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Exact simulation of two-parameter Poisson-Dirichlet
random variables
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Abstract
Consider a random vector (Vi,...,V,) where {Vi}x=1,....n are the first n components

of a two-parameter Poisson-Dirichlet distribution PD(«,#). In this paper, we derive
a decomposition for the components of the random vector, and propose an exact
simulation algorithm to sample from the random vector. Moreover, a special case
arises when 0/« is a positive integer, for which we present a very fast modified
simulation algorithm using a compound geometric representation of the decomposition.
Numerical examples are provided to illustrate the accuracy and effectiveness of our
algorithms.
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1 Introduction

The two-parameter Poisson-Dirichlet distribution is a probability distribution on
the set of decreasing positive sequences with sum 1. It can be defined in terms of
independent Beta random variables as the following.

Definition 1.1 (Definition 1 of [19]). For 0 < a < 1 aqd 0 > —aq, suppose that a
probability P, ¢ governs independent random variables Y; such that Y; has Beta(l —
o, 0 + i) distribution. Let

Vi=Yi, Vi=(1-V1)...(1=Y;_1)Y; (i>2)

and let V; > V5 > ... be the ranked values of the VL Define the Poisson-Dirichlet
distribution with parameters («, ), abbreviated PD(«,0), to be the P, ¢ distribution
of (V).
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Exact simulation of Poisson-Dirichlet

Moreover, results of [14], [16] and [17] show that under the P, ¢ governing, the
sequence {V;};>1 is a size-biased permutation of {V;};>;. Based on the size-biased
permutation, [6] proposed a residual allocation model for {17,}121

The PD(«,#) distribution extends the one-parameter family of Poisson-Dirichlet dis-
tribution introduced by [11] and denoted by PD(0,6), 8§ > 0. It also generalizes the
family of distributions denoted by PD(«,0), which can be interpreted in terms of the
ranked lengths of excursion intervals between zeros of a recurrent Bessel process, see
[18]. We refer the reader to [19] for the motivation and a collection of existing results of
the Poisson-Dirichlet distribution. In particular, [19] includes the distributional proper-
ties of PD(«,0) and its connection to random processes, we will use these properties
throughout the paper.

The Poisson-Dirichlet distribution arises in many fields, for example, as the asymptotic
distribution of the ranked relative cycle lengths in a random permutation, see [21] and
[20]; as the limiting proportions of genes in some populations genetics models, see [9]
and [24]; as the distribution of the ranked sizes of atoms in the Dirichlet process prior
in Bayesian statistics, see [7] and [4]. It also appears in the research fields such as
number theory [3], [23] and combinatorics [2], [8]. More recently, the Poisson-Dirichlet
distribution is used to approximate the capital distribution curves in equity markets, see
[22].

Despite its huge variety of applications, the simulation method for PD(«, 0) is less
attended and we found no exact method in the literature. When oo = 0, PD(0, 0) can be
approximated by a Dirichlet distribution, see Section 9.3 of [12] and Proposition 5 of
[19]. An approximation method for PD(«, ) with a general value of « is proposed in [1].

In this paper we develop two exact simulation algorithms for the first n components,
(V1,Va,...,Vy), of the PD(«, 6) distribution. The following trivial simulation algorithm is
obtained immediately from Definition 1.1. However, this is only an approximation.

Algorithm 1.2 (Trivial algorithm). The approximation algorithm for the random vector
(V1,Va, ..., V,,) is the following.

1. Initialize «, 6 and n, select a positive integer m > n (for example m = 5n).
2. Fori=1,2,...,m, generate independent Beta random variables

Y; ~ Beta(l — a, 0 + ia).

3. Set Vl = }7’1, and for eachi=2,...,m, set

Vi=(1-Y1)...(1-Yie)Ys

4. Sort {‘71'}7::1,_..,771, in a descending order and let V; > V5 > --- > V,, be the ranked
values of {f/i}i:lw,m.

5. Truncate the sequence {V;};=1,.. ., at the first n components, then (V1,V2,...,V,)
is an approximation of the first n components of the PD(«, #) distribution.

Proof. This follows Definition 1.1 directly. O

As m — oo, Algorithm 1.2 coincides with the definition of the PD(«, ) distribu-
tion, but in practice m can only take a finite value, so this algorithm is a non-exact
approximation for (V1, Vs, ..., V).

The rest of the paper is organized as follows. In Section 2 we provide two decom-
positions in law for the components of the PD(«, §) distribution, these decompositions
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will lead to the exact simulation algorithms directly. In Section 3 we present the main
results, namely the subordinator algorithm and the compound geometric representation
algorithm to sample from the PD(a, ) distribution. Numerical examples and their
discussions are given in Section 4.

2 Decompositions of 1/V, under P, ,

Denote by (V4,Va, ..., V,,) the first n components of the PD(«, #) distribution. In this
section, we provide two decompositions for 1/Vj, k = 1,...,n under the probability
measure P, 9. These decompositions will lead to the exact simulation algorithms. For
simplicity, we make the convention throughout the paper that H;’:—i a; = 1. The following
lemma provides a preliminary result that will be used in the proof of the main results.

Lemma 2.1 (Existing results under P, (). Denote by 7, a stable subordinator with Lévy
measure Cow_o‘_lll{x>0}da: for 0 < a < 1, and A, the ranked jumps of 1;, such that
Ay >Ay>...and1, =) 1o, Ay. Then for every C > 0 and t > 0, the random vector

Tt Tt

A A
(1,2,...) has PD(«,0) distribution.

