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quently, we propose a framework that allows to derive generalized esti-
mates in the sense that it enables to control the trade-off between the size
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1. Introduction

Many modern computational problems, having a large number of input vari-
ables or parameters, suffer from the “curse of dimensionality” in that their so-
lution becomes computationally expensive or even intractable as the dimension
of the problem grows. The active subspace method (ASM), or shorter, active
subspaces [17, 18], is a set of tools for dimension reduction which reduce the ef-
fects caused by the curse of dimensionality. ASM splits an Euclidean input space
into a so-called active and inactive subspace based on average sensitivities of a
real-valued function of interest. The sensitivities are found by an eigendecompo-
sition of weighted outer products of the function’s gradient with itself. That is,
eigenvalues indicate average sensitivities of a function of interest in the direction
of the corresponding eigenvector. Eigenvectors and eigenvalues belonging to the
active subspace are then considered as dominant for the global behavior of the
function of interest, whereas the inactive subspace is regarded as negligible.

The usefulness of ASM has already been demonstrated for several real case
studies in various applied disciplines; see, e.g., [22, 31, 36, 37, 39]. It has also mo-
tivated other methodological advances, e.g., in the solution of Bayesian inverse
problems [35] by an accelerated Markov chain Monte Carlo algorithm [20], in
uncertainty quantification and propagation [15, 40], and in the theory of ridge
approximation; see, e.g., [19, 24, 25].

However, ASM is only one dimension reduction technique among others. For
example, likelihood-informed dimension reduction for the solution of Bayesian
inverse problems [21] is based on a similar idea. This approach, however, analyzes
the Hessian matrix of the function of interest instead of the gradient. An exten-
sion to vector-valued functions in gradient-based dimension reduction is given
by [45]. Dimension reduction for nonlinear Bayesian inverse problems based on
the Kullback-Leibler (KL) divergence of approximate posteriors and (subspace)
logarithmic Sobolev inequalities, including a comprehensive comparison of sev-
eral other techniques, was provided by the authors of [46]. Furthermore, Active
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Manifolds [11], as a nonlinear analogue to ASM, and PTU [13], as an extension
to a framework for nonlinear dimension reduction called Isomap [38], both have
demonstrated a lot of promise.

A main result in ASM theory is an upper bound on the mean squared error
between the original function of interest and its low-dimensional approximation
on the active subspace. The corresponding proof is based on an inequality of
Poincaré type which is probabilistic in nature since ASM involves a probability
distribution that weights sensitivities of the function of interest at different loca-
tions in the input space. The upper bound consists of the product of a Poincaré
type constant and the sum of eigenvalues corresponding to the inactive sub-
space, called inactive trace in the following. The constant derived in [18] is
claimed to depend only on the original distribution which is generally incorrect.
Also, to the knowledge of the authors, existing theory for dimension reduction
techniques based on Poincaré or logarithmic Sobolev inequalities are subject
to quite restrictive assumptions on the involved probability distribution. These
assumptions comprise either the distribution having compact support or its den-
sity ρ being of uniformly log-concave form, i.e., ρ(x) = exp(−V (x)), where V
is such that its Hessian matrix V ′′(x) � αI for each x and some α > 0. By
the famous Bakry-Émery criterion, the latter assumption implies a logarith-
mic Sobolev inequality and Poincaré inequality with universal Poincaré con-
stant 1/α; see, e.g., [3, 41]. Note that the case α = 0, i.e., V being only convex,
is not covered. However, Bobkov [8] showed that a Poincaré inequality is still
satisfied in this case and gave lower and upper bounds on the corresponding
Poincaré constant. Distributions with heavier tails, i.e., for α = 0, as, e.g., ex-
ponential or Laplace distributions, do not satisfy the assumptions above, but
are, however, of practical relevance.

In ASM theory, it is not the original distribution that must satisfy a Poincaré
inequality, but a conditional distribution on the inactive subspace, which de-
pends on a variable defined on the active subspace. Both assumptions on the
original distribution from above are in fact passed on to the conditional dis-
tribution. However, the case α = 0 is cumbersome. We shall give an example
for this case regarding a distribution that itself satisfies a Poincaré inequality,
but might not be applicable at all or only with care due to an arbitrary large
Poincaré constant in the final bound for the mentioned mean squared error.
Our arguments are based on the bounds for corresponding Poincaré constants
given by Bobkov in [8]. We also describe a way to still get upper bounds in
this situation, however with a weaker, reduced order in the inactive trace. This
order reduction is controllable in the sense that the practitioner can decide for
the actual trade-off between the order of the inactive trace and the size of the
corresponding Poincaré constant. The mentioned general problem and its solu-
tion is exemplified on independently exponentially distributed random variables
in dimension two and larger. Also, it is shown that the final constant is very
much depending on the dimension of the problem. However, since this example
is rather special, we eventually propose opportunities for future work that aim
for extending the class of distributions for which the bounds and the involved
constants are explicitly available in order to expand the applicability of ASM
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to more scenarios of practical interest. In particular, the class of multivariate
generalized hyperbolic distributions is a rich class that is, in our opinion, worth-
while to get investigated. Details on arising difficulties with this class are also
provided.

The outline of the manuscript is as follows. Section 2 gives an introduction to
ASM and its formal context. In Section 3, we recall results involving compactly
supported and normal distributions. The main results consisting of a motivation
and discussion of the mentioned problems, with independently exponentially
distributed random variables as an extreme example, are presented in Section 4.
In Section 5, we propose possibilities for future work. Finally, a summary is given
in Section 6.

2. Active subspaces

The active subspace method is a set of tools for gradient-based dimension re-
duction [17, 18]. Its aim is to find directions in the domain of a function f along
which the function changes dominantly, on average. For illustration, consider a
function of the form f(x) = g(A�x) with a so-called profile function g and a
matrix A ∈ Rn×k, 1 ≤ k ≤ n, n ≥ 2. Functions of this type are called ridge
functions [34]. Note that f is constant along the null space of A�. Indeed, for
x ∈ dom(f) ⊆ Rn and v ∈ N (A�) such that x+ v ∈ dom(f), it holds that

f(x+ v) = g(A�(x+ v)) = g(A�x) = f(x). (2.1)

That is, f is intrinsically at most k-dimensional. For arbitrary f , the general
task is to find a suitable dimension k, a function g : dom(g) → R, dom(g) ⊆ Rk,
and a matrix A ∈ Rn×k such that f(x) ≈ g(A�x).

