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Abstract: The k-means clustering algorithm and its variant, the spherical
k-means clustering, are among the most important and popular methods
in unsupervised learning and pattern detection. In this paper, we explore
how the spherical k-means algorithm can be applied in the analysis of only
the extremal observations from a data set. By making use of multivariate
extreme value analysis we show how it can be adopted to find “prototypes”
of extremal dependence and derive a consistency result for our suggested
estimator. In the special case of max-linear models we show furthermore
that our procedure provides an alternative way of statistical inference for
this class of models. Finally, we provide data examples which show that
our method is able to find relevant patterns in extremal observations and
allows us to classify extremal events.
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1. Introduction

When looking at multivariate and in particular high-dimensional data, a key
aspect is to detect structures and patterns in the observations so as to simplify
their complexity. This task has led to the development of an abundance of
procedures in the field of unsupervised learning, see for example Hastie et al.
(2009) for an overview. Usually the analysis looks for results that apply to most
observations at hand and hence focuses on describing the bulk of the data. On
the other hand, when extremal observations are of interest, a different approach
needs to be taken. In this paper we consider the complexity reduction of extremal
observations via clustering.

For a specific dataset, a naive implementation is to choose the observations
with the largest norm (thereby considering them as extremal observations) and
apply a clustering algorithm to them. However, this is inefficient as extremal
points are typically spread out in space. In the presence of heavy-tailed observa-
tions, most classical clustering algorithms would have further problems from the
possibly infinite second moments. In order to allow for robust and meaningful
estimation, one should incorporate structural results about the particular kind
of data at hand into the estimation procedure.

Multivariate extreme value theory (MEVT) provides us with such a frame-
work and has useful applications in a wide range of disciplines, such as finance
and climate science, see for example Fougeres (2003) and Davison et al. (2012)
for overviews. Most of the current parametric models and estimation methods
focus on the bivariate or lower dimensional scenario and are difficult to gener-
alize to higher dimensions due to either lack of flexibility or heavy computation
loads, see Davison and Huser (2015).

Recently there have been a few attempts to adapt complexity reduction to
extremal dependence. One way of doing so is applying classical dimension reduc-
tion techniques to (transformed) extremal observations, in the form of principal
component analysis and related covariance matrix decomposition techniques,
see Haug et al. (2015) and Cooley and Thibaud (2019), or empirical basis func-
tions, see Morris et al. (2019). Another direction of research is aimed at dividing
the parameter space into lower dimensional subspaces using the phenomenon of
asymptotic independence (meaning that in extremal events there are often only
a few components which are large at the same time), see Goix et al. (2017)
and Chiapino et al. (2019). Chautru (2015) identifies relevant subspaces by first
reducing the dimension of projected observations by a spherical principal compo-
nents procedure, then clustering the projected data using spherical k-means, and
as a last step attributes a lower-dimensional subspace to each cluster. Finally,
Bernard et al. (2013) presents a classification approach with special emphasis
on a spatial decomposition of separated regional clusters for extremal events.
The methodology is based on a k-means like algorithm, where distances between
two stations are measured by their F-madogram.

The usage of k-means estimation in extremes is therefore not entirely new
(see also Einmahl et al. (2012), where the procedure is mentioned to produce
starting values for numerical estimation algorithms), but so far it has only



k-means clustering of extremes 1213

been applied as an intermediate step towards a specific goal and its theo-
retical properties have not been explored. The aim of this paper is twofold:
First, we provide the theoretical background as to how a k-means algorithm
applied to extremal observations can be constructed as a consistent estimator
of theoretical extremal cluster centers, see Theorem 3.1. Second, we demon-
strate that these cluster centers themselves can be seen as prototypes of di-
rections of extremal events and the algorithm therefore provides a compre-
hensive, computationally fast and robust procedure to interpret observed ex-
tremes. As a side effect we demonstrate that our procedure can be seen as
an alternative, consistent way of estimating relevant components of max-linear
models, which recently gained popularity in applications due to their rela-
tionship to causal models for extremes as implied by directed acyclic graph
(DAG) models, see Gissibl (2018); Gissibl and Kliippelberg (2018); Gissibl et al.
(2018).

The paper is organized as follows: Section 2 provides a short background on
the two main components of our method, MEVT and the spherical k-means
algorithm. In Section 3, we present a general consistency result for the spherical
k-means algorithm in the extremal setting and construct a non-parametric es-
timator for the theoretical cluster centers. The application of our procedure to
the particular class of max-linear models is outlined in Section 4. In Section 5,
three data examples illustrate the application and interpretation of the method.
We finish with a short discussion of our contribution in Section 6.

2. Background
2.1. Multivariate extreme value theory

In studying the extremal behavior of a random vector, a general assumption
is that the componentwise maxima, generated from i.i.d. copies of this vector,
converge jointly to a non-degenerate limit distribution after proper linear nor-
malization. More formally, let (X?, ... ,Xé),i € N, be i.i.d. copies of the random
vector X = (Xq,...,X4). We assume that there exist sequences of constants
7> 0,0 € R1 <j <dn € Nand a (in each margin non-degenerate)

a™l
j
distribution function G, such that

. max;— Xt —pr max;— Xt —pn

lim P < : 13 L A <, : 1: d__d <y
n—00 0,1 ad (21)
= G(.’El, e ,J,‘d),

for all continuity points (z1,...,z4) of G. We say that the distribution of X is
in the maz-domain of attraction of the extreme value distribution G. A central
result of extreme value theory is that this convergence can be broken down into
two separate components. First, all marginal distribution functions G;,1 < j <
d, of G are of the form