Moreover, let V), := %"' be the k-th component of the PD(«,0) distribution, then for
k=1,...,n, the decomposition

k—1
1 aw -
c e B RB e R+ (TTR2 | TT R @
k ; j
=1

holds under the probability measure P, o, where R; := V;11/V; = Aji1/A;, and
Y.|Aq, ..., A, is a subordinator with truncated Lévy measure C’ax*“*]l{oqd}dx at

time tAT*([T/Z) Ry ®).

Ay Ag

T T

Proof. For the distribution of the random vector ( ) see Proposition 6 of [19].

We now proceed to prove the decomposition (2.1) under P, . Denote by

7 A= A,
Y =
A
and R; := Aj;1/A;, it follows that
1 T Do+ +A, A,
i A * Ay M Ay

n—1 n—1
=1+ (Ri+RiRo++ [[Ri | + | [[ R | Ens
j=1 j=1

and the decomposition for 1/V}, k =2,...,nis given by V}, = V; H;:ll R;.
Moreover, from the proof of Proposition 11 in [19] (see also the calculations in [11]
and [15]), we know the Laplace transform of ¥,, | A,..., A, is

E (6752" Al, ceey An) = eftA;a fol(lfe_ﬁz)Caw_D‘_ldz

_ e—tAfa(l_[;.:f R;"‘)fol(1—67‘3””)C’owc*”*ldac7

this is the Lévy-Khintchine representation (see [13]) of a subordinator with truncated

Lévy measure Caz~* 1o <1} at time tAT® (H;L;ll R;®), then the Lemma is proved. [
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Next, we present the decomposition for the first n components of the PD(«,0)
distribution, this result will permit us to use the subordinator algorithm developed in [5].
Without loss of generality, we set t = 1 and C = 1 in the rest of the paper.

Theorem 2.2. Let (V4, V5, ..., V,,) be the first n components of the PD(«, 0) distribution,
then for every k = 1,...,n, the decomposition

n—1 n—1 k—1
1 aw —
712 1+ [Ri+RiRo+ -+ [[R |+ | [[Ri | =0 | [T B
k . . .
j=1 j=1 j=1

holds under the probability measure P, o, where (A7, Ry,...,R,_1,%,) has the joint
density

g(w,r1, ..., rp1,x) 1=
L0+1 o -1 1 a1 —w[[* e -1 _—(n—j)a—1
F((%_H))F(l —a)afx, (m | wH?Zl T a) an~lyatn—le=wlli=r 7 (H;.Lzl r; )

)

0
(1-1- (7"1 +rire +"‘+H;:117”j) + (H?;llTj) w)

and fx, (x | wl_[?;ll rj_"‘) denotes the density of a subordinator with truncated Lévy

n—1_ —

measure az~* 'l <1ydz at time w[[;_; ;

and x > 0.

Y forw>0,0<r;<l,j=1,...,n—1

Proof. This theorem is an analogue of Lemma 2.1 with a changed probability measure.
Denote by H the non-negative product measurable function

L g, L
H(zy,...,wp) =€ P51 . e Pran,

where 8 > 0and 0 < zx < 1, for k =1,...,n. From Proposition 14 of [19], we know
Eao(HVA,....Vn)) = caoBao (P HV, ..., V3))
where
I'e+1
Ca,p = C%#
r's+1)

[e%

I'(l—a)s. (2.2)

Since Vi = Ay /7 under P, o, we set Tt_e = A;f’vf, then
Eao(H(Vi,...,Vn)) = caoEao (AT VEH(V, ... V) (2.3)

From Lemma 24 of [19], we know that under the probability measure P, o, A;® has a
standard exponential distribution. Conditioning on A, we have

Ea 0 (A;"VfH(m,...,Vn))z/ Eoo (ATVIH(VL, ..., Vo) | AT®) e ¥ dw
0

- / Eao (VEH(VA,. .., Va) | ATY) we e duw.
0

Moreover, the joint density of Ry,...,R,_1 | AT® = w under P, ¢ is given by Lemma 3.2
of [10] (see Appendix A),

n—1
_ _ 1 e n—1_—a —(n—7)a—1
fRevmy (P11 | AT = w) i= o™ Ly tewewlli=r; H T (n=g)e , (2.4)
j=1
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for0<r; <1,j=1,...,n— 1. Thus, conditioning on Ry, ..., R,_i, we have
Eoo (ATVPH(W, ..., V0))
[e%e} 1 1
_ / / / Boo (VEH(VA, ... Vo) | AT Ry, Ru_1)
o Jo 0
X fRy, B (T1y oy Tt | w)wge*wdrl oo dry,_1dw.

We also denote by fx, (z | w H;L 11 r; ) the density of a subordinator with truncated Lévy
measure ax~ " ]l{0<£<1}dx at time w HJ 17 ~%. Then, conditioning on ¥,, leads to

w0 (ATVIH(V,. .. V)

/ / / / a() Vl ‘/17"'7‘/71,)|AIQ7R17"'aRn7172n)

o _
X fs., m\er N fry,re (1, o1 |wWweeTYdadry .. dry—1dw.

From Lemma 2.1, we know (V1,...,V,,) is determined by (A7*, Ry,...,Ry—1,%,) under
the probability measure P, o. Using the decomposition (2.1), we get

Eoo (ATVEH(V, ... V)

/ / / / He*ﬂk (vt (rrbrirat TS )+ 7)) TS

(I|wH;l 11 J_ )le Rp— 1(r1,...,rn_1|w)wge’“’
X 7 dxdry ...dr,_1dw.
(1 + (7“1 +rirg+-o Hn 1 ) (H;L:_f Tj) x)
Taking this into (2.3) and using the expressions of fr, .. g, ,(T1,...,"n—1 | ATY = w)
and c,,9, we obtain the joint Laplace transform of (V%’ .. Vi) under ]Pa 0,
Ea0< ,31‘/1“ ’ann)

n
/ / / / T e (o (et T2 1 4TI 1)) T

L(0+1 — n— 971 —w"lf"‘ n—1 —(n—j)a—1
Bt s (T T ()

Jj=1"3
0
(1+ (7"1+7“17"2+ +HJ 1 TJ) (H;L:_f Tj) x)
dxdry ...dr,_1dw,

and the theorem is a direct consequence of this result. O

The next theorem gives another decomposition for the components of PD(«, ¢), which
will permit us to use a faster simulation algorithm when 0/« is a positive integer.

