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The stochastic telegraph equation limit of the
stochastic higher spin six vertex model

Yier Lin*

Abstract

In this paper, we prove that the stochastic telegraph equation arises as a scaling limit
of the stochastic higher spin six vertex (SHS6V) model with general spin I/2, J/2. This
extends results of Borodin and Gorin which focused on the I = J = 1 six vertex case
and demonstrates the universality of the stochastic telegraph equation in this context.
We also provide a functional extension of the central limit theorem obtained in [BG19,
Theorem 6.1]. The main idea is to generalize the four point relation established in
[BG19, Theorem 3.1], using fusion.
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1 Introduction

1.1 Telegraph equation and stochastic telegraph equation

The telegraph equation is a hyperbolic PDE given by{
uXY (X,Y ) + β1uY (X,Y ) + β2uX(X,Y ) = f(X,Y ),

u(X, 0) = χ(X), u(0, Y ) = ψ(Y ),
(1.1)

where the functions χ, ψ ∈ C1 satisfy χ(0) = ψ(0). When f is a deterministic function,
the equation (1.1) is a classical object, see [CH08, Chapter V]. The stochastic versions of
the telegraph equation were intensively studied in the last 50 years, we refer the reader
to [BG19, Section 1.1] for a brief review. The solution theory of the telegraph equation
goes back to [CH08], we present it in the way of [BG19, Section 4]. In fact, (1.1) admits
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The STE limit of the SHS6V model

a unique solution which reads

u(X,Y ) = ψ(0)R(X,Y, 0, 0) +

∫ Y

0

R(X,Y ; 0, y)
(
ψ′(y) + β2ψ(y)

)
dy

+

∫ X

0

R(X,Y ;x, 0)
(
χ′(x) + β1χ(x)

)
dx+

∫ X

0

∫ Y

0

R(X,Y, x, y)f(x, y)dxdy.

(1.2)

Here, R(X,Y, x, y) is the Riemann function defined as

R(X,Y ;x, y)

=
1

2πi

∮
−β1

β2 − β1
(z + β1)(z + β2)

exp

[
(β1 − β2)

(
− (X − x)

z

z + β2
+ (Y − y)

z

z + β1

)]
dz,

(1.3)

where the contour of the complex integration is a small circle in positive direction which
only includes the pole at −β1. When f is given by f(X,Y ) =

√
θ(X,Y )η(X,Y ), where η is

the space-time white noise with dirac delta correlation function and θ is a deterministic
integrable function. By formula (1.2), the solution to the stochastic telegraph equation
is a Gaussian field with covariance function

Cov
(
u(X1, Y1), u(X2, Y2)

)
=

∫ X1∧Y1

0

∫ X2∧Y2

0

R(X1, Y1, x, y)R(X2, Y2, x, y)θ(x, y)dxdy.

(1.4)

[BG19, Section 4] identifies the following discretization of the telegraph equation
Φ(X + 1, Y + 1)− b1Φ(X,Y + 1)− b2Φ(X + 1, Y ) + (b1 + b2 − 1)Φ(X,Y )

= g(X + 1, Y + 1),

Φ(X, 0) = χ(X), Φ(0, Y ) = ψ(Y ),

(1.5)

where χ(0) = ψ(0). The unique solution to (1.5) is given by [BG19, Theorem 4.7]:

Φ(X,Y ) = ψ(0)Rd(X,Y ; 0, 0) +

Y∑
y=1

Rd(X,Y ; 0, y)
(
ψ(y)− b2ψ(y − 1)

)
+

X∑
x=1

Rd(X,Y ;x, 0)
(
χ(x)− b1χ(x− 1)

)
+

X∑
x=1

Y∑
y=1

Rd(X,Y ;x, y)g(x, y), (1.6)

where the discrete Riemann function Rd equals (see [BG19, Eq. 45])

Rd(X,Y ;x, y) =
1

2πi

∮
− 1
b2(1−b1)

(b2 − b1)dz

(1 + b2(1− b1)z)(1 + b1(1− b2)z)

×
(1 + b1(1− b1)z

1 + b2(1− b1)z

)X−x(1 + b2(1− b2)z

1 + b1(1− b2)z

)Y−y
. (1.7)

Here, the contour is a small circle going in positive direction which only encircles the
pole at − 1

b2(1−b1) .
In the first version of the arxiv paper [BG18], Borodin and Gorin showed that under

a special scaling regime where the weight of the corner type vertex goes to zero, the
height function of the stochastic six vertex model converges to the telegraph equation.
They also conjectured that the fluctuation field will converge to the stochastic telegraph
equation with some heuristic arguments and proved this result under a special situation
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The STE limit of the SHS6V model

called low density boundary regime. The result for general boundary condition was
later proved in [ST19] and [BG19] via two distinct approaches. This result comes as
a surprise. Since from [GS92, BCG16] we know that the stochastic six vertex model
belongs to the KPZ universality class. The one point fluctuation of the models in this
universality is governed by Tracy Widom distribution [TW94]. However, the solution to
the stochastic telegraph equation does not lie in this universality (since it is a Gaussian
field). In addition, [CGST20] shows that under weakly asymmetric scaling (which is
a different scaling compared with the one in [BG19]), the stochastic six vertex model
converges to the KPZ equation [KPZ86, Cor12], which is a parabolic stochastic PDE
while the stochastic telegraph equation is hyperbolic!

It is natural to ask if the stochastic telegraph equation also arises as a scaling limit
of other probabilistic models. In this paper, we show that the stochastic higher spin six
vertex (SHS6V) model, which is a higher spin generalization of the stochastic six vertex
model, converges to the stochastic telegraph equation under certain scaling regime.
This extends the universality of the stochastic telegraph equation. In addition, [Lin20]
showed that under a different scaling than the one considered in this paper, the SHS6V
model converges to the KPZ equation. This tells us that the SHS6V model converges to
two distinct types of stochastic PDE under various choice of scaling.

1.2 The SHS6V model

The SHS6V model is a four-parameter family of quantum integrable system first intro-
duced in [CP16] and has been intensely studied in recent years, from the perspective of
symmetric polynomial [Bor17, Bor18], exact solvability [BCPS15, CP16, BP18], Markov
duality [CP16, Kua18, Lin19] and scaling limit [CT17, IMS20, Lin20]. In particular, it is
a higher spin generalization of stochastic six vertex model from spin parameter I = J = 1

to general I, J ∈ Z≥1. In this paper, we discover a scaling regime for the SHS6V model
(which degenerates to the scaling in [BG19] when I = J = 1), under which we prove
that: 1) the hydrodynamic limit of the SHS6V model is a telegraph equation; 2) the
fluctuation field of the model converges to a stochastic telegraph equation. To explain
our result with more detail, we start with a brief review of the SHS6V model.

Definition 1.1 (J = 1 L-matrix). We define the J = 1 L-matrix to be a matrix with row
and column indexed by Z≥0 × {0, 1}. The element of the J = 1 L-matrix is specified by

L(1)
α (m, 0;m, 0) =

1 + αqm

1 + α
, L(1)

α (m, 0;m− 1, 1) =
α(1− qm)

1 + α
,

L(1)
α (m, 1;m, 1) =

α+ νqm

1 + α
, L(1)

α (m, 1;m+ 1, 0) =
1− νqm

1 + α
,

and L
(1)
α (i1, j1; i2, j2) = 0 for all other values of (i1, j1), (i2, j2) ∈ Z≥0 × {0, 1}. As a

convention, throughout the paper, we set ν = q−I for some fixed I ∈ Z≥1. Note that

L
(1)
α (I, 1; I+1, 0) = 0, hence the J = 1 L-matrix transfers the subspace {0, 1, . . . , I}×{0, 1}

to itself and we will restrict ourselves on this subspace.

We call α the spectral parameter and in the notation of L(1)
α , where the dependence

on other parameters is not made explicit. It is clear from the definition that for fixed
i1 ∈ {0, 1, . . . , I} and j1 ∈ {0, 1},∑

(i2,j2)∈{0,1,...,I}×{0,1}

L(1)
α (i1, j1; i2, j2) = 1.

Moreover, L(1)
α is stochastic if we impose the following condition.

EJP 25 (2020), paper 148.
Page 3/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP552
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The STE limit of the SHS6V model

Lemma 1.2. L(1)
α is stochastic if one of the following holds:

• q ∈ (0, 1) and α < −q−I ,
• q > 1 and −q−I < α < 0.

Proof. This follows from [CP16, Proposition 2.3], which can also be verified directly.

For an entry L
(1)
α (i1, j1; i2, j2), we interpret the four tuple (i1, j1, i2, j2) as a vertex

configuration in the sense that a vertex is associated with i1 input lines and j1 input
lines coming from bottom and left, i2 output lines and j2 output lines flowing to above
and right, see Figure 1. The quantity L(1)

α (i1, i2; j1, j2) gives the weight of the vertex

configuration. Note that for a vertex associated with L(1)
α , we allow up to I number of

vertical lines and up to one horizontal line. We say that the L-matrix is conservative in
lines as it assigns zero weight to the entry L(1)

α (i1, j1; i2, j2) unless i1 + j1 = i2 + j2.

Figure 1: Left panel: The vertex configuration labeled by four tuple (i1, j1; i2, j2) (from

bottom and then in the clockwise order) has weight L(1)
α (i1, j1; i2, j2), which absorbs

i1 ∈ {0, 1, . . . , I} input lines from bottom, j1 ∈ {0, 1} input line from left, and produces
i2 ∈ {0, 1, . . . , I} output lines to above, j2 ∈ {0, 1} output lines to right. Right panel:
Visualization of the vertex configuration (i1, j1; i2, j2) = (2, 1; 3, 0) in terms of lines.

We want to relax the restriction that the multiplicities of the horizontal line are
bounded by 1, and instead, consider multiplicities bounded by any fixed J . This motivates
us to define the L(J)

α matrix, the construction of it follows the so-called fusion procedure,
which was invented in a representation-theoretic context [KRS81, KR87] to produce
higher-dimensional solutions of the Yang–Baxter equation from lower-dimensional ones.
The explicit expression of general J L-matrix is derived separately in [Man14] and
[CP16]:

L(J)
α (i1, j1; i2, j2)

= 1{i1+j1=i2+j2}q
2j1−j

2
1

4 − 2j2−j
2
2

4 +
i22+i21

4 +
i2(j2−1)+i1j1

2

× νj1−i2αj2−j1+i2(−αν−1; q)j2−i1
(q; q)i2(−α; q)i2+j2(qJ+1−j1 ; q)j1−j2

4φ̄3

(
q−i2 ; q−i1 ,−αqJ ,−qνα−1
ν, q1+j2−i1 , qJ+1−i2−j2

∣∣∣∣q, q).
(1.8)

Here, 4φ̄3 is the regularized terminating basic hyper-geometric series defined by

r+1φ̄r

(
q−n, a1, . . . , ar

b, . . . , br

∣∣∣∣q, z) =

n∑
k=0

zk
(q−n; q)k

(q; q)k

r∏
i=1

(ai; q)k(biq
k; q)n−k.
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It is a simple exercise to see when J = 1, the expression of L(J)
α matches with L

(1)
α in

Definition 1.1. We will show momentarily that L(J)
α is stochastic (Corollary 1.4). This

allows us to view the matrix element L(J)
α (i1, j1; i2, j2) as a vertex configuration in the

manner that we described in J = 1 case. Note that now we allow up to J lines in the
horizontal direction.

