PM2.5 of each city
in the year of 2015 in Figure 3. One could observe heavier concentration levels
of PM2.5 in northeastern area of China.

Fig 2. Daily average PM2.5 of p = 29 provincial capital cities in the year of 2015. A higher
level of PM2.5 index is observed during January to March and October to December.

4.4.2. Model estimation and exploration

According to the concentration levels of the PM2.5 index, we split the data into
3 time periods: from January to March (Period I), from April to September
(Period II), from October to December (Period III). The Period II, which
mostly ranges from summer to early autumn, has lower PM2.5 levels than the
other two periods. Specifically, we use the log-transformed PM2.5 levels as re-
sponses, which are centered with mean 0 for each city. Then, for each time
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Fig 3. Average PM2.5 in the year of 2015 of p = 29 provincial capital cities. Heavier concen-
tration levels of PM2.5 are exposed in northeastern area of China.

period, we implement the nonconcave penalized VAR model with the SCAD
penalty1 to obtain the results. Here we only consider the lag-1 response to
maintain the model simplicity. To further save the computational complexity, a
SIS screening procedure [9] is firstly conducted to keep 300 edges with highest
absolute correlations with the response. The HBIC criterion (4.3) is used for
model selection.

We visualize the estimated transition matrix Â1 using heatmap in Figure 4–6
for the three time periods. The estimated coefficients are all within [0, 1]. The
cities in the figure are ordered roughly from north to south and east to west.
Therefore the neighbouring cities are close in spatial distance to each other.
First, we observe that the patterns of Period I and Period III are similar and
slightly different from Period II. In Period II, we observe relatively stronger
momentum effects (i.e., higher diagonal elements in Â1), and lower between-

city influences (i.e., sparser off-diagonal elements in Â1). While in Period I

and Period III the transition matrices exhibit denser between-city edges. This
provides evidence of the air pollution diffusion effects in neighbouring cities,
especially in Spring and Winter. Next, one could observe that the estimated
Â1 is not symmetric. In Period I and Period III, we have more estimated
nonzero elements in lower triangle of Â1 than the upper triangle. This implies
that the air diffusion direction is from North to South (recall that the cities are

1The performances of the MCP penalization and adaptive Lasso are similar. The result of
SCAD penalty is presented here for illustration.
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Fig 4. The estimated transition matrix Â1 in Period I.

ordered roughly from North to South). Lastly, we further visualize the between-

city coefficients of Â1 in the map; see Figure 7. By the connection pattern, one
could further confirm that the influences in Period I and Period III are more
intense than Period II. In addition, it is found the between-city connections in
Period II are mostly local and among neighbouring cities than the other two
periods.

Lastly, we compare the VAR model estimation using the nonconcave penal-
ization methods and the Lasso penalty. The HBIC criterion (4.3) is used for
model selection. We compare the performances in terms of the model sparsity,
i.e., measured by number of nonzero estimates, and fitted level, i.e., measured by
the fitted RMSE. The measurements are reported in Table 4. First, compared
to the Lasso method, the nonconcave methods (e.g., SCAD and MCP) and the
adaptive Lasso method are able to obtain VAR models with less nonzero param-
eters. For example, for Period III, the number of nonzero estimates of Lasso is
91, while the nonzero estimates of SCAD is 43, which is much smaller than the
Lasso method. In the meanwhile, although the model achieved by the noncon-
cave methods is more parsimonious, better fitting levels could be obtained by
the nonconcave methods. For instance, the fitted RMSE for the SCAD method
of Period II is 0.372, while the RMSE for the Lasso method in the same period
is 0.388.
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Fig 5. The estimated transition matrix Â1 in Period II.

Fig 6. The estimated transition matrix Â1 in Period III.
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Fig 7. The estimated edges among the p = 29 cities. The bolder lines indicate larger coeffi-
cients.

Table 4

The performance of the VAR(1) model estimation with Lasso, SCAD, MCP, and adaptive
Lasso penalization. The number of nonzero estimates and fitted RMSE are summarized and
compared. The nonconcave penalization methods are able to achieve a parsimonious model

with better fitting level.

Number of Nonzero Estimates Fitted RMSE
Lasso SCAD MCP ALasso Lasso SCAD MCP ALasso

Period I 54 33 35 41 0.478 0.442 0.441 0.430
Period II 61 38 26 37 0.388 0.372 0.386 0.369
Period III 91 43 50 46 0.471 0.458 0.456 0.448

5. Conclusion

In this work, we investigate the nonconcave penalized VAR model estimation
methods. Specifically, the estimation properties are established under the influ-
ence of both temporal and cross-sectional dependences. The oracle properties
are given for the nonconcave penalties, where the feature dimensionality is al-
lowed to grow exponentially fast with the sample size. Lastly, an air pollution
dataset is analyzed for illustration propose, it is found that the influence pat-
terns among different cities are highly related to the specific areas as well as the
seasons in mainland China.

