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Fluctuation theory for spectrally positive
additive Lévy fields

Loïc Chaumont* Marine Marolleau†

Abstract

A spectrally positive additive Lévy field is a multidimensional field obtained as the sum
Xt = X

(1)
t1

+ X
(2)
t2

+ · · · + X
(d)
td

, t = (t1, . . . , td) ∈ Rd
+, where X(j) = t(X1,j , . . . , Xd,j),

j = 1, . . . , d, are d independentRd-valued Lévy processes issued from 0 = t(0, 0, . . . , 0),
such that Xi,j is non decreasing for i 6= j and Xj,j is spectrally positive. It can also be
expressed as Xt = Xt · 1, where 1 = t(1, 1, . . . , 1) and Xt = (Xi,j

tj
)1≤i,j≤d. The main

interest of spaLf’s lies in the Lamperti representation of multitype continuous state
branching processes. In this work, we study the law of the first passage times Tr of
such fields at levels −r, where r ∈ Rd

+. We prove that the field {(Tr,XTr), r ∈ Rd
+} has

stationary and independent increments and we describe its law in terms of this of the
spaLf X. In particular, the Laplace exponent of (Tr,XTr) solves a functional equation
leaded by the Laplace exponent of X. This equation extends in higher dimension a
classical fluctuation identity satisfied by the Laplace exponents of the ladder processes.
Then we give an expression of the distribution of {(Tr,XTr), r ∈ Rd

+} in terms of the
distribution of {Xt, t ∈ Rd

+} by the means of a Kemperman-type formula, well-known
for spectrally positive Lévy processes.
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1 Introduction

A spectrally positive, additive Lévy field (spaLf) is defined by

Xt :=

 d∑
j=1

Xi,j
tj , i = 1, . . . , d

 = X
(1)
t1 + · · ·+ X

(d)
td
, t = (t1, . . . , td) ∈ [0,∞)d ,
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Spectrally positive additive Lévy fields

where X(j) = t(X1,j , . . . , Xd,j), j = 1, . . . , d, are d independent Rd-valued Lévy processes
such that Xi,j are non decreasing for i 6= j and Xj,j is spectrally positive (here tu means
the transpose of the vector u ∈ Rd). SpaLf’s can be considered as (non-trivial) extensions
in higher dimension of spectrally positive Lévy processes and the purpose of this article
is to develop fluctuation theory for such random fields. We refer to Chapter VII of [3]
for a complete account on fluctuation theory for spectrally one sided Lévy processes,
see also [9] and [13] (Chapter VII of [3] deals with the case of spectrally negative
Lévy processes but the results can easily be transferred to the spectrally positive case).
The particular pathwise features of spaLf’s allow us to define their first passage times
Tr = (T

(1)
r , . . . , T

(d)
r ) at multivariate levels −r ∈ (−∞, 0]d as the smallest of the indices

t = (t1, . . . , td) satisfying Xt = −r in the usual partial order of Rd. The distribution of
the variables (Tr,XTr

), r ∈ [0,∞)d can then be related to the distribution of the field
{Xt, t ∈ [0,∞)d}, where Xt = (Xi,j

tj )1≤i,j≤d. In doing so we obtain some fluctuation-type
identities in the general framework of multivariate stochastic fields. These results
provide an intrinsic motivation for the present study that can be considered in the line of
several works on additive Lévy processes from Khoshnevisan and Xiao, see for instance
[11].

The original motivation comes from an extension of the Lukasiewicz-Harris coding
of Bienaymé-Galton-Watson trees through downward skip free random walks. In [7],
the authors proved that multitype Bienaymé-Galton-Watson trees can be coded by
multivariate random fields d∑

j=1

Si,jnj , i = 1, . . . , d

 , nj = 0, 1 . . . , j = 1, . . . , d,

where t(S1,j , . . . , Sd,j), j = 1, . . . , d are d independent Zd-valued random walks such that
Si,j are non decreasing for i 6= j and Sj,j is downward skip free. These random fields
are the discrete time counterparts of spaLf’s which suggests the possibility of coding
continuous multitype branching trees in an analogous way. It seems quite complicated to
achieve such a result as the notion of continuous multitype tree is not clearly defined for
general mechanisms. However, reducing the analysis to processes rather than trees, one
may still consider the Lamperti representation which provides a pathwise relationship
between branching processes and their mechanism. This representation can be extended
to continuous time multitype branching processes by using spaLf’s. It was done in [6]
for the discrete valued case and in [5] and [10] for the continuous one. More specifically,
let Z = (Z(1), . . . , Z(d)) be a continuous time multitype branching process issued from
r ∈ [0,∞)d. Then Z can be represented as the unique pathwise solution of the following
equation,

(Z
(1)
t , . . . , Z

(d)
t ) = r +

 d∑
j=1

X1,j∫ t
0
Z

(j)
s ds

, . . . ,

d∑
j=1

Xd,j∫ t
0
Z

(j)
s ds

 , t ≥ 0 ,

where X(j), j = 1, . . . , d, are Lévy processes as described above. Now recall that 0 is an
absorbing state for Z. Then it follows from the above equation that the path of Z up to
its first passage time at 0 is entirely determined by the path of the spaLf

{Xt, t ∈ [0,∞)d} =


 d∑
j=1

Xi,j
tj


1≤i,j≤d

, t ∈ [0,∞)d


up to its first passage time Tr at level −r. This fact which is plain in the case d = 1 will
be proved in the general case in the upcoming paper [8], where extinction of continuous
time multitype branching processes is characterized through path properties of spaLf’s.
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Spectrally positive additive Lévy fields

The next section consists in an important preliminary lemma for deterministic paths
whose aim is to prove the existence of first passage times of spaLf’s and to derive their
first basic properties. Then in Section 3 we will turn our attention to the law of these
first passage times. In particular we will prove that in analogy with the one dimensional
case, their Laplace exponent is the inverse of the Laplace exponent of the spaLf. The
situation for d ≥ 2 differs significantly from the one dimensional case as we first need
to give necessary and sufficient conditions for the multivariate hitting times Tr to be
finite on each coordinate, with positive probability, for all r ∈ [0,∞)d. (When d = 1, this
is equivalent to saying that the spectrally positive Lévy process is not a subordinator.)
Another fundamental difference concerns the matrix valued field XTr

which is simply
equal to −r on the set Tr < ∞, when d = 1. In Section 4 we will focus on the law of
the field (Tr,XTr

) and prove that its Laplace exponent solves a functional equation
leaded by the Laplace exponent of the spaLf X. This equation, see (4.1) in Theorem 4.1
below, can be compared to the classical Wiener-Hopf factorization involving the ladder
processes of spectrally positive Lévy processes. Then in Theorem 4.3 the distribution of
(Tr,XTr

) will be fully characterized in terms of the distribution of the original stochastic
field X, through an extension of Kemperman’s formula, see Corollary VII.3 in [3]. More
specifically, our result states that the measure

P(Tr ∈ dt, Xi,j
tj ∈ dxi,j , 1 ≤ i, j ≤ d) dr

is the image of the measure

det(−(xi,j)i,j∈[d])

t1t2 . . . td

d∏
j=1

P(Xi,j
tj ∈ dxi,j , i = 1, . . . , d)dt1 . . . dtd,

through the mapping (t, (xi,j)i,j∈(d]) 7→ (t, (xi,j)i,j∈[d],−(xi,j)i,j∈[d] · 1), where we set
1 = (1, 1, . . . , 1). In order to prove it, we will use a similar identity recently obtained in [7]
and [6] in the discrete time and space settings together with a discrete approximation.

2 A preliminary lemma in the deterministic setting

We use the notation R+ = [0,∞), R+ = [0,∞] and [d] = {1, . . . , d}, where d ≥ 1

is an integer. The zero vector of Rd will be denoted by 0. For s = (s1, . . . , sd) and

t = (t1, . . . , td) ∈ R
d

+, we write s ≤ t if si ≤ ti for all i ∈ [d] and we write s < t if s ≤ t and
there exists i ∈ [d] such that si < ti.

Recall that a real valued function x : R+ → R is said to be càdlàg, if it is right
continuous on R+ and has left limits on (0,∞). Such a function is said to be downward
skip free if for all s ≥ 0, x(s)− x(s−) ≥ 0, where we set x(0−) = x(0). We also say that x
has no negative jumps. We will use the notation xt or x(t) indifferently.

Definition 2.1. We call Ed, the set of matrix valued functions x = {(xi,jtj )i,j∈[d], t ∈ Rd+}
such that for all i, j, xi,j is a càdlàg function and

(i) xi,j0 = 0, for all i, j ∈ [d],

(ii) for all i ∈ [d], xi,i is downward skip free,

(iii) for all i, j ∈ [d] such that i 6= j, xi,j is non decreasing.

For s ∈ Rd+, we denote by [d]s the set of indices of finite coordinates of s, that is
[d]s = {i ∈ [d] : si <∞}. For i 6= j, we set xi,j(∞) = xi,j(∞−) = lim

s→∞
xi,j(s).
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Spectrally positive additive Lévy fields

Definition 2.2. Let x ∈ Ed and r = (r1, . . . , rd) ∈ Rd+. Then s ∈ Rd+ is called a solution of
the system (r, x) if it satisfies

(r, x) ri +

d∑
j=1

xi,j(sj−) = 0 , i ∈ [d]s . (2.1)

(In particular, s = (∞,∞, . . . ,∞) is always a solution of the system (r, x) since [d]s = ∅.)
We emphasize that according to our definition, some of the coordinates of the smallest

solution of the system (r, x) may be infinite. Note also that in (2.1) it is implicit that∑
j∈[d]\[d]s

xi,j(sj−) <∞, for all i ∈ [d]s, although by definition sj =∞, for j ∈ [d] \ [d]s. The

next lemma is a continuous time and space counterpart of Lemma 1 in [6]. The proof of
the present result follows a similar scheme, however we need to perform it here as it
requires more care. It is done in the Appendix at the end of this paper.

Lemma 2.3. Let x ∈ Ed and r = (r1, . . . , rd) ∈ Rd+.

1. There exists a solution s = (s1, . . . , sd) ∈ R
d

+ of the system (r, x) such that any other
solution t of (r, x) satisfies t ≥ s. The solution s will be called the smallest solution
of the system (r, x).

2. Let s and s′ be the smallest solutions of the systems (r, x) and (r′, x), respectively. If
r′ ≤ r, then s′ ≤ s. Moreover if (rn)n≥0 is non decreasing with lim

n→∞
rn = r then the

sequence (sn)n≥0 of smallest solutions of (rn, x) satisfies lim
n→∞

sn = s.

3. Let s be the smallest solution of (r, x). If u is such that for all i ∈ [d]u,
d∑
j=1

xi,j(uj−)

≤ −ri, then u ≥ s. As a consequence, for all u ∈ Rd+ such that u < s, there is i ∈ [d]

such that
d∑
j=1

xi,j(uj−) > −ri.

4. The smallest solution s of (r, x) satisfies si = inf

{
t : xi,it− = inf

0≤u≤si
xi,iu

}
, for all

i ∈ [d]s.