Despite explicitness, the expression of the L-matrix above is too complicated to
manipulate. For instance, using (1.8) directly, it might be hard to demonstrate the
stochasticity of L(J)

α . To this end, we recall a probabilistic derivation of L(J)
α in [CP16]

using the idea of fusion, which goes back to [KR87]. We start by introducing a few
notations.

Define the stochastic matrix Ξ with rows and columns indexed by {0, 1}⊗J and
{0, 1, . . . , J} such that

Ξ
(
(h1, . . . , hJ), h

)
=

{
1 if h =

∑J
i=1 hi

0 else

and the stochastic matrix Λ with row and column indexed by {0, 1, . . . , J} and {0, 1}⊗J .
The matrix element is given by

Λ
(
h, (h1, . . . , hJ)

)
=


1

ZJ(h)

∏
i:hi=1

qi−1 if h =
∑J
i=1 hi

0 else

where ZJ(h) = qh(h−1)/2 (q,q)J
(q,q)h(q,q)J−h

is the normalizing constant (it can be computed
using q-binomial theorem).

We also define the matrix L
⊗qJ
α with rows and columns indexed by {0, 1, . . . , I} ×

{0, 1}⊗J with matrix elements

L⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) =

∑
v0,v1,...,vJ
v0=v,vJ=v

′

J∏
i=1

L
(1)
αqi−1(vi−1, hi; vi, h

′
i).

In terms of the right part of Figure 2, these matrix elements provide the transition
probabilities from the lines coming into a column from bottom and left, to those leaving
to the top and right.

The following lemma allows us to decompose the vertex with horizontal spin J/2 (i.e.

the vertex associated with L(J)
α ) in terms of a sequence of horizontal spin 1/2 vertices,

see Figure 2 for visualization.

Lemma 1.3. The following identity holds

L(J)
α (v, h; v′, h′)

=
∑

(h1,...,hJ )∈{0,1}J

(h′1,...,h
′
J )∈{0,1}

J

Λ
(
h; (h1, h2, . . . hJ)

)
L⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h

′
J) Ξ

(
(h′1, . . . , h

′
J);h′

)
.

Proof. This was shown in [CP16, Theorem 3.15].

Applying Lemma 1.3, we show that L(J)
α is stochastic, under the following choice of

parameters.

Corollary 1.4. The matrix L(J)
α is stochastic if either of the following condition holds

• q ∈ [0, 1) and α < −q−I−J+1,

• q > 1 and −q−I−J+1 < α < 0.

EJP 25 (2020), paper 148.
Page 5/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP552
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The STE limit of the SHS6V model

Figure 2: Pictorial representation of the identity in Lemma 1.3. Fixing h, v, h′, v′,
the weight of vertex configuration on the left is given by L

(J)
α (v, h; v′, h′). It is

equal to the weight of the column on the right, which is the summation of all
L
⊗qJ
α (v, h1, . . . , hJ ; v′, h′1, . . . , h

′
J), under the condition h1 + · · ·+hJ = h and h′1 + · · ·+h′J =

h′, each term in the summation is reweighted by multiplying Λ
(
h; (h1, . . . , hJ)

)
.

Proof. Note that under the range imposed on q, α, referring to Lemma 1.2, the matrix
L
(1)
αqi is stochastic for each i = 0, 1, . . . , J − 1. As the product of stochastic matrices is

stochastic as well, the stochasticity of L(J)
α follows directly from Lemma 1.3.

We proceed to define the SHS6V model on the first quadrant Z2
≥0. For each vertex

(x, y) ∈ Z2
≥0, we associate it with a four tuple (vx,y, hx,y, vx,y+1, hx+1,y) ∈ Z4

≥0 such that
vx,y, hx,y represent the number of lines entering into the vertex from bottom and left,
vx,y+1, hx+1,y denote the number of lines flowing from the vertex to above and right.
Note that configurations chosen for two neighboring vertices need to be compatible in
the sense that the lines keep flowing. For instance, vx,y+1 also represents the number of
vertical input lines flowing into (x, y + 1), hx,y+1 equals the number of horizontal lines
entering into (x+ 1, y) (see the right part of Figure 3).

Definition 1.5. We define the SHS6V model to be a stochastic path ensemble on
Z2
≥0. The boundary condition specified by {vx,0}x∈Z≥0

and {h0,y}y∈Z≥0
such that vx,0 ∈

{0, 1, . . . , I}, h0,y ∈ {0, 1, . . . , J}. In other words, we have h0,y number of lines en-
tering into the vertex (0, y) from the left boundary and vx,0 number of lines flow-
ing into the vertex (x, 0) from the bottom boundary. Sequentially taking (x, y) to be
(0, 0) → (1, 0) → (0, 1) → (2, 0) → (2, 1) . . . , for vertex at (x, y), given vx,y, hx,y as the
number of vertical and horizontal input lines, we randomly choose the number of ver-
tical and horizontal output lines (vx,y+1, hx+1,y) ∈ {0, 1, . . . , I} × {0, 1, . . . , J} according

to probability L(J)
α (vx,y, hx,y; ·, ·). Proceeding with this sequential sampling, we get a

collection of paths going to the up-right direction and we call this the SHS6V model.

We associate a height function H : Z2
≥0 → Z to the path ensemble, where the paths

play a role as the level lines of the height function (see Figure 3). Define for any
x, y ∈ Z≥0,

H(x, y) =

y∑
j=1

h0,j−1 −
x∑
i=1

vi−1,y.

Clearly, we have H(0, 0) = 0 and H(x, y) − H(x − 1, y) = −vx−1,y. Since the vertex is
conservative, we also have

H(x, y)−H(x, y − 1) = hx,y−1.
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Graphically, when we move across i number of vertical lines from left to right, the height
function will decrease by i. When we move across j number of horizontal lines, the
height function will increase by j. We further extend H(x, y) to all (x, y) ∈ R2

≥0 by first
linearly interpolating the height function first in the x-direction, then in the y-direction.
It is obvious that the resulting function is Lipschitz and monotone.

For later use, we call I/2, J/2 the vertical and horizontal spin respectively. If a vertex
is of horizontal spin 1/2, we call it a J = 1 vertex, otherwise we call it a general J vertex.

Figure 3: Left: Illustration of the height function around a vertex (x, y), note that
H(x, y + 1) = H(x, y) + hx,y, H(x+ 1, y) = H(x, y)− vx,y and H(x+ 1, y + 1) = H(x, y) +

hx,y − vx,y+1 = H(x, y) − vx,y + hx+1,y. Right: Sampled stochastic path ensemble on a
quadrant. The red number indicates the number lines entering into the boundary, the
blue number represents the height at each vertex.

1.3 Four point relation

[BG19] shows that the stochastic six vertex model height function converges to a
telegraph equation and its fluctuation field converges to a stochastic telegraph equation.
The key observation is the following four point relation, which says that if we define

ξS6V(x+ 1, y + 1) = qH(x+1,y+1) − b1qH(x,y+1) − b2qH(x+1,y) + (b1 + b2 − 1)qH(x,y).

Here b1, b2 are the weight of the six vertex model configuration (in our notation b1 = α+ν
1+α ,

b2 = 1+αq
1+α ). Then the conditional expectation and variance of ξ read

E
[
ξS6V(x+ 1, y + 1)

∣∣F(x, y)
]

= 0, (1.9)

E
[
ξS6V(x+ 1, y + 1)2

∣∣F(x, y)
]

= γ1∆x∆y + γ2q
H(x,y)∆x + γ3q

H(x,y)∆y, (1.10)

where F(x, y) is a sigma algebra generated by {H(u, v) : u ≤ x or v ≤ y} and ∆x :=

qH(x+1,y) − qH(x,y), ∆y := qH(x,y+1) − qH(x,y). The parameters γi, i = 1, 2, 3 depend on
b1, b2.

In our paper, we generalize the above relations to the SHS6V model. Define

ξS6SHV(x+ 1, y + 1) = qH(x+1,y+1) − α+ ν

1 + α
qH(x,y+1) − 1 + αqJ

1 + α
qH(x+1,y) +

ν + αqJ

1 + α
qH(x,y).
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We prove (respectively in Theorem 2.3 and Theorem 2.5) that

E
[
ξSHS6V(x+ 1, y + 1)

∣∣F(x, y)
]

= 0, (1.11)

E
[
ξSHS6V(x+ 1, y + 1)2

∣∣F(x, y)
]

= γ1∆x∆y + γ2q
H(x,y)∆x + γ3q

H(x,y)∆y + R(x, y).

(1.12)

R(x, y) is an error term that is negligible under our scaling. From now on, we may also
use ξ to denote ξSHS6V.

Why does such a generalization exist? In the context of the stochastic six vertex
model, (1.9) is related to the self-duality discovered in [CP16, Proposition 2.20], though
it is more of a local relation than the way duality is generally stated (it is unclear to us
how to prove (1.9) from the duality directly). In fact, [CP16, Corollary 3.3] shows that
the SHS6V model with general I, J enjoys the same self-duality, so it is natural to expect
that (1.11), as a generalized version of (1.9) holds. For the quadratic variation, the
situation is more subtle for the SHS6V model. We do not come up with a simple reason
why (1.12) holds, though this may be understandable from our proof, which is briefly
explained in the next paragraph. Here, we just emphasize that as shown in Remark 2.6,
there exist no γi, i = 1, 2, 3 such that the identity without an error term holds for the
SHS6V model. We also emphasize that it is only under our scaling (1.13) that R(x, y) is
negligible.

Let us explain the ideas and techniques used in proving (1.11) and (1.12). In [BG19],
the authors prove (1.9) and (1.10) via a direct computation, which corresponds to
enumerating all possible six vertex configurations. In our case, the situation is more
involved: when J is large, the expression of L(J)

α is so complicated that it is hopeless to
check these relations directly. Alternatively, we first verify them directly for J = 1, in
which case the L-matrix has a simple expression given by Definition 1.1. For general
J , we use fusion, which allows us to decompose the general J vertex into a sequence
of J = 1 vertices (see Figure 2). Repeatedly using the J = 1 version of (1.11) (where
the spectral parameter α is replaced by αqi in the expression of ξ), we get J identities.
Summing up these identities in a clever way, we see a telescoping property and (1.11)
follows. To prove (1.12), besides using fusion, we need to refer to the property of our
scaling (1.13), which says that with a probability converging to 1, the lines entering into
a vertex will keep flowing in the same direction (see Lemma 2.4).