To conclude this work, we consider the following directions as future research
topics. First, although the regularized VAR model estimation could help to re-
cover the connection patterns among the nodes, however, the regularization level
is not clear. Therefore, certain type of criterions (e.g., BIC) should be designed
to select the true model efficiently. Second, as mentioned in the numerical study,
before we conduct penalization estimation, screening methods could be firstly
used to reduce the computational complexity. As a result, efficient screening al-
gorithms should be proposed to better suit the complex dependence structure of
the data. In addition, we could observe that from the numerical performance the
adaptive Lasso is also a competitive method. It is then of great interest to study
the theoretical properties of other shrinkage methods. Lastly, the penalization
methods could be revised when new information of the nodes is obtained. For
example, when the network relationships are observed among the nodes, new
mechanisms to combine such known structure information should be further
investigated.
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Appendix A: Proof of derivation bounds

A.1. Useful lemmas

Lemma 1. Assume all the conditions in Proposition 2. Define K = {v ∈ Rq :
‖v‖ ≤ 1, supp(v) ∈ S}. In addition, let c1λ = μmin(A)/λmax(Σe) and c2λ =
λ−1
min(Σe)μmax(A). Then we have

P
{
sup
v∈K

|v�(Γ̂Z − ΓZ)v| > 2ηc−1
1λ

}
≤ 2 exp{−cN min(η, η2) + s log(21)}. (A.1)

Further assume s = o{N min(1, ω2)}. Then we have

P
{
sup
v∈K

|v�(Γ̂Z − ΓZ)v| > 2ηc−1
1λ

}
≤ 2 exp{−cN min(η, η2) + s log(21)}, (A.2)

max
i

|λi(Γ̂
(S)
Z − Γ

(S)
Z )| = op

(
c−1
2λ

)
. (A.3)

Proof of Lemma 1. Note that Γ̂Z − ΓZ = Ip ⊗ (Γ̂X̃ − ΓX̃). We then have the

results of Proposition 2.4 of [2] also hold for Γ̂Z −ΓZ . By Proposition 2.4 of [2],
we have for any v ∈ Rq, ‖v‖ ≤ 1, and any η > 0,

P
{
|v�(Γ̂Z − ΓZ)v| > η

λmax(Σe)

μmin(A)

}
≤ 2 exp{−cN min(η, η2)}. (A.4)

This result is for a single v ∈ Rq. Let D = Γ̂Z − ΓZ . Then we consider the set
K = {v ∈ Rq : ‖v‖ ≤ 1, supp(v) ∈ S}.

Choose K∗ = {u1, · · · , um} as a 1/10-net of K. By Lemma 3.5 of [24], |K∗| ≤
21s. For every v ∈ K∗, there exists some ui ∈ K∗ such that ‖Δv‖ ≤ 1/10, where
Δv = v − ui. Then we have

γ
def
= sup

v∈K
|v�Dv| ≤ max

i
|u�

i Dui|+ 2 sup
v∈K

|max
j

u�
i DΔv|+ sup

v∈K
|(Δv)�D(Δv)|.

Since 10(Δv) ∈ K, the third term is bounded by γ/100. Next, by Cauchy’s
inequality, we have

2 sup
v∈K

|max
j

u�
i DΔv| ≤ 2

√
max

i
(u�

i Dui) sup
v∈K

{(10Δv)�D(10Δv)} ≤ 2/10γ.

It could be concluded that γ is bounded by γ ≤ 2maxi u
�
i Dui. Together with

(A.4) we have

P
{
sup
v∈K

|v�Dv| > 2η
λmax(Σe)

μmin(A)

}
≤ 2 exp{−cN min(η, η2) + s log(21)}.

Further set η = c1λ/c2λ = ω and note that min(ω, ω2) ≥ min(1, ω2), we then
have (A.3).
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Lemma 2. Assume the same conditions in Proposition 3. Then we have

P
{
‖Z�

ScZSc‖max ≤ 2c−1
1λ

}
≥ 1− 6 exp{−cN + 2 log q}. (A.5)

Proof of Lemma 2. The proof is similar to the proof of (3.10). By Proposition
2.4 (2.9), and (2.6) of [2], we have

P
{
|e�i (Z�

ScZSc)ej/N −e�i Γ
(Sc,Sc)
Z ej |>3η

λmax(Σe)

μmin(A)

}
≤6 exp{−c∗N min(η2, η)}.

where c∗ is a finite positive constant. Therefore, it can be concluded with
probability at least 1 − 6 exp{−c∗N min(η2, η)}, we have |e�i (Z�

ScZSc)ej/N −
e�i Γ

(Sc,Sc)
Z ej | ≤ 3ηλmax(Σe)μ

−1
min(A). It leads to

|e�i (Z�
ScZSc)ej/N | ≤ |e�i Γ

(Sc,Sc)
Z ej |+ 3ηλmax(Σe)μ

−1
min(A)

≤ ‖Γ(Sc,S)
Z ‖max + 3ηλmax(Σe)μ

−1
min(A).

Further note that ‖Γ(Sc,S)
Z ‖max ≤ λmax(ΓZ) = λmax(ΓX̃(0)) ≤ c−1

1λ by (2.5). By
summing over all 1 ≤ i, j ≤ q − s, and letting η = 1/3, we have

P
{
max
i,j

|e�i (Z�
ScZSc)ej/N | ≥ 2c−1

2λ

}
≤

∑
1≤i,j≤q−s

6 exp(−c∗N/9) ≤ 6 exp{−c∗N/9 + 2 log q},

which yields the result by letting c = c∗/9.

Lemma 3. Assume the conditions in Theorem 4 hold. Then we have

max
i

|λi(Γ̂
(S)
Ze − Γ

(S)
Ze )| = op

{
c−2
2λ

}
.