3 Fluctuation theory for additive Lévy fields

Vectors of Rd will be denoted by x = (x1, . . . , xd) and ei = (0, . . . , 0, 1, 0, . . . , 0) will
be the i-th unit vector of Rd+. We recall the notation tx for the transpose of any vector
x ∈ Rd and the notations 1 = t(1, 1, . . . , 1), 0 = t(0, 0, . . . , 0). We will set 〈x, y〉, x, y ∈ Rd
for the usual scalar product on Rd and |x| for the Euclidian norm of x. A matrix M =

(mi,j)i,j∈[d] ∈Md(R∪ {∞}) is said to be irreducible if for all i, j ∈ [d], there is a sequence
i = i1, i2, . . . , in = j, for some n ≥ 1, such that mik,ik+1

6= 0, for all k = 1, . . . , n − 1. For
two matrices A and B of Md(R), with columns a(1), . . . , a(d) and b(1), . . . ,b(d), respectively,
we define the following special product,

〈〈A,B〉〉 =
∑
j∈[d]

〈a(j),b(j)〉.

A matrix A = (ai,j)i,j∈[d] is called essentially nonnegative (or a Metzler matrix) if ai,j is

nonnegative whenever i 6= j. For instance, for any element x = {(xi,jtj )i,j∈[d], t ∈ Rd+} of

the set Ed introduced at the previous section, the matrix xt = (xi,jtj )i,j∈[d] is essentially
nonnegative for all t = (t1, . . . , td) ≥ 0.
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Spectrally positive additive Lévy fields

3.1 SpaLf’s and their first hitting times

In this work, we shall consider d independent Lévy processes X(1), . . . ,X(d) on Rd+,
such that with the notation X(j) = t(X1,j , . . . , Xd,j), for all j ∈ [d], the process Xj,j is a
real spectrally positive Lévy process, that is, it has no negative jumps, and for all i 6= j,
the Lévy process Xi,j is a subordinator. We emphasize that the processes X1,j , . . . , Xd,j

are not necessarily independent. Moreover, we do not exclude the possibility for a
process Xi,j to be identically equal to 0 and note that for each i ∈ [d], Xi,i can be a
subordinator. It is known, see Chap. VII, in [3], that the Lévy process X(j) admits all
negative exponential moments. We denote by ϕj its Laplace exponent, that is

E[e−〈λ,X
(j)
t 〉] = etϕj(λ) , t ≥ 0 , λ = (λ1, . . . , λd) ∈ Rd+ .

Then from Lévy Khintchine formula and the above assumptions on X(j), ϕj has the
following form,

ϕj(λ) = −
d∑
i=1

ai,jλi +
1

2
qjλ

2
j −

∫
Rd+

(1− e−〈λ,x〉 − 〈λ, x〉1{|x|<1})πj(dx) , λ ∈ Rd+, (3.1)

where (ai,j)i,j∈[d] is an essentially nonnegative matrix, qj ≥ 0 and πj is a measure on Rd+
such that πj({0}) = 0 and

∫
Rd+

(1 ∧ |x|2) +
∑
i 6=j

(1 ∧ xi)

πj(dx) <∞ .

Note that for all j ∈ [d], ϕj is log-convex, i.e. the function logϕj is convex on (0,∞)d. In
particular, ϕj is a convex function. Moreover, for all i 6= j and λ1, . . . , λi−1, λi+1, . . . , λd,
the function λi 7→ ϕj(λ) is non increasing.

Let us now define the multivariate stochastic field

Xt := X
(1)
t1 + · · ·+ X

(d)
td

=

 d∑
j=1

Xi,j
tj


i∈[d]

, for t = (t1, . . . , td) ∈ Rd+ .

Then X := {Xt, t ∈ Rd+} is a particular case of additive Lévy field in the sense of [11].
Its law is characterized by the Laplace exponent ϕ := (ϕ1, . . . , ϕd), that is

E[e−〈λ,Xt〉] = e〈t,ϕ(λ)〉 , t, λ ∈ Rd+ .

Such an additive Lévy field will be called a spectrally positive additive Lévy field (spaLf).
This terminology is justified by the results of this section which extend fluctuation theory
for spectrally positive Lévy processes. Let us also introduce the field of essentially
nonnegative matrices

{Xt, t ∈ Rd+} = {(Xi,j
tj )i,j∈[d], t ∈ Rd+}.

Note that the spaLf X can be defined as Xt = Xt · 1, where 1 = t(1, 1, . . . , 1). Moreover,
we emphasize that the spaLf X carries on the same information as the field of essentially
nonnegative matrices {Xt, t ∈ Rd+}. For this reason, the terminology ‘spaLf’ will refer
indifferently to X or to X.

Example. Let us give an example of a 2-dimensional spaLf. Assume that, for j ∈ [2], the

Xj,j ’s are independent Brownian motions B(j) with drifts aj ∈ R, that is Xj,j
t = B

(j)
t +ajt
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and that for i 6= j, Xi,j is a pure drift, that is Xi,j
t = aijt, aij ≥ 0. Then the spaLf is

written as follows,

Xt = t(B
(1)
t1 + a1t1 + a12t2, a21t1 +B

(2)
t2 + a2t2), t = (t1, t2) ∈ R2

+,

the Laplace exponents ϕj are explicitly given by

ϕj(λ) = −λiaij − λjaj +
1

2
qjλ

2
j , i 6= j, λ ∈ R2

+,

and the associated field of essentially nonnegative matrices is

Xt =

(
B

(1)
t1 + a1t1 a12t2

a21t1 B
(2)
t2 + a2t2

)
.

Now let us define the first hitting times of negative levels of the spaLf X. Let
r = (r1, . . . , rd) ∈ Rd+, since X ∈ Ed a.s., according to Lemma 2.3 there is almost surely a
smallest solution to the system

(r,X)

d∑
j=1

Xi,j
sj− = −ri, i ∈ [d]s . (3.2)

We will denote by Tr = (T
(1)
r , . . . , T

(d)
r ) this solution and use the notation

Tr = inf{t : Xt− = −r}, with Xt− =

 d∑
j=1

Xi,j
tj−


i∈[d]

. (3.3)

Then Tr will be referred to as the (multivariate) first hitting time of level −r by the spaLf
{Xt, t ∈ Rd+}. Note that according to Lemma 2.3, some of the coordinates of Tr can be
infinite.

Proposition 3.1. Let X be a spaLf and for r ∈ Rd+, let Tr be its first hitting time of level
−r as defined above. Then,

1. for all j ∈ [d] and r ∈ Rd+, X
(j)

T
(j)
r −

= X
(j)

T
(j)
r

a.s. on {T (j)
r < ∞}. In particular, for all

i ∈ [d],
d∑
j=1

Xi,j

T
(j)
r −

=

d∑
j=1

Xi,j

T
(j)
r

= −ri a.s. on the set {T (i)
r <∞} . (3.4)

2. For all r′ ∈ Rd+ such that P(Tr′ ∈ Rd+) > 0, conditionally on {Tr′ ∈ Rd+}, the
field {Tr+r′ − Tr′ , r ∈ Rd+} has the same law as the field {Tr, r ∈ Rd+} and it is
independent of the field {Tr, r ≤ r′}. In particular, for all r, r′ ∈ Rd+,

Tr+r′
(law)
= Tr + T̃r′ , (3.5)

where T̃r′ is an independent copy of Tr′ .

3. If P(Tr ∈ Rd+) > 0 for some r ∈ (0,∞)d, then P(Tr ∈ Rd+) > 0 for all r ∈ Rd+. Under
this condition, there is a mapping φ = (φ1, . . . , φd) : Rd+ → Rd+ such that

E[e−〈λ,Tr〉] = e−〈r,φ(λ)〉, λ ∈ Rd+, r ∈ Rd+ . (3.6)

Moreover, φ(λ) > 0 if λ ∈ (0,∞)d, the mapping φ is differentiable and each φi is a
concave function.
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Proof. The first assertion is a consequence of quasi-left continuity for Lévy processes.
Indeed, let us denote by (F (j)

t )t≥0 the natural filtration generated by X(j) and set F (j)
∞ =

σ

( ⋃
t≥0

F (j)
t

)
. Then for all tj ≥ 0, the set

{T (j)
r ≤ tj} =

⋃
u∈(Q∪{∞})d
uj=tj

{
∃ s ≤ u : ri +

d∑
k=1

Xi,k
sk− = 0, i ∈ [d]s

}

belongs to the sigma-field G(j)
tj := σ

(
F (j)
tj ∪

(⋃
i6=j
F (i)
∞

))
, so that T (j)

r is a stopping time

of the filtration (G(j)
t )t≥0. Moreover, since the processes X(i), i ∈ [d] are independent,

X(j) is a Lévy process in the latter filtration. Now let us consider the sequence (Trn)n≥1,

where rn = r− ej/n. Then from part 2. of Lemma 2.3, T (j)
rn is an increasing sequence of

(G(j)
t )-stopping times and this sequence satisfies lim

n→∞
T

(j)
rn = T

(j)
r . Therefore from the

quasi-left continuity of X(j), see Proposition I.7 in [3], X
(j)

T
(j)
r −

= X
(j)

T
(j)
r

a.s. on {T (j)
r <∞}.

It clearly implies (3.4).
In order to prove 2. it suffices to see that conditionally on {Tr′ ∈ Rd+}, the stochastic

field {X̃t, t ∈ Rd
+} = {XTr′+t + r′, t ∈ Rd

+} is independent of {Xt, t ≤ Tr′} and has
the same law as {Xt, t ∈ Rd+}. We conclude by noticing that T̃r = inf{t : X̃t = −r} =

Tr+r′ −Tr′ .
Assertion 3. follows from Lemma 2.3 and (3.5). Indeed, if there exists r ∈ (0,∞)d

such that P(Tr ∈ Rd+) > 0 then from Lemma 2.3, for all r̄ ≤ r, Tr̄ ≤ Tr a.s. and in
particular, P(Tr̄ ∈ Rd+) > 0. On the other hand, for all r′ ∈ (0,∞)d, identity (3.5) implies

that Tr′
(law)
= T

(1)

r(1)
+ ...+ T

(p)

r(p)
where p ≥ 1, the r(i)’s are such that r(i) ≤ r for all i ∈ [p],

r(1) + ... + r(p) = r′, and the T(i)’s are independent copies of T. As a consequence, we

obtain P(Tr′ ∈ Rd+) =
p∏
i=1

P(T
(i)

r(i)
∈ Rd+) > 0. Now let us prove the second part of this

assertion. Let r ∈ (0,∞)d be such that P(Tr ∈ Rd+) > 0 and let λ ∈ Rd+, then by (3.5), for
all r′ ∈ (0,∞)d,

0 < f(λ, r + r′) = E[e−〈λ,Tr+r′ 〉]

= E[e−〈λ,Tr〉]E[e−〈λ,Tr′ 〉] = f(λ, r)f(λ, r′) .