AN Yo7 .
Gj(x):exp<—(1+vjxg’”> ) 1+yj$g’”>o, (2.2)

J J
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with v;,p; € R,0; > 0, where for 7; = 0 the right hand side is interpreted
as exp(—exp(—(z — u;)/0;)),x € R. The parameter v;, known as the extreme
value inder, is the most important parameter in describing the univariate ex-
tremal behavior of component j. Here a wealth of statistical procedures exists
for univariate extremes, see de Haan and Ferreira (2007), Chapters 3 and 4, for
an overview. Second, let F; be the (continuous) marginal distribution function
of X;, j=1,...,d, then the convergence in (2.1) holds if and only if the stan-
dardized vector

1 1
b <1F1<X1>""’1Fd<Xd>) (2
satisfies
lim P (l € B‘ Y| > u> — S(B), (2.4)
u=oo \[[Y]]
for a probability measure S on S9! := {x € [0,00)% : ||x|| = 1}, where || - ||

stands for an arbitrary but fixed norm, and B any S-continuity-Borel-set, see
Beirlant et al. (2006), Chapter 8. The measure S in (2.4) thus describes the
limiting behavior of the directions that we see in extremal observations from
Y. Furthermore, the measure S can be obtained from the limiting behavior of
maxima as described in the following. The transformed Y satisfies

. max;—1, ., Y; max;—1,..n Yy
lim P <— <., <zq ) =Go(z1,...,24q),
n—oo n n
for i.i.d. copies (Y7,... 7Yj),i € N, of Y, where Gy is an extreme-value distri-

bution with standard Fréchet margins (i.e., v; = 0; = 1,; = 0 in (2.2)). For
(g there exists a so-called exponent measure v such that

Go(z1, ... 24) = exp(—v{(uy,...,ug) € [0,00)%: 3j : uj > z;}) (2.5)

for all (x1,...,24) € [0,00)% This exponent measure is homogeneous of degree
—1 and there exists a constant ¢ > 0 such that

v{u € [0,00)" - u/|[ull € B, |ul| > y} = ey~ ' S(B) (2.6)

for Borel sets B C Sﬁfl and y > 0. The same measure S appearing in (2.4)
and (2.6) is called the spectral measure of X or Y and by the above it uniquely
describes the dependence structure (or copula) of both exceedances and max-
ima. Due to the marginal standardization of the vector Y there always exists a
constant ¢ > 0 such that

/d ) z;S(dx) =c (2.7)
s4-

for all 5 = 1,...,d. In this analysis, we are less interested in the marginal ex-
tremal behavior of individual components and more concerned with the extremal
dependence structures. Hence we are interested in the structure of S.
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Note that even for a vector X whose marginal distributions are not in the
domain of attraction of a univariate extreme value distribution, it can still make
sense to define (2.3) and look at (2.4) in order to describe its extremal behav-
ior. On the other hand, there may also be situations where one does not want
to standardize marginals first but treats observations as coming from a ran-
dom vector Y which satisfies (2.4) with a spectral measure S that does not
necessarily satisfy (2.7). Both in the un-standardized or the standardized case,
the measure S tells us about the angle or direction of an observation that is
considered extreme, either in the individual scale of each component or on a
uniform scale. If there exist small sets which receive relatively high probabilities
under S, these sets can be seen as “typical” directions for an extremal event.
The idea of this paper is to identify these sets without assuming a specific
underlying model, thereby identifying extremal patterns in a non-parametric
way.

We have until now not specified which norm we meant when writing || - ||. The
general equivalence between convergence of multivariate maxima in (2.1) and
marginal convergences together with convergence of exceedances as described
in (2.4) holds for any choice of norm || - ||, although the particular choice will
of course affect the specific form of the spectral measure S. Depending on the
particular application, there may be different possible choices for the particular
norm. The main results in Section 3 are formulated in a general way that hold
for any choice of norm. For our simulations in Section 4 and data examples
in Section 5 we use the Euclidean norm || - ||z, since this norm facilitates the
interpretation of the spherical k-means algorithm, which is explained in the next
section.

2.2. k-means and spherical k-means

The k-means clustering procedure is a way to identify distinct groups within
a population. The name was first introduced in MacQueen (1967) although
the ideas behind the algorithm date back further, see Bock (2008). The mo-
tivation is to identify cluster centers such that distances of the observations
to their nearest cluster centers are minimized. Accordingly, all observations
which are closest to the same cluster center are viewed as belonging to the
same group.

In the following, let d : R x R% — [0,00) be a distance function or, more
generally, a dissimilarity function in R? (see Gan et al. (2007), Chapter 6). For
a probability measure P on B(R?), where B(C) stands for the Borel o-algebra
on the topological space C, and a set A = {ay,...,ay}, a; € R fori=1,...,k
and k € N; one can introduce the averaged distance from any observation to the
closest element of A as

W(A, P) = y gneigld(x, a)P(dx) € [0, o0]. (2.8)

For given P and k, a set A which minimizes W (A, P) among all A with |A| <
k, where |A| stands for the cardinality of the (finite) set A, can be seen as
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a set of theoretical cluster centers. Note that the set may not necessarily be
unique.