Proof of Lemma 3. Note that Σ̂Ze = Σ̂e⊗ Γ̂X̃(0) = (Σ̂e⊗Idp)Γ̂Z . Then we have

maxi |λi(Γ̂Ze − ΓZe)| ≤ maxi |λi(Σ̂e − Σe)|maxi |λi(Γ̂Z − ΓZ)|. Consider the

events H1 = {maxi |λi(Γ̂
(S)
Z − Γ

(S)
Z )| ≤ 2λ−1

max(Σe)c
−2
2λ }, H2 = {maxi |λi(Σ̂e −

Σe)| ≤ λmax(Σe)}. On the events H1 and H2, we have maxi |λi(Γ̂Ze − ΓZe)| =
o(c−2

2λ ). We then prove P (Hc
1) → 0 and P (Hc

2) → 0 respectively as follows.
1. Proof of P (Hc

1) → 0.
By (A.2), we already have

P
{
sup
v∈K

|v�(Γ̂Z − ΓZ)v| > 2ηc−1
1λ

}
≤ 2 exp{−cN min(η, η2) + s log(21)}.

Then set η = c1λc
−2
2λ λ

−1
max(Σe), and note s � Nc1λc

−2
2λ λ

−1
max(Σe), then we have

P (Hc
1) → 0.

2. Proof of P (Hc
2) → 0.
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Define B̂ is the matrix form estimator obtained from β̂. Then we have Σ̂e =
N−1(Y−X B̂)�(Y−X B̂) = N−1E�E+N−1{X (B− B̂)}�E+E�{X (B− B̂)}+
(B − B̂)�X�X (B − B̂). Then it suffices to show that

σmax(N
−1E�E − Σe) = op(λmax(Σe)), (A.6)

σmax(N
−1{X (B − B̂)}�E) = op(λmax(Σe)), (A.7)

λmax

{
N−1(B − B̂)�X�X (B − B̂)

}
= op(λmax(Σe)). (A.8)

Note that the second one (A.7) could be implied by (A.6) and (A.8). We only
show the proofs of (A.6) and (A.8) respectively as follows.

First by (A.1) we have

P
{

sup
v∈Rp

|v�(N−1E�E − Σe)v| > 2ηλmax(Σe)
}

≤ 2 exp{−cN min(η, η2) + p log(21)}.

By letting η = 1/2 and p � N , the results can be obtained.

Next, we have λmax

{
N−1(B−B̂)�X�X (B−B̂)

}
≤ (β̂−β)�(N−1Z�Z)(β̂−

β) = (β̂S−βS)
�Γ̂

(S)
Z (β̂S−βS) ≤ λmax(Γ̂

(S)
Z )‖β̂S−β̂S‖2 ≤ 2αλc

−1
1λ s/N by setting

η = 1 in (A.2). Further note s � Nα−1
λ c1λλmax(Σe), then we have (A.8).

A.2. Proof of Proposition 1

The proof is basically the same as Theorem 1 of [10]. For the completeness, we
state the basic idea as follows. First we give the necessary conditions. Define
the unpenalized objective function as Q(β) = −β�γ̂Z+2−1β�Γ̂Zβ, where γ̂Z =

(Ip ⊗X�)Y/N , and Γ̂Z = Z�Z/N = (I ⊗X�X/N). Then we have

Q̇(β) = Γ̂Zβ − γ̂Z , Q̈(β) = Γ̂Z

By the classical optimization theory, if β̂ = (β̂1, · · · , β̂q)
� is the local minimizer

of the penalized objective function (3.2), then the Karush-Kuhn-Tucker (KKT)
conditions hold. Namely,

Γ̂Z β̂ − γ̂Z + λNv = 0, (A.9)

where v = (v1, · · · , vq)� ∈ Rq with vj = ρ(β̂j) for β̂j �= 0 and vj ∈
[−ρ′(0+), ρ′(0+)] for β̂j = 0. Note that β̂ is also a local minimizer of of (3.2) on
the subspace {β ∈ Rq : βSc = 0}. From the second order condition, we have

λmin(Γ̂
(S)
Z ) ≥ λNκ(ρ; β̂S),

where κ(ρ; β̂S) is defined in (3.3). Equivalently, (A.9) can be expressed as

Z�
S (Y − Zβ̂)−NλNρ(β̂S) = 0,
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(NλN )−1‖Z�
Sc(Y −Xβ̂)‖∞ ≤ ρ′(0+),

which correspond to (3.4) and (3.5).
Next, we show the sufficient conditions. First, constrain the penalized objec-

tive function (3.2) on subspace defined by S as B = {β ∈ Rq : βSc = 0}. From
(3.6), we could conclude that the penalized objective function is strictly convex

in a ball N0 in the subspace B centered at β̂. Along with (3.4), this implies that

β̂ is a critical point of Qp(β) and also the unique minimizer of Qp(β).

Then we only need to prove that the sparse vector β̂ is ia strict local minimizer
of Qp(β) on the space Rq. To this end, define a sufficiently small ball N1 in Rq

centered at β̂ such that N1 ∩ B ⊂ N0. It then suffices to show that Qp(β̂) <
Qp(γ1) for any γ1 ∈ N1\N0. Let γ2 be the projection of γ1 on the subspace

B. Then we have γ2 ∈ N0, which implies Qp(β̂) < Qp(γ2) if γ2 �= β̂ due to

that β̂ is the strict minimizer of Qp(β) in N0. Therefore it suffices to show that
Qp(γ2) < Qp(γ1).