Since f is right continuous in r, this equation implies that f(λ, r) = e−〈r,φ(λ)〉, for some
φ(λ) ∈ Rd. Furthermore take r = rei, for some r > 0 and i ∈ [d], so that E[e−〈λ,Tr〉] =

e−rφi(λ). Then from right continuity, Tr > 0 almost surely, so that f(λ, r) < 1, for all
λ ∈ (0,∞)d and thus φi(λ) ∈ (0,∞). On the other hand it is plain from (3.6), that the φj ’s
are concave functions for all j ∈ [d] and that φ is differentiable.

Note that in (3.4), if for some j 6= i, T (j)
r = ∞ with positive probability on the set

{T (i)
r < ∞}, then Xi,j ≡ 0, a.s. This is due to the fact that Xi,j are subordinators for

i 6= j, therefore either Xi,j ≡ 0 a.s. or Xi,j
∞ =∞ a.s.

Let us emphasize the following direct consequence of Proposition 3.1,

P(Tr ∈ Rd+) = e−〈r,φ(0)〉 , (3.7)

so that in particular P(Tr ∈ Rd+) = 1, for all r ∈ (0,∞)d if and only if φ(0) = 0. Note also
that Proposition 3.1 does not allow us a full description of the law of the d-dimensional
stochastic field {Tr, r ∈ Rd+}. This is the case only when d = 1. In particular for d ≥ 2,
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if r and r′ are not ordered, then we do not know the joint law of (Tr,Tr′). Moreover,
looking at part 2. of Proposition 3.1, one is tempted to think that, when d ≥ 2, the field
{Tr, r ∈ Rd+} is a spaLf, but it is actually not the case. Indeed from the construction of
this field, the processes {Trei , r ≥ 0}, i ∈ [d] are clearly not independent. However, it
is easy to derive from Proposition 3.1, that each of these processes is a multivariate
subordinator whose Laplace exponent is φi. The following result, proved in [4] for d = 1,
provides an expression of its Lévy measure. Since it is a consequence of further results
(e.g. Theorem 4.3), it will be proved at the end of this paper.

Proposition 3.2. Assume that P(Tr ∈ Rd+) > 0 for all r ∈ (0,∞)d. Then for all i ∈ [d], the
process {Trei , r ≥ 0} is a multivariate subordinator whose Laplace exponent is φi given

in (3.6). Assume moreover for all j ∈ [d] and tj > 0, the j-th column X
(j)
tj of the matrix

Xt admits a density which is continuous on F1 × F2 × · · · × Fd, where Fi = R+, for i 6= j

and Fj = R. Define the matrix X̂t = (X̂i,j
tj )i,j∈[d] by X̂i,i

ti =
d∑
j=1

Xi,j
tj and X̂i,j

tj = Xi,j
tj , i 6= j,

and let pt : Md(R)→ R be the density of X̂t. Then the Lévy measure of the multivariate
subordinator {Trei , r ≥ 0} is given by

νi(dt) =

∫
R
d(d−1)
+

det(−xi,i)

t1 . . . td
pt(x

0)
∏
k 6=j

dxk,jdt, if d > 1 and ν(dt) =
pt(0)

t
dt, if d = 1.

Here xi,i is the matrix x = (xi,j)i,j∈[d] given by xi,i = −
∑
j 6=i

xi,j and xi,j = xi,j for i 6= j

in which row and column of index i have been removed and x0 = (x0
i,j)i,j∈[d], where

x0
i,j = xi,j , for i 6= j and x0

i,i = 0.

3.2 Inverting the Laplace transform of spaLf’s

We will now define a d-dimensional Lévy process whose law is obtained from the law
of X(j) through the Esscher transform associated to the martingale

(e−〈µ
(j),X

(j)
t 〉−tϕj(µ

(j)))t≥0 ,

for any µ(j) ∈ Rd+. Recall that (F (j)
t )t≥0 denotes the natural filtration generated by X(j).

Then for t ≥ 0 and A ∈ F (j)
t , the law of this new Lévy process is defined by

Pµ
(j)

(A) = E[1Ae
−〈µ(j),X

(j)
t 〉−tϕj(µ

(j))] .

Let us now consider d independent Lévy processes Xµ(j),(j), j ∈ [d] with respective laws

Pµ
(j)

. The Laplace exponent of Xµ(j),(j) is given by

ϕµ
(j)

j (λ) = ϕj(λ+ µ(j))− ϕj(µ(j)) , λ ∈ Rd+ .

Moreover, a new spaLf is obtained by setting

Xµ
t := X

µ(1),(1)
t1 + · · ·+ X

µ(d),(d)
td

, t = (t1, . . . , td) ∈ Rd+, (3.8)

where µ = (µ(1), . . . , µ(d)) ∈Md(R+) is the matrix whose columns are equal to µ(j), j ∈ [d].

Let us set Ft = σ{Xs, s ≤ t} for all t ∈ Rd+, then Ft = σ(F (1)
t1 ∪ F

(2)
t2 · · · ∪ F

(d)
td

) and the
law of the spaLf Xµ is given by,

Pµ(A) = E[1Ae
−〈〈µ,Xt〉〉−〈t,ϕ̄(µ)〉], t ∈ Rd+, A ∈ Ft, (3.9)
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where we have set ϕ̄(µ) = (ϕ1(µ(1)), . . . , ϕd(µ
(d))) and where we recall that 〈〈µ,Xt〉〉 =∑

j∈[d]

〈µ(j),X
(j)
tj 〉. We will refer to (3.9) as the Esscher transform of the additive field X.

The Laplace exponent of Xµ is then

ϕµ(λ) := (ϕµ
(1)

1 (λ), . . . , ϕµ
(d)

d (λ)) , λ ∈ Rd+ .

Let us denote by Jϕ(λ), λ ∈ (0,+∞)d, the transpose of the negative of the Jacobian
matrix of ϕ, that is

Jϕ(λ)i,j := − ∂

∂λi
ϕj(λ) , i, j ∈ [d] . (3.10)

Recall that since all processes Xi,j , i, j ∈ [d], are spectrally positive Lévy processes, their
expectation is always defined and E[Xi,j

1 ] ∈ (−∞,∞]. Moreover ϕ is differentiable on
(0,∞)d and the partial derivatives of ϕ at 0 satisfy E[Xi,j

1 ] = − lim
λ→0

∂
∂λi

ϕj(λ). We will set

∂
∂λi

ϕj(0) := lim
λ→0

∂
∂λi

ϕj(λ), and

Jϕ(0)i,j := − ∂

∂λi
ϕj(0) = E[Xi,j

1 ] , i, j ∈ [d] . (3.11)

Then let us consider the following hypothesis:

(H) The set D := {λ ∈ Rd+ : ϕj(λ) > 0, j ∈ [d]} is non empty.

This hypothesis implies in particular that none of the processes Xj,j , j ∈ [d] is a subordi-
nator but it is actually stronger as we will see later on. Moreover since all Xi,j , i 6= j are
subordinators, it is clear that actually D ⊂ (0,∞)d.

Theorem 3.3. Let r = (r1, . . . , rd) ∈ Rd+ and let Tr = (T
(1)
r , . . . , T

(d)
r ) ∈ Rd+ be the first

hitting time of level −r by the spaLf X, then

1. Tr ∈ Rd+ holds with positive probability for some (and hence for all) r ∈ Rd+ if and
only if (H) holds.

2. Suppose that (H) holds, then φ(λ) ∈ D, for all λ ∈ (0,∞)d. Moreover, the mapping
φ : (0,∞)d → D is a diffeomorphism whose inverse corresponds to the mapping
ϕ : D → (0,∞)d, that is

ϕ(φ(λ)) = λ , λ ∈ (0,∞)d.

Proof. Assume that (H) holds, let µ ∈ D and let us consider the spaLf Xµ whose law is
defined in (3.9). In the present case, µ also denotes the matrix whose each column is
equal to µ. Then as already observed µ ∈ (0,∞)d, so that all the random variables Xµ,i,j

1

are integrable and the mean matrix of Xµ is given by

E[Xµ,i,j
1 ] = − ∂

∂λi
ϕj(µ) , i, j ∈ [d] .

It is actually the transpose of the negative of the Jacobian matrix of ϕ denoted by Jϕ(µ)

and defined in (3.10). Note that Jϕ(µ) is an essentially nonnegative matrix so that from
Lemma A.2 in [2], there is a real eigenvalue ρµ such that Re(ρ) < ρµ for all the other
eigenvalues ρ. Moreover, since ϕj is a differentiable convex function and ϕj(0) = 0, one
has

d∑
i=1

∂

∂λi
ϕj(µ)µi ≥ ϕj(µ) > 0 ,

so that from Theorem 3 of [1], Jϕ(µ)T , and therefore Jϕ(µ), is a stable matrix in the
sense of [1]. In particular, ρµ < 0.
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Let us first assume that Jϕ(µ) is irreducible. Then from Lemma A.3 in [2], we can
choose an eigenvector vµ = (vµ1 , . . . , v

µ
d ) associated to ρµ such that vµi > 0, for all i ∈ [d].

From the law of large numbers of Lévy processes, we obtain

lim
t→+∞

t−1Xµ
tvµ = ρµvµ a.s.

Therefore, from part 3. of Lemma 2.3, {Xµ
t , t ∈ Rd+} reaches each level αvµ, with α < 0,

almost surely. Then from the definition (3.9) of the law of Xµ, the field {Xt, t ∈ Rd+}
reaches each level αvµ, α < 0, with positive probability and since vµi > 0, i ∈ [d], from
part 2. of Lemma 2.3, it reaches each level −r ∈ Rd− with positive probability.

Now let us assume that Jϕ(µ) is not irreducible that is there exists a permutation
matrix Pσ and three matrices A1, A2 and B such that A1 is of size 1 ≤ p ≤ d− 1 and

P−1
σ Jϕ(µ)Pσ =

(
A1 0

B A2

)
.

In particular, for all (i, j) ∈ I × J where I = {σ(1), ..., σ(p)} and J = {σ(p+ 1), ..., σ(d)},

E[Xµ,i,j
1 ] = 0 that is Xµ,i,j

1 = 0 a.s.

Therefore we can write for all r ∈ Rd+,

P(Tµ
r ∈ Rd+) = P

∃t ∈ Rd+ : ∀i ∈ [d],

d∑
j=1

Xµ,i,j(tj) = −ri


= P

∃t ∈ Rd+ : ∀i ∈ I,
∑
j∈I

Xµ,i,j(tj) = −ri

and ∀i ∈ J,
∑
j∈J

Xµ,i,j(tj) = −

ri +
∑
j∈I

Xµ,i,j(tj)

 .

