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Fluctuation theory for spectrally positive
additive Lévy fields

Loic Chaumont* Marine Marolleau’

Abstract

A spectrally positive additive Lévy field is a multidimensional field obtained as the sum
Xe =X+ X 4+ X, t = (..., ta) € R, where X = (X1, X%49),
j=1,...,d, are d independent R%-valued Lévy processes issued from 0 = (0,0, ..., 0),
such that X*7 is non decreasing for i # j and X7 is spectrally positive. It can also be
expressed as X; = Xy - 1, where 1 = *(1,1,...,1) and X; = (X;7)1<; j<4. The main
interest of spalf’s lies in the Lamperti representation of multitype continuous state
branching processes. In this work, we study the law of the first passage times T, of
such fields at levels —r, where r € R%. We prove that the field {(T:, X,),r € R%} has
stationary and independent increments and we describe its law in terms of this of the
spaLf X. In particular, the Laplace exponent of (T:, X, ) solves a functional equation
leaded by the Laplace exponent of X. This equation extends in higher dimension a
classical fluctuation identity satisfied by the Laplace exponents of the ladder processes.
Then we give an expression of the distribution of {(T,, X, ),r € R%} in terms of the
distribution of {X¢,t € ]R‘i} by the means of a Kemperman-type formula, well-known
for spectrally positive Lévy processes.

Keywords: additive Lévy field; multivariate first hitting time; fluctuation theory; Kemperman'’s
formula.

MSC2020 subject classifications: 60G51.
Submitted to EJP on January 5, 2020, final version accepted on November 7, 2020.

1 Introduction

A spectrally positive, additive Lévy field (spaLf) is defined by

d
Xo= [ X077 i=1,,d| =X+ + XV t= (... ta) €[0,00),
j=1
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Spectrally positive additive Lévy fields

where XU) = (X137 .. X47), j=1,...,d, are d independent R%valued Lévy processes
such that X%/ are non decreasing for i # j and X7+ is spectrally positive (here ‘u means
the transpose of the vector u € R%). SpalLf’s can be considered as (non-trivial) extensions
in higher dimension of spectrally positive Lévy processes and the purpose of this article
is to develop fluctuation theory for such random fields. We refer to Chapter VII of [3]
for a complete account on fluctuation theory for spectrally one sided Lévy processes,
see also [9] and [13] (Chapter VII of [3] deals with the case of spectrally negative
Lévy processes but the results can easily be transferred to the spectrally positive case).
The particular pathwise features of spalLf’s allow us to define their first passage times
T, = (Tr(l), e 7Tr(d)) at multivariate levels —r € (—o0,0]? as the smallest of the indices
t = (t1,...,tq) satisfying X; = —r in the usual partial order of R¢. The distribution of
the variables (T,,Xr,), r € [0,00)% can then be related to the distribution of the field
{X4,t € [0,00)%}, where X; = (Xti;_j)lgi}jgd. In doing so we obtain some fluctuation-type
identities in the general framework of multivariate stochastic fields. These results
provide an intrinsic motivation for the present study that can be considered in the line of
several works on additive Lévy processes from Khoshnevisan and Xiao, see for instance
[11].

The original motivation comes from an extension of the Lukasiewicz-Harris coding
of Bienaymé-Galton-Watson trees through downward skip free random walks. In [7],
the authors proved that multitype Bienaymé-Galton-Watson trees can be coded by
multivariate random fields

d
oS i=1,...,d|, n;=01..., j=1,....d,
j=1

where *(S%7,...,8%7), j =1,...,d are d independent Z“-valued random walks such that

S%J are non decreasing for i # j and S’ is downward skip free. These random fields
are the discrete time counterparts of spalLf’s which suggests the possibility of coding
continuous multitype branching trees in an analogous way. It seems quite complicated to
achieve such a result as the notion of continuous multitype tree is not clearly defined for
general mechanisms. However, reducing the analysis to processes rather than trees, one
may still consider the Lamperti representation which provides a pathwise relationship
between branching processes and their mechanism. This representation can be extended
to continuous time multitype branching processes by using spaLf’s. It was done in [6]
for the discrete valued case and in [5] and [10] for the continuous one. More specifically,
let Z = (ZW, ..., Z¥) be a continuous time multitype branching process issued from
r € [0,00)%. Then Z can be represented as the unique pathwise solution of the following
equation,