Theorem 2.3. Let (V4,V2,...,V,,) be the first n components of the PD(«, §) distribution.

If0 > 0 and 0/« is a positive integer, then for every k = 1,...,n, the decomposition
1, n—1 k—1 Z+n n—1 NG
aw ) -1 ) (#)
v T+ Ri+RiRo+-+ R ) IR+ D TR | | DTy
j=1 j=1 i=1 =k §=0
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holds under the probability measure P, g, where (Z, R1, ..., R,_1) has the joint density

TO+ DI —a)e , , [ o
m(z, 71,y 1) = ( %(9() ) 21 H(]Oz+9)’r§ ol
j=1

e*Z(1+T1+T1T2+"'+H;};11 Tj)
X

e Z+n’
(1 + o (1 - e (II=: Tj)w)ozx—a—ldx)

forz>0and0<r; <1,j=1,2,...,n—1. Moreover, let A be defined as

1 —a _ ,«
A= A(Z Ry, Ry y) = / (I R) @ V0 =0 2.5)
0 U+1

then fori=1,2,...,0/a+n, N € {0,1,2,...} are independent and identical geometric
random variables with parameter q, where

A
q=q(Z,Ry,...,Rp_1):=1— ——. (2.6)
mese(ra)
Furthermore, foreveryi =1,2,...,0/a+mn, To(i) € (0,1) is a random variable with density
ho(z|Z, Ri, ..., Rn_1) IS Bt 1 2.7)
o\T|4, L1y .-y i —1) = pe— or <z <l .
fOl e*Z(Hj:1 RJ)?Jyafldy
and Tl(i),TQ(i), ... are independent and identically distributed random variables with
Tj(i) 2o+ 1,7=1,2,...,N®, where G € (0,1) is a random variable with density
672(1‘[’;;1 Rj)(ut1) u”®—u®
h(u| Z,Ry,...,Ry_ 1) = wtl  for 0<u<1. (2.8)

A

Proof. From equation (2.3), we know that

n n
Eaﬂ <H e_ﬁkvk> = Ca,GEa,O <A1_9‘/10 H 6_5kvlk>

k=1 k=1

n 1 k—1 —1
= Ca,0Ea,0 <A19V19 H e Pevr M= B57) )
k=1

where R; := V;;1/V; and ¢, ¢ is defined as (2.2).

Since # > 0 and V; > 0, the Gamma density implies V{ = [ ﬁze‘le_"ildz, then

2 J B * 1 _z . B, L “1R-
Ea (He ” ) = ca0Fao <A16 </ IR dz) [ e o0 le)).
0

k=1 k=1
(2.9)
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As in the proof of Theorem 2.2, we condition on (A7 %, Ry, ..., R,—1) under P, o, then

Ea,O A;G </ 1o - dz) H e —Bry V1 k 1R_1)
o I )
[ ([ e e L s )

k=1

6
o

—w
X fry, By (1, Tt |wW)wee™dry .. drp—1dw

/ / // ( (z+zz:16k<n?;h;1>)%|A;a,Rl,,,,7Rn,1)dz
n—1

_ 9 _ n—1 —oc _ 3 —1
x o atn—leg—wlli_y7; Hrj (n=j)a dry...drp_1dw,

Jj=1

where fg,. g, ,(r1,...,7h—1 | w) is given in (2.4).
Using the decomposition (2.1) for V% under the probability measure P, o, we get

e | k-1
Eoo | A7 (/ — 0 lew dz) ¢ Pror ML By
i < ' o T(6) H

k=1

/ / / / 1= (SR AT D) (T trarat AT )

x Ea.o (e*(“zkzlﬂk(nf:;ijl))(n;l )% | Are Rl,...,Rnfl) &

0 n—1,—a _ 1
x et le—wllizi H (n=y)a dry...drp_1dw.

The distribution of ¥,, | AT%, Ry, ..., R,—1 under P, ( has been specified in Lemma 2.1,
hence we can calculate its Laplace transform using the Lévy-Khintchine representation,

el | k-1
Eoo | A7 (/ — 0 lew dz) ¢ Pror ML By
i < ' o T(6) H

/ / / / 01— (2450 AR TTEC vy D) (b brara oA TT )
()

Nl —a APy BT D) (7 ry) ey a1
e—w(]_[j:1 r; )fo(l ( k=1FkMlj=1"j )( =1 J) Yoz dIdZ

n—1

_ 9 _ n—1 —oc _ —_3 —1
x o atn—le—wlli_yr; H T (n=g)a dry...drp_1dw.
=1

Next, we carry out the integral with respect to w using a Gamma density; it follows that

% 9q . n 1 k—1 p—1
Eao | A7 (/ ze_le‘/ldz) e v L= 1570
,0 ( 1 o 1—\(0) H

k=1

1 1 00
- / / / L o1 (i BT v D) (Lt AT )
0 0 0 F(@)

D(2 +man ! (T15 ™)

: n dZd’I“l . d’rn71.
n k—1_—1 ,—
(1 Jo 1= e~ (#HEim AT D) (T 7)o )ax*afldw)

Rl

(2.10)
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We focus on the fraction in the integrand, denoted by