Using the mean-value theorem, we have

Qp(γ2)−Qp(γ1) = Q̇�
p (γ0)(γ2 − γ1), (A.10)

where γ0 lies on the line joining γ1 and γ2. For j ∈ S, we have γ2j − γ1j = 0.
For j �∈ S, we have the sign of γ0j is the same as γ1j . Consequently, the right
hand of (A.10) can be written as

N−1
{
Z�
Sc

(
Y − Zγ0

)}�
γ1,Sc − λN

∑
j 	=S

ρ′(|γ0j |)|γ1,j |. (A.11)

Since γ1 ∈ N1\N0, we have γ1,Sc �= 0.
By condition (C2), ρ′(t) is decreasing in t ∈ [0,∞). By (3.5) and the conti-

nuity of ρ′(t), there exists δ > 0 and for any β ∈ Nδ (where Nδ is a ball in Rq

centered at β̂ with radius δ), such that∥∥∥(NλN )−1Z�
Sc(Y − Zβ)

∥∥∥
∞

< ρ′(δ).

Next we shrink the radius of the ballN1 to be less than δ such that |γ0j | ≤ |γ1j | <
δ for j �∈ S. Since γ0 ∈ N1, we have (A.11) is strictly less than λNρ′(δ)‖γ1,Sc‖1−
λNρ′(δ)‖γ1,Sc‖1 = 0, where the second term is due to ρ′(|γ0j |) > ρ′(δ) by using
the monotonicity of ρ′(·). This proves the result.

A.3. Proof of Proposition 2

Define Γ̂X̃(0) = X�X/N and ΓX̃(0) = E(Γ̂X̃(0)). Recall Γ̂Z
def
= Z�Z/N =

Ip ⊗ Γ̂X̃(0). One could easily verify that ΓZ = Ip ⊗ ΓX̃(0).

Proof of (3.7). Let D = Γ̂Z − ΓZ . Set η = ω/4 (recall that ω = c1λ/c2λ, where
c1λ = λ−1

max(Σe)μmin(A) and c2λ = λ−1
min(Σe)μmax(A)). By (A.1) in Lemma 1,
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we then have at least with probability 1 − 2 exp{−cN min(1, ω2) + s log(21)},
|v�Dv| ≤ 1/2λmin(Σe)/μmax(A). Then we have

(v�Γ̂Zv)/N ≥ v�ΓZv − 1/2λmin(Σe)/μmax(A).

Since ΓZ = Ip ⊗ ΓX̃(0), we have v�ΓZ(0)v ≥ λmin(ΓX̃(0)). By Proposition 2.3
of [2] and (2.6) we have

λmin(ΓX̃(0)) ≥ λmin(ΥX) ≥ λmin(Σe)

μmax(A)
.

Combining the results, we have

P
{
λmin(Z

�
S ZS) >

N

2

λmin(Σe)

μmax(A)

}
≥ 1− 2 exp{−cN min(1, ω2) + s log 21}.

Proof of (3.8). Similarly, for any v ∈ Rq, by (A.4) we have

P
{
v�Γ̂Zv > (1 + η)

λmax(Σe)

μmin(A)

}
≤ 2 exp{−cN min(η, η2)}.

By the same technique in proof of (3.7) and letting η = 1, the results can be
obtained.

A.4. Proof of Proposition 3

Proof of (3.9). Note that for an arbitrary matrix M ∈ Rs×s, we have ‖M‖∞ ≤√
sλmax(M). Consequently, (3.9) can be directly obtained from (3.7).

Proof of (3.10). Recall Γ
(Sc,S)
Z be the submatrix of ΓZ with row and column in-

dex in Sc and S respectively. Without loss of generality, we assume

‖Γ(Sc,S)
Z ‖max > 0. By Proposition 2.4 (2.9), and (2.6) of [2], we have

P
{
|e�i (Z�

ScZS)ej/N − e�i Γ
(Sc,S)
Z ej | > 3η

λmax(Σe)

μmin(A)

}
≤ 6 exp{−cN min(η2, η)}.

Therefore with probability at least 1− 6 exp{−cN min(η2, η)}, we have

|e�i (Z�
ScZS)ej/N − e�i Γ

(Sc,S)
Z ej | ≤ 3ηλmax(Σe)μ

−1
min(A).

It leads to |e�i (Z�
ScZS)ej/N | ≤ |e�i Γ

(Sc,S)
Z ej | + 3ηλmax(Σe)μ

−1
min(A) ≤

‖Γ(Sc,S)
Z ‖max + 3ηλmax(Σe)μ

−1
min(A). By summing over all 1 ≤ i ≤ q − s and

1 ≤ j ≤ s, and letting η = ν, we have

P
{ 1

N
max
i,j

|e�i (Z�
ScZS)ej | ≥ ‖Γ(Sc,S)

Z ‖max +max
(
‖Γ(Sc,S)

Z ‖max,
λmax(Σe)

μmin(A)N δ

)}
≤

∑
1≤i≤q−s,1≤j≤s

6 exp{−cN min(ν2, ν)}≤6 exp{−cN min(ν2, ν) + log q + log s},

which yields the result.
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A.5. Proof of Proposition 4

Note that for the any vector ξ, ‖ξ‖∞ = ‖ξ‖max. Therefore we only show the
results hold for the maximum norm of ξS and ξSc .

By Proposition 2.4 (2.11) of [2], we have

P
{
|e�i (X�E)ej | > NQ(β,Σe)η

}
≤ 6 exp

(
− c1N min(η, η2)

)
First, by letting η = c

−1/2
1

√
logN/N , we have P{|ξj |>c

−1/2
1 Q(β,Σe)

√
N logN}

≤ 6 exp(− logN) = 6N−1 for j ∈ S. Therefore, we have

P (‖ξS‖∞ > c
−1/2
1 Q(β,Σe)

√
N logN)

≤
∑
j∈S

P (|ξj | > c
−1/2
1 Q(β,Σe)

√
N logN) ≤ 6s/N.

This proves (3.12).