In [CP16], the fusion was stated in a way that the spectral parameters progress
geometrically by q from bottom to top when we decompose the general J vertex to a
column of J = 1 vertices. It turns out that (Lemma 2.1) we can also reverse the direction
and let the parameters progress geometrically by q from top to bottom (meanwhile we
change the probability distribution assigned on the input lines from the left). We did not
see this result elsewhere. Note that it is only after this reversal of the spectral parameters
that we obtain the telescoping property mentioned in the previous paragraph.

1.4 Stochastic telegraph equation as a scaling limit of the SHS6V model

Having established the four point relation, we are ready to talk about our result. We
show that under our scaling,

(i). (Hydrodynamic limit (or law of large numbers) – Theorem 1.6): The SHS6V model
height function converges uniformly in probability to a telegraph equation.

(ii). (Functional central limit theorem – Theorem 1.7 (also see Corollary 1.9)): The
fluctuation field of the height function around its hydrodynamic limit (viewed as a
random continuous function) converges weakly to a stochastic telegraph equation.
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Once we have proved the four point relation for the SHS6V model, the proof for the
law of large numbers is akin to [BG19, Theorem 5.1]. For the functional central limit
theorem, our proof breaks down into proving the finite dimensional weak convergence
(Proposition 3.1) and tightness (Proposition 3.2). For finite dimensional convergence, the
proof follows a similar idea as in [BG19, Theorem 6.1], subject to certain generalization.
For the tightness, we rely on the Burkholder inequality and a careful control of joint
moments of ξ at different locations (Lemma 3.3). We remark that the proof of the
tightness may not fit to the regime of classical functional martingale CLT result (e.g.
[Bro71, Section 6]), see Remark 3.4 for more discussion.

To present our results, let us first introduce our scaling. Fix I, J ∈ Z≥1 and positive
β1, β2 such that β1 6= β2, we scale the parameter q, α in the way that

q = e
β1−β2
L ,

1 + αqJ

1 + α
= e−

Jβ2
L , L→∞. (1.13)

It is straightforward that as L→∞, α and q always satisfy one of the conditions given in
Corollary 1.4, thus L(J)

α is indeed stochastic.

Theorem 1.6. Define q = eβ1−β2 and fix A,B > 0, consider two monotone Lipschitz
functions χ and ψ. Suppose that the boundary for the SHS6V model is chosen in the
way that as L → ∞, 1

LH(Lx, 0) → χ(x) and 1
LH(0, Ly) → ψ(y) uniformly in probability

for x ∈ [0, A] and y ∈ [0, B], then as L→∞,

1

L
sup

x∈[0,A]×[0,B]

|H(Lx,Ly)− Lh(x, y)| p→ 0,

where
p→ means the convergence in probability. qh(x,y) is the unique solution to the

telegraph equation

∂2

∂x∂y
qh(x,y) + Jβ2

∂

∂x
qh(x,y) + Iβ1

∂

∂y
qh(x,y) = 0, (1.14)

with the boundary condition specified by qh(x,0) = qχ(x) and qh(0,y) = qψ(y).

We remark that there is a typo in [BG19, Eq. 69] about the boundary condition,
qh(x,0), qh(0,y) should equal qχ(x) and qψ(y), instead of χ(x) and ψ(y).

Having established the law of large number for the height function, we proceed to
show the functional central limit theorem. As a convention, we endow the space C(R2

≥0)

with the topology of uniform convergence over compact subsets and use “⇒” to denote
the weak convergence. Recall that we linearly extend H(x, y) for non-integer x, y, so
H(x, y) ∈ C(R2

≥0).

Theorem 1.7. Assuming further that χ(x) and ψ(y) are piecewise C1-smooth, we have
the weak convergence as L→∞,

√
L

(
qH(Lx,Ly) − E

[
qH(Lx,Ly)

])
⇒ ϕ(x, y) in C(R2

≥0),

where ϕ(x, y) is a random continuous function which solves the stochastic telegraph
equation

ϕxy+Iβ1ϕy+Jβ2ϕx = η·
√

(β1 + β2)qhxq
h
y + J(β2 − β1)β2qhqhx + I(β1 − β2)β1qhqhy . (1.15)

Here, qhx := ∂x(qh(x,y)) and qhy := ∂y(qh(x,y)), the boundary of ϕ is given by zero.
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Remark 1.8. By (1.4), it is clear that ϕ is a Gaussian field with covariance function

Cov
(
ϕ(X1, Y1), ϕ(X2, Y2)

)
=

∫ X1∧Y1

0

∫ X2∧Y2

0

RIJ(X1, Y1, x, y)RIJ(X2, Y2, x, y)

×
(

(β1 + β2)qhxq
h
y + J(β2 − β1)β2q

hqhx + I(β1 − β2)β1q
hqhy

)
dxdy,

where RIJ is the Riemann function in (1.3) with β1 and β2 replaced by Iβ1 and Jβ2
respectively, i.e.

RIJ(X,Y ;x, y)

=
1

2πi

∮
−Iβ1

(Jβ2 − Iβ1)dz

(z + Iβ1)(z + Jβ2)
exp

[
(Iβ1 − Jβ2)

(
− (X − x)

z

z + Jβ2
+ (Y − y)

z

z + Iβ1

)]
.

(1.16)

As a corollary of the previous results, we have the following.

Corollary 1.9. As L→∞,

H(Lx,Ly)− E
[
H(Lx,Ly)

]
√
L

⇒ φ(x, y) in C(R2
≥0),

φ(x, y) is a Gaussian field given by φ(x, y) := ϕ(x,y)
qh(x,y) log q

, which solves

φxy + Iβ1φy + Jβ2φx + (β1 − β2)(φyhx + φxhy) = η ·
√

(β1 + β2)hxhy − Jβ2hx + Iβ1hy.

(1.17)

The rest of the paper is organized as follows. In Section 2, we first establish an
identity (Lemma 2.1), which gives an alternative way to apply fusion. Then, we prove
our four point relation (Theorem 2.3 and Theorem 2.5). We also discuss some properties
of our scaling (Lemma 2.4). In Section 3, we first use the four point relation to prove
the law of large numbers (Theorem 1.6) and the finite dimensional version of the CLT
(Proposition 3.1). Then we establish the tightness (Proposition 3.2) and improve our CLT
to the functional level (Theorem 1.7).

2 Four point relation

In this section, we prove the four point relation (1.11) and (1.12) that mentioned in
Section 1.3. To begin with, we present a lemma that allows us to reverse the spectral
parameters upside down when we decompose the general J vertex into a column of
J = 1 vertices, see Figure 4 for visualization. The key for our proof is an identity that
allows us to switch a pair of vertices with different spectral parameters, see Figure 5.
We do not find such identity in the literature. It seems to us that this identity does not
follow directly from the Yang–Baxter equation.

Define the stochastic matrix Λ̃,

Λ̃(h, (h1, . . . , hJ)) :=


1

ZJ(h)

∏
hi=1

qJ−i if h =
∑J
i=1 hi

0 else

and

L̃⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) :=

∑
v0,v1,...,vJ
v0=v,vJ=v

′

J∏
i=1

L
(1)

αqJ−i
(vi−1, hi; vi, h

′
i).
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Note that comparing with the expression of Λ and L
⊗qJ
α , the term qi−1 is replaced by

qJ−i, which corresponds to reversing the spectral parameters upside down.

Lemma 2.1. For fixed h, v, h′, v′, the following identity holds,∑
(h1,...,hJ )∈{0,1}J

(h′1,...,h
′
J )∈{0,1}

J

Λ(h;h1, h2, . . . hJ)L⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) Ξ(h′1, . . . , h

′
J ;h′)

=
∑

(h1,...,hJ )∈{0,1}J

(h′1,...,h
′
J )∈{0,1}

J

Λ̃(h;h1, h2, . . . hJ)L̃⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) Ξ(h′1, . . . , h

′
J ;h′).

(2.1)

Consequently, we have alternate expression for the general J vertex weight

L(J)
α (v, h; v′, h′)

=
∑

(h1,...,hJ )∈{0,1}J

(h′1,...,h
′
J )∈{0,1}

J

Λ̃(h;h1, h2, . . . hJ)L̃⊗qJα (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) Ξ(h′1, . . . , h

′
J ;h′).

(2.2)

Proof. By Lemma 1.3, it is clear that (2.1) implies (2.2). It suffices to prove (2.1), which
says, graphically

Figure 4: Pictorial representation of the identity (2.1). The weight (wt) of a diagram is
given by a summation of products of L-matrices over h1, . . . , hJ , with condition h1 + · · ·+
hJ = h and h′1 + · · · + h′J = h′. Each product on the left (resp. right) hand side in the
summation is reweighted by Λ(h;h1, . . . , hJ) (resp. Λ̃(h;h1, . . . , hJ)).

When J = 1, the proof is trivial. When J = 2, the identity (2.1) reduces to Figure 5.
Since h, h′ ∈ {0, 1, 2}, there are nine cases in total. One can verify each case directly and

Figure 5: Identity (2.1) when J = 2.
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here, we only show our verification for h = 1 and h′ = 1, in which case the computation
is more involved. The LHS in Figure 5 equals

Λ
(
1; (1, 0)

)(
L(1)
α (v, 1; v, 1)L(1)

αq (v, 0; v, 0) + L(1)
α (v, 1; v + 1, 0)L(1)

αq (v + 1, 0; v, 1)
)

+ Λ
(
1; (0, 1)

)(
L(1)
α (v, 0; v − 1, 1)L(1)

αq (v − 1, 1; v, 0) + L(1)
α (v, 0; v, 0)L(1)

αq (v, 1; v, 1)
)

=
1

1 + q

(α+ νqv

1 + α

1 + αqv+1

1 + αq
+

1− νqv

1 + α

αq(1− qv+1)

1 + αq

)
+

q

1 + q

(α(1− qv)
1 + α

1− νqv−1

1 + αq
+

1 + αqv

1 + α

αq + νqv

1 + αq

)
(2.3)

and the RHS equals

Λ̃
(
1; (1, 0)

)(
L(1)
αq (v, 1; v, 1)L(1)

α (v, 0; v, 0) + L(1)
αq (v, 1; v + 1, 0)L(1)

α (v + 1, 0; v, 1)
)

+ Λ̃
(
1; (0, 1)

)(
L(1)
αq (v, 0; v − 1, 1)L(1)

α (v − 1, 1; v, 0) + L(1)
αq (v, 0; v, 0)L(1)

α (v, 1; v, 1)
)

=
q

1 + q

(αq + νqv

1 + αq

1 + αqv

1 + α
+

1− νqv

1 + αq

α(1− qv+1)

1 + α

)
+

1

1 + q

(αq(1− qv)
1 + αq

1− νqv−1

1 + α
+

1 + αqv+1

1 + αq

α+ νqv

1 + α

)
(2.4)

It is not hard to see directly that the RHS of (2.3) and (2.4) are both the sum of the
following four terms (divided by a common denominator (1 + q)(1 + α)(1 + αq))

q(αq+νqv)(1+αqv), qα(1−νqv)(1−qv+1), αq(1−qv)(1−νqv−1), (1+αqv+1)(α+νqv).