If we replace P by its sample version P, (i.e. the measure that places mass
1/n on each observation Xy, ...,x, of a sample) in (2.8), and derive an accord-
ingly optimal set A}, its components minimize the sum of the distances from
every observation to its nearest cluster center. While the original version of k-
means uses the Euclidean distance, several alternative choices for d have been
suggested. Recall that our central interest is in the spectral measure S in (2.4),
which resides on the unit sphere Sfl[l, so that a natural way to measure the
distance between two points is by their angle. This corresponds to the spherical
k-means procedure of Dhillon and Modha (2001), which define d(-) in terms of
angular dissimilarity,

d
d(x,y) =d,(x,y) :=1—cos(x,y) =1— <X y) _ Zg 115Y;5

[ PN SN 7 1%

for x,y € R? If one restricts x and y to the Euclidean unit sphere, then
this simplifies to d,(x,y) = 1 — (x,y) and has the advantage that the cosine
dissimilarity can equally well be interpreted as Euclidean distance or spherical
distance between two points, since bijections exist between all three measures.

In Section 3, we introduce the main results of this paper. Note that in order
to allow for more flexibility in the choice of a suitable distance measure, the
results only assume that d : S‘fl X Sflfl — [0, 00) is a continuous function such
that a unique minimizing set in (2.8) exists. If one prefers to study the spectral
measure on a non-Euclidean unit sphere, the angular dissimilarity in (2.9) may
be replaced by a more suitable function.

It should be noted that finding the optimal cluster centers for a given P
can be an NP-hard problem (see Mahajan et al. (2012)) and the known it-
erative algorithms often depend crucially on the initial cluster centers, see
Bradley and Fayyad (1998). For the examples and simulations in Sections 4
and 5 we rely on the R-package skmeans by Hornik et al. (2012), which provides
short run-times and stable results.

3. Main result

In this section we formally introduce our estimation procedure which will, for a
given sample, provide a set of empirical cluster centers. Each center can then be
interpreted as a “dependence prototype” for a particular class of an extremal
event. In brief, our procedure looks as follows:

1. With the help of the empirical distribution function, transform a sample
from the distribution of X into (approximately) a sample from Y as in
(2.3).

2. Choose a fraction of the latter that only keeps the transformed observa-
tions with largest norm.
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3. For the chosen subsample, project the transformed observations onto the
corresponding unit sphere.
4. Apply a spherical k-means procedure to the projected observations.

Note that steps 1.-3. in the above procedure generate a “pseudo-sample” from
the spectral measure S of standardized observations. For the actual statisti-
cal inference of S, there exist methods in the literature from non-parametric
(e.g. Einmahl et al. (2001), Einmahl and Segers (2009)), over semiparametric
(e.g. Einmahl et al. (1997)) to fully parametric procedures (e.g. Coles and Tawn
(1991)), for standardized and non-standardized data. The following theorem is
therefore formulated in a way such that it holds for any estimator of the spectral
measure as long as it is weakly or strongly consistent.

Theorem 3.1. Assume that S is a probability measure on B(Si_l) and that
Sn,n € N, is a sequence of random probability measures on ]B%(S‘_f__l) defined on a
common probability space (2, A, P). Furthermore, assume that d : S‘fl ijlfl —
[0,00) is a continuous function.

For each S,, and a given value of k € N, denote by A} a random set which
minimizes

W(A,Sy) ::/ min d(x, a) Sy, (dx) (3.1)
gi-1 acA

among all sets A C Sjl__l with at most k elements. Accordingly, if we replace S,
by S, denote the optimal set by Ay, and assume that for a given value of k, the
set Ay, is uniquely determined.

a) If [ca—r f(%)Sp(dx) — [qa—1 f(x)S(dx),n — oo, in probability for all con-
+ +

tinuous functions f : Sff__l — R, then A} converges in probability to Ay,
as n — oo.
b) If Jsa—1 f(X)Sn(dx) = [qa1 f(x)S(dx),n — oo, almost surely for all con-
+ +

tinuous functions f : Sffl — R, then A} converges almost surely to Ay
as n — oo.

Remark 3.2. In the above theorem, the convergence of sets is formally meant
in the Hausdorff distance dg, but since all involved sets have only finitely many
elements, it implies pointwise convergence of elements after a suitable reorder-
mg.

Proof of Theorem 3.1. The argumentation below is similar to the one used in
Pollard (1981, 1982), and the crucial ingredients for the proof are the continuity
of d and the compactness of Si‘l.

1. Set & = {B c ST',|B| < k}. Continuity of d and compactness of
Sﬂlr*l imply that Ws : B — W(B,S) is continuous with respect to the
Hausdorf-metric dg on &. As Sffl is compact, so is & with respect to
the Hausdorff-metric. Since Ay is uniquely determined, there exists for
any neighbourhood N C & of Ay an n > 0 such that

W(B,S)>W(Ag,S)+n
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for all B ¢ N. Therefore, for all € > 0 there exists a § > 0 such that
|W(B,S) — W(A,S)| < é implies that di (B, Ax) < €. In the remainder
of the proof we now show that

(W (AR, S) = W (A, 5)|
<|W (AR, S) = W(AR, Sn)l + [W(AE, Sn) = W(Ag, S)[ =0
in the respective mode of convergence and the statements in a) and b)

follow then from the above.
We first show that |W (A}, S) — W(AR, S,)| — 0.