1

I:= .
14 fol(l — e_<z+z;i=1 A= v ) (IS Tﬂ')"c)am_o‘_ldw

For the denominator of I, we integrate by parts; then we multiply both the numerator
- L=+, Be(TT520 ry DAL e a1 Vi

and denominator of I by [; e k=1 i=1'; s=1 "%~ dx. We also divide both

the numerator and denominator of I by 7 csc(ma), it follows that

[} e (s Eha ATz ry O) TS 73)7 a1 gy

I= 0 -
7 ese(ma) — [ e~ (350 B (T2 v ) (TS T-f)(“+1)4u7:;1ufa du
n—1
B 1 — s A (T — (S ) o

7 csc(ma) (1fﬁ(ﬂw)) 1- 7 csc(ma) f e k=1 k( =k ”‘J)ZL’ — x dxr

= z(nn ] J)(u+1) ——c g )
=2k Be(IT52 (ut1) € ’ u

" Tesc(ma) fO M= k( ) “ A H—du

where we have defined

1 o
A=A(z,r1,. .., Tn_1) := / () )(u+1)udv’
0 v+1

1
B =B(z,71,.-yTn-1) ::/ eI TJ) a1y,
0

Also, let ¢, ho(x | z,71,...,7n—1) and h(u | z,71,...,7,—1) be defined as (2.6), (2.7) and
(2.8), then I can be written as

o B « qflefZZzlﬁk(H?;,j 7"j):”ho(ars|z,r1,...,rn,1)dgc
mese(mo) —A g (1-4q) f e Xkm ATl )(“H)h(u | 2,71, oy Pme1)du
= 1 X]E( Zk 16k( ;krj)z )’
1+ f(]l(l — eI TJ)T)ozx—"‘—ldx

where N € {0,1,2,...} is a geometric random variable with parameter ¢. Taking this
back to equation (2.10) and using equation (2.9), we get the joint Laplace transform of
(& L) under P, g,

W""’W
1
(6 Blvl . '8"'V7n>

/ / / S BT ) (1 AT 7))

0 o9
— S BT Y, ) T DO DT —a)r 4y
X (E( j=0 )) F(@)
(H (]a+9) jo+0— 1) e~ 2(1+ri+riret-+T102 ry)
X 5 dzdry . ..dr,_q,
+n

(1 + fol(l S 7'f)w)aa:_“—1dx> °

and the theorem is a direct consequence of this result. O

3 Exact simulation algorithms

We start this section with introducing the subordinator algorithm for the random
vector (Vi,...,V,). We call it the ‘subordinator algorithm’ because it is based on the
exact simulation algorithm of truncated subordinator. It is Algorithm 4.3 of [5], which
we refer to as Algorithm(a, ¢t) and attach the full steps in Appendix B.
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Algorithm 3.1 (Subordinator algorithm). For « € (0,1) and 6 > 0, the exact simulation
algorithm for (V4, Vs, ..., V,,) is the following.

1. Initialize « € (0,1), 0 > 0and n > 2.
2. Sample from the random vector (Ry,...,R,—1,Y,%,) via the following steps.

(a) Generate a Gamma random variable Y by setting

Y ~ Gamma (Z +n, 1) .
(b) Forj =1,...,n — 1, generate a Beta random variable R; by setting
R; ~ Beta(ja+6,1).
(c) Generate a truncated subordinator 3,, by setting
¥, = Algorithm (o, I'(1 — @)Y).
(d) SetV ~U|0,1], if
1
(14 R+ RiRot o+ Tt By + (TDER)) 5)

V<

accept these candidates and go to Step 3; Otherwise go back to Step 2(a).
3. Fork=1,...,n output

1

V= (1+R1+R1R2+-~-+H?;11Rj+(szl Rﬂ) )1;[

Proof. We apply the acceptance rejection method to sample from the random vector
(AT“ Ry,...,Ry_1,%,) given in Theorem 2.2 with the envelope

9*(7"1a e 7rn—17y7w) =
n—1

@ 1 Oyl —
[T e+ Oyt | gyt e s o w)dodydra . dras,
j=1 a :

where fx, (z | y) denotes the density of a subordinator with truncated Lévy measure
ax”* Mygcperyde at time y, forz > 0,y > 0and 0 <r; <1, j=1,...,n—1. To
sample from the envelope, we generate independent Gamma(g +n,1) and Beta(ja+6,1)
random variables in Step 2(a, b), then simulate the subordinator via Step 2(c).

To justify the acceptance rejection algorithm, we re-parametrize the envelope with a
new variable w := yHJ 1 7§, w> 0, then we have

a™~ 1
e 1,- n-1 -a
g*(warlv'“;rn—haf):fgn x|wH atn— w( j=1Tj
¢+ 1)
n—1
—(n—j)a—-1
X H TS dxdwdry ...dr,—1.
Jj=1
EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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Since 6 > 0, we know

g(wv’rh CIIR 7/’17’1717*%)
max
w>0,0<r1 <1,...,0<r,_1<1,2>0 g* (W, 71, ..., Ty_1, )

L+ 1)0(1—a)a

6
1+ (rl trire+o+ [0 Tj) + (H;:f T’j) 17)

max
w>0,0<r; <1,...,0<r, -1 <1,2>0 (

6
a

=T+ 1)I'(l—a)=,
then we accept the candidates via Step 2(d). O

Next, we consider a special case when 6 > 0 and 6/« is a positive integer, and develop
the compound geometric representation algorithm for the random vector (V1,...,V,,).

Algorithm 3.2 (Compound geometric representation algorithm). For « € (0,1) and 6 > 0,

if 6/« is a positive integer, the exact simulation algorithm for (Vi,Va,...,V,) is the
following.