Let Tµ,I
r be the smallest solution of the system (rI ,X

µ,I), where we set rI = (ri)i∈I and
Xµ,I = (Xµ,i,j)i,j∈I . Then conditioning on the event {Tµ,I

r ∈ Rp+}, we obtain

P(Tµ
r ∈ Rd+) = P(Tµ,J

r′ ∈ R
d−p
+ |Tµ,I

r ∈ Rp+)P(Tµ,I
r ∈ Rp+) ,

where we have set r′ =

(
ri +

∑
j∈I

Xµ,i,j(Tµ,I,jr )

)
i∈J

. Then Tµ,J
r′ is the smallest solution of

the system (r′,Xµ,J) withXµ,J = (Xµ,i,j)i,j∈J . Thus if A1 and A2 are irreducible, then we
derive from the previous case that P(Tµ,I

r ∈ Rp+) = 1 and P(Tµ,J
r′ ∈ R

d−p
+ |Tµ,I

r ∈ Rp+) = 1.
In other words, we have P(Tµ

r ∈ Rd+) = 1 and then P(Tr ∈ Rd+) > 0. On the other hand,
if A1 and/or A2 are not irreducible, then we can repeat this argument.

Conversely, let us assume that Tr ∈ Rd+ holds with positive probability for all r ∈ Rd+.
Recall from part 3 of Proposition 3.1 the definition of the function φ. Let us show that for
all λ ∈ (0,∞)d, ϕ(φ(λ)) = λ, which implies in particular that φ(λ) ∈ D. It follows from
the independence and stationarity of the increments of the spaLf {Xt, t ∈ Rd+} that for
all r, t, λ ∈ Rd+,

E[e−〈λ,Tr〉1{t<Tr}] =

∫
Cr

E[e−〈λ,Tr〉1{t<Tr} |Xt = x]P(Xt ∈ dx)

=

∫
Cr

e−〈λ,t〉E[e−〈λ,Tr+x〉]P(Xt ∈ dx)

= e−〈λ,t〉e−〈r,φ(λ)〉
[
e〈ϕ(φ(λ)),t〉 −

∫ −r1
−∞
· · ·
∫ −rd
−∞

e−〈x,φ(λ)〉P(Xt ∈ dx)

]
,
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where Cr is the union of all the sets E1 × · · · × Ed with at least one i ∈ [d] such that
Ei =]− ri,+∞[ and for the others j ∈ [d], Ej = R. Then we derive the identity

1−e〈r,φ(λ)〉E[e−〈λ,Tr〉1{t<Tr}c ] = e−〈λ,t〉
[
e〈ϕ(φ(λ)),t〉 −

∫ −r1
−∞
· · ·
∫ −rd
−∞

e−〈x,φ(λ)〉P(Xt ∈ dx)

]
.

(3.12)
Let r′, r′′ ∈ (0,∞)d be such that r′ + r′′ = r, then from Proposition 3.1, Tr can be
decomposed as Tr = Tr′ + T̃r′′ , where T̃r′′ is an independent copy of Tr′′ . Moreover
{t < Tr}c ⊂ {t < Tr′}c ∩ {t < T̃r′′}c, so that

E[e−〈λ,Tr〉1{t<Tr}c ] ≤ E[e−〈λ,Tr′ 〉1{t<Tr′}c ]E[e−〈λ,Tr′′ 〉1{t<Tr′′}c ].

If the coordinates of r are integers, then applying this identity recursively, we obtain,

E[e−〈λ,Tr〉1{t<Tr}c ] ≤
d∏
j=1

E[e−〈λ,Tej 〉1{t<Tej }c ]
rj . (3.13)

Then we can find t whose coordinates are sufficiently small so that for all j,

E[e−〈λ,Tej 〉1{t<Tej }c ] < E[e−〈λ,Tej 〉] = e−φj(λ).

Therefore lim
r→∞

e〈r,φ(λ)〉∏d
j=1E[e−〈λ,Tej 〉1{t<Tej }c ]

rj = 0 and from (3.13) we derive that

the left member of (3.12) tends to 1, while the right member tends to e−〈λ,t〉e〈ϕ(φ(λ)),t〉,
which shows that ϕ(φ(λ)) = λ. This is true in particular for all λ ∈ (0,∞)d and hence D
is not empty. This achieves the proof of both assertions 1. and 2.

From part 1. of Theorem 3.3, assuming (H) for a spaLf X ensures that X hits all
negative levels in a finite time with positive probability. When d = 1, this is simply
assuming that the spectrally positive Lévy process we consider is not a subordinator.

Example. Let us go back to our 2-dimensional example. Assume that qj > 0, j ∈ [2],
where qj is defined in (3.1). After some calculations, we obtain the following explicit
form of the set D defined in hypothesis (H),

D =

{
λ ∈ R2

+ : λ1 >

(
a1 +

√
∆1(λ2)

q1
∨ 0

)
and λ2 >

(
a2 +

√
∆2(λ1)

q2
∨ 0

)}
,

where ∆j(λi) = a2
j + 2aijqjλi for all j ∈ [2] and i 6= j. Note that this set is not empty

and so assumption (H) holds. In particular, thanks to Theorem 3.3, the spaLf X reaches
all the level −r ∈ R2

− with positive probability and according to the second part of this
theorem, we know that the mapping ϕ admits an inverse φ on the set D. This inverse
φ = (φ1, φ2) is given by

φj(λ) =
1

qj

√
2qjλj + a2

j + 2aijqjφi(λ) +
aj
qj
, j ∈ [2], i 6= j, λ ∈ R2

+ .

Moreover φ is the Laplace exponent of the field of first hitting times of negative levels by
X defined for all r = (r1, r2) ∈ R2

+ by

Tr = inf

{
t ≥ 0 :

{
B

(1)
t1 + a1t1 + a12t2 = −r1

a21t1 +B
(2)
t2 + a2t2 = −r2

}
.
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3.3 Asymptotic behaviour of spaLf’s

In order to carry on with the general study of the fluctuation of the spaLf X, we shall
now give a characterization of the condition φ(0) = 0 in terms of the Jacobian matrix
Jϕ(0). As a first remark, note that if for some j ∈ [d], Jϕ(0)j,j > 0, then lim

t→+∞
Xj,j
t = +∞

a.s. and hence the field {Xt, t ∈ Rd+} cannot reach all the levels −r ∈ Rd− with probability
one. Therefore, by Proposition 3.1, φ(0) > 0 whenever there is j such that Jϕ(0)j,j > 0.

Recall that whenever the essentially nonnegative matrices Jϕ(λ), defined in (3.10)
and (3.11) for λ ∈ [0,∞)d have finite entries and are irreducible, according to the Perron-
Frobenius theory, there are real eigenvalues ρλ with multiplicity equal to 1 and such
that the real part of any other eigenvalue is less than ρλ, see Appendix A of [2]. We set
ρ0 = ρ.

Theorem 3.4. Assume that (H) holds and that Jϕ(0) is irreducible, then

1. the values 0 and φ(0) are the only roots of the equation ϕ(λ) = 0, λ ∈ Rd+. Further-
more, either φ(0) is equal to 0 or it belongs to (0,∞)d.

2. If E[Xi,j
1 ] =∞, for some i, j ∈ [d], then φ(0) > 0. Assume that E[Xi,j

1 ] <∞, for all
i, j ∈ [d], then φ(0) = 0 if and only if ρ ≤ 0.

Proof. Let us assume that Jϕ(0) is irreducible. Since ϕ : D → (0,∞)d is the inverse
of φ : (0,∞)d → D, φ(0) is the only solution of the equation ϕ(λ) = 0 on D. Indeed,
let µ ∈ D such that ϕ(µ) = 0 and µn ∈ D such that lim

n→+∞
µn = µ. Then by continuity,

lim
n→+∞

ϕ(µn) = 0 and φ(0) = lim
n→+∞

φ(ϕ(µn)) = lim
n→+∞

µn, so that µ = φ(0).

Now let µ ∈ Rd+ \ {0, φ(0)} be a solution of the equation ϕ(λ) = 0 and u =
µ

||µ||
. Then

we consider, for all j ∈ [d], the function fj : a ∈ R 7→ ϕj(µ + au). Let us first note that
since ϕj is convex, so is fj . Furthermore, for all j ∈ [d], we have fj(0) = ϕj(µ) = 0 =

ϕj(0) = fj(−||µ||). On the one hand, if there exists j ∈ [d] such that µj = 0, then for all
a ∈ R, µj + auj = 0 that is fj(a) = ϕj(µ+ au) ≤ 0. Since 0 and −||µ|| < 0 are zeros of the
real convex function fj , it implies that fj is constant equal to 0. In other words, for all
t ≥ 0,

E

[
e
−

∑
i6=j

(µi+aui)X
i,j
t

]
= etϕj(µ+au) = 1

and then for all i ∈ [d], Xi,j ≡ 0 a.s. that is Jϕ(0) is reducible. Since we assumed Jϕ(0)

irreducible, we necessarily have µj > 0, j ∈ [d] and then, by convexity, fj is negative on
(−||µ||, 0) and positive on (0,+∞). In other words, for all integers j ∈ [d] and for all ε > 0,
ϕj(µ+ εu) > 0 that is µ ∈ D which is a contradiction. As a consequence, when Jϕ(0) is
irreducible, there is at most two solutions of the equation ϕ(λ) = 0, λ ∈ Rd+ which are 0

and φ(0) ∈ D. Furthermore, when Jϕ(0) is irreducible, we have seen that φ(0) = 0 or
φ(0) ∈ (0,∞)d.

Let us now prove assertion 2. Suppose that E[Xi,j
1 ] =∞, for some i, j ∈ [d]. Then for

all λ ∈ (0,∞)d small enough, ϕj(λ) < 0. Indeed, let λ ∈ (0,∞)d. Since the spectrally pos-

itive Lévy process 〈λ,X(j)
t 〉 drifts to∞, for all α ∈ (0,∞) small enough, its characteristic

exponent evaluated at α is negative, that is ϕj(α · λ) < 0. But if φ(0) = 0, since 0 ∈ D,
there is λ ∈ (0,∞)d small enough such that ϕj(λ) > 0. Therefore, φ(0) > 0.

Suppose now that E[Xi,j
1 ] < ∞, for all i, j ∈ [d] and that ρ < 0. Let u = (u1, . . . , ud)

be the unique right eigenvector corresponding to ρ such that ui > 0 for all i ∈ [d], and
u1 + · · ·+ ud = 1, see Lemma A.2 in [2]. Then from the law of large numbers,

lim
t→+∞

t−1Xtu = ρu , a.s.
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Therefore, {Xt, t ∈ Rd+} reaches a.s. all the levels αu, α < 0 and from Proposition 3.1 it
reaches all the levels −r ∈ Rd− a.s. We conclude from (3.7) that φ(0) = 0.

Assume that ρ = 0. Let u = (u1, . . . , ud) be a right eigenvector corresponding to ρ,
then from the law of large numbers,

lim
t→+∞

t−1Xtu = 0 , a.s.

Therefore, for all i ∈ [d], the process Y i = (Y it )t≥0, defined for all t ≥ 0, by Y it =
d∑
j=1

Xi,j
tuj

is a real Lévy process such that

lim
t→+∞

t−1Y it = 0 , a.s.

that is, for all i ∈ [d], Y i oscillates. On the other hand, if φ(0) > 0, then, by convexity of
the ϕj ’s, there exists λ ∈ Rd+ such that ϕj(λ) < 0, for all j ∈ [d]. Consequently, for all
direction v ∈ Rd+, we have

E[e−〈λ,Xtv〉] = e〈tv,ϕ(λ)〉 →
t→+∞

0 .