As Sifl is compact, we can, for a given € > 0, find m and By, ..., By, € &
such that
min dy(B,B;) <e (3.2)
i=1,...,m

for all B € &. By continuity of d and compactness of S‘j__l the family
of functions B — minpep d(x,b), x € S‘fl, is uniformly equicontinuous
with respect to the Hausdorff-metric and so with a suitable choice of € in
(3.2) this implies

i in d(x,b) — mi b)| < 4§
i:q}}gmnggll{)rgg (x,b) — min d(x, b)| <

for a given § > 0 and all B € &.
From this we get that for each B € & there exists one i € {1,...,m} such
that

W(B.P)=WBLP) < [ jpipdis.b) — i dox D) Plax) <5

for all probability measures P on B(S%1).
Now, assumption a) or b) implies by continuity of d that

max |W(B;,S,) —W(B;,S)| =0, n— oo, (3.3)

1=1,....m
in the respective mode of convergence.
Together, this gives
< min [W(B,S,)—W(B;,Sy)

+ W(B;,S,) — W(B;,S) + W(B;,S) — W(B,S5)]
for all B € & and thus

sup |W(B,S,) —W(B,S)| — 0 (3.4)
BEe&y
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in the respective mode of convergence, which implies that |W (A7, S) —
W (AR, Sn)| — 0.

3. Finally, we show that |W (A}, S,) — W (4, S)| — 0.
Convergence (3.4) implies that

| inf W(B,S,)— inf W(B,S)| — 0.
Beé&y

Beé&y
So,
|W (AL, Sp) — W(Ag, S)| — 0,
in the respective mode of convergence. This concludes the proof. O

Since the idea of our approach is to detect general patterns without relying
on a particular model, we choose for the rest of the analysis a straightforward
non-parametric estimator of the spectral measure of standardized observations.
This is a natural empirical counterpart to (2.4) and a slight modification of the
estimator introduced in Einmahl et al. (2001).

First note that the spectral measure of X is defined in terms of the random
vector Y from (2.3), but that we do not know the marginal distribution functions
F;,1 < j <d. A solution is to replace F}; by the left-continuous version of the
empirical distribution function

1
Fj,n(x) = E ZH{X;<:1;}’ z € R,
=1

and transform the observations to

Y= (Y{,...,Y)), withY}:=(1- Fj,(X))™" (3.5)

The empirical counterpart of (2.4) then motivates the estimator
n
2=t ]l{uYinﬁ €8}

Su(B) = . RS ey (3.6)
Yim L s

for Borel subsets B of Si‘l, where [,, € N affects how many observations will be
used for the estimator. Note that due to their definition the observed components
of the Y/s will have values in {1,n/(n —1),...,n/2,n}. Therefore, the value of
I, should grow with n in order to obtain a consistent estimator, but the growth
rate should also not be too fast in order to catch only the extremal observations.
Proposition 3.3 below gives necessary assumptions on /,, for the weak and strong
consistency of this estimator.

Proposition 3.3. Assume that X; = (X4,... ,Xfl),i € N, are i.i.d. copies of
a vector X, such that the transformed vector Y from (2.3) satisfies (2.4) with
spectral measure S. For S, = Sn as in (3.6), define the sets A} and Ay as
in Theorem 3.1 and assume that the set Ay is uniquely determined for a given
value of k. Then, as n — oo,
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a) iflp/n— 0 and l,, — oo the sets A} converge to Ay, in probability;
b) if l,/n — 0 and 1,/ log(log(n)) — oo the sets A} converge to Ay almost
surely.

Proof. The proposition follows from Theorem 3.1 if we can verify that the se-
quence of random measures .5, satisfies the corresponding assumptions. To see
this, we argue similar to Einmahl et al. (2001), Theorem 1. We start by looking
at the estimator

1 n
M, owd) = 3 Lo ooy

lnzj
for the so-called stable tail dependence function
Wy, zq) = v{(u1,. .., uq) €[0,00)%: Fj s u; > 1/x;}, (3.7)

with v as introduced in (2.5). For I,,/n — 0,1, — oo the estimator converges
in probability (see Huang (1992), Theorem 1 in Chapter 2 or Theorem 7.2.1
in de Haan and Ferreira (2007)) and for I,,/n — 0,1,/ log(log(n)) — oo it con-
verges almost surely (see Qi (1997), Theorem 1.2) for all zy,...,z4 € (0,00)<.

This pointwise convergence can be extended to show that

1 n
o2 Livies
=1

for each ¢ > 0 and continuity set Bc [0,00)% in the respective mode of conver-
gence, see the proof of Theorem 1 in Einmahl et al. (2001) for details. Due to
equivalence of norms there exists a ¢y > 0 such that ||x|| > 1 implies ||x||cc >
1/co for the chosen norm |- ||. Set now B = {u € [0,00)? : |[u > 1,u/|[ul| € B}
for an S-continuity set B C ST ' and A = {u € [0,00)?: |lu|| > 1} so that

n e} u{ue [0,00)%: |[uflee > 1/c,u € B}

in

i Iy o in A
i

Sn(B) =

Yimi g "
T Y

v {u €[0,00) : |lul|oo > 1/co,u € B}
v{ue0,00)%: |[ujec > 1/co,uc A}

S(B)

again in the respective mode of convergence. This implies the weak convergence
either in probability or almost surely of S, to S (see again Einmahl et al. (2001),
Theorem 1) and thereby that the assumption a) or b), respectively, of Theorem
3.1 is satisfied. O

4. Application to max-linear models

The idea behind the decomposition of a spectral measure into k clusters is
motivated by the special case where the spectral measure is clearly concentrated
around k different centers. An idealized example is provided by the max-linear
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model where a spectral measure has only mass on k different points. In the
following we will demonstrate how our k-means procedure can be seen as an
alternative way of estimating the corresponding model parameters.