For this, the active subspace method assumes that the function of inter-
est f : X → R is continuously differentiable with partial derivatives that are
square-integrable w.r.t. a probability density function ρX . We define X :=
dom(f) ⊆ Rn to be the support of ρX , i.e., the closure of the set X+ :=
{x ∈ Rn | ρX(x) > 0}. We assume that X is a continuity set, that is, its bound-
ary is a Lebesgue null set. The central object of interest is a matrix constructed
by outer products of the gradient of f , ∇f = ∇xf , with itself weighted by ρX ,

C :=

∫
Rn

∇f(x)∇f(x)�ρX(x) dx. (2.2)

Since C is real symmetric, there exists an eigendecomposition C = WΛW�

with an orthogonal matrix W ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n with
descending eigenvalues λ1, . . . , λn on its diagonal. The positive semidefiniteness
of C additionally ensures that λ1 ≥ · · · ≥ λn ≥ 0. Note that the matrices C,
W , and Λ all depend on f and ρX .

The behavior of the function f and the eigendecomposition of C have an
interesting, exploitable relation, i.e.,

λi = w�
i Cwi =

∫
Rn

(w�
i ∇f(x))2ρX(x) dx, i = 1, . . . , n. (2.3)
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If, for example, λi = 0 for some i, then we can conclude that f does not change
in the direction of the corresponding eigenvector wi. That is, if eigenvalues λi,
i = k+1, . . . , n, are sufficiently small for a suitable k ≤ n−1, or even zero as in
the case of ridge functions, then f can be approximated by a lower-dimensional
function. Formally, this corresponds to a split of Λ and W , i.e.,

Λ =

(
Λ1

Λ2

)
and W =

(
W1 W2

)
, (2.4)

where Λ1 ∈ Rk×k, Λ2 ∈ Rn−k×n−k and W1 ∈ Rn×k, W2 ∈ Rn×n−k.
Since

x = WW�x = W1W
�
1 x+W2W

�
2 x = W1y +W2z, (2.5)

the split of W suggests a new coordinate system (y, z) for the active variable
y := W�

1 x ∈ Rk and the inactive variable z := W�
2 x ∈ Rn−k. The range of

W1, R(W1) := {W1y |y ∈ Rk} ⊆ Rn, is called the active subspace of f . Note
that the new variable y is aligned to directions on which f changes much more,
on average, than on directions the variable z is aligned to.

For the remainder, we define

Y := W�
1 X = {W�

1 x |x ∈ X} and Z := W�
2 X = {W�

2 x |x ∈ X}. (2.6)

Also, for y ∈ Y and z ∈ Z, let

�y, z� := �y, z�W := W1y +W2z (2.7)

to concisely denote changes of the coordinate system.
Variables x, y, and z can also be regarded as random variables X, Y , and

Z, respectively, that are defined on a common probability space (Ω,F ,P). The
orthogonal variable transformation x �→ (y, z) induces probability density func-
tions for the random variables Y and Z. That is, the joint distribution of (Y ,Z)
is

ρY ,Z(y, z) = ρX(�y, z�) (2.8)

for y ∈ Y and z ∈ Z. Corresponding marginal and conditional densities are
defined as usual. Additionally, set

Y+ := {y ∈ Rk | ρY (y) > 0} (2.9)

to denote the set of all values for the active variable y with a strictly positive
density value. We frequently use that for a ρX -integrable function h : X → R,
it holds that

E[h(X)] = E[E[h(�Y ,Z�) |Y ]]. (2.10)

Given the eigenvectors in W , we still need to define a lower-dimensional func-
tion g approximating f . For y ∈ Y+, a natural way is to define g(y) as the con-
ditional expectation of f given y, i.e., as an integral over the inactive subspace
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weighted with the conditional density ρZ|Y (·|y). Recall that this approximation
is the best in an L2 sense [28, Corollary 8.17]. Hence, we set

g(y) := E[f(�Y ,Z�) |Y = y]

=

∫
Rn−k

f(�y, z�) ρZ|Y (z|y) dz.
(2.11)

Additionally, we define
fg(x) := g(W�

1 x) (2.12)

for x ∈ X ◦, where X ◦ denotes the interior of X . Note that W�
1 x ∈ Y◦ ⊆ Y+

for x ∈ X ◦.

Remark. In practice, both the matrix C from (2.2) and the low-dimensional
function g from (2.11) are often not exactly available. Our results can, however,
also be adapted to a corresponding perturbation analysis, provided in [18], which
we do not perform since it would require additional notation and complexity but
not contribute to the central aspects of this manuscript.

One of the main results in ASM theory is a theorem that gives an upper
bound on the mean squared error of fg approximating f . The upper bound is
the product of a Poincaré constant CP,W > 0 and the sum of n− k eigenvalues
corresponding to the inactive subspace, called inactive trace. That is, if the
inactive trace is small, then the mean squared error of fg approximating f is
also small. Mathematically, for a given probability density function ρX , the
theorem states that [18, Theorem 3.1]

E[(f(X)− fg(X))2] ≤ CP,W (λk+1 + · · ·+ λn) (2.13)

for a Poincaré constant CP,W = CP,W (W,ρX) > 0. Note that CP,W depends
on W = W (f) and thus also indirectly on f . If desired, we could remove this
dependence by considering the supremum of CP,W over all orthogonal matrices,
i.e.,

CP := sup
Worth.

CP,W , (2.14)

and get
E[(f(X)− fg(X))2] ≤ CP(λk+1 + · · ·+ λn), (2.15)

provided the constant CP = CP(ρX) exists. Deriving such an upper bound for a
certain class of distributions would allow to choose ρX independently of f . Note
that [45, 46] also control the Poincaré constant for any orthogonal matrix W .

The derivation of (2.13) starts with

E[(f(X)− fg(X))2] = E[E[(f(�Y ,Z�)− g(Y ))2 |Y ]] (2.16)

≤ E[CY E[‖∇zf(�Y ,Z�)‖22 |Y ]], (2.17)

where we used a probabilistic Poincaré inequality w.r.t. ρZ|Y (·|y) for a given
y ∈ Y+. Note that the Poincaré constant Cy of ρZ|Y (·|y) depends on y. In [18,
Theorem 3.1], it was indirectly assumed that this constant does not depend on y.
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Under the assumption that CP,W := ess supCY < ∞, i.e., the distribution of CY

has compact support, we can continue with

E[(f(X)− fg(X))2] ≤ CP,W E[E[‖∇zf(�Y ,Z�)‖22 |Y ]]. (2.18)

However, as we see in Subsection 4.3, this assumption on CY is not always
fulfilled.