Next, by letting η = c
−1/2
1 uN/

√
N , we then have

P{|ξj | > Q(β,Σe)uN

√
N} ≤ 6 exp{−N2α logN}

for j ∈ Sc. Similarly, we have P (‖ξSc‖∞ > Q(β,Σe)uN

√
N) ≤∑

j∈Sc

P (|ξj | > Q(β,Σe)uN

√
N) ≤ 6(q − s) exp{−N2α logN}.

This proves (3.13).

Appendix B: Proof of the main results

B.1. Proof of Theorem 1

Recall ξ = Z�(Y − Zβ) = vec(X�E) and uN = c
−1/2
1 Nα(logN)1/2. Consider

the events

H1 =
{
‖ξS‖∞ ≤ c

−1/2
1 Q(β,Σe)

√
N logN

}
,

H2 =
{
‖ξSc‖∞ ≤ Q(β,Σe)uN

√
N
}
,

H3 =
{
‖(Z�

S ZS)
−1‖∞ ≤ cμ

}
, H4 =

{
‖Z�

ScZS‖max ≤ cΓ

}
,

H5 =
{
λmin(Z

�
S ZS) >

N

2c2λ

}
.

By Bonferroni’s inequality, (3.6), and Proposition 3, 4, P (H1 ∩ H2 ∩ H3 ∩
H4 ∩ H5) ≥ 1 −

∑5
j=1 P (Hc

j) = 1 − 6[s/N + exp(−c1N
2α logN + log q) +

2 exp{−cN min(1, ω2) + s log 21} + exp{−cN min(ν, ν2) + log q + log s}]. By
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log q = O(N2α) = o(N1−2δ) in Condition (C3) and s = o(N min(1, ω2)) in Theo-
rem 1, we have P (Hc

j) → 0 for 1 ≤ j ≤ 5 as N → ∞. Consequently, in the follow-
ing, we will show that under the eventH1∩H2∩H3∩H4∩H5, there exists a solu-
tion β̂S satisfying sgn(β̂S) = sgn(βS) and ‖β̂S−βS‖∞ = O(Q(β,Σe)N

−γ logN).
Step 1: Existence of Solution to (3.4)

We first prove that for sufficiently large N , there exists a solution β̂S insider
the cube

N =
{
θ ∈ Rs : ‖θ − βS‖ = νN

}
.

where νN = Q(β,Σe)N
−γ logN . For any θ = (θ1, · · · , θs)� ∈ N , we have

min
j∈{1,··· ,s}

|θj | ≥ min
j∈S

|β0,j | − dN = dN (B.1)

and sgn(θ) = sgn(βS) due to that dN ≥ Q(β,Σe)N
−γ logN . Let η = NλNρ(θ).

By the monotone condition of ρ′(t) and (B.1) we have ‖η‖∞ ≤ NλNρ′(dN ).
Along with the definition of H1, it yields

‖ξS − η‖∞ ≤ c
−1/2
1 Q(β,Σe)

√
N logN +NλNρ′(dN ) (B.2)

Define the vector valued function

γ(θ) = Z�ZSθ, θ ∈ Rs,

Ψ(θ) = γS(θ)− γS(βS)− (ξS − η), θ ∈ Rs

In addition, let
Ψ(θ) = (Z�

S ZS)
−1Ψ(θ) = (θ − βS) + u, (B.3)

where u = −(Z�
S ZS)

−1(ξS − η). By (3.9) and (B.2), we then have

‖u‖∞ ≤ ‖(Z�
S ZS)

−1‖∞‖ξS − η‖∞
= O

{
c2λQ(β,Σe)s

1/2N−1/2
√
logN + s1/2c2λλNρ′(dN )

}
By conditions of Theorem 1, we have s1/2c2λ = o(N1/2−γ(logN)1/2). Thus
for the first term we should have Furthermore, by Condition (C4), we have
|s1/2c2λλNρ′(dN )| = o{Q(βS ,Σe)N

−γ logN} = o(νN ). Therefore we have
‖u‖∞ = o(νN ). If (θ − βS)j = νN , we have Ψj(θ) ≥ νN − ‖u‖∞ ≥ 0. If
(θ − βS)j = −νN , we have Ψj(θ) ≤ −νN + ‖u‖∞ ≤ 0. By the Miranda’s

existence theorem, there exists a solution β̂S in N such that Ψ(θ) = 0, which is
also the solution of Ψ(θ) = 0.

Step 2: Verification of Condition (3.5)

Let β̂ ∈ Rq with β̂ ∈ N being a solution to (3.4) and β̂Sc = 0. We next show

that β̂ satisfies (3.5). Note that

z = (NλN )−1Z�
Sc(Y − ZS β̂)

= (NλN )−1
{
ξSc − Z�

ScZS(β̂S − βS)
}
.
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On the event H2, we have ‖(NλN )−1ξSc‖∞ = O(N−1/2λ−1
N uNQ(β,Σe)). Re-

call that uN = c
−1/2
1 Nα(logN)1/2. Together with Condition (C4) we have

‖(NλN )−1ξSc‖∞ = O((logN)−1) = o(1). Recall that β̂S solves the equation
that Ψ(θ) = 0. As a result, we have

β̂S − βS = (Z�
S ZS)

−1(ξS − η).