A max-linear model consists of k different so-called factors b; = (b, ...,b}) €
[0,00)%,4 =1,..., k from which a random vector is generated by

X =(X1,...,Xq) = <_rrllaxkbziZZ-, s _Hllaxkngi) , (4.1)

where Z7,...,Z; are i.i.d. random variables with the same heavy-tailed distri-

bution. The most common choice for this distribution is a standard Fréchet-
distribution. Furthermore, one typically assumes that

dobi=1 forallj=1,...,d, (4.2)

i=1

such that all margins of X are standard Fréchet as well.

Looking at (4.1) it is clear that the largest observations of X are due to a
large observation of a Z; and therefore the factors b; determine the possible
directions of extremal observations. In fact one can show that the spectral mea-
sure S concentrates on the points a; = b, /||b;|| with corresponding probabilities
P = ||bz||/(Z;€:1 [Ibi]]),1 < i < k. On the other hand, for each discrete spectral
measure with mass concentrated on k points there exists a max-linear model
with k factors which results in this given spectral measure, see Yuen and Stoev
(2014). It is also shown that any given dependence structure of extremes can be
approximated arbitrarily well by spectral measures generated from max-linear
models if one allows the number of factors to grow, see Fougeres et al. (2013).
Furthermore, it was recently shown in Gissibl (2018); Gissibl and Kliippelberg
(2018); Gissibl et al. (2018) that max-linear models also evolve from a natural
modeling of extremal dependence generated from a directed acyclic graph of
components, thereby allowing the modeling and detection of causality in ex-
treme events.

Parameter estimation of max-linear models has proven to be a difficult task
due to the fact that no spectral density exists which excludes standard maximum
likelihood procedures. Instead, Einmahl et al. (2012), Einmahl et al. (2016) and
Einmahl et al. (2018) use a least squares estimator based on the stable tail
dependence function to estimate parameters from extremal observations and
Yuen and Stoev (2014) construct a least squares estimator based on the joint
distribution function and make use of all observations. In the following we illus-
trate how the k-means procedure serves as an alternative and effective way of
inference for max-linear models.

From the above it follows that the discrete spectral measure, i.e., the points
ai,...,a; € S‘i_l on which the spectral measure S is concentrated, and the
corresponding probabilities pi,...,pg, are parametrizing a max-linear model.
For such a spectral measure, it is clear that W (A, S) as defined in (2.8) is min-
imized by choosing A = {aj,...,a;} and A is uniquely determined. For an
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estimator S,, of S, which satisfies the assumptions from the previous section,
the k-means cluster centers can therefore be seen as consistent estimators of
ay,...,a,. This consistency also implies that the percentages of points which
are classified as belonging to cluster ¢ converge to the corresponding probabil-
ity p;, 1 < i < k. Especially if one is interested in using the max-linear model
as an approximation for the largest observations only, the estimation of the
a;’s and p;’s can be seen as an alternative to the estimation of the compo-
nents b;’s.

In order to compare the spherical k-means procedure with the previously
mentioned approaches we set up a small simulation study, where we generate
a random parameter constellation for a max-linear model with d dimensions
and k factors. On the one hand, we estimate the factor coefficients according to
Einmabhl et al. (2016) and Einmahl et al. (2018), as provided by the R-package
Kiriliouk (2016), and Yuen and Stoev (2014), as provided by Yuen (2015), and
derive the estimators for aj,...,a; and p1,...,pr from the resulting estimated
spectral measures. On the other hand, we apply directly the k-means estimator
which provides estimators for the cluster centers a;, and we estimate p1, ..., pg
by the the percentage of extreme observations that are classified as belonging to
cluster 4. For all procedures, the estimator S of the spectral measure S is deter-
mined by k points of mass, ai, ..., a, and corresponding probabilities p1, . . ., k.
The difference between the true spectral measure S and the corresponding es-
timator is evaluated by two criteria. The first criterion evaluates

k
3 — ; A 2
LG S| DI LUl
which can be seen as a distance measure similar to the Hausdorff distance ap-
plied to finite sets, but taking into account all distances of the matched vectors
instead of only the maximal one. This gives an idea about how well the es-
timator identifies possible extremal directions, but does not take into account
their frequencies. We also look at a metric on the space of probability measures,
where we use the Wasserstein metric with p = 1, which is defined as

Wl(S,S) = inf / Ix — y|l2P(dx, dy),
PcT(S,S) gi*lngl

where T'(5, S ) is the set of all probability measures on Si_l X S‘i_l with first
marginal S and second marginal S. We use the R-package transport, see
Schuhmacher et al. (2019), for evaluation of Wasserstein distances.

In the first set of simulations, we assume the number k of factors (see (4.1))
to be known and therefore the number of cluster centers in our algorithm is
fixed as k. For each combination of dimension d and number of factors k we
randomly generate 100 model specifications and for each model specification we
generate 1000 observations. The random factors are specified as below, where
Ui,i € N, stand for i.i.d. random variables with uniform distribution on [0, 1].
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Comparison of ds(S, S’) for different values of d and k. Mean over 100 simulations,
standard deviation in brackets.

Method

d=4,k=2

d=4,k=6

d=k=26

d=10,k =6

spherical k-means
Einmahl et al. '16
Einmahl et al. '18
Yuen & Stoev '14

0.0562(0.0276
0.0728(0.0415
0.0605(0.0309
0.1370(0.1905

PN

0.4042(0.2693
0.5255(0.3198
0.4868(0.3001
1.1049(0.2052

TABLE 2

—

0.3376(0.2050)
0.4295(0.2506)
0.3971(0.2271)
1.3808(0.1541)

0.3711(0.2306
0.4264(0.2694
0.4103(0.2312
1.8755(0.1582

_ =

Comparison of W1(S, S‘) for different values of d and k. Mean over 100 simulations,
standard deviation in brackets.