The continuation of (2.18) follows [18, Lemma 2.2 and Theorem 3.1]. We re-
peat the steps here for the sake of completeness. So, first, note that∇zf(�y, z�) =
W�

2 ∇xf(�y, z�) for y ∈ Y and z ∈ Z. Then, we write

E[E[‖∇zf(�Y ,Z�)‖22 |Y ]]

= trace
(
E[E[∇zf(�Y ,Z�)∇zf(�Y ,Z�)� |Y ]]

)
= trace

(
W�

2 E[E[∇xf(�Y ,Z�)∇xf(�Y ,Z�)� |Y ]]W2

)
= trace

(
W�

2 E[∇xf(X)∇xf(X)�]W2

)
= trace

(
W�

2 CW2

)
= trace

(
W�

2 WΛW�W2

)
= trace (Λ2) = λk+1 + · · ·+ λn.

(2.19)

The next section gives two examples for types of densities ρX that are well-
known to imply a probabilistic Poincaré inequality for ρZ|Y (·|y) and allow for a
bound on its constant Cy that is uniform in y and W . Again, we emphasize that
it is not ρX that should satisfy a probabilistic Poincaré inequality but ρZ|Y (·|y).

3. Compactly supported and normal distributions

The uniform distribution, as a canonical example of a distribution with compact
support X , is well-known to satisfy a probabilistic Poincaré inequality on its
own and to imply the same for densities ρZ|Y (·|y) which are also uniform.
Note that a probabilistic Poincaré inequality involving a uniform distribution is
actually equivalent to a regular Poincaré inequality w.r.t. the Lebesgue measure.
The following theorem is a slightly more general result. We add a convexity
assumption on X ◦ since it makes Poincaré constants explicit. Recall that the
Poincaré constant for a convex domain with diameter d > 0 is d/π; see, e.g., [7].

Theorem 3.1. Assume that X ◦ is a bounded and convex domain. If 0 < δ ≤
ρX(x) ≤ D < ∞ for all x ∈ X ◦, then

E[(f(X)− fg(X))2] ≤ CP(λk+1 + · · ·+ λn) (3.1)

with

CP = CP(δ,D,X ) :=
diam(X )

π
· D
δ

> 0. (3.2)

Proof. Define

Z◦
y = {z ∈ Rn−k | �y, z� ∈ X ◦} ⊆ Z (3.3)
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and note that it is convex for y ∈ Y+. It holds that diam(Z◦
y) ≤ diam(Z) ≤

diam(X ). Note that
δ

ρY (y)
≤ ρZ|Y (z|y) ≤ D

ρY (y)
(3.4)

for y ∈ Y+ and z ∈ Z◦
y. This justifies the following lines of computation for

y ∈ Y+,

E[(f(�Y ,Z�)− g(Y ))2 |Y ] (3.5)

=

∫
Z◦

y

(f(�y, z�)− g(y))2 ρZ|Y (z|y) dz (3.6)

≤ D

ρY (y)

∫
Z◦

y

(f(�y, z�)− g(y))2 dz (3.7)

≤
diam(Z◦

y)

π

D

ρY (y)

∫
Z◦

y

‖∇zf(�y, z�)‖22 dz (3.8)

≤ diam(X )

π

D

δ

∫
Z◦

y

‖∇zf(�y, z�)‖22 ρZ|Y (z|y) dz (3.9)

=
diam(X )

π

D

δ
E[‖∇zf(�Y ,Z�)‖22 |Y ]. (3.10)

Then, combining (2.19) with (3.10) yields the result in (3.1).

Also, it is well-known that the Poincaré constant is one for the multivari-
ate standard normal distribution N (0, I) [14]. Since its density is rotationally
symmetric, random variables Y and Z are independent and each follow again a
standard normal distribution. Hence, it holds that CP = 1. For general multivari-
ate normal distributions N (m,Σ) with mean m and non-degenerate covariance
matrix Σ, shifting and scaling arguments give that CP = λmax(Σ).

Remark. Note that the constant CP in the previous two examples is indepen-
dent of W .

4. Main results

This section contains the main contribution of the manuscript which lies in
an investigation of general log-concave probability measures w.r.t. their ap-
plicability for ASM. Log-concave distributions have Lebesgue densities of the
form ρX(x) = exp(−V (x)) for a convex function V : Rn → (−∞,+∞]. Note
that +∞ is included in the codomain of V . The conditional density ρZ|Y (·|y)
for a given y ∈ Y+ is then given by

ρZ|Y (z|y) = exp(−V (�y, z�))

ρY (y)
= exp(−Ṽy(z)), (4.1)

where Ṽy(z) := V (�y, z�) + log(ρy(y)). Note that Ṽy inherits convexity (in z)
from V . Bobkov [8] shows that general log-concave densities satisfy a Poincaré
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inequality and gives lower and upper bounds on the corresponding Poincaré
constant.

First, we discuss the special case of α-uniformly convex functions V for which
the corresponding density ρX is known to satisfy a Poincaré inequality with uni-
versal Poincaré constant 1/α. However, the assumption of the density ρX being
of uniformly log-concave type is somewhat restrictive since it excludes distri-
butions with heavier tails as, for example, exponential or Laplace distributions.
For this reason, we secondly investigate general log-concave densities and show
that there might arise problems with this class of probability distributions due
to arbitrary large Poincaré constants CY . In particular, the problems and their
proposed solution are exemplified on an extreme case example involving inde-
pendently exponentially distributed random variables in n ≥ 2 dimensions.

4.1. α-uniformly convex functions V

Definition 4.1 (α-uniformly convex function). A function V ∈ C2 is said to be
α-uniformly convex, if there is an α > 0 such that for all x ∈ Rn it holds that

u�V ′′(x)u ≥ α‖u‖22 (4.2)

for all u ∈ Rn, where V ′′ denotes the Hessian matrix of V .

In [41, pp. 43–44], it was shown that there is a dimension-free Poincaré con-
stant 1/α for α-uniformly log-concave ρX . Note that this says nothing about the
special case α = 0. The existence of a dimension-free Poincaré constant for this
special case is actually a consequence of the famous Kannan-Lovász-Simonovits
conjecture; see, e.g., [1, 30]. However, since we need a Poincaré inequality for
ρZ|Y (·|y), y ∈ Y+, we have to prove the following lemma similar to [46, Sub-
section 7.2]

Lemma 4.2. If ρX is α-uniformly log-concave, then ρZ|Y (·|y) is α-uniformly
log-concave for each y ∈ Y+.