It implies that for all direction v ∈ Rd+, the Lévy process 〈λ,Xtv〉 tends to∞ in probability
(and hence almost surely), as t → ∞. In particular, for v = u, there exists i ∈ [d] such
that Y it tends to ∞ almost surely, as t → ∞, which is a contradiction. In conclusion,
φ(0) = 0.

Conversely, assume that φ(0) = 0 then 0 ∈ D and by convexity, there exists µ ∈
(0,+∞)d, small enough, such that ϕi(µ) > 0, for all i ∈ [d]. Recall from (3.7) and (3.9)
the definition of the Esscher transform Xµ of the spaLf X, with µ(1) = · · · = µ(d) = µ. We
have seen in the proof of Theorem 3.1 that the Perron-Frobenius eigenvalue of Jϕ(µ)

satisfies ρµ < 0. Since the ϕj ’s are C∞-functions, for all i, j ∈ [d],
∂

∂λi
ϕj are continuous

and hence lim
µ→0

Jϕ(µ) = Jϕ(0). Furthermore, the eigenvalues of the matrix Jϕ(µ) depend

continuously on its entries because they are the roots of its characteristic polynomial
whose coefficients are polynomial functions of the entries of the matrix. Then since
ρµ = max

i∈[d]
Re(λµi ) and ρ = max

i∈[d]
Re(λi) where λµi and λi are respectively the eigenvalues

of Jϕ(µ) and Jϕ(0), we have that lim
µ→0

ρµ = ρ ≤ 0.

Assuming (H), we will say that the additive Lévy field (Xt, t ∈ Rd+) drifts to −∞,
oscillates or drifts to +∞ according as ρ < 0, ρ = 0 or ρ > 0.

Example. In our example, we already have the explicit form of ϕ, the set D and the
inverse φ. Let us now find the solutions of the equation ϕ(λ) = 0, λ ∈ R2

+. Assume
that Jϕ(0) is irreducible, that is aij > 0 for all i 6= j. Then the solutions of the equation

ϕ(λ) = 0, λ ∈ R2
+ are 0 = (0, 0) and points of the form

(
a1 +

√
∆1(λ2)

q1
,
a2 +

√
∆2(λ1)

q2

)
where ∆j(λi) = a2

j + 2aijqjλi, j ∈ [2], i 6= j. It is easy to check that there is only one
solution of the second kind. It belongs to (0,+∞)2 or it is equal to 0. According to
the expression of φ, φ(0) is this solution. We can show that φ(0) = 0 if and only if
a1 < 0, a2 < 0 and a1a2 ≥ a1,2a2,1. Furthermore, we can compute the Perron-Frobenius
eigenvalue ρ of the Jacobian Jϕ(0). It has the form

ρ =
a1 + a2 +

√
(a1 − a2)2 + 4a1,2a2,1

2
.
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Spectrally positive additive Lévy fields

Then it is easy to see that ρ ≤ 0 if and only if a1 < 0, a2 < 0 and a1a2 ≥ a1,2a2,1. In
conclusion, we find φ(0) = 0⇔ ρ ≤ 0.

Note that if Jϕ(0) is reducible then at least one of the ai,j is equal to zero, for i, j ∈ [d].
Then ϕ has at most four zeros. These are the values:

0 ,

(
2a1

q1
, 0

)
,

(
0,

2a2

q2

)
and

a1 +
√

∆1( 2a2
q2

)

q1
,
a2 +

√
∆2( 2a1

q1
)

q2

 = φ(0),

whenever they belong to R2
+.

Remark 3.5. By carefully reading the proof of Theorem 3.4, it appears that we have
proved a little more than what is in the statement.

Indeed, in part 1. we have proved that if there exists a solution to the equation
ϕ(λ) = 0 in (0,+∞)d, then it is unique and equal to φ(0). This is when Jϕ(0) is irreducible
but we can see from the proof that this is also true when Jϕ(0) is reducible. Let us also
notice that in the reducible case, there may exist solutions λ ∈ Rd \ {0} with λj = 0 for
some j ∈ [d] as the above example shows.

Moreover it can be derived from arguments in the proof of part 2. that when φ(0) > 0,
for each direction v ∈ Rd+, almost surely, there is at least one coordinate of the field X

which goes to +∞.

4 On the distribution of the field (Tr,XTr)

Let us recall the definition of the matrix valued field X = {Xt, t ∈ Rd+} given in the
beginning of Section 3. As already noticed, this field carries on the same information as
the spaLf X. However, whereas the vector XTr is deterministic on the set {Tr ∈ Rd+} (and
is actually equal to −r), the matrix XTr is random whenever d ≥ 2. From another point
of view, the fact that the field r 7→ (Tr,XTr) has independent and stationary increments
(see the next theorem) induces an analogy with fluctuation theory in dimension 1. More
specifically, this bivariate field can be considered as the analogue of the scale process
describing the fluctuations of any one dimensional Lévy process at its infimum. The
aim of this section is to characterize the law of the field r 7→ (Tr,XTr

), first through its
Laplace exponent and then from a Kemperman’s type identity relating its law to that of
the field X.

4.1 Characterization through the Laplace transform

Recall that we denote by µ(j) the j-th column of the matrix µ = (µi,j)i,j∈[d]. Then
given a spaLf X we define the set

Mϕ = {(λ, µ) ∈ Rd+ ×Md(R+) : λj ≥ ϕj(µ(j)), j ∈ [d]}.

Theorem 4.1. Assume that (H) holds. Let r = (r1, . . . , rd) ∈ Rd+ and let Tr be the first
hitting time of level −r by the spaLf X, then there exits a mapping Φ = (Φ1, . . . ,Φd) :

Mϕ → Rd+ such that

E
[
e−〈λ,Tr〉−〈〈µ,XTr 〉〉1{Tr∈Rd+}

]
= e−〈r,Φ(λ,µ)〉, (λ, µ) ∈Mϕ.

Moreover Φ satisfies the equations,

ϕj(µ
(j) + Φ(λ, µ)) = λj , j ∈ [d], (λ, µ) ∈Mϕ, (4.1)

and it is explicitly determined by

Φ(λ, µ) = φµ(λ1 − ϕ1(µ(1)), . . . , λd − ϕd(µ(d))) (4.2)
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where φµ is the inverse of the Laplace exponent ϕµ = (ϕµ
(1)

1 , . . . , ϕµ
(d)

d ) of the Esscher
transform Xµ defined in (3.8).

Proof. Let us first note that the random field {Mt, t ∈ Rd+} := {e−〈ϕ̄(µ),t〉−〈〈µ,Xt〉〉, t ∈ Rd+},
where ϕ̄(µ) = (ϕ1(µ(1)), . . . , ϕd(µ

(d))), is a multi-indexed martingale with respect to

the filtration Ft = σ{Xs, s ≤ t} = σ(F (1)
t1 ∪ F

(2)
t2 · · · ∪ F

(d)
td

), t ∈ Rd+ in the sense of
[12]. Fix r = (r1, . . . , rd) ∈ Rd+ and define the sequence of multivariate random times

Tn,r = (T
(1)
n,r , . . . , T

(d)
n,r ), n ≥ 1 by

T (i)
n,r =

∑
k≥0

2−n(k + 1)1{2−nk≤T (i)
r <2−n(k+1)} +∞ · 1{T (i)

r =∞}.

Then Tr and Tn,r, n ≥ 1 are stopping times of the filtration (Ft)t∈Rd+ in the sense of [12].

Moreover, for each i ∈ [d], the sequence (T
(i)
n,r)n≥1 is non increasing and tends to T (i)

r

almost surely. Now for all u ∈ Rd+, define T
(u)
n,r by

T(u)
n,r :=

{
Tn,r on {Tn,r ≤ u}
u on {Tn,r ≤ u}c .

Then T
(u)
n,r is a stopping time (see for instance the proof of Lemma (2.3) in [12]). Moreover,

M
T

(u)
n,r

=
∑

v∈Dn,v≤u

Mv1{Tn,r=v} + Mu1{Tn,r≤u}c ≤
∑

v∈Dn,v≤u

Mv + Mu,

where Dn := {v ∈ Rd+ : v = 2−nk, k ≥ 0}. Since the set {v ∈ Dn, v ≤ u} is finite,

E
[
M

T
(u)
n,r

]
<∞. Moreover T

(u)
n,r and Mu clearly satisfy the conditions (2.4) and (2.5) of

Lemma (2.3) in [12]. Therefore, in virtue of this lemma,

E
[
M

T
(u)
n,r

]
= 1.

Then lim
n→∞

T
(u)
n,r = T

(u)
r almost surely, where

T(u)
r :=

{
Tr on {Tr ≤ u}
u on {Tr ≤ u}c ,

so that by Fatou’s Lemma and the right continuity of {Mt, t ∈ Rd+}, we obtain as n

tends to∞, E
[
M

T
(u)
r

]
≤ 1. Then by applying Fatou’s Lemma again, we obtain as each

coordinate of u tends to∞ that E
[
MTr

1{Tr∈Rd+}

]
≤ 1. It implies that for all (λ, µ) ∈Mϕ,

E
[
e−〈λ,Tr〉−〈〈µ,XTr 〉〉1{Tr∈Rd+}

]
≤ 1.

Then we prove in the same way as for (3.5) in Proposition 3.1, that for all r, r′ ∈ Rd+,

(Tr+r′ ,XTr+r′ )1{Tr+r′∈Rd+}
(law)
= (Tr + T′r′ ,XTr +X′T′

r′
)1{Tr+T′

r′∈R
d
+}, (4.3)

where X′ is an independent copy of X and T′ is its first hitting time process. Recall that
under assumption (H), P(Tr ∈ Rd+) > 0 for all r ∈ Rd+. The existence of the mapping Φ

follows by using (4.3), in the same way as for the existence of the mapping φ in 3. of
Proposition 3.1. (Note that in particular Φ(λ, 0) = φ(λ), λ ∈ Rd+.)

Then it is readily seen that

(Tr,XTr
) = (r,Xr) + (T̃r+Xr

, X̃T̃r+Xr
) a.s. on {Tr ∈ Rd+}, (4.4)
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where X̃t = Xr+t −Xr and T̃k = inf{t ≥ 0 : X̃t = −k}. Since X is a spaLf, for all t ∈ Rd+,
X̃t has the same law as Xt and is independent of {Xs : s ≤ r}. Thus conditionally on
{Tr ∈ Rd+}, T̃r+Xr

and X̃T̃r+Xr
are independent of Xr. Let (λ, µ) ∈Mϕ, then using (4.4),

we obtain

e−〈r,Φ(λ,µ)〉 = e−〈λ,r〉
∫
Md(R)

E[e−〈λ,Tr+x〉e
−〈〈µ,XTr+x〉〉1{Tr+x∈Rd+}]e

−〈〈µ,x〉〉P(Xr ∈ dx),

where x = (x(1), . . . , x(d)) and x =
∑
j∈[d]

x(j) =

( ∑
j∈[d]

x1,j , . . . ,
∑
j∈[d]

xd,j

)
. This equality can

also be written as

e−〈r,Φ(λ,µ)〉 = e−〈λ,r〉
∫
Md(R)

e−〈r+x,Φ(λ,µ)〉e−〈〈µ,x〉〉P(Xr ∈ dx)

= e−〈λ,r〉e−〈r,Φ(λ,µ)〉E[e−〈〈µ+Φ̂(λ,µ),Xr〉〉],

where Φ̂(λ, µ) is the matrix whose all columns are equal to Φ(λ, µ). Thanks to the
independence of the X(j)’s, the latter equality is reduced to

e〈λ,r〉 =
∏
j∈[d]

E[e
−〈µ(j)+Φ(λ,µ),X(j)

rj
〉
] .