Method

d=4,k=2

d=4,k=6

d=k=26

d=10,k=6

spherical k-means
Einmahl et al. '16
Einmahl et al. '18
Yuen & Stoev '14

0.0450(0.0206)
0.0629(0.0351)
0.0458(0.0219)
0.0725(0.0977)

0.1310(0.0285
0.1445(0.0344
0.1310(0.0314
0.3336(0.0876

)
)
)
)

0.1393(0.0302)
0.1464(0.0328)
0.1386(0.0329)
0.4860(0.0625)

0.1578(0.0332)
0.1592(0.0345)
0.1569(0.0348)
0.6764(0.0648)

We only state the first k£ —1 factors, as the last factor is always determined from
the first ones by the standardization assumption (4.2).

e d =4, k= 2: First factor is (Uy, Us, Us, Uy)/2.

e d = 4, k = 6: First five factors are (Uy,Us,Us,U4)/3, (Us,0,Us,0)/3,
(0,Us,0,Us) /3, (Us, Uro,0,0)/3, (0,0,Us1, Ur2) /3.

e d = k = 6: First five factors are (Uy,...,Us)/3, (0,Ur,0,Us,0,Uy)/3,
(U10,0,U11,0,U12,0)/3, (0,0,0,Us3, U4, U1s) /3, (U1s, Ur7,Uss, 0,0, 0).

e d =10, k = 6: First five factors are (Uy,...,U10)/2, (U11,U12,0,...,0)/2,
(Oa0,U137U1470a07030a0,0)/2, (07Oa0;0,U157U1670a07030)/27 (0,070703();
0, Ur7, Ui, Urg, Uzo) /2.

For the method from Yuen and Stoev (2014) we use all observations, for
the others only the 100 with largest norm. The grid for the estimator from
Einmahl et al. (2018) includes all d-dimensional vectors with entries from the set
{0,1/3,2/3,1} and exactly 2 non-zero entries. A finer grid would have implied
very long run times. For those three estimators, the fact that there are 0’s in the
factors and knowledge of their positions is not used for the estimation, so there
are d - (k — 1) parameters to estimate. For the (spherical) k-means procedure,
the 100 observations with largest Euclidean norm have been projected on the
Euclidean unit sphere and we applied the procedure skmeans from Hornik et al.
(2012).

The average values of dy(S,S) and Wi(S,S) over all 100 realizations for
different constellations are shown in Tables 1 and 2, with the observed standard
deviations in brackets. It can be seen that the locations of the points of mass
of the spectral measure are most precisely estimated by the spherical k-means
procedure. The accuracy in estimating the spectral measure is very similar for
all methods except for the method from Yuen and Stoev (2014), which was
constructed for an overall good fit but with little focus on extremes.

Since the number of factors is usually not known a priori, we also look at
two misspecified models, where in both cases the model was fitted as if there
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TABLE 3
Comparison of W1 (S, S’) for true model parameters d =4,k =2 and d = 4,k = 6 but with
models fitted to k = 3 instead. Mean over 100 simulations, standard deviation in brackets.

Method | d=4,k=2 d=4,k=6
spherical k-means | 0.0504(0.0226)  0.2746(0.0537)
Einmahl et al. ’16 | 0.0571(0.0270 0.3225(0.0646)
Einmahl et al. ’18 | 0.0532(0.0230 0.2921(0.0663)
Yuen & Stoev ’14 | 0.0755(0.0649 0.4230(0.1039)

NN NNt

were k = 3 factors, but the true value of k£ is 2 or 6. The random models are
generated as described previously for the respective constellations of d and k.

In Table 3 we see the results for the two misspecified models as measured
in the Wi-metric of estimated and true spectral measure. In the two examples,
the spherical k-means procedure copes better with the fact that our model is
misspecified.

Regarding the numerical implementation of the estimators Einmahl et al.
(2016) and Einmahl et al. (2018) we noted in our simulations that the first
depends for larger values of d and k heavily on the starting parameters of the
algorithm, where we choose the starting value for factor parameters from the
spherical k-means estimator, as also suggested in Einmahl et al. (2012). The
procedure for the estimator from Einmahl et al. (2018) has very long runtimes,
even with the relatively coarse grid that we use.

We conclude from the simulations that the spherical k-means procedure is, for
the chosen examples and metrics, superior or competitive to (and usually faster
than) methods for estimating max-linear models if one is mainly interested in
the resulting spectral measure of observations.

5. Data examples

In the following we apply our procedure to three different data sets with dimen-
sions 5, 30 and 38. For all data sets we observe that in each estimated cluster
center a;,i = 1,...,k, there are many components with values close to 0 and
only a few with significantly positive entries. This hints at the phenomenon of
asymptotic independence. In extreme value theory, two random variables X,Y
with distributions Fx, Fy are called asymptotically independent if

lim, P(X > Fx'(w)|Y > Fyt(u) =0,

(assuming that the limit exists) and asymptotically dependent otherwise. Detect-
ing the groups of random variables which share asymptotic dependencies and
classify them accordingly was the main aim of Chautru (2015). Our analysis
allows for a more gradual view on dependencies since looking at the estimated
clusters and observed differences in cluster components gives an idea about
strong and weak hints towards asymptotic dependence or independence. For
groups of asymptotically dependent variables it furthermore allows to identify
patterns within those groups.
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F1G 1. The value of the minimized mean distance W (A%, Sy), see (3.1), for different values
of k in the air pollution data sets. Left: summer data. Right: winter data. For values of k
larger than 5 the curve becomes rather flat.