1. Initialize o € (0,1), 6 > 0and n > 2.
2. Sample from the random vector (Z, Ry, ..., R,—1) via the following steps.

(a) Generate a Gamma random variable Z by setting
Z ~ Gamma(6,1).
(b) For j =1,2,...,n— 1, generate a Beta random variable R; by setting
R; ~ Beta(ja+0,1).
(c) SetV ~UJ0,1], if

e~ Z(BRi+RiRot++I17Z R;)
V S ] I

n— E+n
(1 + fol(l Ay vy Rj)m)oz:cf"‘f%m)

accept these candidates; otherwise go back to Step 2(a).

With the accepted candidates, calculate A and ¢ numerically by setting

1 —a _ o
= / 2L R) e T g1 A
0 v+1 7 ese(mar)
then go to Step 3.

3. Foreveryi=1,2,...,0/a+ n, execute the following Step (a), (b) and (c):
(a) Generate a geometric random variable N9 by setting
N® ~ Geometric(q).
(b) Generate a random variable Téi) via the following Step i. and ii.:

i. Generate a Beta random variable 7j by setting

T3 ~ Beta(a, 1).
ii. SetV ~ UJ0,1], if
V< e—Z(HEL;ll Rj)TJ7

accept this candidate and set To(i) =Ty ; otherwise go back to 3.b.(i).

EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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(c) If N® > 0, generate Tj(i) by executing the following Step i. and ii. for every
j=1,2,...,N@; otherwise skip this step:

i. Generate a random variable G* whose density is

1 —a _
h*(u) = — 1uu+1u for 0<u<1l,

sin(ar)  «

using the algorithm provided in Appendix C.
ii. SetV ~ UJ0,1], if
V < e 2o R)GT

3

accept this candidate and set G = G*, then set Tj(i) = (G + 1; otherwise go
back to 3.c.(i).

4. For k=1,2,...,n, output
1
n—1 k—1 p— %+n -1 N (@) i :
(14 B+ + IS R TIS R+ it (T2 1) (2050 717))

Vi =

Proof. We apply the acceptance rejection method to sample from the random vector
(Z,Ry,...,R,_1) given in Theorem 2.3 with the envelope

n—1
; 1
* e Tp) = ] g)riato-1] _—_ _0-1,-=
m*(z,71, ..., Tn_1) jl;[l(ja+ )T F(G)Z e %,
forz>0and 0 <r; <1,j=1,...,n— 1. To sample from the envelope, we generate

independent Gamma(6, 1) and Beta(ja + 6, 1) random variables via Step 2(a-b). Since
%—i—n > (0, we know

m(z,71, .., 1)

max
2>0,0<r1 <1,...,0<rn 1 <1 M* (2,71, ..., Tr—1)

T(0+ 1)I(1 — o) & e (it +I[=0 )

(2]
atn

ma
2>0,0<r; <1,...,0<r, 1 <1 (

L [0 - e ) agmo1r)
=T+ 11— ),

then we accept the candidates via Step 2(c). 4
Next, we use the acceptance rejection method to sample from Tél) with the envelope
hi(x) == az®~!, for 0 < x < 1. Since

ho(x | Za Rlv'--;Rn—l) G_Z(H;L;f Rj)ac
max " = mmaXx 1 —
0<z<l hi(z) 0<e<1 g |1 e~ Z(IGS Bo)yya—1gy

a fOl e_Z(H;:f Rj)yyoc—ldy

we accept the candidate via Step 3.b.(ii).
We also use the acceptance rejection method to sample from G with the envelope

1 —a _ o
h*(u) = — 1uu+1u for O0<u<1,

sin(far)  a

EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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note that we can sample from h*(u) using the algorithm given in Appendix C. Since

M| 2R, o) 3 AT )
max = max
0<u<l h*(u) 0<u<l —r
Fatam) "
Ll ™ L zansieg

T A ( sinfar)  «

we accept the candidate via Step 3.c.(ii). O

4 Numerical results

In this section we present some numerical results for Algorithm 3.1 and 3.2. We
will use the expectation and covariance of (V4,...,V,) as benchmarks to illustrate the
accuracy of these algorithms. The complexity of the algorithms are also considered. The
following theorem gives an expression for the moments of V,.

Theorem 4.1 (Proposition 17 of [19]). Let V,, be the n-th component of the PD(«, )
distribution. For p > 0,

(1 —a)al(6+ 1)L o0 n—1
Ea,e( 7{1) — ( a) ( + )0 (a +n) / tp+0—1e—t ¢a(t)9 dt,
)@ +p)I(5+1)  Jo Yo (t)=t
where -
Pa(N) = oz/ e M7y and  Pa(N\) = T(1 — a)A* 4+ ¢ (N).
1
Proof. See Proposition 17 of [19]. O

Next, we derive an expression for E, ¢(V;,,V,,).

Theorem 4.2 (Covariance). For positive integers m and n, such that1 <m <n, letV,,
and V,, be the m-th and n-th components of the PD(«, ) distribution, then

Ea,Q(VmVn)

£ a™~ oo — m—1 n—1
_ L@+l —a)al'(2+ 1 / / / YOty a1 H 9 otja
r¢+1) re+z2 | +1 T

j=1 j=m

efy(r1+r1r2+---+l_[]"-’;11 ;)
X ——dydry ...drp_1.
1 _ (HnilT")T E+n
(1 + [y (1 — e ¥hi=r T )ax—o‘—ldx)