For the verification of other h, h′ ∈ {0, 1, 2}, we omit the details of our computation.
For general J , we look at the column of vertices on the LHS of the equation illustrated

in Figure 4. From bottom to top, we label the vertices from 1 to J . Sequentially for
i = 1, . . . , J−1, we apply the J = 2 identity (that we just verified) for the vertex i and i+1

in that column. Then, the spectral parameters of the vertices (looking from bottom to
top) change from (α, αq, . . . , αqJ−1) to (αq, αq2, . . . , αqJ−1, α), note that the vertex with
spectral parameter α moves from bottom to top. The Λ also changes accordingly. Then
we apply the J = 2 identity for i = 1, . . . , J − 2 to move the spectral parameter αq to the
second top place. If we keep implementing this procedure, finally we get a column of
vertices with spectral parameters (αqJ−1, αqJ−2, . . . , α). The left input lines are weighted
by Λ̃.

Remark 2.2. It turns out that following the same argument, the identities (2.1), (2.2)
also hold when we replace the stochastic matrix Λ̃ with

Λσ
(
h, (h1, . . . , hJ)

)
:=


1

ZJ(h)

∏
hi=1

qσ(i)−1 if h =
∑J
i=1 hi,

0 else,

and replace L̃
⊗qJ
α (v, h1, . . . , hJ ; v′, h′1, . . . , h

′
J) with

L⊗qJσ,α (v, h1, . . . , hJ ; v′, h′1, . . . , h
′
J) :=

∑
v0,v1,...,vJ
v0=v,vJ=v

′

J∏
i=1

L
(1)

αqσ(i)−1(vi−1, hi; vi, h
′
i),

where σ is an arbitrary permutation of {1, 2, . . . , J}. We do not include this generalization
in the lemma since we are not going to use it.

EJP 25 (2020), paper 148.
Page 12/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP552
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The STE limit of the SHS6V model

Theorem 2.3. Consider the SHS6V model associated with the height function H, define
for x, y ∈ Z≥0,

ξ(x+1, y+1) = qH(x+1,y+1)− α+ ν

1 + α
qH(x,y+1)− 1 + αqJ

1 + α
qH(x+1,y) +

ν + αqJ

1 + α
qH(x,y), (2.5)

then we have,

E
[
ξ(x+ 1, y + 1)

∣∣F(x, y)
]

= 0, (2.6)

where F(x, y) = σ
(
H(i, j) : i ≤ x or j ≤ y

)
.

Proof. Since our model is homogeneous, i.e. every vertex is assigned with the same
L-matrix, we suppress the dependence on x, y in our notation and denote by

ξ := ξ(x+ 1, y + 1), H := H(x, y),

h := H(x, y + 1)−H(x, y), v := H(x, y)−H(x+ 1, y).

In addition, we let

F := σ
(
H(x, y), H(x, y + 1), H(x+ 1, y)

)
= σ

(
H, h, v

)
.

By the sequential update rule specified in Definition 1.5, H(x+ 1, y + 1) only depends on
the information of H, h, v, so

E
[
ξ
∣∣F(x, y)

]
= E

[
ξ
∣∣F].

To prove (2.6), it suffices to show that

E
[
ξ
∣∣F] = 0. (2.7)

We prove this identity in two steps:
Step 1 (J = 1): We assume J = 1, in which case the vertex weight (1.8) reduces to

the weights in Definition 1.1. Let us verify (2.7) directly,

E
[
ξ
∣∣F] = E

[
qH(x+1,y+1) − α+ ν

1 + α
qH(x,y+1) − 1 + αq

1 + α
qH(x+1,y) +

ν + αq

1 + α
qH(x,y)

∣∣F],
= E

[
qH(x+1,y+1)

∣∣F]− α+ ν

1 + α
qH(x,y+1) − 1 + αq

1 + α
qH(x+1,y) +

ν + αq

1 + α
qH(x,y),

= E
[
qH(x+1,y+1)

∣∣F]− α+ ν

1 + α
qH+h − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH.

Since J = 1, h is either 0 or 1, we discuss them respectively.
If h = 0, i.e. H(x, y + 1) = H, by Definition 1.1,

P
(
H(x+1, y+1) = H−v

)
=

1 + αqv

1 + α
; P

(
H(x+1, y+1) = H−v+1

)
=
α(1− qv)

1 + α
. (2.8)

Hence,

E
[
ξ
∣∣F] =

1 + αqv

1 + α
qH−v +

α(1− qv)
1 + α

qH−v+1 − α+ ν

1 + α
qH − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH = 0.

If h = 1, i.e. H(x, y + 1) = H + 1, we have

P
(
H(x+1, y+1) = H−v

)
=

1− νqv

1 + α
; P

(
H(x+1, y+1) = H−v+1

)
=
α+ νqv

1 + α
, (2.9)

which yields

E
[
ξ
∣∣F] =

1− νqv

1 + α
qH−v +

α+ νqv

1 + α
qH−v+1 − α+ ν

1 + α
qH+1 − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH = 0.
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Step 2 (General J): Using fusion, we decompose the general J vertex with input (v, h)

into a column of J = 1 vertices with input (v, h1, . . . , hJ), where (h1, . . . hJ) is weighted
by Λ(h;h1, . . . , hJ), see Figure 6. Define Hi, H

′
i, i = 0, 1, . . . , J in the way that

H0 = H(x, y), H ′0 = H(x+ 1, y), (2.10)

Hi = H0 +

i∑
j=1

hj , H ′i = H ′0 +

i∑
j=1

h′j . (2.11)

Since h = h1 + · · ·+ hJ , HJ = H(x, y + 1). Furthermore, H ′J = H(x+ 1, y + 1) in law. It

Figure 6: Given H(x, y) = H0, H(x + 1, y) = H ′0, H(x, y + 1) = HJ . By fusion (the
spectral parameters have been reversed upside down thanks to Lemma 2.1), we have the
distributional identity H(x+ 1, y + 1) = H ′J . The advantage of utilizing fusion is that we
can apply J = 1 version of (2.6) to each vertex in the column, where the heights around
the i-th vertex are Hi−1, H

′
i−1, Hi, H

′
i. The horizontal input (h1, . . . , hJ) is weighted by

Λ̃(h;h1, . . . , hJ).

suffices to prove

E
[
qH
′
J − α+ ν

1 + α
qHJ − 1 + αqJ

1 + α
qH
′
0 +

ν + αqJ

1 + α
qH0
∣∣F] = 0

This is equivalent to

E
[
qH
′
J − α+ ν

1 + α
qHJ

∣∣F] = E
[1 + αqJ

1 + α
qH
′
0 − ν + αqJ

1 + α
qH0
∣∣F]. (2.12)

We define the sigma algebra Fi = σ
(
Hi, H

′
i, Hi+1

)
for i = 0, 1, . . . , J − 1. Since all the

vertices are of horizontal spin 1/2 now, using the J = 1 version of (2.6) (proved in Step 1)
for the i-th vertex (with the spectral parameter αqJ−i) looking from the bottom, we have

E
[
qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi − 1 + αqJ+1−i

1 + αqJ−i
qH
′
i−1 +

ν + αqJ+1−i

1 + αqJ−i
qHi−1

∣∣F]
= E

[
E
[
qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi − 1 + αqJ+1−i

1 + αqJ−i
qH
′
i−1 +

ν + αqJ+1−i

1 + αqJ−i
qHi−1

∣∣Fi−1]∣∣∣F] = 0.
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In other words,

E
[
qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi
∣∣F] =

1 + αqJ+1−i

1 + αqJ−i
E
[
qH
′
i−1 − ν + αqJ+1−i

1 + αqJ+1−i q
Hi−1

∣∣F].
Iterating the above equation from i = J to i = 1, one concludes the desired (2.12).

To prove relation (1.12), we need the following fact which says that under our
scaling (1.13), it is unlikely that a vertex will change the direction of lines entering into
it. More specifically, if a vertex has i vertical input lines and j horizontal input lines, with
probability going to 1, it produces i vertical and j horizontal output lines.

We use O(a) to denote some quantity bounded by a constant times a, when the scaling
parameter L is large.

Lemma 2.4. For any fixed i1, i2 ∈ {0, 1, . . . , I} and j1, j2 ∈ {0, 1, . . . , J}, as L→∞

L(J)
α (i1, j1; i2, j2) = 1{i1=i2,j1=j2} +O(L−1).

Proof. Via Lemma 1.3, it suffices to show that for every i ∈ {0, 1, . . . , J − 1}

L
(1)
αqi(i1, j1; i2, j2) = 1{i1=i2,j1=j2} +O(L−1). (2.13)

Indeed, by direct computation, under our scaling,

L
(1)
αqi(m, 0;m, 0) =

1 + αqm+i

1 + αqi
= 1− β2m

L
+O(L−2),

L
(1)
αqi(m, 0;m− 1, 1) =

β2m

L
+O(L−2),

L
(1)
αqi(m, 1;m, 1) =

αqi + νqm

1 + αqi
= 1 +

β1(m− I)

L
+O(L−2)

L
(1)
αqi(m, 1;m+ 1, 0) =

β1(I −m)

L
+O(L−2),

which implies (2.13).

Theorem 2.5. Define

∆x := qH(x+1,y) − qH(x,y), ∆y := qH(x,y+1) − qH(x,y).

Fix A,B > 0, under scaling (1.13), for any x ∈ [0, LA] ∩Z and y ∈ [0, LB] ∩Z and L > 1,

E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]

= L−1(β1 + β2)∆x∆y + JL−2(β2 − β1)β2q
H(x,y)∆x + IL−2(β1 − β2)β1q

H(x,y)∆y + R(x, y),

where R(x, y) is a random field with the uniform upper bound

|R(x, y)| ≤ CL−4, (2.14)

for all x ∈ [0, LA] ∩Z and y ∈ [0, LB] ∩Z, C is some constant that only depends on A,B.