Proof. Let y ∈ Y+. Recall that ρZ|Y (z|y) = exp(−Ṽy(z)) for a convex func-

tion Ṽy(z) := V (�y, z�) + log(ρy(y)). The Hessian matrix Ṽ ′′
y (z) (w.r.t. z)

computes to
Ṽ ′′
y (z) = W�

2 V ′′(�y, z�)W2. (4.3)

Choose w ∈ Rn−k arbitrarily. Then, for every z ∈ Rn−k, it holds that

w�Ṽ ′′
y (z)w = (W2w)�V ′′(�y, z�) (W2w) (4.4)

≥ α‖W2w‖22 = α‖w‖22. (4.5)

Since ρZ|Y (·|y) inherits the universal Poincaré constant 1/α from ρX , the
result in (2.15) also holds for α-uniformly log-concave densities with CP = 1/α
(independent of W ) which is similar to [46, Corollary 2].
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For example, α-uniformly log-concave densities comprise multivariate normal
distributions N (m,Σ) with mean m and covariance matrix Σ (α = 1/λmax(Σ)).
However, distributions that satisfy the assumption only for α = 0 as, e.g., Weibull
distributions with the exponential distribution as a special case or Gamma dis-
tributions with shape parameter β ≥ 1, only belong to the class of general
log-concave distributions.

4.2. General convex functions V

Since we cannot make use of a universal dimension-free Poincaré constant in-
volving general convex functions V : Rn → (−∞,+∞], we look at them more
closely in this subsection. Recall that ρZ|Y (z|y) = exp(−Ṽy(z)), y ∈ Y+, for a

convex function Ṽy. We have to deal with the fact that the essential supremum of
the random Poincaré constant CY of ρZ|Y (·|Y ) does possibly not exist. A corre-
sponding example is given in Subsection 4.3.1. In the step from (2.17) to (2.18),
we have applied Hölder’s inequality with Hölder conjugates (p, q) = (+∞, 1).
Since this is not possible for unbounded random variables CY , we can only show
a weaker result.

Lemma 4.3. If ‖∇f‖22 ≤ L for some constant L > 0, then

E[(f(X)− fg(X))2] ≤ CP,ε,W (λk+1 + · · ·+ λn)
1/(1+ε), (4.6)

where

CP,ε,W = CP,ε,W (ε, n, k, L,W, ρX) := Lε/(1+ε)E[C
(1+ε)/ε
Y ]ε/(1+ε). (4.7)

Proof. The boundedness of ∇f implies that also ‖∇zf‖22 ≤ L. Choosing a
weaker pair of conjugates (p, q) = ((1 + ε)/ε, 1 + ε), ε > 0, we compute

E[CY E[‖∇zf(�Y ,Z�)‖22 |Y ]] (4.8)

≤ E[Cp
Y ]1/p E[E[‖∇zf(�Y ,Z�)‖22 |Y ]q]1/q (4.9)

= E[C
(1+ε)/ε
Y ]ε/(1+ε) E[E[‖∇zf(�Y ,Z�)‖22 |Y ]1+ε]1/(1+ε) (4.10)

≤ Lε/(1+ε) E[C
(1+ε)/ε
Y ]ε/(1+ε) E[E[‖∇zf(�Y ,Z�)‖22 |Y ]]1/(1+ε) (4.11)

≤ Lε/(1+ε) E[C
(1+ε)/ε
Y ]ε/(1+ε) (λk+1 + · · ·+ λn)

1/(1+ε) (4.12)

= CP,ε,W (λk+1 + · · ·+ λn)
1/(1+ε). (4.13)

The step in (4.12) uses (2.19). The result follows by (2.16) and (2.17).

Remark. The previous lemma requires the gradient of f to be uniformly
bounded, an assumption that is not needed in [18] and [46].

However, first, applying ASM, in the sense that the matrix C from (2.2) is
estimated by a finite Monte Carlo sum, requires the same assumption to prove
results on corresponding approximations of eigenvalues λi and eigenvectors wi;
see [16] and [17, Section 3.3].
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Secondly, this assumption can be weakened by applying another Hölder’s
inequality analogous to (4.9). Indeed, for ε ∈ (0, 1), we would get

E[E[‖∇zf(�Y ,Z�)‖22 |Y ]1+ε]1/(1+ε) (4.14)

≤ E[E[‖∇zf(�Y ,Z�)‖22 |Y ]1/(1−ε)](1−ε)/(1+ε) (4.15)

·E[E[‖∇zf(�Y ,Z�)‖22 |Y ]]ε/(1+ε). (4.16)

Since

E[E[‖∇zf(�Y ,Z�)‖22 |Y ]1/(1−ε)] (4.17)

≤ E[E[‖∇zf(�Y ,Z�)‖2/(1−ε)
2 |Y ]] (4.18)

≤ E[‖∇xf(X)‖2/(1−ε)
2 ], (4.19)

we would only require ‖∇xf(X)‖2/(1−ε)
2 to be integrable. What we, however,

would have to accept in this case, is the resulting weaker order ε/(1 + ε) in the
inactive trace.

The L- and ρX -dependence of CP,ε,W is notationally neglected in the follow-

ing. If possible, we can choose a suitable ε > 0 to get E[C
(1+ε)/ε
Y ] < ∞ and

thus a finite constant CP,ε,W . Note that we lose first order in the eigenvalues
from the inactive subspace, but have instead order 1/(1+ ε) < 1. Of course, the
constant CP,ε,W could get arbitrarily large as ε → 0, but this strongly depends
on W and the moments of CY ; see the example given in Subsection 4.3.1.

It is known by Bobkov [8, Eqs. (1.3), (1.8) and p. 1906] that there exists
a (dimensionally dependent) Poincaré constant Cy for a general log-concave
density ρZ|Y (·|y) that is bounded from below and above by

E[(‖Z − z0‖2 −E[‖Z − z0‖2 |Y = y])2 |Y = y] ≤ Cy

≤ K E[‖Z − z0‖22 |Y = y]

= K

n−k∑
i=1

Var(Zi |Y = y),

(4.20)

where z0 := E[Z |Y = y] and K = 432 [8, Eqs. (1.8) and (3.4)] is a universal
constant. To the authors’ knowledge, the constant Cy is the best available.
We provide a scenario in Subsection 4.3.1 (“Rotation by θ = π/4”) in which
the lower bound viewed as a random variable has no finite essential supremum
implying the same for CY .

However, to make use of Lemma 4.3, we need to investigate the involved
constant CP,ε,W (ε, n, k).

Lemma 4.4. It holds that

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ K(n− k)1/(1+ε)CVar,W , (4.21)
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where

CVar,W = CVar,W (ε, n, k,W ) :=

(
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]

)ε/(1+ε)

. (4.22)

Proof. Using Jensen’s inequality for weighted sums, it follows that

E[C
(1+ε)/ε
Y ] ≤ K(1+ε)/ε(n− k)(1+ε)/ε 1

n− k

n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε] (4.23)

= K(1+ε)/ε(n− k)1/ε
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]. (4.24)

The result follows.