Proof. Since (V,,V,,)~! > 0, we know fooo(VmVn)’le*(VmVH)_lﬁdﬂ = 1; it follows that

oo 8 oo
Ea.6(Vin Vi) = Ea (/ ¢ Vv dﬁ) - / Eo g (e Vv ) dg. 4.1)
0 0
We concentrate on the integrand first. As in the proof of Theorem 2.2, we change the
probability measure to P, o using (2.3) and condition on (AT%, R1,...,R,_1), then
__8_ ot ! 0 B
Ea,0 (6 va") :Caﬁ/ / / ]Ea,() (V1€ Vm Vn ‘ AlaaRla--anfl)
o Jo 0
| n—1
9 _ roo —(n—17)a—1
x a" " Lypatn—lemwllizi H T (n=j)a dry...drp_1dw.
j=1
EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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Using the decomposition (2.1) for Vi, V,, and V;, under P, o, we get
E, (e VoV )
e [T[ [

oA+ (rat TS )+ (TS ) 2a) (725 7y ) (T 7

Ea,O 1 0 | Al_aaer--aRn—l
(1 + (7"1 +riry 4+ H =1 TJ) (H;L:_1 Tj) Zn)
. n—1
6 n—1,-a (i — )y —
x oV lyatn—le—wllizr; H T (n=j)a—1 dry...dr,_i1dw.
j=1

Taking this into (4.1) and calculating the integration with respect to 5, we have

a@V Vi)
o [T[ )
- (155" ) (TT5=1 ) s n

(1+(r1+r1rz+ AL ) + (T2 ) )

n—1
) 0 _ n-1, -« C(n—ia—1
x o' lyatn—lemwllizi Hrj (n=y)a dri...drp_1dw.

Since 6 + 2 > 0, we use a Gamma density to rewrite the denominator of the expression
inside the conditional expectation, then rearrange the terms; it follows that

QOVV

—eo [ [T ii” Jm—

% e—y(1+r1+r1r2+~~+l_[,-;1 Tj)]Ea 0 (e_y(l_[?;ll 75)5n | AT Ry, ... ,Rnfl) dy

n—1
9 _ n—-1,—-a —(n—j)a—1
x o lwetnlemwllizi H T (n=3) dry...dr,_1dw.

Then we calculate the Laplace transform of 3, | A7% Ry,...,R,—1 using the Lévy-
Khintchine representation given in Lemma 2.1,

oz9 V V
7n 1 n—1 ) 1
0+1
= Ca,0 T y
”‘// / g]/or(aw)
— (l+r +ryr +--»+H"_lr-) —w ([Tt v [ y(H;:_f rf)w)amfo‘fldw

x e Y 1Trir2 i=1"i)e i=1 T o dy

L n—1

0 _ n—-1,-a —(n—1 —1
x a™~ wa tn-1, wlliZy H r; (n=j)a dri...dr,_1dw.
Jj=1
EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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Finally, we carry out the integration with respect to w using a Gamma density and
rearrange the terms; it follows that

Ea,@(vmvn)

A
o

n— o m—1 n—1
_ F(9 + 1)F(1 — Oé) F(g + n)Oé 1 /1. B /1 /OO y0+1€ y 7"9+]a+1 rg_;’_ja
L(&+1) 0 o Jo T(E+2) !

Jj=1 Jj=m

e—y(h +rira+ 4115 )
X

X — g dydry ...drp_1,
(1 + f, (1= e vIli= Tj)m)ax*afldl)

and the theorem is proved. O
Next, we present numerical results of the algorithms.

4.1 Sample average

We illustrate the accuracy of our algorithms by comparing the expectation to the sam-
ple average. Consider the first 10 components, (Vi,..., Vo), of the PD(«, 6) distribution.
We use Theorem 4.1 to calculate E, g(V%), £ =1,...,10 numerically. Then we generate
samples from the random vector using Algorithm 1.2, 3.1 and 3.2, and calculate the
sample average of V;,. The results are recorded in Table 1, 2 and 3, we see from the
tables that the algorithms can generate exact samples of the random vector.

4.2 Covariance

We also present numerical results for the covariance between different components
of the random vector (V4,...,Vs), for simplicity we focus on E, 4(V;,,V,,) only. We use
Theorem 4.2 to calculate E, ¢(V,,,V,,) for 1 < m < n < 5 numerically, then generate
samples from V,,,V,, using Algorithm 1.2, 3.1 and 3.2 and calculate their averages. The
results are recorded in Table 4, 5 and 6, the tables show that our algorithms are accurate
in estimating the covariance.

4.3 Complexity

We are also interested in the complexity of the algorithms, which indicates how many
resources the algorithms will costume. Instead of CPU times, we first consider the total
number of random variables generated by the algorithms, because it is consistent and
does not depend on the performance of the computer.

From the definition we know the complexity of Algorithm 1.2 is m, that is, the
algorithm will generate m number of Beta random variables in total. In the previous
subsection we have taken n = 10 and m = 50.

We record the average number of random variables generated by Algorithm 3.1
and 3.2 for (V4,..., Vi) in Table 7 and 8. From the tables we see that when 0/« is an
integer and relatively large, Algorithm 3.2 has a lower complexity than Algorithm 3.1,
this is because the truncated subordinator is not involved in Algorithm 3.2.

4.4 CPU time

We record the CPU times of Algorithm 1.2, 3.1 and 3.2 for 10* samples of (V4 ..., Vig)
in Table 9, 10 and 11. The experiments are implemented on an AMD Ryzen 7 4800U
CPU@1.80GHz processor, 16.00GB RAM, Windows 10, 64-bit Operating System and
performed in Matlab R2019b. The tables show that when applicable, the compound
geometric representation algorithm is preferable in general.