Proof. We only need to show that the random field R(x, y) defined via

R(x, y) = E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]
− L−1(β1 + β2)∆x∆y − JL−2(β2 − β1)β2q

H(x,y)∆x

− IL−2(β1 − β2)β1q
H(x,y)∆y
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The STE limit of the SHS6V model

satisfies (2.14). Using same notation as in the proof of Theorem 2.3,

ξ := ξ(x+ 1, y + 1), F := σ
(
H, h, v

)
,

and

H := H(x, y), h := H(x, y + 1)−H(x, y), v := H(x, y)−H(x+ 1, y).

It is clear that E
[
ξ(x+ 1, y + 1)2|F(x, y)

]
= E

[
ξ2|F

]
. Our proof is divided into two steps.

Step 1 (J = 1): When J = 1, h ∈ {0, 1}. We discuss the h = 0 and h = 1 case
separately.

If h = 0,

E
[
ξ2
∣∣F] = E

[(
qH(x+1,y+1) − α+ ν

1 + α
qH − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH
)2∣∣F]

Referring to (2.8), we have (recall ν = q−I)

E
[
ξ2
∣∣F] =

1 + αqv

1 + α

(
qH−v − α+ ν

1 + α
qH − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH
)2

+
α(1− qv)

1 + α

(
qH−v+1 − α+ ν

1 + α
qH − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH
)2

=
α(q − 1)2q−2v(1− qv)(1 + αqv)

(1 + α)2
q2H. (2.15)

The second equality in the above display follows from a straightforward calculation.
Let b = 1+αq

1+α and rewrite (2.15) as

E
[
ξ2
∣∣F] = (1− b)q−2v(qv − 1)

(
− b + q + (b− 1)qv

)
q2H (2.16)

Referring to scaling (1.13), we see that qH = e
β1−β2
L H is bounded, since for x ∈ [0, LA]

and y ∈ [0, LB], |H| = |H(x, y)| ≤ L(A+B). In addition,

q = 1 +
β1 − β2
L

+O(L−2), b = 1− β2
L

+O(L−2) (2.17)

Using the expansion of q and b in (2.17), we have

E
[
ξ2
∣∣F] = q2Hβ2(β2 − β1)2vL−3 +O(L−4). (2.18)

When h = 0, ∆y = qH(x,y+1) − qH(x,y) = 0. Under scaling (1.13),

∆x = qH(x+1,y) − qH(x,y) = qH(q−v − 1) = qH
v(β2 − β1)

L
+O(L−2).

Thereby,

L−1(β1 + β2)∆x∆y + L−2(β2 − β1)β2q
H∆x + IL−2(β1 − β2)β1q

H∆y

= L−2(β2 − β1)β2q
H∆x,

= q2Hβ2(β2 − β1)2vL−3 +O(L−4). (2.19)

It follows from (2.18) and (2.19) (note that J = 1)

R(x, y) = E
[
ξ2
∣∣F]− (L−1(β1 + β2)∆x∆y + L−2(β2 − β1)β2q

H∆x + IL−2(β1 − β2)β1q
H∆y

)
= O(L−4).
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The STE limit of the SHS6V model

If h = 1, H(x+ 1, y + 1) is distributed as (2.9), then (recall ν = q−I)

E
[
ξ2
∣∣F] =

1− νqv

1 + α

(
qH−v − α+ ν

1 + α
qH+1 − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH
)2
,

+
α+ νqv

1 + α

(
qH+1−v − α+ ν

1 + α
qH+1 − 1 + αq

1 + α
qH−v +

ν + αq

1 + α
qH
)2
,

=
(q − 1)2q−2(I+v)(qI − qv)(αqI + qv)

(1 + α)2
q2H

Rewrite the RHS above as (recall b = 1+αq
1+α )

E
[
ξ2
∣∣F] = (q − b)q−2(I+v)(qI − qv)

(
(−1 + b)qI + qv(q − b)

)
q2H

Using the expansion in (2.17), we deduce

E
[
ξ2
∣∣F] = q2H(I − v)(β2 − β1)2β1L

−3 +O(L−4). (2.20)

When h = 1,

∆x = qH(β2 − β1)vL−1 +O(L−2) ∆y = qH(β1 − β2)L−1 +O(L−2),

which yields

L−1(β1 + β2)∆x∆y + L−2(β2 − β1)β2q
H∆x + IL−2(β1 − β2)β1q

H∆y

= q2H(I − v)(β2 − β1)2β1L
−3 +O(L−4). (2.21)

Combining (2.20) and (2.21) yields

R(x, y) = E
[
ξ2
∣∣F]− (L−1(β1 + β2)∆x∆y + L−2(β2 − β1)β2q

H∆x + IL−2(β1 − β2)β1q
H∆y

)
= O(L−4).

This concludes (2.14).
Step 2 (general J): Similar as what we did in Theorem 2.3, we apply fusion (see

Figure 6). Recall Hi, H ′i from (2.10) and (2.11) and define

ξi := qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi − 1 + αqJ−i+1

1 + αqJ−i
qH
′
i−1 +

ν + αqJ+1−i

1 + αqJ−i
qHi−1 ,

= qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi − 1 + αqJ−i+1

1 + αqJ−i

(
qH
′
i−1 − ν + αqJ+1−i

1 + αqJ+1−i q
Hi−1

)
.

By straightforward calculation,

J∑
i=1

1 + αqJ−i

1 + α
ξi

=

J∑
i=1

(
1 + αqJ−i

1 + α

(
qH
′
i − ν + αqJ−i

1 + αqJ−i
qHi
)
− 1 + αqJ−i+1

1 + α

(
qH
′
i−1 − ν + αqJ+1−i

1 + αqJ+1−i q
Hi−1

))
= qH

′
J − ν + α

1 + α
qHJ − 1 + αqJ

1 + α

(
qH
′
0 − ν + αqJ

1 + αqJ
qH0

)
= ξ, (2.22)

where the second equality follows from the telescoping property of the summation.
By Theorem 2.3, ξi are martingale increments, so E

[
ξiξj |F

]
= 0 for i 6= j. It follows

from (2.22) that

E
[
ξ2
∣∣F] = E

[ J∑
i=1

(1 + αqJ−i

1 + α
ξi

)2∣∣F] =

J∑
i=1

(1 + αqJ−i

1 + α

)2
E
[
ξ2i
∣∣F]. (2.23)
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The STE limit of the SHS6V model

Using the J = 1 version of (2.16) proved in Step 1 for the i-th vertex counting from
bottom (here, though the spectral parameter changes from α to αqi, it does not matter
under our scaling)

E
[
ξ2i
∣∣Fi−1] = L−1(β1 + β2)∆i

x∆i
y + L−2(β2 − β1)β2q

H∆i
x + IL−2(β1 − β2)β1q

H∆i
y + Ri(x, y)

(2.24)

where ∆i
x = qH

′
i−1−qHi−1 and ∆i

y = qHi−qHi−1 and, also recall that Fi = σ
(
Hi, Hi+1, H

′
i

)
.

By Step 1, there exists constant C only depending on A,B such that

sup
i∈{1,...,J}

(x,y)∈[0,LA]×[0,LB]

|Ri(x, y)| ≤ CL−4. (2.25)

By conditioning, E
[
ξ2i
∣∣F] = E

[
E
[
ξ2i |Fi−1

]∣∣F] (note that here we are not using the tower

property but instead the sequential update rule). Using (2.23) and (2.24), we get

E
[
ξ2
∣∣F] =

J∑
i=1

(1 + αqJ−i

1 + α

)2
E
[
L−1(β1 + β2)∆i

x∆i
y + L−2(β2 − β1)β2q

H∆i
x

+ IL−2(β1 − β2)β1q
H∆i

y + Ri(x, y)
∣∣F].

Note that under our scaling, limL→∞
1+αqJ−i

1+α = 1, along with (2.25),

E
[
ξ2
∣∣F] =

J∑
i=1

E
[
L−1(β1 + β2)∆i

x∆i
y + L−2(β2 − β1)β2q

H∆i
x + IL−2(β1 − β2)β1q

H∆i
y

∣∣F]
+O(L−4). (2.26)

It is clear that
J∑
i=1

∆i
y =

J∑
i=1

(
qHi − qHi−1

)
= qHJ − qH0 = ∆y.

Furthermore, by Lemma 2.4,

P
(
∃ i such that ∆i

x 6= ∆x

∣∣F) = 1−O(L−1).

Hence, we can simplify (2.26) and get

E
[
ξ2
∣∣F]

=

J∑
i=1

E
[
L−1(β1 + β2)∆x∆i

y + L−2(β2 − β1)β2q
H∆x + IL−2(β1 − β2)β1q

H∆i
y

∣∣F]+O(L−4),

= E
[
L−1(β1 + β2)∆x∆y + JL−2(β2 − β1)β2q

H∆x + IL−2(β1 − β2)β1q
H∆y

∣∣F]+O(L−4),

= L−1(β1 + β2)∆x∆y + JL−2(β2 − β1)β2q
H∆x + IL−2(β1 − β2)β1q

H∆y +O(L−4).

The last line is because ∆x and ∆y and H are measurable with respect to F .

Remark 2.6. The identity (1.10) which holds for stochastic six vertex model no long
works for the SHS6V model. For example, consider I = 2 and J = 1. For an arbitrary
vertex (x, y), if there exists three parameters γ1, γ2, γ3 such that (1.10) is true. When
h = 0, referring to (2.15), we have

E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]

=
α(q − 1)2q−2v(1− qv)(1 + αqv)

(1 + α)2
q2H
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The STE limit of the SHS6V model

Since ∆y = 0, the right hand side of (1.10) reduces to

γ1∆x∆y + γ2∆xq
H + γ3∆yq

H = γ2∆xq
H = γ2(q−v − 1)q2H

So for all v ∈ {0, 1, . . . , I},

α(q − 1)2q−v(q−v − 1)(1 + αqv)

(1 + α)2
q2H = γ2(q−v − 1)q2H

Canceling the factor (q−v − 1)q2H on both sides, we get

α(q − 1)2q−v(1 + αqv)

(1 + α)2
= γ2

Since γ2 does not depend on v, so the previous equation could not hold for v = 1, 2

simultaneously.

The following corollary is a direct consequence of Theorem 2.5.

Corollary 2.7. Fix A,B > 0, there exists constant C s.t. for every x ∈ [0, LA] ∩ Z, y ∈
[0, LB] ∩Z and L > 1

E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]
≤ CL−3.