Eventually, we get

CP,ε,W (ε, n, k) ≤ Lε/(1+ε)K(n− k)1/(1+ε)CVar,W (ε, n, k). (4.25)

As before, we can remove the dependence of CVar,W on W = W (f) by consid-
ering the supremum over all orthogonal matrices. That is, we define

CP,ε := sup
Worth.

CP,ε,W (4.26)

and
CVar := sup

Worth.
CVar,W , (4.27)

and get
E[(f(X)− fg(X))2] ≤ CP,ε(λk+1 + · · ·+ λn)

1/(1+ε), (4.28)

provided the constant CP,ε = CP,ε(ε, n, k, L, ρX) exists.
For CVar, we argue that it is actually enough to take the supremum only over

the set of rotation matrices. Indeed, any orthogonal matrix W is either a proper
(detW = 1) or an improper (detW = −1) rotation which is the combination of
a proper rotation and an inversion of the axes; see, e.g., [27, 33]. However, since
the constant CVar,W from (4.22) is invariant to inversions of the axes, it holds
that

sup
W orth.

CVar,W = sup
R rot.

CVar,R. (4.29)

This equality is exploited in the next subsection.

4.3. Independently exponentially distributed random variables as an
extreme case

In this subsection, we take a closer look at independently exponentially dis-
tributed random variables in n ≥ 2 dimensions as an example for a gen-
eral log-concave distribution. In particular, we use the lower bound of Bobkov
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from (4.20) in Subsection 4.3.1 to show that there exists a scenario in which the
random Poincaré constant CY does not have an essential supremum implying
that CP from (2.14) does not exist. Therefore, the quantity CVar from (4.27)
is investigated in Subsections 4.3.1 and 4.3.2 to derive a (finite) upper bound
for CP,ε from (4.26) in this special case.

We regard a random vector X = (X1, . . . , Xn)
� whose components are inde-

pendently exponentially distributed with unit rates νi = 1, i = 1, . . . , n and will
see that investigations with unit rates are sufficient to derive statements also
involving other rates. The distribution of X has the density

ρX(x) =

{
exp(−x1 − · · · − xn) if x = (x1, . . . , xn)

� ∈ Rn
≥0,

0 otherwise.
(4.30)

That is, in this case X = Rn
≥0 and

V (x) =

{
x1 + · · ·+ xn if x = (x1, . . . , xn)

� ∈ Rn
≥0,

+∞ otherwise.
(4.31)

Note that V is convex.
Since we are interested in CVar as a supremum over all orthogonal matrices,

we assume that, in this subsection, W =
(
W1 W2

)
is an arbitrary orthogonal

matrix not depending on f and ρX . Indeed, as the equality in (4.29) motivates,
we can further assume that W is a rotation matrix.

4.3.1. 2 dimensions

The joint density of two independently exponentially distributed random vari-
ables X1 and X2 both with unit rate is

ρX(x1, x2) =

{
exp(−x1 − x2) if x1, x2 ≥ 0,

0 otherwise.
(4.32)

First, let us regard a rotation of the two-dimensional Cartesian coordinate sys-
tem by a general angle θ ∈ [−π, π) to a coordinate system for (y, z), i.e.,(

x1

x2

)
= Rθ

(
y
z

)
(4.33)

for a rotation matrix

W = Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
. (4.34)

That is, in two dimensions, it holds that

CVar = sup
θ∈[−π,π)

CVar,Rθ
. (4.35)
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Fig 1. Rotations of the coordinate system with a positive (a) and a negative (b) angle. The
orange lines depict contour lines in the support of ρX . The red lines show the values of (y, z)
for a given y. Their solid parts mark regions within the support of ρX , whereas the dashed
parts identify values with density zero.

Subsequently, we look at the special case θ = π/4 as an example for an un-
bounded Poincaré constant Cy of ρz|y(·|y). Variables are written in thin letters
in this subsection since they denote real values and not multidimensional vec-
tors.

Note that the bound from (4.21) in this two-dimensional setting becomes

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ KCVar,W (ε, 2, 1) (4.36)

with
CVar,W (ε, 2, 1) = E[Var(Z|Y )(1+ε)/ε]ε/(1+ε). (4.37)

Rotation by general θ

Let θ ∈ [−π, π). Then, the joint density of (Y, Z) is

ρY,Z(y, z) = exp(−(y cos θ − z sin θ)− (y sin θ + z cos θ)) (4.38)

= exp(−(cos θ + sin θ)y − (cos θ − sin θ)z), (4.39)

for (y, z) with �y, z� ∈ R2
≥0 and zero otherwise. If we define a+θ := cos θ + sin θ

and a−θ := cos θ − sin θ, we have

ρY,Z(y, z) =

{
exp(−a+θ y − a−θ z) if �y, z� ∈ R2

≥0,

0 otherwise.
(4.40)

Fig. 1 illustrates the situation for a positive (Fig. 1a) and a negative (Fig. 1b)
angle θ.

The interval of investigation for θ ∈ [−π, π) can be reduced by reasons of
periodicity and symmetry. First, note that the map

Qε(θ) := CVar,Rθ
(ε, 2, 1), (4.41)
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Fig 2. Illustration of symmetries in θ of the map Qε(θ) for several ε > 0.

is π-periodic in θ since an additional rotation by π corresponds to changing
signs of y and z which is not important for integrals in Qε. Hence, it suffices to
consider θ ∈ [−π/2, π/2). Secondly, from Fig. 1 it can be deduced that Qε, as
a map of θ, is symmetric around −π/4 in [−π/2, 0] and symmetric around π/4
in [0, π/2). This fact is also shown in Fig. 2. That is, it is enough to investigate
angles θ ∈ [−π/4, π/4].

For the computation of integrals in Qε(θ), θ ∈ [−π/4, π/4], it is necessary, for
a given y, to determine boundaries �0(y) and �1(y) of intervals for z that lie in
the support of the joint density ρY,Z(y, z) (see the thick solid lines in Fig. 1). The
integrals in Qε(θ) are computed using the computer algebra system Wolfram
Mathematica [43]. The computation requires to treat the cases θ ∈ [−π/4, 0)
and θ ∈ [0, π/4] differently (see Fig. 1).

For negative θ ∈ [−π/4, 0) and arbitrary y ∈ R, we have that

�0(y) =

{
|y| cot(|θ|) if y < 0

y tan(|θ|) if y ≥ 0

}
= |y| tan(|θ|)sgn(y) (4.42)

and �1(y) = ∞, i.e.,

ρY,Z(y, z) = exp(−a+θ y − a−θ z) · 1[�0(y),�1(y)](z). (4.43)

We compute that

Var(Z |Y = y) = (cos(|θ|) + sin(|θ|))−2 (4.44)

which is constant in y and yields

Qε(θ) = CVar,Rθ
(ε, 2, 1) = (cos(|θ|) + sin(|θ|))−2. (4.45)

Note that this explains the left part of the graph of Qε(θ) in Fig. 2 which shows
that Qε(θ) does not depend on ε for θ ∈ [−π/2, 0).