EJP 26 (2021), paper 5. https://www.imstat.org/ejp
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Table 1: Expectation and sample average of Vi, k = 1,...,10 for o« = £ and 6 = 1, the
sample size is 10°. For the trivial algorithm n = 10 and m = 50.
Vi Va Vs Vi Vs Ve Vz Vs Vo Vio
expectation 0.6273 0.1695 0.0729 0.0386 0.0230 0.0149 0.0102 0.0073 0.0054 0.0041
trivial
algorithm 0.6265 0.1700 0.0737 0.0393 0.0235 0.0154 0.0106 0.0076 0.0057 0.0043
subordinator
algorithm 0.6273 0.1696 0.0734 0.0391 0.0235 0.0153 0.0105 0.0076 0.0056 0.0043
compound
algorithm 0.6282 0.1695 0.0732 0.0390 0.0234 0.0153 0.0105 0.0076 0.0056 0.0043

Table 2: Expectation and sample average of Vi, k = 1,

...,10fora = } and 6 = 1, the

sample size is 10°. For the trivial algorithm n = 10 and m = 50. The compound geometric
representation algorithm is not applicable because 6/« is not an integer.

Vi Va Vs Vy Vs Ve Vz Vs Vo Vio
expectation  0.6727  0.1598  0.0648  0.0332  0.0195 0.0125 0.0085 0.0061  0.0046  0.0035
trivial
algorithm 0.6715 0.1592  0.0648 0.0331 0.0194 0.0124 0.0084 0.0060 0.0044  0.0033
subordinator
algorithm 0.6725 0.1589  0.0647 0.0330 0.0193 0.0123 0.0084 0.0060 0.0044  0.0033
Algorithm
compound N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Table 3: Expectation and sample average of Vi, k =1,...,10 for a = % and 0 = %, the
sample size is 10°. For the trivial algorithm n = 10 and m = 50.
V1 V2 V3 V4 V5 V(,- V7 Vg VQ Vl 0
expectation  0.2873  0.1204  0.0718  0.0492  0.0364  0.0284  0.0231  0.0195 0.0169  0.0150
trivial
algorithm 0.2879 0.1204 0.0721 0.0498 0.0372  0.0292 0.0237 0.0197 0.0166 0.0142
subordinator
algorithm 0.2879  0.1205 0.0724  0.0500 0.0374 0.0294 0.0240  0.0200 0.0171  0.0148
Algorithm
compound  0.2875 0.1205 0.0723  0.0500 0.0374  0.0295 0.0240  0.0200 0.0171  0.0148
Table 4: Expectation and sample average of V;,,V,,, 1 <m <n <5fora= 3 and § = 1

(

with the trivial algorithm, the sample size is 10°. The data are in the format (a, b) where
a represents the expectation and b represents the sample average.

. w

Va

Vs

Vy

Vs

Vi | 0.2830, 0.2841

Va
Vs
Vi
Vs

Table 5:

0.0686, 0.0687
0.0329, 0.0330

0.0324, 0.0322
0.0149, 0.0147
0.0090, 0.0090

0.0192, 0.0191
0.0086, 0.0085
0.0052, 0.0052
0.0036, 0.0036

Expectation and sample average of V,,V,,, 1 < m <n <5 fora = % and 0 =

0.0129, 0.0127
0.0057, 0.0056
0.0034, 0.0034
0.0023, 0.0023
0.0017, 0.0017

1
2

with the subordinator algorithm, the sample size is 10°. The data are in the format (a, b)
where a represents the expectation and b represents the sample average.

Vs

V3

Vi

Vs

| Vi
1% 0.2830, 0.2837
Va
Vs
Vi
Vs
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Table 6: Expectation and sample average of V,,,V,,, 1 < m <n <5 fora = % and 0 = %
with the compound geometric representation algorithm, the sample size is 10°. The data
are in the format (a, b) where a represents the expectation and b represents the sample
average.

Vi

Vs

V3

Vi

Vs

Vi
Va
V3
Vi
Vs

0.2830, 0.2830

0.0686, 0.0685
0.0329, 0.0330

0.0324, 0.0323
0.0149, 0.0148
0.0090, 0.0091

0.0192, 0.0191
0.0086, 0.0086
0.0052, 0.0052
0.0036, 0.0036

0.0129, 0.0127
0.0057, 0.0057
0.0034, 0.0034
0.0023, 0.0023
0.0017, 0.0017

Table 7: Average number of random numbers (rounding to the nearest integer) generated
by the subordinator algorithm for (V7,..., Vi), the sample size is 10%. The data are in
the format a + b 4+ ¢ where a, b, c represent the number of uniform, Gamma and Beta
random variables respectively.

| 6=03 6=05 6=10 =15 =16
a=03 | 175+56+10  216+69+12  421+134+21 952+304+44 11444-365+52
a=04 | 177+55+11  224+70+13  458+144+24  1076+339+53 1302+410+63
=05 | 192+59+11  251477+14  537+166+28  1355+418-+67 1664+514+80
=08 | 435+123+15 647+183+21 1993+565+62 7336+2081+217 965042737283

Table 8: Average number of random numbers (rounding to the nearest integer) generated
by the compound geometric representation algorithm for (Vi, ..., Vjp), the sample size
is 10%. The data are in the format a + b + ¢ + d where a, b, ¢, d represent the number of
uniform, Gamma, Beta and geometric random variables respectively.

| 6=03 6=05 6=10 =15 =16
a=03 | 16+1+24+11 N/A N/A 25+5+62+15 N/A
a=04 N/A N/A N/A N/A 3047+82+14
a=05 N/A 26+2+32+11  2943+47+12  3647+87+13 N/A
a=08 N/A N/A N/A N/A 115+30+318+12

Table 9: CPU time (in seconds) of the trivial algorithm for (V;,

..., V1p), the sample size

is 10%.
| 6=03 6=05 =10 6=15 6=16
a=0.3 | 0.628853 0.698557 0.656535 0.667601 0.583066
a=04 | 0572390 0.583742 0.570028 0.603642  0.553737
a=05 | 0.651893 0.557833 0.545066 0.561283 0.587276
=08 | 0.545630 0.560253 0.558486 0.579318  0.610685

Table 10: CPU time (in seconds) of the subordinator algorithm for (V7,..

sample size is 10%.