Proof. It is clear that there exists C such that for any x ∈ [0, LA] ∩Z and y ∈ [0, LB] ∩Z,

|∆x| =
∣∣∣qH(x+1,y) − qH(x,y)

∣∣∣ = qH(x,y)
∣∣∣e (β1−β2)h

L − 1
∣∣∣ ≤ CL−1.

Similarly, |∆y| ≤ CL−1. Referring to Theorem 2.5 (note that qH(x,y) is bounded), the
corollary follows.

3 Proof of the main results

Having established the four point relation, we move on proving Theorem 1.6 and
Theorem 1.7. Corollary 1.9 follows from a straightforward argument once we proved
Theorem 1.7. For the ensuing discussion, we will usually write C for constants, we
might not generally specify when irrelevant terms are being absorbed into the constants.
We might also write for example C(n) when we want to specify which parameter the
constant depends on.

Proof of Theorem 1.6. Given Theorem 2.3, our proof is akin to [BG19, Theorem 5.1]. We
provide the detail for the sake of completeness. Recall q = q

1
L , to prove 1

LH(Lx,Ly)→
h(x, y) uniformly in probability for x ∈ [0, A] and y ∈ [0, B], it suffices to show that
qH(Lx,Ly) → qh(x,y) uniformly in probability. To this end, we write

qH(Lx,Ly) = E
[
qH(Lx,Ly)

]
+ qH(Lx,Ly) − E

[
qH(Lx,Ly)

]
.

It suffices to show that as L→∞,

(i). E[qH(Lx,Ly)]→ qh(x,y) uniformly for (x, y) ∈ [0, A]× [0, B],

(ii). qH(Lx,Ly) − E[qH(Lx,Ly)]→ 0 uniformly in probability for (x, y) ∈ [0, A]× [0, B].

We first demonstrate (i). By Theorem 2.3,

E
[
qH(x+1,y+1)

]
− b1E

[
qH(x,y+1)

]
− b2E

[
qH(x+1,y)

]
+ (b1 + b2 − 1)E

[
qH(x,y)

]
= 0,
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where b1 = α+ν
1+α , b2 = 1+αqJ

1+α . Summing this equation over x = 0, 1, . . . , LX − 1 and
y = 0, 1, . . . LY − 1 yields

− (1− b1)

LX−1∑
x=1

E
[
qH(x,0)

]
− (1− b2)

LY−1∑
y=1

E
[
qH(0,y)

]
+ (1− b1)

LX−1∑
x=1

E
[
qH(x,LY )

]

+ (1− b2)

LY−1∑
y=1

E
[
qH(LX,y)

]
+ (b1 + b2 − 1)E

[
qH(0,0)

]
− b2E

[
qH(LX,0)

]
− b1E

[
qH(0,LY )

]
+ E

[
qH(LX,LY )

]
= 0. (3.1)

SinceH is Lipschitz, the sequence of deterministic functionsE[qH(L·,L·)] = E[q
1
LH(L·,L·)] ∈

C([0, A]× [0, B]) is uniformly bounded and equi-continuous. By Arzela-Ascoli Theorem, it

has a limit point qh̃.
Under scaling (1.13), when L→∞,

b1 = 1− β1IL−1 +O(L−2), b2 = 1− β2JL−1 +O(L−2). (3.2)

Combining this with (3.1) and taking the L→∞ limit, qh̃ satisfies the integral equation

− Iβ1
∫ X

0

qh̃(x,0)dx− Jβ2
∫ Y

0

qh̃(0,y) + Iβ1

∫ X

0

qH(x,Y )dx+ Jβ2

∫ Y

0

qH(X,y)dy

+ qh̃(0,0) − qh̃(X,0) − qh̃(0,Y ) + qh̃(X,Y ) = 0

In other words, any limit point qh̃ of E
[
q

1
LH(Lx,Ly)

]
as L → ∞ satisfies the telegraph

equation
∂2

∂x∂y
qh̃(x,y) + Iβ1

∂

∂y
qh̃(x,y) + Jβ2

∂

∂x
qh̃(x,y) = 0.

By our assumption on the boundary, we also know that qh̃(x,0) = qχ(x) and qh̃(0,y) = qψ(y).
This implies that h̃ = h, which concludes (i).

To verify (ii), we denote by U(x, y) = qH(x,y) − E
[
qH(x,y)

]
. Using Theorem 2.3, qH(x,y)

and E
[
qH(x,y)

]
satisfy the discrete telegraph equation (1.5) with g given by ξ and 0

respectively, hence by linearity,

U(x+ 1, y + 1)− b1U(x, y + 1)− b2U(x+ 1, y) + (b1 + b2 − 1)U(x, y) = ξ(x+ 1, y + 1).

Summing over x = 0, 1, . . . , LX − 1 and y = 0, 1, . . . LY − 1, along with the fact U(x, 0) =

U(0, y) = 0 yields

U(LX,LY ) + (1− b1)

LX−1∑
x=1

U(x, LY ) + (1− b2)

LY−1∑
y=1

U(LX, y) =

LX∑
x=1

LY∑
y=1

ξ(x, y). (3.3)

Since ξ(x, y) is a martingale increment, using Corollary 2.7

E

[( LA∑
x=1

LB∑
y=1

ξ(x, y)
)2]

=

LA∑
x=1

LB∑
y=1

E
[
ξ(x, y)2

]
≤ CABL−1.

Applying Doob’s Lp maximal inequality, it is clear that

sup
(X,Y )∈[0,A]×[0,B]

∣∣∣ LX∑
x=1

LY∑
y=1

ξ(x, y)
∣∣∣ p→ 0. (3.4)
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Observing that U(L·, L·) are uniformly bounded and uniformly Lipschitz on [0, A]× [0, B].
Therefore, their law are tight, any subsequential limit Ũ has continuous trajectories
must solve the L =∞ version of (3.3), which reads (the right hand side is zero by (3.4))

Ũ(X,Y ) + Iβ1

∫ X

0

Ũ(x, Y )dx+ Jβ2

∫ Y

0

Ũ(X, y)dy = 0.

According to [BG19, Prop 4.1], the only solution to the above equation is given by Ũ = 0,
which implies (ii).

We move on proving the functional CLT for the SHS6V model. The proof of Theo-
rem 1.7 is composed of showing the finite dimensional weak convergence and demon-
strating the tightness, which is formulated into the following two propositions.

Denote by

UL(x, y) :=
√
L

(
qH(Lx,Ly) − E

[
qH(Lx,Ly)

])
=
√
LU(Lx,Ly).

Proposition 3.1 (Finite dimensional convergence). With the same setup as in Theorem
1.7, we have the weak convergence in finite dimension as L→∞,

UL(x, y)⇒ ϕ(x, y).

Recall that we linearly interpolate H(x, y) for non-integer x, y, thus H is a function in
C(R2

≥0), so is UL(x, y).

Proposition 3.2 (Tightness). For each fixed A,B > 0 and n ∈ N, there is a constant C
(only depends on n,A,B) such that for all L > 1 and (X1, Y1), (X2, Y2) ∈ [0, LA]× [0, LB],

E

[(
UL(X1, Y1)− UL(X2, Y2)

)2n]
≤ C

(
|X1 −X2|+ |Y1 − Y2|

)n
. (3.5)

Consequently, the sequence of random function UL(·, ·) ∈ C(R2
≥0) is tight.

Proof of Theorem 1.7. The proof is a direct combination of Proposition 3.1 and Proposi-
tion 3.2.

We first prove the finite dimensional weak convergence.

Proof of Proposition 3.1. Recall that in the proof of Theorem 1.6, we set U(x, y) =

qH(x,y) − E[qH(x,y)]. As shown earlier, we have

U(x+ 1, y + 1)− b1U(x, y + 1)− b2U(x+ 1, y) + (b1 + b2 − 1)U(x, y) = ξ(x+ 1, y + 1).

Furthermore, since H(x, 0) and H(0, y) are deterministic, we have U(x, 0) = U(y, 0) = 0.
By (1.6), one has

U(X,Y ) =

X∑
x=1

Y∑
y=1

Rd(X,Y ;x, y)ξ(x, y). (3.6)

Here Rd is defined through (1.7) with b1 = α+ν
1+α , b2 = 1+αqJ

1+α .

We need to show that UL(·, ·) =
√
LU(L·, L·) converges weakly to ϕ(·, ·) (given

by (1.15)) in finite dimension. As in the proof of [BG19, Theorem 6.1], we use the
martingale central limit theorem [HH14, Section 3] for the martingale (note that
UL(X,Y ) = ML(L2XY ))(

ML(t) :=

t∑
i=1

√
LRd(LX,LY, x(i), y(i))ξ(x(i), y(i)), 1 ≤ t ≤ L2XY

)
, (3.7)
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where we linearly order points in [1, LX]× [1, LY ] by sequentially tracing the diagonals
x+ y = const

(x(1), y(1)) := (1, 1), (x(2), y(2)) := (2, 1), (x(3), y(3)) := (1, 2), (x(4), y(4)) := (3, 1) . . .

(3.8)
Note that we will only deal with the one point convergence ML(L2XY ) ⇒ ϕ(X,Y )

for simplicity, the finite dimensional convergence can be proved by invoking multi-
dimensional version of martingale CLT (see [ST19, Theorem 3.1]) for a multi-dimensional
version of the martingale in (3.7).

The key for the proof is to study the conditional variance of ML(t) at t = L2XY . We
show that as L → ∞, it converges to the variance of ϕ (1.15) in probability. In other
words, we need to prove

L

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]

p→
∫ X

0

∫ Y

0

RIJ(X,Y, x, y)2
(

(β1 + β2)qhxq
h
y + J(β2 − β1)β2q

hqhx + I(β1 − β2)β1q
hqhy

)
dxdy,

(3.9)

where the RHS above is the variance of ϕ(X,Y ), see Remark 1.8.
To prove this convergence, we first use Theorem 2.5,

L

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]

=

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2

×
(

(β1 + β2)∆x∆y + JL−1(β2 − β1)β2q
H(x,y)∆x + IL−1(β1 − β2)β1q

H(x,y)∆y

)
+ L

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2R(x, y).