For non-negative θ ∈ [0, π/4] and a given y ≥ 0, the boundaries are computed
to �0(y) = −y tan(θ) and �1(y) = y cot(θ), i.e.,

ρY,Z(y, z) = exp(−a+θ y − a−θ z) · 1[0,∞)(y) · 1[�0(y),�1(y)](z). (4.46)
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Fig 3. (a) The log-log plot of the map y �→ Var(Z |Y = y) shows that it is bounded for
angles θ ∈ [0, π/4), but approaching the unbounded function y2/3, which corresponds to θ =
π/4, as θ → π/4. (b) The plot shows the map ε �→ Qε(θ) for several angles θ. Also, it
illustrates the fact that θ = π/4 is a special case for which Qε(θ) can get arbitrarily large.

We compute that

Var(Z |Y = y)

=
aθ
8b2θ

(
1− 2 exp(bθy) + exp(2bθy)− 8 exp(bθy)y

2(1− dθ)

(exp(bθy)− 1)2
− cθ

)
(4.47)

for aθ := csc(θ)4 sec(θ)4, bθ := sec(θ)− csc(θ), cθ := cos(4θ), and dθ := sin(2θ).
Var(Z |Y = y) can actually be bounded in y for θ ∈ [0, π/4). Indeed, since
dθ ∈ [0, 1), it holds that 1− dθ ∈ (0, 1] implying that 8 exp(bθy)y

2(1− dθ) > 0.
It follows that

Var(Z|Y ) ≤ aθ
8b2θ

(
1− 2 exp(bθy) + exp(2bθy)

(exp(bθy)− 1)2
− cθ

)
(4.48)

=
aθ
8b2θ

(
(exp(bθy)− 1)2

(exp(bθy)− 1)2
− cθ

)
(4.49)

=
aθ(1− cθ)

8b2θ
. (4.50)

Fig. 3a illustrates the boundedness of Var(Z |Y = y) and additionally shows
that it approaches the unbounded function y �→ y2/3 as θ → π/4. Hence,
for θ ∈ [0, π/4), it holds that

Qε(θ) = CVar,Rθ
(ε, 2, 1) ≤ aθ(1− cθ)

8b2θ
. (4.51)

This bound is itself unbounded in θ since bθ → 0 and aθ(1−cθ) → 32 as θ → π/4
implying that we can see θ = π/4 as a special case. This assessment is also
supported by Fig. 3b. In particular, note that

CVar = CVar,Rπ/4
. (4.52)
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Fig 4. Exponential distribution in 2 dimensions with a coordinate system rotated by 45◦. The
orange lines depict the contour levels of the distribution in the support of ρX . The solid red
line marks the interval of the uniform distribution of Z |Y = y for y > 0.

Rotation by θ = π/4

A rotation of 45◦, i.e., θ = π/4 and W = Rπ/4, is a limit case since a−π/4
from (4.40) becomes zero. The joint density for Y and Z is then

ρY,Z(y, z) = exp(−
√
2y) · 1[0,∞)(y) · 1[−y,y](z). (4.53)

A graphical illustration of this case is given in Fig. 4. Consequently, the marginal
distribution of Y is

ρY (y) =

∫ ∞

−∞
ρY,Z(y, z) dz = 2y exp(−

√
2y) · 1[0,∞)(y) (4.54)

and the conditional density ρZ|Y (·|y) computes to

ρZ|Y (z|y) =
1[−y,y](z)

2y
(4.55)

for y > 0. Note that ρZ|Y (·|y) is the density of a uniform distribution on the
interval [−y, y]. For Y > 0, it follows that

Var(Z|Y ) = (2Y )−1

∫ Y

−Y

z2 dz = Y 2/3, (4.56)

which is the expression that variances of Z|Y for other angles θ∗ approach to
as θ∗ → π/4 (see Fig. 3a).

Note that the lower bound from (4.20) for CY in this case becomes

E[(|Z| −E[|Z| |Y ])2 |Y ] = Var(|Z| |Y ) = Y 2/12, (4.57)

since |Z| |Y ∼ U([0, Y ]) and, hence, its distribution is not compactly supported
implying the same for the distribution of CY . Therefore, we found a scenario in
which the constants CP,W and CP indeed do not exist.
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However, there is still a chance that the constants CP,ε,W and CP,ε from (4.7)
and, respectively, (4.26) exist. It holds that

CVar(ε, 2, 1) = CVar,Rπ/4
(ε, 2, 1) =

1

3
E[Y 2+2/ε]ε/(1+ε) (4.58)

implying that the constant CP,ε(ε, 2, 1) can be bounded from above by

CP,ε(ε, 2, 1) ≤ Lε/(1+ε)K

3
E[Y 2+2/ε]ε/(1+ε). (4.59)

For example, choosing ε = 2 would give

CP,ε(2, 2, 1) ≤ 2K

(
L2

3

)1/3

. (4.60)

4.3.2. n dimensions

This subsection aims to generalize the results of the previous subsection, i.e., we
investigate the constant CP,ε from (4.26) for n independently exponentially dis-
tributed random variables.

Motivated by the two-dimensional case, we regard the rotation of the coordi-
nate system by a matrix W = R∗ that rotates the vector (1, 0, . . . , 0)� ∈ Rn to
(1/

√
n, . . . , 1/

√
n)� ∈ Rn. Note that in the two-dimensional case, a rotation by

θ = π/4 corresponds to a matrix rotating (1, 0)� to (1/
√
2, 1/

√
2)�. This is the

worst case in the sense that Zi|Y is uniformly distributed for each component
Zi in Z = (Z1, . . . , Zn−k)

� and hence, similar to the two-dimensional case, the
conditional variance of Zi|Y has no finite essential supremum. In the context
from above, it holds that

CVar(ε, n, k) = CVar,R∗(ε, n, k). (4.61)

The following theorem studies this case and investigates the dimensional depen-
dence of the involved constant.

Theorem 4.5. For ρX as in (4.30), it holds that

E[(f(X)− fg(X))2] ≤ Cexpn (λk+1 + · · ·+ λn)
1/(1+ε) (4.62)

for a constant
Cexpn = Cexpn(ε, n, k, L, ρX) ≥ CP,ε (4.63)

Proof. In the support of ρX , i.e., in X = Rn
≥0, ρX is greater than zero and

constant on the intersection of Rn
≥0 and planes

Pa := {x |x1 + · · ·+ xn = a} = {x | (1, . . . , 1)�x = a} ⊂ Rn, a > 0, (4.64)

i.e., on hypersurfaces Ta := Pa ∩Rn
≥0. The situation is illustrated by Fig. 5 for

n = 3 dimensions.
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Fig 5. Exponential distribution in 3D with a rotated coordinate system.