5.1. Air pollution data

We start with the air pollution data which has been analyzed in Heffernan
and Tawn (2004). This dataset is of relatively small dimension and consists of
daily measurements of five air pollutants in the city center of Leeds (U.K.),
collected between 1994 and 1998 and split up into summer and winter months
which gives 578 and 532 observations, respectively. The data is available via
the R-package texmex, see Southworth et al. (2018). We apply the four-step
procedure as outlined in the beginning of Section 3, with the transformation of
marginals as described in (3.5). For this data set, we use the 10% of transformed
observations with largest Euclidean norm, project them on the unit sphere and
apply the spherical k-means procedure. For this and the other two data examples
we use the command skmeans with method pclust and additional parameters
1000, maxchains=100 from Hornik et al. (2012).

The first step is now to determine suitable values of the number of clusters
k. A common way of doing this is creating a so-called “elbow plot” by plotting
the minimized distance W (A7, S,,) (recall from (3.1)) against k, see Figure 1 for
the summer and winter data. Note that W (A}, S,) necessarily decreases with
the increase of k. In the plot one usually looks for a k such that for larger values
the decrease becomes insignificant, but we note that there is no clear theoretical
criterion for an optimal choice of k. Our goal is to use the algorithm as a tool
to explore the structure in the data and we stress that it often makes sense to
look at different values of k in the analysis.

From the elbow plots of the summer and winter data we decide to pursue
our analysis for both k£ = 4 and k = 5. For these choices of k, we illustrate the
cluster centers aj, ..., a; in colored heat maps in Figures 2 and 3.

In the graphs, the cluster centers are re-normalized such that the maximum

nruns =
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Fic 2. The k-means clustering result on the air pollution data for k = 4. Left: summer data.
Right: winter data. Here, each row in the corresponding picture corresponds to one of the four
estimated cluster centers, where values have been normalized according to (5.1). That means
the lighter the colour in a box, the larger is the value of the corresponding component relative
to all other components in this cluster center.

cluster
cluster

Fi1c 3. The k-means clustering result on the air pollution data for k = 5. Left: summer data.
Right: winter data. Here, each row in the corresponding picture corresponds to one of the five
estimated cluster centers, where values have been normalized according to (5.1). That means
the lighter the colour in a box, the larger is the value of the corresponding component relative
to all other components in this cluster center.

component is scaled to 1 to provide better visual comparison, i.e.,

, , g 4

a, = (a,...,ay) — L .. d _ =1.... k.
o= () (maXh=17...,d{aZ}’ ’maXh=1,‘..7d{%}> T

(5.1)

Hence in each heat map, each row corresponds to a cluster center and the
white/bright yellow entries indicate the components that are largest.
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FIG 4. The value of the minimized mean distance W (A}, Syn), see (2.8), for different values
of k in the financial portfolio loss data. There exists no clear indication for an optimal value
of k.

For k = 5 we see that for the summer data each cluster has exactly one large
component, hinting at asymptotic independence between all air pollutants. We
note that due to the marginal transformation in (3.5) and the standardization
property (2.7) of the spectral measure S, the components of our projections
on the unit sphere should all have approximately the same expected value.
Therefore, each component should correspond to a large entry in at least one
cluster center. As a result, we note that for & = 4 there has to be at least one
cluster center where at least two components are large. We can interpret cluster
center 4 in the summer data for £k = 4 in the way that NO and NOy are the
air pollutants which are most likely to occur at extreme levels simultaneously.
Both for k£ = 4 and for k = 5 we can identify a tendency for particulate matter
(PMi0), NO and NOs to occur jointly at extreme levels, but only in winter.
This is in line with the conclusions in Heffernan and Tawn (2004) who state
asymptotic independence for all components except for PM;3, NO and NO5 in
winter.

5.2. Financial portfolio losses

In this example, we consider the ‘value-averaged’ daily returns of 30 industry
portfolios compiled and posted as part of the Kenneth French Data Library. The
data in consideration span between 1950-2015 with n = 16694 observations.
This is the same dataset as analyzed in Cooley and Thibaud (2019), where
dependencies in extreme losses were explored with a method related to principle
component analysis. Here we attempt to recover more information using our
method. Since we are interested in extremal losses we first multiply all returns
by -1. After that we use the same procedure as for the previous data set, but
this time we only look at the transformed observations with the largest 5% of
Euclidean norms.

We create again an “elbow plot”, see Figure 4. Here it is rather difficult to
find a concrete value for k so we compare the analysis for £ =5 and k& = 10.

The top graph of Figure 5 illustrates the cluster centers with & = 5. We
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F1a 5. The k-means clustering result on the financial portfolio loss data for k = 5. Top: Each
row in the corresponding picture corresponds to one of the five estimated cluster centers,
where values have been normalized according to (5.1). That means the lighter the colour in a
box, the larger is the value of the corresponding component relative to all other components
in this cluster center. Bottom: cluster classification result vs. time.

can see that the clusters clearly separate the categories into different sectors.
Cluster 1 signals the asymptotic independence of the tobacco industry to all
other categories. Cluster 2 focuses on the energy and material sectors. Cluster 3
consists of business and IT related industries. Cluster 4 consists of the consumer
oriented industries and Cluster 5 encompasses the rest.