As a consequence, the Laplace exponent Φ of (Tr,XTr) satisfy (4.1).

Now recall the definition of the Esscher transform Xµ(j),(j) of each X(j) given after
Proposition 3.1, with Laplace exponent

ϕµ
(j)

j (λ) = ϕj(λ+ µ(j))− ϕj(µ(j)), λ ∈ Rd+, j ∈ [d] .

From these Esscher transforms we defined, see (3.8), the spaLf Xµ by

Xµ
t =

∑
j∈[d]

X
µ(j),(j)
tj , t ∈ Rd+.

Let Dµ := {λ ∈ Rd+ : ϕµ
(j)

j (λ) > 0, j ∈ [d]}. Then under assumption (H), from part 1. of
Theorem 3.3 and from the absolute continuity relationship (3.9) between X and Xµ,
the set Dµ is not empty. Moreover, thanks to Theorem 3.3, the Laplace exponent ϕµ =

(ϕµ
(1)

1 , . . . , ϕµ
(d)

d ) of Xµ is a diffeomorphism from Dµ, whose inverse φµ : (0,∞)d → Dµ is
the Laplace exponent of the field {Tµ

r , r ∈ Rd+}, where Tµ
r := inf{t ≥ 0 : Xµ

t = −r}.
On the other hand, from (4.1), Φ satisfies

ϕµ
(j)

j (Φ(λ, µ)) = λj − ϕj(µ(j)), j ∈ [d], (λ, µ) ∈Mϕ .

Thus the Laplace exponent Φ of the couple (Tr,XTr
) exists and is given for all (λ, µ) ∈

Mϕ such that λj > ϕj(µ
(j)), j ∈ [d] by

Φ(λ, µ) = φµ(λ1 − ϕ1(µ(1)), . . . , λd − ϕd(µ(d))). (4.5)

Finally this relation is extended to the whole setMϕ by continuity.

Remark 4.2. We emphasize that Theorem 4.1 provides an extension of the case d = 1.
More specifically, (4.1) can be compared to relation (2), p. 191 in [3].
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Example. An explicit form of Φ can be derived from our example. Let µ(1) = t(µ1,1, µ2,1) ∈
R2

+, µ(2) = t(µ1,2, µ2,2) ∈ R2
+ and µ = (µ(1), µ(2)). Then the Esscher transform Xµ has

Laplace exponent ϕµ = (ϕµ
(1)

1 , ϕµ
(2)

2 ) where for all j ∈ [2] and λ ∈ R2
+,

ϕµ
(j)

j (λ) = ϕj(λ) + qjµi,jλj = −aijλi − (aj − qjµj,j)λj +
1

2
qjλ

2
j .

Assume qj > 0, j ∈ [2]. Hence after some calculations, we obtain

Dϕµ =

{
λ ∈ R2

+ : λ1 >

(
a1 − q1µ1,1 +

√
∆µ

1 (λ2)

q1
∨ 0

)
and

λ2 >

(
a2 − q2µ2,2 +

√
∆µ

2 (λ1)

q2
∨ 0

)}
,

where ∆µ
j (λi) = (aj − qjµj,j)2 + 2aijqjλi for all j ∈ [2] and i 6= j. Note that Dϕ ⊂ Dϕµ . In

particular, if (H) is satisfied then (Hµ) is satisfied too and both sets Dϕ and Dϕµ are non
empty. Under this assumption, thanks to Theorem 3.3, the spaLf Xµ reaches all the level
−r ∈ R2

− with positive probability and according to the second part of this theorem, we
know that the mapping ϕµ admits an inverse φµ on the set Dµ. This inverse φµ = (φµ1 , φ

µ
2 )

is given by

φµj (λ) =
1

qj

√
2qjλj + (aj − qjµj,j)2 + 2aijqjφ

µ
i (λ) +

aj
qj
− µj,j , j ∈ [2], i 6= j, λ ∈ R2

+ .

Then according to Theorem (4.1), the Laplace exponent Φ = (Φ1,Φ2) of the field (Tr,XTr
)

is given for all (λ, µ) ∈Mϕ and j ∈ [2] by

Φj(λ, µ) = φµj (λ1 − ϕ1(µ(1)), λ2 − ϕ2(µ(2)))

=
1

qj

√
2qj(λj − ϕj(µ(j))) + (aj − qjµj,j)2 + 2aijqjφ

µ
i (λ1 − ϕ1(µ(1)), λ2 − ϕ2(µ(2)))

+
aj
qj
− µj,j .

4.2 An explicit form of the distribution

Let us define the set

M̂d(R) = {x ∈Md(R) : x is essentially nonnegative and x · 1 ≤ 0}

endowed with some matrix norm, ‖ · ‖ and equipped with its Borel σ-field. From Theo-
rem 4.1, the measure P(Tr ∈ dt, Xt ∈ dx)dr on Rd+×Rd+× M̂d(R) has Laplace transform∫

Rd+×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(Tr ∈ dt, Xt ∈ dx)dr

= [(α1 + Φ1(λ, µ))(α2 + Φ2(λ, µ)) . . . (αd + Φd(λ, µ))]−1. (4.6)

The following result shows that this measure can be expressed only in terms of the law
of the spaLf.

Theorem 4.3. Assume that (H) is satisfied. Then for all α ∈ Rd+ and (λ, µ) ∈Mϕ,∫
Rd+×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(Tr ∈ dt, Xt ∈ dx)dr

=

∫
Rd+×M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(Xt ∈ dx) dt . (4.7)

EJP 25 (2020), paper 161.
Page 17/26

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP547
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spectrally positive additive Lévy fields

In other words, the measure

P(Tr ∈ dt, Xt ∈ dx)dr, t ∈ Rd+, x ∈ M̂d(R), r ∈ Rd+,

is the image of the measure

det(−x)

t1t2 . . . td
P(Xt ∈ dx) dt, t ∈ Rd+, x ∈ M̂d(R),

through the mapping (t, x) 7→ (t, x,−x · 1).

When d = 1, the above identity can be read as

P(Tx ∈ dt)dx =
−x
t
P(Xt ∈ dx) dt, (t, x) ∈ (0,∞)× (−∞, 0), (4.8)

and is known as Kemperman’s identity for spectrally positive Lévy processes. It can be
found in [3], see Proposition VII.2.

We shall prove Theorem 4.3 through discrete approximation. As a first step, we
need to recall the discrete time and space counterpart of spaLf’s. Those are matrix
valued fields of the form {Sn, n ∈ Zd+} = {(Si,jnj )i,j∈[d], n ∈ Zd+}, where the columns

S(j) = t(S1,j , . . . , Sd,j), j ∈ [d] are independent random walks. Moreover, all coordinates
Si,j start from 0 and take their values in k−1Z, where k ≥ 1 is some integer which will be
fixed until mentioned otherwise. For i 6= j they are non decreasing and for i = j they are
downward skip free, that is Si,in − S

i,i
n−1 ≥ −k−1, for all n ≥ 1. This setting is introduced

in [7] (for k = 1 and up to transposition of the matrix S). Equivalently to the continuous
case, we define the field S := S · 1 and its first hitting time process

TS
r := inf{n : Sn = −r}, r ∈ k−1Zd+,

see Lemma 2.2 in [7]. The field S (or equivalently S) will be called a downward skip free
random field (dsfrf for short). An essential result for the proof of Theorem 4.3, is the
following extension of the ballot theorem

P(TS
r = n,Sn = x) =

kddet(−x)

n1 . . . nd
P(Sn = x), (4.9)

for all n ∈ Nd and all essentially nonnegative matrix x of Md(k
−1Z) such that x · 1 = −r.

(Here we have used the notation N = Z+ \ {0}.) Identity (4.9) is proved for k = 1 in [7],
see Theorem 3.4 therein. Its extension to any k ≥ 1 is straightforward.

The next step is to consider lattice valued spaLf’s. Let us first define these processes.
Let X(j) = t(X1,j , . . . , Xd,j), j ∈ [d] be a family of d independent d-dimensional Lévy
processes such that for i 6= j, Xi,j is non-decreasing k−1Z-valued Lévy process and for
each j ∈ [d], Xj,j is a k−1Z-valued Lévy process such that for all t > 0, Xj,j

t −X
j,j
t− ≥ −k−1.

Then there exists a dsfrf S as defined above and d independent Poisson processes N (j),
j ∈ [d] also independent of S such that

Xi,j
t = Si,j

N
(j)
t

, i, j ∈ [d], t ≥ 0. (4.10)

The random fields {Xt, t ∈ Rd+} = {(Xi,j
tj )i,j∈[d], t ∈ Rd+} and X = X · 1 will be referred

to as lattice valued spaLf’s. Let (e
(j)
n )n≥0, j ∈ [d] be the sequences of exponentially

distributed random variables satisfying

N
(j)
t =

∑
n≥0

1{e(j)1 +···+e(j)n ≤t}
.
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The first hitting time process of X can be defined in the same way as for spaLf’s in
Lemma 2.3 and Proposition 3.1. It is denoted by

Tr = inf{t : Xt = −r}, r ∈ k−1Zd+.

We can easily check that the latter is related to the first hitting time process of S through
the identity,

T (j)
r =

T (j),S
r∑
l=1

e
(j)
l , j ∈ [d]. (4.11)

The following proposition is a direct consequence of (4.9). Although it can also be found
in [6] for k = 1, we give a more direct proof here.

Proposition 4.4. Let {Xt, t ∈ Rd+} = {(Xi,j
tj )i,j∈[d], t ∈ Rd+} be a lattice valued spaLf.

Then for fixed r ∈ k−1Zd+, the joint law of (Tr,XTr
) is given by

P(Tr ∈ dt, Xt = x) =
kddet(−x)

t1t2 . . . td
P(Xt = x)dt1dt2 . . . dtd ,

for all essentially nonnegative matrices x of Md(k
−1Z) such that x · 1 = −r.