By (2.14), supx∈[0,LA],y∈[0,LB] |R(x, y)| ≤ CL−4, together with the fact Rd is uniformly
bounded in [0, LA]× [0, LB], we have almost surely,

L

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2R(x, y)→ 0

uniformly in (x, y) ∈ [0, LA] × [0, LB]. As a result, to demonstrate (3.9), it suffices to
prove that as L→∞

L−1
LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2qH(x,y)∆x
p→
∫ X

0

∫ Y

0

RIJ(X,Y, x, y)2qhxq
hdxdy

(3.10)

L−1
LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2qH(x,y)∆y
p→
∫ X

0

∫ Y

0

RIJ(X,Y, x, y)2qhy q
hdxdy

(3.11)

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2∆x∆y
p→
∫ X

0

∫ Y

0

RIJ(X,Y, x, y)2qhxq
h
ydxdy

(3.12)
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To demonstrate these approximations, as in the proof of [BG19, Theorem 6.1], we split
the the interval [0, LX]× [0, LY ] into squares such as [LX0, L(X0 + θ)]× [LY0, L(Y0 + θ)]

(where θ is small) and apply the discrete to continuous approximation in each square.
We first demonstrate (3.10), for x ∈ [LX0, L(X0 + θ)] and y ∈ [LY0, L(Y0 + θ)], it is not

hard to see that Rd(LX,LY,Lx, Ly)→ RIJ(X,Y, x, y) uniformly for 0 ≤ x ≤ X ≤ A and
0 ≤ y ≤ Y ≤ B (see [ST19, Eq 2.9] for I = J = 1 case). Thus,

Rd(LX,LY, x, y) = RIJ(X,Y,X0, Y0)+O(θ)+o(1), qH(LX,LY ) = qh(X0,Y0)+O(θ)+o(1),

(3.13)
where o(1) represents the term converging to zero as L→∞. Using these expansions,
we have

L−1
∑

x∈[LX0,L(X0+θ)]
y∈[LY0,L(Y0+θ)]

Rd(LX,LY, x+ 1, y + 1)2qH(x,y)∆x

= L−1RIJ(X,Y,X0, Y0)2qh(X0,Y0)

×
( ∑
y∈[LY0,L(Y0+θ)]

(
qH(L(X0+θ),y) − qH(LX0,y)

))
+O(θ3) + θ2o(1). (3.14)

Using law of large number proved in Theorem 1.6, uniformly for y′ ∈ [Y0, Y0 + θ]

qH(L(X0+θ),Ly
′) − qH(LX0,Ly

′) = qh(X0+θ,y
′) − qh(X0,y

′) + o(1).

Consequently, it follows from (3.14)

L−1
∑

x∈[LX0,L(X0+θ)]
y∈[LY0,L(Y0+θ)]

Rd(LX,LY, x+ 1, y + 1)2qH(x,y)∆x

= L−1RIJ(X,Y,X0, Y0)2qh(X0,Y0)

∫ Y0+θ

Y0

(
qh(X0+θ,y) − qh(X0,y)

)
dy + θo(1) +O(θ3) + θ2o(1)

= L−1RIJ(X,Y,X0, Y0)2qh(X0,Y0)qh(X0,Y0)
x θ2 + θo(1) +O(θ3) + θ2o(1). (3.15)

Note that in the last line, we used the property that the solution qh to the (1.14) is
piecewise C1 (since we assume additionally the boundary χ and ψ are smooth). By (3.15),

L−1
LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY, x+ 1, y + 1)2qH(x,y)∆x

=
∑

0≤i ≤X/θ

∑
0≤j≤Y/θ

RIJ(X,Y, θi, θj)2qh(θi,θj)qh(θi,θj)x θ2 + (1 + θ−1)o(1) +O(θ). (3.16)

By first letting L→∞ then θ → 0, we conclude the desired (3.10). The approximation
for (3.11) is similar, we omit the detail.

Things become more involved for (3.12), note that

L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

Rd(LX,LY, x+ 1, y + 1)2∆x∆y

= Rd(LX,LY,LX0, Y0)

( L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

∆x∆y

)
+O(θ3),

= L−2(log q)2RIJ(X,Y,X0, Y0)q2h(X0,Y0)

( L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

∇xH(x, y)∇yH(x, y)

)
+ o(1)O(θ2) +O(θ3), (3.17)
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The STE limit of the SHS6V model

where we denote by∇xH(x, y) := H(x+1, y)−H(x, y),∇yH(x, y) := H(x, y+1)−H(x, y).
In the last equality, we used the approximation in (3.13) and

∆x = qH(x+1,y) − qH(x,y) = L−1∇xH(x, y)qh(X0,Y0) log q + L−1o(1),

∆y = qH(x,y+1) − qH(x,y) = L−1∇yH(x, y)qh(X0,Y0) log q + L−1o(1).

Note that −∇xH(x, y),∇yH(x, y) indicate the number of lines entering into the vertex
(x, y) from bottom and left.

For a vertex associated with four tuple (i1, j1; i2, j2), we say this vertex is unusual if
i1 6= i2 or j1 6= i2. Let � denote the square [LX0, LX0 +Lθ]× [LY0, LY0 +Lθ] and suppose
that there are respectively n and m lines entering inside � from bottom and left. Let C
be the number of unusual vertices in the square. If C = 0, it is clear that

L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

∇xH(x, y)∇yH(x, y) = −nm.

Each unusual vertex might change the LHS summation at most by 2IJθL. As an analogue
of [BG19, Eq. 93],

∣∣∣ L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

∇xH(x, y)∇yH(x, y) + nm
∣∣∣ ≤ IJθLC.

It follows from Lemma 2.4 that the probability that a vertex is unusual is upper bounded
by CL−1, where C is a constant. Thus,

∣∣∣ L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

∇xH(x, y)∇yH(x, y) + nm
∣∣∣ ≤ const · θ3L2, (3.18)

with high probability as L→∞. Noting that

H
(
L(X0 + θ), LY0

)
−H(LX0, LY0) = −n, H

(
LX0, L(Y0 + Y )

)
−H(LX0, LY0) = m.

Combining (3.17) and (3.18) (together with Theorem 2.3) yields

L(X0+θ)∑
x=LX0

L(Y0+θ)∑
y=LY0

Rd(LX,LY, x+ 1, y + 1)2∆x∆y

= L−2(log q)2RIJ(X,Y,X0, Y0)q2h(X0,Y0)
(
H(L(X0 + θ), LY0)−H(LX0, LY0)

)
×
(
H(LX0, L(Y0 + θ)

)
−H(LX0, LY0)

)
+ o(1)O(θ2) +O(θ3)

= RIJ(X,Y,X0, Y0)(log q)2q2h(X0,Y0)
(
h(X0 + θ, Y0)− h(X0, Y0)

)(
h(X0, Y0 + θ)− h(X0, Y0)

)
+ o(1)O(θ2) +O(θ3).

Using similar approximation as in (3.16), by first letting L→∞ then θ → 0, we demon-
strate (3.12). Having proved (3.10)-(3.12), we simply obtain the desired (3.9).

We conclude the theorem using martingale CLT [HH14, Section 3]. Recall that

ML(t) =
√
L

t∑
i=1

Rd
(
LX,LY, x(i), y(i)

)
ξ
(
x(i), y(i)

)
, t ∈ [1, L2XY ].

We want to show UL(X,Y ) = ML(L2XY )→ ϕ(X,Y ) in law as L→∞. By Theorem 2.3,
ML(t) is a martingale with respect to the its own filtration. The proof of Theorem 1.7
reduces to verify the following conditions for martingale CLT:
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(i). The conditional covariance of ML(t) at t = L2XY , which equals

L

LX−1∑
x=0

LY−1∑
y=0

Rd(LX,LY ;x+ 1, y + 1)2E
[
ξ(x+ 1, y + 1)2

∣∣F(x, y)
]
,

has the same L→∞ behavior as its unconditional variance, in the sense that their
ratio tends to 1 in probability.

(ii). The Lindeberg’s condition, i.e.

lim
L→∞

L2XY∑
i=1

E
[
(ML(i)−ML(i− 1))21{(ML(i)−ML(i−1))2>ε}

]
= 0.

Using Corollary 2.7, it is clear that the conditional variance on the LHS of (3.9) is
uniformly bounded. By the convergence in (3.9) together with dominated convergence
theorem, we know that both the conditional and unconditional variance of ML(t) at
t = L2XY converge to the RHS of (3.9) (which equals to variance of ϕ(X,Y ) given in
Remark 1.8), this concludes (i).

The Lindeberg’s condition (ii) follows directly from how ξ is defined: By straight-
forward computation, there exists constant C such that |ξ(x+ 1, y + 1)| ≤ CL−1 for all
x ∈ [0, LA] and y ∈ [0, LB]. In addition, Rd(LX,LY, x, y) is uniformly bounded. So when
L is large enough,{(

ML(i)−ML(i− 1)
)2
> ε
}

=
{
LRd(LX,LY, x(i), y(i))2ξ(x(i), y(i))2 > ε

}
= ∅,

which implies that for every i ∈ [1, L2XY ],

E
[
(ML(i)−ML(i− 1))21{(ML(i)−ML(i−1))2>ε}

]
= 0.

Having verified (i) and (ii), we conclude our proof using the martingale central limit
theorem.

We move on proving Proposition 3.2. Before presenting our proof, we require the
following result.

Lemma 3.3. Fixed A,B ≥ 0 and n, `1, . . . `n ∈ N, there exists constant C (only depends
on A,B, n) such that for all L > 1 and arbitrary distinct points (xi, yi) ∈ [1, LA]× [1, LB],
i = 1, . . . n,

E
[ n∏
i=1

|ξ(xi, yi)|`i
]
≤ CL−

∑n
i=1(`i+1).

Proof. It suffices to prove that for (x, y) ∈ [0, LA− 1]× [0, LB − 1],

E
[
|ξ(x+ 1, y + 1)|`

∣∣F(x, y)
]
≤ CL−`−1. (3.19)

We first finish the proof of the lemma by assuming (3.19). Consider the ordering (3.8)
of integer points in [1, LA] × [1, LB], without loss of generality, we assume (xi, yi) =

(x(si), y(si)) so that s1 < · · · < sn. Recall that F(x, y) = σ
(
H(i, j) : i ≤ x or j ≤ y

)
, so

ξ(xi, yi) ∈ F(xn − 1, yn − 1) for i = 1, . . . , n− 1. By (3.19) and conditioning,

E
[ n∏
i=1

|ξ(xi, yi)|`i
]

= E
[ n−1∏
i=1

|ξ(xi, yi)|`i
]
E
[
|ξ(xn, yn)|`n

∣∣F(xn − 1, yn − 1)
]

≤ CL−`n−1E
[ n−1∏
i=1

|ξ(xi, yi)|`i
]
.

Iterating the above inequality, we conclude the lemma.
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We move on showing (3.19). Denote v, v′ to be the vertical input and output for the
vertex (x, y) and h to be the horizontal input, i.e.

v := H(x, y)−H(x+1, y), v′ := H(x, y+1)−H(x+1, y+1), h := H(x, y+1)−H(x, y).