Consequently, by (B.2) we have

‖z‖∞ ≤ o(1) + (NλN )−1‖(Z�
ScZS)(Z

�
S ZS)

−1‖∞‖ξS − η‖∞
≤ o(1) + (NλN )−1‖(Z�

ScZS)(Z
�
S ZS)

−1‖∞
×
{
c
−1/2
1 Q(β,Σe)

√
N logN +NλNρ′(dN )

}
Furthermore, we have ‖(Z�

ScZS)(Z
�
S ZS)

−1‖∞ ≤ cμcΓ on eventsH3 andH4. Fur-
ther by Condition (C3), we have cμcΓ ≤ min{Cρ′(0+)/ρ′(dN ), O(Nα)}. There-
fore for the second and third terms in above ‖z‖∞ we have by Condition (C3)

(NλN )−1‖(Z�
ScZS)(Z

�
S ZS)

−1‖∞
{
c
−1/2
1 Q(β,Σe)

√
N logN

}
≤ (NλN )−1O(NαQ(β,Σe)

√
N logN) = o((logN)−1/2) = o(1)

‖(Z�
ScZS)(Z

�
S ZS)

−1‖∞ρ′(dN ) ≤ Cρ′(0) < ρ′(0+)

where the first inequality is due to NλN = Nα+1/2 logNQ(β,Σe) of Condition
(C4), and the second is due to Condition (C3) for sufficiently large N .

Step 3: Verification of (3.6)

Lastly, (3.6) is guaranteed by event H5 and Condition (C5). This completes
the proof of Theorem 1.

B.2. Proof of Theorem 2

Denote the objective function as Q(β) = −2β�γ̂ + β�Γ̂β +
∑q

j=1 pλ(|βj |). To
prove the result, it suffices to show that under the given regularity conditions,
there exists a strict local maximizer β̂ of Q(β) such that (1) β̂Sc = 0 with proba-

bility tending to 1 as N → ∞ (i.e., sparsity), and (2) ‖β̂S−βS‖ = Op(αλ

√
s/N)

(i.e., αλ

√
s/N -consistency).

Step 1: (Consistency) We first constrain Q(β) on the s-dimensional sub-
space {β ∈ Rq : βSc = 0}. The constrained penalized likelihood is given by

Q(θ) = −2θ�γ̂S + θ�Γ̂Sθ +

q∑
j=1

pλ(|θj |), (B.4)

where θ = (θ1, · · · , θs)� ∈ Rs. We then show there exists a strict local minimizer

β̂S of Q(θ) such that ‖β̂S − βS‖ = Op(αλ

√
s/N). To this end, define

O1 =
{
Q(βS) < min

θ∈∂Nτ

Q(θ)
}
, (B.5)
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where ∂Nτ denotes the boundary of a closed set Nτ = {θ ∈ Rs : ‖θ − βS‖ ≤
αλ

√
s/Nτ} and τ ∈ (0,∞). It suffices to show P (O1) converges to 1 as N → ∞.

To this end, we need to analyze the function Q(θ) on the boundary ∂Nτ .
Let N be sufficiently large that αλ

√
s/Nτ ≤ dN since dN � αλ

√
s/N by

Condition (C6). By Taylor’s expansion we have

Q(θ)−Q(βS) = −2(θ − βS)
�v + (θ − βS)

�D(θ − βS), (B.6)

where

v = γ̂S −N−1Z�
S ZSβS − pλN

(βS), D = N−1Z�
S ZS + diag{p′′λ(|θ∗|)},

where θ∗ = ZSθ
∗, and θ∗ lies on the line segment joining θ and βS . Note that the

second order derivative of the penalty pλ does not necessarily exist. One could
verify that the second part of D can be replaced by a diagonal matrix with
maximum absolute element bounded by λNκ0. Recall that for any θ ∈ ∂Nτ , we
have ‖θ − βS‖ = αλ

√
s/Nτ . Since θ∗ ∈ ∂Nτ by Condition (C6), we then have

θ∗ ∈ N0, where N0 is defined in Condition (C4) as N0 = {θ ∈ Rs : ‖θ−βS‖∞ ≤
dN}. Consider the event O2 = {λmin(Z

�
S ZS/N) > c−1

2λ /2}. By (3.7), we have
P (O2) ≥ 1 − 2 exp{−cN min(1, ω2) + s log 21}. Consequently on O2 we have
λmin(D) ≥ 2−1c−1

2λ − λNκ0 ≥ c−1
2λ /4. Thus by (B.6), we have

min
θ∈∂Nτ

Q(θ)−Q(βS) ≥ −2αλ

√
s/Nτ‖v‖+ α2

λτ
2(s/N)c−1

2λ /4 (B.7)

Consequently, we have

P (O1) ≥ P
(
‖v‖2 <

c−2
2λ α

2
λsτ

2

64N

)
≥ 1− 64NE‖v‖2

c−2
2λ α

2
λsτ

2
(B.8)

by the Markov inequality. Further consider the event O3 = {λmax(Z
�
S ZS) <

2Nc−1
1λ }. We have P (O3) ≥ 1 − 2 exp{−cN + s log 21} → 1. It can be derived

that on the event O3 that

E‖v‖2 = N−2E‖Z�
S (Y − ZSβS)‖2 + ‖pλ(βS)‖2

≤ N−2E{tr(Z�
S (Σe ⊗ IN )ZS)}+ sp′λ(dN )2

≤ N−2sλmax(Z
�
S ZS)λmax(Σe) + sp′λ(dN )2 = O(N−1sαλc

−1
2λ )

due to that p′λ(t) is decreasing in t ∈ [0,∞) and p′λN
(dN ) = O(N−1/2αλc

−1/2
2λ )

in Condition (C6). Therefore, one could derive P (O1) ≥ 1 − O(τ−2α−1
λ c2λ),

which leads to the result that ‖β̂S − βS‖ = Op(αλ

√
s/N).