. ‘/10), the

| 6=03 0 =0.5 #=1.0 =15 #=1.6
a=0.3] 2.919347 3.407936 5.905766 12.709555 16.287444
a=04 | 4.129321 6.928111  11.446559  23.492180 25.992863
a=0.5| 8535146 10.143674 15.590900 31.600125 38.378702
a=0.8 | 18.097517 26.450564 85.147071 283.616955 372.585268

Table 11: CPU time (in seconds) of the compound geometric representation algorithm

for (Vi,...,Vip), the sample size is 10*.
| 6=03 0=0.5 0=1.0 0=15 0=16
o=0.3 | 7.394960 N/A N/A 10.042571 N/A
a=04 N/A N/A N/A N/A 12.311978
a=05 N/A 10.326533  11.250926  13.745608 N/A
a=038 N/A N/A N/A N/A 42.778541
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A Joint density of the random vector (R;,..., R, ; | AT® = w).

From Proposition 10 of [19], we know that under the probability measure P, g,

A aw k+1 i_l/a
Ry 1= —ktl la (2iz1 @) for k=1,2,...,

Ay (Cr e) e

where e; are independent standard exponential random variables. In particular, it is

known that AT“ 2 e,, see Lemma 24 of [19].
On the other hand, define

k—1 &

Ll A

Ri()) = 251# for k=1,2,...,
>im1 €t A

then Lemma 3.2 of [10] implies that (R;(\), ..., R,—1(\)) has the joint density

n—1

le;..an—l (Tlv s 7rn—1) = an—l)\(n—l)ae)\o‘e—)\“ H;L;ll 7“;”‘ H T;(nij)ail- (A]-)

j=1
We set \ = Al_l, then \¢ L e; and
k = k41 \_1/a
Ri()\ law Eizl € _ (Ziil ei) 1/
KA = k+1 - k “1a’
Disi € (>izr @)
hence the random vector (R;()\),...,R,_1(\) | A = A7') has the identical distribution
as (Ry,...,R,_1), and we obtain the joint density (2.4) by setting A = w= in (A.1).
B Exact simulation of truncated subordinator.

In this appendix we attach the Algorithm 4.3 of [5], the algorithm exactly generates
samples from a truncated subordinator o; with Laplace transform

E(e #7t) = exp <_F(1t—a) /01(1 — e_ﬁz)az_"_ldz> .

We first present Algorithm 4.1 and 4.2 of [5], there will be used in the Algorithm 4.3.
Algorithm B.1 (Algorithm 4.1 of [5]). Exact simulation of (T, W).

1. Seté=T(1—a)™} Ag = (1 - a)aTs.
2. minimise C()\) = Aoefé’\l_%"(l‘“)%_1 (Ao — X\)®~2; record critical value \*.
3. set C = C(\*).
4. repeat {
5. sample U ~ U0, n|; U; ~ U[0,1],
6. setY =1-— Ulﬁ; Ay = [sin®(aU) sin* ~*((1 — a)U)/sin(U)]ﬁ,
7. R~T(@2-a,A4,—\); V ~U0,1]
8. if (V < ApeSR Y =N R(A, — \*)e2ye=1(] — (1 — Y)*)/C), break
9.}
10. sample U; ~ UJ0,1],

1

LsetT=R'7YSW=Y -1+[1-Y)*-Ux((1-Y) @ =1)]" =
. return (T, W).

==
N =
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Algorithm B.2 (Algorithm 4.2 of [5]). Exact simulation of {Z;|T > t}.
1. sample U; ~ UJ0, 7]

2. set Ay, = [sin®(alU;)sin' ~*((1 — a)Ul)/sin(Ul)]ﬁ

3. repeat {

4, sample Uy ~ U|0, 1]

5. set o
7= _M T

Ay tTs

6. if (Z < 1) break

7.}

8. return Z

Next we provide the Algorithm 4.3 of [5].
Algorithm B.3 (Algorithm 4.3 of [5]). Exact simulation of a truncated stable Z; ~

TS(a,t).
1l.setZ2=0;5=0
2. repeat {
3. sample (T, W) via Algorithm 4.1
4. set S=S5+T1,Z=Z+1+W
5. if (S > t) break
6. }
7. setZS_T:ZflfW
8. sample Z;_(s_1) via Algorithm 4.2

©

return Zg_r + Zt,(sz)

Proof. For the proof as well as the motivation of these algorithms, see [5]. O

C Simulation of G*.

We give the algorithm for sampling from the density h*(u).
Algorithm C.1. Let G* be a random variable with the probability density function

—a __ o

1 U
T L y41

sin (o) @

h* (u) =

for O<u<l,

then G* can be generated via the following steps.

1. Numerically maximising

1 u~ e

—u®  B(6,2)

sinzrafr) - i u+1 u@—l(l - ’U,)’

where 0 = 0.59 — 0.0la — 0.60a? and B(.,.) is the standard Beta function, record
the optimal v* and set C = C'(u*, 0).
2. Generate a Beta random variable G’ by setting

G’ ~ Beta(4,2).

C(u) =

3. Set V ~ U[0,1], if

_1 1 (G)*—(G)*  B(6,2)
01— G'+1  (G)-1(1-G")

1
sin(ar) a

v

accept this candidate and return G* = G’, otherwise go back to Step 2.

Proof. This is a direct consequence of the accept rejection method, see [5] for details. O
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