Proof. Let r and x = (xi,j)i,j∈[d] be as in the statement. Then the straightforward identity
STS

r
= XTr

together with expressions (4.10) and (4.11) allow us to write,

P(Tr ∈ dt,Xt = x) = P

T (j),S
r∑
l=1

e
(j)
l ∈ dtj , j ∈ [d], STS

r
= x


=
∑

n∈Nd

∏
j∈[d]

P

(
nj∑
l=1

e
(j)
l ∈ dtj

)
P(TS

r = n,Sn = x)

=
∑

n∈Nd

λn1
1 tn1

1 . . . λndd tndd
n1! . . . nd!

e−〈λ,t〉
k−d det(−x)

t1 . . . td
P(Sn = x)dt

=
k−d det(−x)

t1 . . . td

∑
n∈Nd

∏
j∈[d]

P(N
(j)
tj = nj)P(Sn = x)dt

=
k−d det(−x)

t1 . . . td
P(Xt = x)dt,

which proves our result.

From now on, we will add k as a superscript to all objects referring to the discrete val-
ued spaLf defined above. For instance, the latter will be denoted by X(k) = (Xi,j,k)i,j∈[d]

or X(k), where X(j),k = t(X1,j,k, . . . , Xd,j,k). It is pretty clear that lattice valued spaLf’s
satisfy analogous properties to those of spaLf’s introduced in Section 3. In particular,
the discrete time field r 7→ (T

(k)
r ,X

(k)

T
(k)
r

), r ∈ k−1Zd+ has independent and stationary

increments and can be treated in a very similar way as its continuous space counterpart
involved in Theorem 4.1. That is why we will content ourselves with stating the next
theorem as well as some preliminary results without giving any proof.

Recall the definition of the Laplace exponent ϕ(k)
j of X(j),k, that is

E[e−〈λ,X
(j),k
t 〉] = etϕ

(k)
j (λ) , t ≥ 0 , λ = (λ1, . . . , λd) ∈ Rd+ .

Then as in Theorem 3.3, we can prove that the hypothesis

(H(k)) D(k) := {λ ∈ Rd+ : ϕ
(k)
j (λ) > 0, j ∈ [d]} is non empty
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is equivalent to the fact that T(k)
r ∈ Rd+ holds with positive probability, for all r ∈ k−1Zd+.

As in Theorem 3.3, the proof of this equivalence is based on the Esscher transform X(k),µ,
for µ ∈Md(R+) whose Laplace exponent is given by

ϕ
(k),µ(j)

j (λ) = ϕ
(k)
j (λ+ µ(j))− ϕ(k)

j (µ(j)), λ ∈ Rd+. (4.12)

Let us define the set

M(k)
ϕ := {(λ, µ) ∈ Rd+ ×Md(R+) : λj ≥ ϕ(k)

j (µ(j)), j ∈ [d]}.

The following theorem is the analog of Theorem 4.1 for lattice valued spaLf’s.

Theorem 4.5. Assume that (H(k)) holds. Let r = (r1, . . . , rd) ∈ k−1Zd+ and let T
(k)
r

be the first hitting time of level −r by the spaLf X(k), then there exits a mapping
Φ(k) :M(k)

ϕ → Rd+ such that

E

[
e
−〈λ,T(k)

r 〉−〈〈µ,X
(k)

T
(k)
r

〉〉
1{T(k)

r ∈Rd+}

]
= e−〈r,Φ

(k)(λ,µ)〉, (λ, µ) ∈M(k)
ϕ .

Moreover Φ(k) satisfies the equations,

ϕ
(k)
j (µ(j) + Φ(k)(λ, µ)) = λj , j ∈ [d], (λ, µ) ∈M(k)

ϕ , (4.13)

and it is explicitly determined by

Φ(k)(λ, µ) = φ(k),µ(λ1 − ϕ(k)
1 (µ(1)), . . . , λd − ϕ(k)

d (µ(d))), (4.14)

where φ(k),µ is the inverse of the Laplace exponent ϕ(k),µ of the Esscher transform X(k),µ

recalled in (4.12).

In order to end the proof of Theorem 4.3, we need to prove that any spaLf is the weak
limit of a sequence of lattice valued spaLf’s. The index k is now a variable that will be
taken to infinity.

Lemma 4.6. Let Y be a d-dimensional Lévy process whose all coordinates are spectrally
positive. Then there exists a sequence of (k−1Z)d-valued Lévy processes Y(k) which
converges weakly in the J1 Skohorod’s topology toward Y. Moreover, the sequence
(Y(k)) can be chosen so that for each k, all coordinates of Y(k) take their values in the
set {−k−1, 0, k−1, 2k−1, 3k−1, . . . }.

The proof of this lemma is transferred to the Appendix. We have now gathered all
necessary ingredients for the proof of Theorem 4.3.

Proof of Theorem 4.3. Let (X(k))k≥1 be a sequence of lattice valued spaLf’s such that
each sequence of columns (X(j),k)k≥1, where X(j),k = t(X1,j,k, . . . , Xd,j,k), converges
weakly to X(j). The existence of such a sequence is ensured by Lemma 4.6. This
convergence means in particular that

lim
k→∞

ϕ
(k)
j (λ) = ϕj(λ) , λ ≥ 0, j ∈ [d] . (4.15)

Since (H) is satisfied, by continuity of the functions ϕj and from (4.15), there is k0 such

that for all k ≥ k0, (H(k)) is satisfied. Then let k ≥ k0 and let M̂d,r(k
−1Z) be the set of

essentially nonnegative matrices x of Md(k
−1Z) such that x · 1 = −r. We derive from

Theorem 4.5 that for all α ∈ Rd+ and (λ, µ) ∈M(k)
ϕ ,∑

r∈k−1Zd+

k−de−〈α,r〉
∫
Rd+

∑
x∈M̂d,r(k−1Z)

e−〈λ,t〉−〈〈µ,x〉〉P(T(k)
r ∈ dt, X

(k)
t = x)

= [k(1− e−k
−1(α1+Φ

(k)
1 (λ,µ)))× · · · × k(1− e−k

−1(αd+Φ
(k)
d (λ,µ)))]−1. (4.16)
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Now take (λ, µ) ∈ Mϕ such that λj > ϕj(µ
(j)) for all j ∈ [d]. Then by continuity of ϕj ,

j ∈ [d], there is k′0 such that for all k ≥ k′0, (λ, µ) ∈ M(k)
ϕ . Clearly (ϕ

(k),µ(j)

j )k≥1 defined

in (4.12) converges pointwise to ϕµ
(j)

j , for all j ∈ [d]. Hence, the sequence of inverses

(φ(k),µ)k≥1 also converges pointwise to φµ. Therefore, from (4.2), (4.14) and by continuity,
(Φ(k)(λ, µ))k≥1 converges to Φ(λ, µ).

Now let us extend the definition of T(k)
r to all r ∈ Rd+ by setting T

(k)
r := T

(k)
rk , where

rk = k−1(bkr1c, . . . , bkrdc) and where bxc denotes the lower integer part of x. Then by
taking k to infinity in (4.16), we obtain from (4.6) that for all α ∈ Rd+ and (λ, µ) ∈ Mϕ

such that λj > ϕj(µ
(j)), for all j ∈ [d],

lim
k→∞

∑
r∈k−1Zd+

k−de−〈α,r〉
∫
Rd+

∑
x∈M̂d,r(k−1Z)

e−〈λ,t〉−〈〈µ,x〉〉P(T(k)
r ∈ dt, X

(k)
t = x)

= lim
k→∞

∫
Rd+×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(T(k)
r ∈ dt, X

(k)
t ∈ dx)dr

= [(α1 + Φ1(λ, µ)))(α2 + Φ2(λ, µ))) . . . (αd + Φd(λ, µ))]−1

=

∫
Rd+×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(Tr ∈ dt, Xt ∈ dx)dr. (4.17)

On the other hand, let M̂d(k
−1Z) be the set of essentially nonnegative matrices x of

Md(k
−1Z) such that x ·1 ≤ 0. Then as a direct consequence of Proposition 4.4, we obtain

that for all α ∈ Rd+ and (λ, µ) ∈M(k)
ϕ ,∑

r∈k−1Zd+

k−de−〈α,r〉
∫
Rd+

∑
x∈M̂d,r(k−1Z)

e−〈λ,t〉−〈〈µ,x〉〉P(T(k)
r ∈ dt, X

(k)
t = x)

=

∫
Rd+

∑
r∈k−1Zd+, x∈M̂d,r(k−1Z)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t = x) dt

=

∫
Rd+

∑
x∈M̂d(k−1Z)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t = x) dt

=

∫
Rd+

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t ∈ dx) dt .

Then it follows from the above calculation and from (4.17) that for all α ∈ Rd+ and
(λ, µ) ∈Mϕ such that λj > ϕj(µ

(j)), j ∈ [d],∫
Rd+×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(Tr ∈ dt, Xt ∈ dx)dr

= lim
k→∞

∫
Rd+

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t ∈ dx) dt . (4.18)

Now, we derive from the weak convergence of X(k)
t toward Xt for each t that

lim
k→∞

∫
M̂d(R)

e〈α,x·1〉−〈〈µ,x〉〉det(−x)P(X
(k)
t ∈ dx) =

∫
M̂d(R)

e〈α,x·1〉−〈〈µ,x〉〉det(−x)P(Xt ∈ dx),

so that for all ε > 0,

lim
k→∞

∫
{t≥ε·1}

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t ∈ dx) dt

=

∫
{t≥ε·1}

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(Xt ∈ dx) dt.
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Then from Proposition 4.4,∫
{t≥ε·1}c

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t ∈ dx) dt

=

∫
{t≥ε·1}c×Rd+×M̂d(R)

e−〈α,r〉−〈λ,t〉−〈〈µ,x〉〉P(T(k)
r ∈ dt, X

(k)
t = x) dr

=

∫
Rd+

e−〈α,r〉E

[
e
−〈λ,T(k)

r 〉−〈〈µ,X
(k)

T
(k)
r

〉〉
1{T(k)

r ≥ε·1}c

]
dr,

which entails from a trivial extension of (4.18) that,

lim
k→∞

∫
{t≥ε·1}c

∫
M̂d(R)

e〈α,x·1〉−〈λ,t〉−〈〈µ,x〉〉
det(−x)

t1t2 . . . td
P(X

(k)
t ∈ dx) dt

=

∫
Rd+

e−〈α,r〉E[e−〈λ,Tr〉−〈〈µ,XTr 〉〉1{Tr≥ε·1}c ] dr. (4.19)

But from part 2. of Theorem 3.3, for all i, j ∈ [d], lim
s→∞

φj(sei) =∞, which implies that for

all r > 0 and all i ∈ [d], P(T
(i)
r > 0) > 0. In particular,

lim
ε→0

P({Tr ≥ ε · 1}c) ≤ lim
ε→0

d∑
i=1

P(T (i)
r < ε) = 0,

therefore by dominated convergence, expression (4.19) can be made arbitrarily small as
ε tends to 0.

Then we have proved that the identity (4.7) is valid for all α ∈ Rd+ and (λ, µ) ∈ Mϕ

such that λj > ϕj(µ
(j)), j ∈ [d]. Now let any (λ, µ) ∈ Mϕ and assume that λi = ϕi(µ

(i))

for some i ∈ [d]. Then identity (4.7) is valid if we replace λi by λ′i = λi + εi, for εi > 0 and
we obtain it for (λ, µ) by letting εi going to 0 and applying monotone convergence.