Step 2. (Sparsity) Let β̂ ∈ Rq with β̂S ∈ Nτ ⊂ N0 and β̂Sc = 0. It suffices

to show that β̂ is a strict local minimizer of Q(β) on the space of Rq. From
(3.5), it suffices to check that ‖z‖∞ < ρ′(0+), where

z = (Nλ)−1Z�
Sc(Y − ZS β̂S) = (Nλ)−1

{
ξSc − Z�

Sc(ZS β̂S − ZSβS)
}
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where ξ = Z�(Y − Zβ). We deal with the two parts in z respectively. First we
consider the event

T1 =
{
‖ξSc‖∞ ≤ uN

√
NQ(β,Σe)

}
, (B.9)

where uN = c
−1/2
1 Nα/2

√
logN . On the event T1,

(NλN )−1‖ξSc‖∞ = O(N−1/2λ−1
N uNαλ) = o(1)

by λN � Nα/2−1/2(logN)1/2αλ in Condition (C6) and

P (T1) ≥ 1− 6 exp(−Nα logN + log q) → 1

by log q = O(Nα) in Condition (C4). For the second part we have

(NλN )−1‖(Z�
ScZS)(β̂S − βS)‖∞

≤ (NλN )−1
{
max

i
|e�i (Z�

ScZSZ
�
S ZSc)ei|1/2‖β̂S − βS‖2

}
.

Here we consider the event

T2 =
{
max

i
|e�i (Z�

ScZSZ
�
S ZSc)ei|/N2 ≤ 4c−2

1λ

}
For each i we have |e�i (Z�

ScZSZ
�
S ZSc)ei| ≤ λmax(Z

�
S ZS)maxi |e�i (Z�

ScZSc)ei|.
By (3.8) we have P{N−1λmax(Z

�
S ZS) ≥ 2c−1

1λ } ≤ 2 exp{−cN + s log 21}. In
addition, by (A.5) of (2), P{maxi |e�i (Z�

ScZSc)ei| ≥ 2c−1
1λ } ≤ 2 exp{−cN +

2 log q}. By summing over i = 1, · · · , q − s, we have P (T2) ≥ 1 − 2 exp(−cN +
s log 21 + 3 log q), which converges to 1 by the assumption that log q = o(Nα)
in Condition (C6) and s = o(N min(1, ω2)). Under the event T2, we have

(NλN )−1
{
max

i
|e�i (Z�

ScZSZ
�
S ZSc)ei|1/2‖β̂S − βS‖2

}
= O(λ−1

N

√
s/Nαλc

−1
1λ τ) = o(1),

given the condition λN �
√

s/Nαλc
−1
1λ in Condition (C6).

B.3. Proof of Theorem 3

By Theorem 2, we only need to prove the asymptotic normality of β̂S . It has
been shown that β̂S is a strict local minimizer and β̂Sc = 0. As in the proof
of Theorem 2, β̂S is a strict local minimizer of Q(θ) and β̂Sc = 0. Therefore

we have ∂Q(β̂S) = 0. It can be derived ∂Q(θ) = −2γ̂ + 2Γ̂Zθ + pλ(θ), where
pλ(θ) = (p′λ(θ1), · · · , p′λ(θs))�. By conditions in Theorem 3, we have

‖pλN
(β̂S)‖2 ≤

√
sp′λN

(dN ) = op(N
−1/2c−1

2λ λmin(Σe)).

We then have

Γ̂
(S)
Z (β̂S − βS) = N−1Z�

S Ẽ + op(N
−1/2c−1

2λ λmin(Σe)),
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where Ẽ = vec(E) and ZS denotes the submatrix of Z with column indexes in
S. Further it can be derived that
√
NΓ

(S)
Z (β̂S−βS) = −

√
N(Γ̂

(S)
Z −Γ

(S)
Z )(β̂S−βS)+N−1/2Z�

S Ẽ+op(c
−1
2λ λmin(Σe)).

To prove the result, it suffices to show that for any AN ∈ Rm×s with AA� → G,
we have

‖AN (Γ̂
(S)
Z − Γ

(S)
Z )(β̂S − βS)‖ = op(‖Γ(S)

Z (β̂S − βS)‖)
N−1/2AN (Γ

(S)
Ze )

−1/2Z�
S Ẽ →d N(0, G).

For the first, using the Cauchy’s inequality, it suffices to verify that

max
i

|λi(Γ̂
(S)
Z − Γ

(S)
Z )| = op(λmin(Γ

(S)
Z )) = op(c

−1
2λ ),

which is directly implied by (A.3) of Lemma 1. Next, note that λmin(Γ
(S)
Ze ) ≥

λmin(ΓX̃(0))λmin(Σe) ≥ c−1
2λ λmin(Σe). Consequently, the last term could be

dominated by the second term. We then show N−1/2AN (Γ
(S)
Ze )

−1/2Z�
S Ẽ →d

N(0, G).
Since m is finite, then it suffices to show that for any η with ‖η‖ = 1, that

N−1/2η�AN (Γ
(S)
Ze )

−1/2Z�
S Ẽ →d N(0, η�Gη). First it can be derived Z�Ẽ =∑

t vec(X̃t−1E�
t ). Define JS = (Is,0s,dp2−s). Then Z�

S E = JSZ
�E =

∑
t JS(Ip⊗

X̃t−1)Et. Let ξt = N−1/2η�AN (Γ
(S)
Ze )

−1/2JS(Ip ⊗ X̃t−1)Et. Then we have

N−1/2η�AN (Γ
(S)
Ze )

−1/2Z�
S Ẽ =

∑
t

ξt.