The bottom graph of Figure 5, which shows the time points of the extreme
losses in each cluster, also provides interesting insights. The extreme losses for
Cluster 1 occurred around 2000, when massive lawsuits surged against tobacco
companies. For Cluster 2, since the turn of the millennium, the U.S. coal and
mining industries have been more heavily affected by government regulations,
the rise of alternative sources of energy and foreign imports, which led to many
struggles in the industry. The timeline for Cluster 3 clearly indicates the dot-
com bubble in the late nineties. The consumer goods of Cluster 4 were heavily
affected by U.S. recessions, most prominently by the oil crisis in 1973. Cluster
5 can be explained as widespread effects of the dot-com bubble and financial
crisis.

Figure 6 shows the same set of results for & = 10. There is a clear pat-
tern where most cluster centers have only one or few large components, hinting
at an overall strong level of asymptotic independence. We can clearly identify
sectors which are more prone to exhibiting joint losses, and that many of the
connections from the analysis with £ = 5 remain. Still tightly linked are the
consumer sector (Cluster 5), the energy sector (Cluster 7), the business and
IT sectors (Cluster 8) and a wide collection of industries linked to the finan-
cial industry (Cluster 10). The timeline plot also shows similar patterns to the
previous results and clearly identifies the major events in the financial market
history.

We would like to point out that a time series over such a long horizon cannot
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F1G 6. The k-means clustering result on the financial portfolio loss data for k = 10. Top: Each
row in the corresponding picture corresponds to one of the ten estimated cluster centers, where
values have been normalized according to (5.1). That means the lighter the colour in a boz,
the larger is the value of the corresponding component relative to all other components in this
cluster center. Bottom: cluster classification result vs. time.

be safely assumed to be stationary and in fact the cluster classification results
vs. time indicate just that, namely that the dependence structure of extremal
observations changes over time. One can therefore not estimate cluster centers
of the current or even future spectral measure but rather of the time averaged
measure over the last 65 years. Futhermore, our estimation procedure for the
spectral measure suffers from the fact that our observations are not i.i.d., in con-
trast to the assumptions of Section 3. This problem also applies to the example
from Section 5.1.

5.3. Dietary intakes data

In this section we look at the dietary interview from the 2015-2016 NHANES re-
port, available at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT_
I.XPT. The interview component, called “What We Eat in America”, recorded
the food and beverage consumed by all participants during the 24 hours period
prior to the interview. The resulting dataset describes the nutrients information
calculated from these observations. We are interested in the dependency of 38
chosen nutrients in high-level intakes, as high doses of some of the components
can have negative health effects. See also Chautru (2015) for the analysis of a
similar, but smaller data set.

We derive again an estimator for the spectral measure by transforming ob-
servations with the help of the empirical distribution function and keeping the
transformed observations whose Euclidean norm belongs to the largest 5%. The
choice of k is again ambiguous in this data set and the elbow plot is similar
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Fia 7. The k-means cluster centers in the dietary intakes data for k = 15. Top: Each row
in the corresponding picture corresponds to one of the 15 estimated cluster centers, where
values have been normalized according to (5.1). That means the lighter the colour in a box,
the larger is the value of the corresponding component relative to all other components in this
cluster center.
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Fia 8. The k-means cluster centers in the dietary intakes data for k = 20. Top: Each row
in the corresponding picture corresponds to one of the 20 estimated cluster centers, where
values have been normalized according to (5.1). That means the lighter the colour in a boz,
the larger is the value of the corresponding component relative to all other components in this
cluster center.

to that in Figure 4. What is clear is that as k increases the number of cluster
centers with only one large component increases, again pointing at asymptotic
independence of most of the nutrients. Significant clusters for several values of k
can nevertheless be identified as clusters formed by carbs and sugar, by vitamin
By, Vitamin Bg, Vitamin B2 and niacin, by lutein and vitamin K, by iron and
vitamin By and finally by fat together with fatty acids which goes also hand in
hand with high values of intaken calories.

6. Summary and discussion

In this paper, we introduced a new procedure to describe and analyze extremal
dependence of random vectors in a concise way. The key idea behind the method
is the application of spherical k-means procedure to the estimated spectral mea-
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sure. In Section 3, we showed that under suitable convergence of the estimated
spectral measure, the corresponding empirical cluster centers converge to their
theoretical counterparts. This provides a new inference procedure for the class
of max-linear models which we showed to be competitive or even superior to
existing methods, see Section 4. Finally, our data examples in Section 5 illus-
trated how cluster centers can be interpreted as “extremal prototypes” which
reveal dependence structures in the largest observations.

Cluster centers with mainly one large component hint at asymptotic inde-
pendence between components, while cluster centers with several components
being large at the same time hint at asymptotic dependence. Though we do not
provide a rigorous statistical test, our method can be used as an explorative first
step to give a quick overview over dependence structures. Plots of the cluster
centers like the ones presented in Section 5 provide a visual summary which is
easily accessible. Based on the results of the suggested procedure, a more for-
mal analysis, for example by fitting a suitable parametric model to the spectral
measure, can be applied as a next step. We would like to point out that the
selection of a threshold to identify the largest observations and the choice of a
suitable value of k are crucial and that one should check robustness of results
with respect to these parameters.

We demonstrated that our method could provide insights on data examples
of moderate dimensions. One of the future directions would be to accommodate
examples with higher dimensions, possibly by combining multiple dimension
reduction techniques, such as done in Chautru (2015), or using building blocks
from Cooley and Thibaud (2019) and Morris et al. (2019).
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