Proof of Proposition 3.2. Assume first that d > 1. Then taking µ = 0 in Theorem 4.3
gives∫
Rd+×Rd+

e−〈α,r〉−〈λ,t〉P(Tr ∈ dt)dr =

∫
Rd+×M̂d(R)

e〈α,x·1〉−〈λ,t〉
det(−x)

t1t2 . . . td
P(Xt ∈ dx) dt

=

∫
Rd+

e−〈λ,t〉E

[
e〈α,Xt·1〉det(−Xt)

t1t2 . . . td
1{Xt∈M̂d(R)}

]
dt .

(4.20)

Note that from our assumptions the density pt : Md(R)→ R of X̂t is continuous on the
set of matrices whose columns belong to F1 × F2 × · · · × Fd. Let Md(R) be the set of
essentially nonnegative matrices whose elements of the diagonal are non-positive. Then

E

[
e〈α,Xt·1〉 det(−Xt)

t1t2 . . . td
1{Xt∈M̂d(R)}

]
=

∫
Md(R)

e

d∑
i=1

αixi,i det(−(x +D(x))

t1 . . . td
pt(x)dx,

where D(x) = (di,j)i,j∈[d] is defined by di,i = xi,i and di,j = 0 for i 6= j, and x = (xi,j)i,j∈[d]
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such that xi,i = −
∑
j 6=i

xi,j and xi,j = xi,j for i 6= j. Let Id be the identity matrix. Then

∫
Md(R)

e

d∑
i=1

αixi,i det(−(x +D(x))

t1 . . . td
pt(x)dx

=

∫
Rd+

∫
R
d(d−1)
+

e−〈α,r〉
det(−(x + rId))

t1 . . . td
pt(x

r)
∏
k 6=j

dxk,jdr, (4.21)

where xr is the matrix x in which the variable xi,i has been replaced by ri, for all i ∈ [d].
Then we derive from (4.20) and (4.21) that for fixed r ∈ Rd+,

P(Tr ∈ dt) =

∫
R
d(d−1)
+

det(−(x + rId))

t1 . . . td
pt(x

r)
∏
k 6=j

dxk,jdt . (4.22)

Let i ∈ [d] and r = rei, then

P(Tr ∈ dt) =

∫
R
d(d−1)
+

r det(−xi,i)

t1 . . . td
pt(x

r)
∏
k 6=j

dxk,jdt,

where xi,i is the matrix obtained from x by deleting the row and the column i. From
Exercise 1. in Chapter I of [3], the Lévy measure of the subordinator (Trei)r≥0 is the
vague limit of P(Tr ∈ dt)/r as r tends to 0, on sets of the form {|t| > a}, a > 0. Hence
the expression of the statement follows from continuity property of pt.

The expression for d = 1 is obtained in the same way by using the simpler form (4.8)
of P(Tr ∈ dt) in this case.

A Appendix

Proof of Lemma 2.3. This proof is based on the observation that for each i ∈ [d], as a

function of t, the term
d∑
j=1

xi,j(tj) has no negative jumps. Moreover, when ti is fixed, it is

non decreasing.
Let us set v(1)

i = ri and for n ≥ 1,

s
(n)
i = inf{t : xi,it− = −v(n)

i } and v
(n+1)
i = ri +

∑
j 6=i

xi,j(s
(n)
j −) ,

where inf ∅ = ∞. Set also s(0) = 0 and note that [d]s(0) = [d]. Then since for i 6= j, the
xi,j ’s are positive and non decreasing, we have

s(n) ≤ s(n+1) and [d]s(n+1) ⊆ [d]s(n) , n ≥ 0 .

Let us set s(∞) = lim
n→∞

s(n). Then s(∞) is the smallest solution of the system (r, x) in the

sense which is defined in part 1. of Lemma 2.3. Indeed, let i ∈ [d]s(∞) . By definition and

since xi,i has no negative jumps, for all n ≥ 1, xi,i(s(n)
i −) = −v(n)

i . Moreover, since the

processes t 7→ xi,j(t−) are left continuous, lim
n→∞

xi,i(s
(n)
i −) = xi,i(s

(∞)
i −) and lim

n→∞
v

(n)
i =

ri +
∑
j 6=i

xi,j(s
(∞)
j −). Hence (2.1) is satisfied for s(∞), that is ri +

d∑
j=1

xi,j(s
(∞)
j −) = 0, for

all i ∈ [d]s(∞) . Now let t ∈ Rd+ satisfy (2.1), that is

ri +
∑
j 6=i

xi,j(tj−) + xi,i(ti−) = 0 , i ∈ [d]t . (A.1)
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We can prove by induction that t ≥ s(n), for all n ≥ 1. Firstly for (A.1) to be satisfied, we
should have ti ≥ inf{s : xi,i(s−) = −ri}, for all i ∈ [d]t, hence t ≥ s(1). Now assume that
t ≥ s(n). Then [d]t ⊆ [d]s(n) and from (A.1), for each i ∈ [d]t,

xi,i(ti−) = −

ri +
∑
j 6=i

xi,j(tj−)

 ≤ −
ri +

∑
j 6=i

xi,j(s
(n)
j −)

 .

Therefore ti ≥ inf

{
s : xi,i(s−) = −

(
ri +

∑
j 6=i

xi,j(s
(n)
j −)

)}
, so that t ≥ s(n+1) and the

first assertion is proved.
If r′ ≤ r, then one can easily prove by induction that, with obvious notation, s′ (n) ≤ s(n)

for all n ≥ 1 and the first part of assertion 2. follows. For the second part, set s′ := lim
n→∞

sn.

Then first part of assertion 2. yields s′ ≤ s. Moreover, from the left continuity of the

functions t 7→ xi,jt−, ri +
d∑
j=1

xi,j(s′j−) = 0, i ∈ [d]s′ hence s′ is a solution of (r, x) and thus

s′ = s.

Let u ∈ Rd+, such that
d∑
j=1

xi,j(uj−) ≤ −ri, for all i ∈ [d]u and set r′i = −
d∑
j=1

xi,j(uj−).

Since r′ ≥ r, it follows from 2. that the smallest solution s′ of the system (r′, x) is such
that s′ ≥ s. But since u is also a solution of (r′, x), 1. implies u ≥ s′ and the first assertion
of 3. follows. The second assertion of 3. is a consequence of the first one. Indeed, u < s

implies that u ≥ s is not satisfied.
Assertion 4. follows from the above construction of s = s(∞). Indeed, if there exists

i ∈ [d]s and ti < si such that xi,i(ti−) ≤ xi,i(si−) then∑
j 6=i

xi,j(sj−) + xi,i(ti−) ≤
∑
j∈[d]

xi,j(sj−) = −ri (A.2)

and for all k ∈ [d]s \ {i},∑
j 6=i

xk,j(sj−) + xk,i(ti−) ≤
∑
j∈[d]

xk,j(sj−) = −rk . (A.3)

Then set for all k ∈ [d]s, r′k = −

(∑
j 6=i

xk,j(sj−) + xk,i(ti−)

)
and for all k ∈ [d] \ [d]s,

r′k = rk. Let s′ be the smallest solution of the system (r′, x). From part 2. of the present
lemma, since r′ ≥ r, s′ ≥ s. On the other hand, from (A.2), (A.3) and part 3. of the present
lemma, s > (s1, . . . , si−1, ti, si+1, . . . , sd) ≥ s′ which is a contradiction.

Proof of Lemma 4.6. Let us first assume that Y has bounded variation. Then the charac-
teristic exponent ψ of Y can be written as

ψ(λ) = −i〈a, λ〉+

∫
(0,∞)d

(1− ei〈λ,x〉)π(dx), λ ∈ Rd,

where a = (a1, . . . , ad) ∈ Rd and the Lévy measure π satisfies
∫

(0,∞)d
(1 ∧ |x|)π(dx) <∞.

Let π(k) be the restriction of π to the set [k−1,∞)d i.e. π(k)(dx) = 1[k−1,∞)dπ(dx).
For x ∈ R, set sign(x) = 1{x>0} − 1{x<0}. Then we consider the following sequence of
(k−1Z)d-valued Lévy processes

Y
(k)
t = k−1Ñ

(k)
t +

N
(k)
t∑

n=0

Z(k)
n ,
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where Ñ(k) = (sign(a1)Ñ1,k, . . . , sign(ad)Ñ
d,k) and Ñ1,k, . . . , Ñd,k are independent Pois-

son processes with respective intensities k|aj |, (N
(k)
t )t≥0 is a Poisson process with

intensity π([k−1,∞)d) and for each k ≥ 1, (Z
(k)
n )n≥0 is a sequence of i.i.d random

variables such that Z
(k)
n

(law)
= k−1bkZkc and Zk has law (π([k−1,∞)d))−1π(k)(dx). (Here

bxc = (bx1c, . . . , bxdc) and we recall that bxic denotes the lower integer part of xi ∈ R.)

Moreover, the sequences {(Ñ(k)
t )t≥0, k ≥ 1}, {(N (k)

t )t≥0, k ≥ 1} and {(Z(k)
n )n≥0, k ≥ 1} are

independent. Then we can check that Y(k) has characteristic exponent

ψk(λ) =

d∑
j=1

k|aj |
(

1− ei
λj sign(aj)

k

)
+

∫
(0,∞)d

(1− ei〈λ,x〉)π(k)(dx), λ ∈ Rd+,

whose limit, as k tends to ∞, is ψ(λ), for all λ ∈ Rd. It proves that the sequence of

random variables (Y
(k)
1 )k≥1 converges weakly towards Y1.

Then recall that from Theorem 2.7 in [14], which can be extended in higher dimension,
see Section 5 in the same paper, the weak convergence of the sequence of random
variables (Y

(k)
1 )k≥1 toward Y1 implies the weak convergence of the sequence of processes

{(Y(k)
t )t≥0, k ≥ 1} towards (Yt)t≥0 in the J1 Skohorod’s topology. Hence our result is

proved in the case where Y has bounded variation.
Let us now assume that Y is any Lévy process as described in the statement and set

∆s = Ys −Ys−. Then it is well known that the sequence of processes

Z
(n)
t :=

∑
s≤t

1{|∆s|>n−1}∆s − t
∫

(0,∞)d
x1{|x|>n−1}π(dx), t ≥ 0,

converges weakly toward Y as n tends to∞, see the proof of Theorem 1 of Chapter I in
[3] and the above argument on weak convergence in the J1 Skohorod’s topology. Since,
for each n, Z(n) is a Lévy process with bounded variation whose all coordinates have
no negative jumps, in application of what has just been proved, there is a sequence of
(k−1Z)d-valued Lévy processes Z(n,k), k ≥ 1 which converges weakly in the J1 Skohorod’s
topology toward Z(n). Moreover, for each k, all the coordinates of process Z(n,k) take
their values in the set {−k−1, 0, k−1, 2k−1, 3k−1, . . . }. Then it suffices to set Y(k) := Z(k,k)

in order to obtain the desired sequence.
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