For x = �y, z� ∈ Rn
≥0, the value of ρY ,Z(y, z) is only determined by y1 ≥ 0.

Reversely, if y1 < 0, then ρY ,Z(y, z) = 0. We know that the point at x0 :=
β(1, . . . , 1)� ∈ Rn with ‖x0‖2 = y1 is supposed to lie on Pa for some β > 0. It
follows immediately that β = y1/

√
n. Also, we determine a with

a = (1, . . . , 1)�x0 =
y1√
n
n =

√
ny1. (4.65)

Let us define T (y1) := T√
ny1

. That is,

ρY ,Z(y, z) = exp(−
√
ny1) · 1[0,∞)(y1) · 1T (y1)(y, z). (4.66)

T (y1), as a geometric figure, is a regular (n− 1)-simplex in n dimensions. T (y1)
is intrinsically (n− 1)-dimensional and has n corners which are

(
√
ny1, 0, . . . , 0), . . . , (0, . . . , 0,

√
ny1) ∈ Rn. (4.67)

It follows that the side length of T (y1) is
√
2ny1. Note that the coordinates

y̌ = (y2, . . . , yk)
� and z = (z1, . . . , zn−k)

� all move on T (y1).
We can rewrite T (y1) as

T (y1) = {x ∈ Rn
≥0 | (W�x)1 = y1} (4.68)

= {�ỹ, z̃� | �ỹ, z̃� ∈ Rn
≥0, ỹ1 = y1}. (4.69)

This motivates to view T (y1) as an (n− 1)-dimensional set in the rotated coor-
dinate system, i.e., we define

Ť (y1) := {(y̌, z) ∈ Rk−1 ×Rn−k | �(y1, y̌), z� ∈ T (y1)} ⊂ Rn−1. (4.70)

We observe that the conditioned random variable (Y̌ ,Z)|Y1 is uniformly
distributed on the regular (n− 1)-simplex Ť (y1). The basic idea to get a bound
for E[Var(Zi|Y )(1+ε)/ε] is based on the fact that zi, moving as the (k+ i−1)-th
coordinate inside Ť (y1), takes values in [0, hi(y1)], where hi(y1) is the height
of a regular (k + i − 1)-simplex with side length

√
2ny1 and is thus bounded.
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In general, the height of a regular n-simplex is the distance of a vertex to the
circumcentre of its opposite regular (n − 1)-simplex. By [12, p. 367], it holds
that

hi(y1) =

√
n(k + i)

k + i− 1
y1. (4.71)

We start the computation by noting that

ρY ,Z(y, z) = exp(−
√
ny1) · 1[0,∞)(y1) · 1Ť (y1)

(y̌, z). (4.72)

The marginal distribution of Zi|Y is given by

ρZi|Y (zi|y) =
∫

· · ·
∫

ρZ|Y (z|y) dz1 . . . dzi−1 dzi+1 . . . dzn−k (4.73)

and so we get

ρY (y)ρZi|Y (zi|y) (4.74)

=

∫
· · ·

∫
ρY ,Z(y, z) dz1 . . . dzi−1 dzi+1 . . . dzn−k (4.75)

= exp(−
√
ny1) · 1[0,∞)(y1) (4.76)

·
∫

· · ·
∫

1T (y1)(y̌, z) dz1 . . . dzi−1 dzi+1 . . . dzn−k. (4.77)

Using Jensen’s inequality in a first step, we can continue with

E[Var(Zi|Y )(1+ε)/ε] ≤ E[E[Z
2(1+ε)/ε
i |Y ]] (4.78)

=

∫ (∫
z
2(1+ε)/ε
i ρZi|Y (zi|y) dzi

)
ρy(y) dy (4.79)

=

∫ ∞

0

exp(−
√
ny1)

(∫ ∫
z
2(1+ε)/ε
i · 1Ť (y1)

(y̌, z) dz dy̌

)
dy1 (4.80)

≤
∫ ∞

0

exp(−
√
ny1) hi(y1)

2(1+ε)/ε

(∫ ∫
1Ť (y1)

(y̌, z) dz dy̌

)
dy1 (4.81)

=

∫ ∞

0

exp(−
√
ny1)

(√
n(k + i)

k + i− 1
y1

)2(1+ε)/ε √
nn

(n− 1)!
yn−1
1 dy1 (4.82)

=

(
n(k + i)

k + i− 1

)(1+ε)/ε √
nn

(n− 1)!

∫ ∞

0

y
n+1+2/ε
1 exp(−

√
ny1) dy1 (4.83)

=

(
n(k + i)

k + i− 1

)(1+ε)/ε √
nn

(n− 1)!

Γ(n+ 2 + 2/ε)

n(1+ε)/ε
√
nn

(4.84)

=

(
k + i

k + i− 1

)(1+ε)/ε
Γ(n+ 2 + 2/ε)

(n− 1)!
. (4.85)

Note that an intermediate step of the previous calculation uses the fact that the
volume of the regular (n− 1)-simplex Ť (y1) with side length

√
2ny1 is (see [12,
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p. 367]) ∫ ∫
1Ť (y1)

(y̌, z) dz dy̌ =

√
n
n

(n− 1)!
yn−1
1 . (4.86)

Remember from (4.21) and (4.22) that

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ K(n− k)1/(1+ε)CVar(ε, n, k) (4.87)

with

CVar(ε, n, k) =

(
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]

)ε/(1+ε)

(4.88)

≤
(
Γ(n+ 2 + 2/ε)

(n− 1)!

n−k∑
i=1

(
k + i

k + i− 1

)(1+ε)/ε
)ε/(1+ε)

. (4.89)

Defining

Cε(n, k) := (n− k)1/(1+ε)

(
Γ(n+ 2 + 2/ε)

(n− 1)!

n−k∑
i=1

(
k + i

k + i− 1

)(1+ε)/ε
)ε/(1+ε)

(4.90)
then yields

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ KCε(n, k). (4.91)

Combining all bounds, we get that

CP,ε(ε, n, k) ≤ K · Lε/(1+ε) · Cε(n, k) =: Cexpn(ε, n, k, L), (4.92)

where CP,ε(ε, n, k) was defined in (4.26). We recall that n denotes the dimension
of the problem, k the dimension of the active subspace, L is the upper bound
on ‖∇f‖22, and K the universal constant from (4.21).

The result follows by Lemma 4.3.