Define the σ-field Ft = σ{εis, 1 ≤ i ≤ N,−∞ < s ≤ t}. As a result, the
sequence {

∑t
s=1 ξs,Ft} constitutes a martingale array. To show the asymptotic

normality of
∑T

t=1 ξt, we employ the central limit theorem of the martingale
difference array. We then verify the two conditions in Corollary 3.1 of [15].

Define η̃ = J�
S (Γ

(S)�
Ze )−1/2A�

Nη ∈ Rdp2

. First, it can be derived that

S1T
def
=

T∑
t=1

E{ξ2t I(|ξt| > δ)|Ft−1} ≤ δ−2
T∑

t=1

E(ξ4t |Ft−1)

≤
∑
t

N−2Cδ−2
(
η̃�

[
Σe ⊗

{
(X̃t−1X̃

�
t−1

}]
η̃
)2

where C is a finite constant since the errors take Gaussian distribution. To show
S1T →p 0, it suffices to prove that E(S1T ) → 0. Let Ut = Σ

1/2
e ⊗X̃t then we have

E(S1T ) = N−1cδ−2E{(U�
t η̃η̃�Ut)

2}. It can be derived Ut follows multivari-
ate normal distribution N(0,Σe ⊗ ΓX̃(0)). Consequently, we have U�

t η̃η̃�Ut =

Ũ�
t ΣuŨt = Ũ�

t QuΛuQ
�
u Ũt, where Ũt = (Σ

−1/2
e ⊗ Γ

−1/2

X̃
(0))Ut, Σu = QuΛuQ

�
u

is the eigenvalue decomposition of Σu with Λu = (λu,1, · · · , λu,dp2) being the di-
agonal matrix and Qu being the orthogonal matrix. Consequently, U�

t η̃η̃�Ut =
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i λu,iξ

2
u,i, where ξ2u,i independently follows χ2(1) distribution. Then we have

E(U�
t η̃η̃�Ut)

2 = {tr(Σu)}2 + 2tr(Σ2
u). It can be calculated tr(Σu) = η̃�(Σe ⊗

ΓX̃(0))η̃ = η�ANA�
Nη ≤ λmax(G) as N → ∞. Next, tr(Σ2

u) = (η̃�(Σe ⊗
ΓX̃(0))η̃)2 = (η�ANA�

Nη)2 ≤ λ2
max(G) as N → ∞. This implies E(S1T ) → 0

immediately.

Next, define

S2T
def
=

T∑
t=1

E(ξ2t |Ft−1) = N−1
T∑

t=1

(
η̃�

[
Σe ⊗

{
X̃t−1X̃

�
t−1

}]
η̃
)

= η�AN (Γ
(S)
Ze )

−1/2(Σe ⊗ Γ̂X̃(0))(Γ
(S)�
Ze )−1/2A�

Nη.

and we then need to verify that S2T →p η�Gη. Define ΔX̃ = Γ̂X̃(0) − ΓX̃(0))

then we have S2T = η�Gη + η�AN (Γ
(S)
Ze )

−1/2ΔX̃(Γ
(S)�
Ze )−1/2A�

Nη. It leaves to

show that η�AN (Γ
(S)
Ze )

−1/2ΔX̃(Γ
(S)�
Ze )−1/2A�

Nη = op(1). To this end, it suffices
to show

max
i

|λi{(Γ(S)
Ze )

−1/2(Σe⊗ΔX̃)(Γ
(S)
Ze )

−1/2}|≤max
i

|λi(ΔX̃)|)λ−1
min{ΓX̃(0)}=op(1).

Note that maxi |λi(ΔX̃)| = op(c
−1
2λ ) by (A.3) of Lemma 1. In addition, accord-

ing to Proposition 2.3 of [2], we have λmin{ΓX̃(0)} ≥ c−1
2λ . Therefore we have

maxi |λi(ΔX̃)|)λ−1
min{ΓX̃(0)} = op(1). Consequently, the desired results hold.

B.4. Proof of Theorem 4

It can be derived that

Σ̂S − ΣS =(Γ̂
(S)
Z )−1(Γ̂

(S)
Ze − Γ

(S)
Ze )(Γ̂

(S)
Z )−1 +

{
(Γ̂

(S)
Z )−1 − (Γ

(S)
Z )−1

}
Γ
(S)
Ze (Γ̂

(S)
Z )−1

+ (Γ
(S)
Z )−1Γ

(S)
Ze

{
(Γ̂

(S)
Z )−1 − (Γ

(S)
Z )−1

} def
= Δ1 +Δ2 +Δ3.

Further note that

(Γ̂
(S)
Z )−1 − (Γ

(S)
Z )−1 = (Γ̂

(S)
Z )−1

(
Γ̂
(S)
Z − Γ

(S)
Z

)
(Γ

(S)
Z )−1.

Define the events H = {λ−1
min(Γ̂

(S)
Z ) < 2c2λ}. By (3.7), we have P (H) → 1 if

s = o(N min(1, ω2)). Then under H, it suffices to show

max
i

|λi(Γ̂
(S)
Z − Γ

(S)
Z )| = op

{
c−3
2λ c1λλ

−1
max(Σe)

}
(B.10)

max
i

|λi(Γ̂
(S)
Ze − Γ

(S)
Ze )| = op

{
c−2
2λ

}
. (B.11)

First by (A.2) and s = o(N min(1, η2)), where η is set to be η = c21λc
−3
2λ λ

−1
max(Σe),

(B.10) can be obtained. Next, (B.11) can be obtained from Lemma 3.
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