It is evident that we can rewrite ξ(x+ 1, y + 1) in (2.5) as

ξ(x+ 1, y + 1) = qH(x,y)
(
qh−v

′
− b1qh − b2q−v + b1 + b2 − 1

)
, (3.20)

recall b1 = α+ν
1+α and b2 = 1+αqJ

1+α . Since q = q
1
L where q is fixed, so for (x, y) ∈ [0, LA] ×

[0, LB], there exists C such that 1
C ≤ q

H(x,y) ≤ C. In addition, by (3.2),

qh−v
′
− b1qh − b2q−v + b1 + b2 − 1

= qh−v
′
− qh − q−v + 1 + (1− b1)(qh − 1) + (1− b2)(q−v − 1)

= ln q(v − v′)L−1 +O(L−2)

Referring to (3.20), we conclude that for fixed A and B there exists a constant C such
that for arbitrary L > 1, (x, y) ∈ [0, LA]× [0, LB],

|ξ(x+ 1, y + 1)| ≤ CL−2 if (h, v) = (h′, v′)

|ξ(x+ 1, y + 1)| ≤ CL−1 if (h, v) 6= (h′, v′)
(3.21)

Note that

E
[
|ξ(x+ 1, y + 1)|`

∣∣F(x, y)
]

= E
[
|ξ(x+ 1, y + 1)|`

∣∣σ(H(x, y), h, v)
]

=
∑

(h′,v′):h′+v′=h+v

L(J)
α (h, v;h′, v′)|ξ(x+ 1, y + 1)|` (3.22)

Using Lemma 2.4 and (3.21), we know that for each term in the summation: Either
(h′, v′) 6= (h, v), which implies L(J)

α (h, v;h′, v′) ≤ CL−1 and |ξ(x+ 1, y+ 1)| ≤ CL−1; Either
(h, v) = (h′, v′), which yields |ξ(x+ 1, y + 1)| ≤ CL−2. Hence, the absolute value for each
term in the summation (3.22) is upper bounded by CL−`−1. As the summation is finite,
we conclude (3.19).

Proof of Proposition 3.2. Using the Kolmogorov-Chentsov criterion, the tightness of
UL(·, ·) follows directly from (3.5). To prove (3.5), it suffices to show that there exists
constant C such that for X ∈ [0, LA] and 0 ≤ Y1 ≤ Y2 ≤ LB,

E
[(
UL(X,Y1)− UL(X,Y2)

)2n]
≤ C|Y1 − Y2|n. (3.23)

Since we linearly interpolate H(X,Y ) for non-integer X,Y and UL(X,Y ) is expressed in
terms of H(LX,LY ), we can assume Y2 − Y1 ≥ L−1. Referring to (3.6), we know that

UL(X,Y ) =
√
L

LX∑
x=1

LY∑
y=1

Rd(LX,LY, x, y)ξ(x, y), (3.24)

which implies

UL(X,Y2)− UL(X,Y1) =

LX∑
x=1

LY1∑
y=1

√
L
(
Rd(LX,LY1, x, y)−Rd(LX,LY2, x, y)

)
ξ(x, y)

+

LX∑
x=1

LY2∑
y=LY1+1

√
LRd(LX,LY2, x, y)ξ(x, y)
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Taking the n-th power of both sides in the above display and apply the inequality
(a+ b)2n ≤ 22n−1(a2n + b2n) to the RHS, we have

E
[(
UL(X,Y2)− UL(X,Y1)

)2n]
≤ 22n−1E

[( LX∑
x=1

LY1∑
y=1

√
L
(
Rd(LX,LY1, x, y)−Rd(LX,LY2, x, y)

)
ξ(x, y)

)2n]

+ 22n−1E
[( LX∑

x=1

LY2∑
y=LY1+1

√
LRd(LX,LY2, x, y)ξ(x, y)

)2n]
(3.25)

Denote the first and second term above (without the constant multiplier) by M1 and M2

respectively. We proceed to upper bound M1 and M2 respectively.
For M1, since ξ(x, y) is a martingale increment, by Burkholder–Davis–Gundy inequal-

ity, we have

M1 ≤ C(n)LnE

[( LX∑
x=1

LY1∑
y=1

(
Rd(LX,LY1, x, y)−Rd(LX,LY2, x, y)

)2
ξ(x, y)2

)n]
,

where the constant C(n) only depends on n. Under scaling (3.2), there exists a constant
C such that for L > 1, X ∈ [0, LA] and Y1, Y2 ∈ [0, LB] (one can see this from the
expression of Rd in (1.7)),∣∣Rd(LX,LY1, x, y)−Rd(LX,LY2, x, y)

∣∣ ≤ C|Y1 − Y2|,
this implies

M1 ≤ C(n)|Y1 − Y2|2n · LnE
[( LX∑

x=1

LY1∑
y=1

ξ(x, y)2
)n]

. (3.26)

We claim that for all L > 1, the term LnE
[(∑LX

x=1

∑LY1

y=1 ξ(x, y)2
)n]

is uniformly upper

bounded for (x, y) ∈ [0, LA]× [0, LB]. To see this, we expand the n-th power of the double
summation in the expectation above. It is not hard to see that there exists a constant C
such that

LnE

[( LX∑
x=1

LY1∑
y=1

ξ(x, y)2
)n]
≤ CLn

∑
λ`n

∑
(xi,yi)∈[1,LX]×[1,LY1]

i=1,...,`(λ),(xi,yi) are distinct

E
[ `(λ)∏
i=1

ξ(xi, yi)
2λi
]

Here, the summation above is taken over the partition λ of n, that is to say, λ = (λ1 ≥
· · · ≥ λs) ∈ Zs≥1 with

∑s
i=1 λi = n, `(λ) = s is the length of the partition λ. We want to

upper bound the right hand side in the above display. By Lemma 3.3, we know that

the E
[∏`(λ)

i=1 ξ(xi, yi)
2λi
]

can be upper bounded by a constant times L−2n−`(λ). In addi-

tion, it is clear that #
{

(xi, yi) ∈ [1, LX] × [1, LY1], i = 1, . . . , `(λ), (xi, yi) are distinct
}
≤

(L2XY1)`(λ) (#A denotes the number of elements in the set A). Consequently

LnE

[( LX∑
x=1

LY1∑
y=1

ξ(x, y)2
)n]
≤ CLn

∑
λ`n

(L2XY1)`(λ)L−2n−`(λ) ≤ C.

Inserting the above upper bound into (3.26) implies

M1 ≤ C(n)|Y2 − Y1|2n. (3.27)
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We proceed to upper bound M2. Again, using Burkholder–Davis–Gundy inequality, one
obtains

M2 ≤ C(n)LnE

[( LX∑
x=1

LY2∑
y=LY1+1

Rd(LX,LY2, x, y)2ξ(x, y)2
)n]

.

Expanding the n-th power for the double summation and upper bounding the square of
Rd by a constant,

M2 ≤ C(n)Ln
∑
λ`n

∑
(xi,yi)∈[1,LX]×(LY1,LY2]
i=1,...,`(λ),(xi,yi) are distinct

E
[ `(λ)∏
i=1

ξ(xi, yi)
2λi
]
.

Using Lemma 3.3 and by similar argument for upper bounding M1, we have

M2 ≤ C(n)Ln
∑
λ`n

(L2X(Y2 − Y1))`(λ)L−2n−`(λ)

≤ C(n)L`(λ)−n(Y2 − Y1)`(λ) ≤ C(n)|Y2 − Y1|n (3.28)

The last inequality in the above display is due to our assumption Y2 − Y1 ≥ L−1.
Referring to (3.25), we have

E
[(
UL(X,Y2)− UL(X,Y1)

)2n] ≤ 22n−1(M1 + M2).

Combining (3.27) with (3.28), we conclude (3.23).

Remark 3.4. It is worth remarking that the classical theory for martingale functional
CLT, e.g. [Bro71, Section 6], might not be helpful for proving our tightness. In order to
get the tightness, the classical theory requires UL(X,Y ) to be a martingale in (X,Y ) in
order to control (using martingale inequalities) the modulus

sup
|X1−X2|+|Y1−Y2|≤δ

|UL(X1, Y1)− UL(X2, Y2)|,

for small δ > 0, and then apply the Arzela-Ascoli. See [Bil13, Theorem 7.3]. In our
case, though ξ(x, y) is a martingale increment, UL(X,Y ) fails to be a martingale due to
dependence of Rd on X,Y in (3.24).

Proof of Corollary 1.9. It suffices to prove the weak convergence for arbitrary interval
[0, A]× [0, B]. Note that U(x, y) = qH(x,y) − E

[
qH(x,y)

]
, then

H(Lx,Ly) = L logq

(
qH(Lx,Ly)

)
= L logqE

[
qH(Lx,Ly)

]
+ L logq

(
1 +

U(Lx,Ly)

E
[
qH(Lx,Ly)

]).
(3.29)

Since H(x, y) is Lipschitz and q = q
1
L (where q is fixed), there exists constant C such

that for (x, y) ∈ [0, LA]× [0, LB],

1

C
≤ qH(Lx,Ly) ≤ C, 1

C
≤ E

[
qH(Lx,Ly)

]
≤ C.

For the second term on the right hand side of (3.29), we taylor expand the function
logq(1 + x) around x = 0,

H(Lx,Ly) = L logqE
[
qH(Lx,Ly)

]
+

LU(Lx,Ly)

log q · E
[
qH(Lx,Ly)

] + LrL(x, y),
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where |rL(x, y)| ≤ CU(Lx,Ly)2/
(
E[qH(Lx,Ly)]

)2 ≤ CU(Lx,Ly)2. Consequently, since
E
[
U(Lx,Ly)

]
= 0,

H(Lx,Ly)− E
[
H(Lx,Ly)

]
√
L

=

√
LU(Lx,Ly)

E
[
qH(Lx,Ly)

]
log q

+
√
L
(
rL(x, y)− E

[
rL(x, y)

])
.

By Proposition 3.2, we know that UL(·, ·) =
√
LU(L·, L·) is tight. Thus, for any fixed

A,B > 0, as L→∞,

sup
x∈[0,A]×[0,B]

L
1
2U(Lx,Ly)2 → 0 in probability.

Since |rL(x, y)| ≤ CU(Lx,Ly)2,

sup
(x,y)∈[0,A]×[0,B]

√
L
∣∣∣rL(x, y)− E

[
rL(x, y)

]∣∣∣→ 0 in probability.

Therefore, we have the weak convergence in C([0, A]× [0, B]),

lim
L→∞

H(Lx,Ly)− E
[
H(Lx,Ly)

]
√
L

= lim
L→∞

√
LU(Lx,Ly)

E
[
qH(Lx,Ly)

]
log q

=
ϕ(x, y)

qh(x,y) log q
.

To get the second equality above, we apply Theorem 1.6 and Theorem 1.7 to the denomi-
nator and numerator respectively. By straightforward computation, φ(x, y) := ϕ(x,y)

qh(x,y) log q

solves (1.17), which concludes the corollary.
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