Fig. 6 depicts the quantity Cε(n, k = 1) from (4.90) as a function of ε > 0
for some n ∈ N (left plot) and as a function of n ≥ 2 for several ε > 0 (right
plot). We set k = 1 since this gives the maximum value for Cε over all k ≥ 1.
As expected, the curves increase quickly as ε approaches zero or, respectively, n
becomes large.

Remark. In the previous theorem, the exponentially distributed random vari-
ables are assumed to have unit rates. The computations can also be made for
arbitrary rates νi, i = 1, . . . , n. However, some modifications are necessary. Let
ν = (ν1, . . . , νn)

� denote the vector of rates. To get again the worst case scenario
as in the previous subsection (uniform distribution on a simplex structure), the
coordinate system has to be rotated in such a way that the vector (1, 0, . . . , 0)�

rotates to ν/‖ν‖2. The structure of a regular simplex that is used in the esti-
mates above is not present in this more general case. Instead, we get a general
simplex whose heights are not as easy to compute as in the regular case. How-
ever, rough estimates can be achieved by enclosing the general simplex with a
larger regular one.
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Fig 6. The left plot shows curves of the map ε �→ Cε(n, k = 1) for n ∈ {2, 5, 10, 20}. Curves
of n �→ Cε(n, k = 1) for ε ∈ {0.02, 0.05, 0.1, 0.2} are displayed on the right.

5. Future work with MGH distributions

The generalized bound from Lemma 4.3 and the study of corresponding Poincaré
type constants CP,ε,W and CP,ε for independently exponentially distributed ran-
dom variables in Subsection 4.3 motivate further similar investigations of more
general distributions. From a statistical perspective, a study of the class of
multivariate generalized hyperbolic distributions (MGH) (see e.g., [4]) can be
considered as a next step since it allows for distributions with both non-zero
skewness and heavier tails. An MGH is a distribution of the random vector

X = μ+ βA+
√
AMV (5.1)

with location parameter μ ∈ Rn, skewness parameter β ∈ Rn, and a symmetric
positive definite matrix M ∈ Rn×n. The scalar random variable A, called the
mixing variable, follows a generalized inverse Gaussian distribution (GIG) [26],
and V ∼ N (0, I) is independent of A. As a particular example, for X to be
Laplace distributed, we set β = 0 and let A be exponentially distributed [29].
Note that, however, the example from Subsection 4.3, assuming independently
exponentially distributed random variables, is not an MGH. In order to include
this case, we would need to introduce a mixing random matrix as scaling for V .

Nevertheless, MGH is a large class containing classical distributions like the
normal-inverse Gaussian, generalized Laplace, and Student’s t-distribution. In
particular, these distributions are interesting since they have been used in areas
like, for instance, economics and financial markets [5, 6, 23], spatial and Geo-
statistics [9, 10, 42], and linear mixed-effects [2, 32, 47] which are used, e.g., for
linear non-Gaussian time series models in medical longitudinal studies [2].

We mention that, under an assumption on a parameter, MGH distributions
are log-concave [44], i.e., we can use the estimates on Poincaré constants CY of
Bobkov from (4.20).
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In our opinion, it is preferable to start the investigation with the subclass of
symmetric MGH distributions, i.e., β = 0 in (5.1). The following lines demon-
strate particular difficulties that we already encounter in this smaller subclass.
Let us choose μ = β = 0 and M = I in (5.1) such that

X =
√
AV (5.2)

with V ∼ N (0, I). A common first step is to study X conditioned on A,
i.e., X|A ∼ N (0, AI), and to use the tower property of conditional expecta-
tions. That is, analogously to (2.2), we define

C := E[CA] = WΛW� (5.3)

with

CA := E[∇f(X)∇f(X)� |A] = WAΛAW
�
A . (5.4)

Choosing k ≤ n− 1 independent of A, we further set

YA := W�
A,1X and ZA := W�

A,2X. (5.5)

The computation starts, similar to (2.16), with

E[(f(X)− fg(X))2 |A] (5.6)

= E[E[(f(�YA,ZA�WA
)− g(YA))

2 |YA] |A] (5.7)

≤ E[CYA
E[‖∇zAf(�YA,ZA�WA

)‖22 |YA] |A] (5.8)

= A E[E[‖∇zAf(�YA,ZA�WA
)‖22 |YA] |A] (5.9)

= A trace (ΛA,2) . (5.10)

In (5.9), we use the fact that the Poincaré constant of a normal distribu-
tion N (0, AI) is λmax(AI) = A; see Section 3. The last step to (5.10) is equal
to (2.19). This yields

E[(f(X)− fg(X))2] = E[E[(f(X)− fg(X))2 |A]] (5.11)

≤ E[A · trace (ΛA,2)], (5.12)

where the random variable A·trace (ΛA,2) is assumed to have finite first moment.
At this point, as long as A is not compactly supported, we can only continue

by applying another Hölder’s inequality similar to the proof of Lemma 4.3.
However, in any case, we have to face the problem that E[trace (ΛA,2)] is, in
general, not equal to trace (Λ2) which denotes the inactive trace of C that we
actually aim for. Nevertheless, we know that

E[trace (ΛA)] = trace (Λ) , (5.13)

but it is unclear whether, and how, this equality can be exploited for our pur-
poses.
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6. Summary

This manuscript discusses bounds for the mean squared error of a given function
of interest and a low-dimensional approximation of it which is found by the ac-
tive subspace method. These bounds, consisting of the product of a Poincaré con-
stant and a sum of eigenvalues belonging to a non-dominant subspace, are based
on a probabilistic Poincaré inequality. Existing literature applies this Poincaré
inequality with indirect non-explicit assumptions that, as a consequence, limit
the class of distributions applicable for the active subspace method. For example,
these assumptions exclude distributions with exponential tails as, e.g., exponen-
tial distributions. In this respect, the main results of this manuscript give details
on the problem that arises when applying the active subspace method with log-
concave distributions (which include exponential distributions). We are able to
provide a scenario, involving independently exponentially distributed random
variables, in which the usual estimates are not achievable due to an unbounded
Poincaré constant. However, using Hölder’s inequality with conjugates (p, q)
(p, q ∈ (1,∞)) instead of (∞, 1), we show that it is possible to derive a gener-
alized result in a way that enables to balance the size of the Poincaré constant
and the remaining order of the error. We exemplify this trade-off on the men-
tioned scenario and show that the size of the involved constant is very much
depending on the dimension of the problem. Finally, we propose directions for
future work related to the applicability of active subspaces to the large class of
multivariate generalized hyperbolic distributions. Also, details are provided for
particular difficulties that already arise with a smaller subclass of these.

Source code

Wolfram Mathematica notebooks and code for generating the plots in this
manuscript are available in a repository at

https://bitbucket.org/m-parente/asm-poincare-pub/.
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