d d
(1) (d)y _ § : 1,j § : d,j
(2% ) =1+ .1Xfézﬁj)ds""’, 1Xfo‘zﬁj)ds » 120,
= J=

where X, j =1,...,d, are Lévy processes as described above. Now recall that 0 is an
absorbing state for Z. Then it follows from the above equation that the path of Z up to
its first passage time at 0 is entirely determined by the path of the spalf

d
{X¢,t € [O,oo)d} = ZX;JJ ,t € [0,oo)d
j=1 1<i,j<d

up to its first passage time T, at level —r. This fact which is plain in the case d = 1 will
be proved in the general case in the upcoming paper [8], where extinction of continuous
time multitype branching processes is characterized through path properties of spalLf’s.
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The next section consists in an important preliminary lemma for deterministic paths
whose aim is to prove the existence of first passage times of spalf’s and to derive their
first basic properties. Then in Section 3 we will turn our attention to the law of these
first passage times. In particular we will prove that in analogy with the one dimensional
case, their Laplace exponent is the inverse of the Laplace exponent of the spalf. The
situation for d > 2 differs significantly from the one dimensional case as we first need
to give necessary and sufficient conditions for the multivariate hitting times T, to be
finite on each coordinate, with positive probability, for all r € [0,00)?. (When d = 1, this
is equivalent to saying that the spectrally positive Lévy process is not a subordinator.)
Another fundamental difference concerns the matrix valued field X, which is simply
equal to —r on the set T, < oo, when d = 1. In Section 4 we will focus on the law of
the field (T,,XT,) and prove that its Laplace exponent solves a functional equation
leaded by the Laplace exponent of the spalLf X. This equation, see (4.1) in Theorem 4.1
below, can be compared to the classical Wiener-Hopf factorization involving the ladder
processes of spectrally positive Lévy processes. Then in Theorem 4.3 the distribution of
(Ty, Xr,) will be fully characterized in terms of the distribution of the original stochastic
field X, through an extension of Kemperman’s formula, see Corollary VII.3 in [3]. More
specifically, our result states that the measure

P(T, € dt, X;7 €dw;j, 1 <i,j <d)dr

is the image of the measure

det(—(z:,;)ijela)
tita ... tgq

d
[[P(X{7 €dasy,i=1,....d)dt;...dtg,

J=1

through the mapping (t, (zi,;)ije@) — (b, (Zij)ijea: —(%ij)ijea - 1), where we set
1=(1,1,...,1). In order to prove it, we will use a similar identity recently obtained in [7]
and [6] in the discrete time and space settings together with a discrete approximation.

2 A preliminary lemma in the deterministic setting

We use the notation Ry = [0,), Ry = [0,00] and [d] = {1,...,d}, where d > 1
is an integer. The zero vector of R? will be denoted by 0. For s = (si,...,s4) and
t=(t1,...,tq) eﬁi, we write s < t if s; <+¢; for all ¢ € [d] and we write s < t if s < t and
there exists ¢ € [d] such that s; < ¢;.

Recall that a real valued function z : R, — R is said to be cadlag, if it is right
continuous on R, and has left limits on (0, c0). Such a function is said to be downward
skip free if for all s > 0, z(s) — z(s—) > 0, where we set 2(0—) = z(0). We also say that x
has no negative jumps. We will use the notation z; or z(t) indifferently.

Definition 2.1. We call £,, the set of matrix valued functions x = {(xi;j)i,je[d], te R}
such that for all i, j, * is a cadlag function and

(i) x7 =0, foralli,j e [d],
(ii) for alli € [d], x*' is downward skip free,

(iii) for alli,j € [d] such thati # j, 27 is non decreasing.

For s € Ei, we denote by [d]s the set of indices of finite coordinates of s, that is
[dls = {i € [d] : s, < >0}. Fori # j, we set 259 (00) = 2% (co—) = lim xhI(s).

EJP 25 (2020), paper 161. https://www.imstat.org/ejp
Page 3/26


https://doi.org/10.1214/20-EJP547
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Spectrally positive additive Lévy fields

Definition 2.2. Letx € &; andr = (ry,...,7q) € R%. Thens € F{i is called a solution of
the system (r,x) if it satisfies

d
(r,x) ity 2t (s;—) =0, i€ lds. (2.1)

j=1
(In particular; s = (00,00, . ..,00) is always a solution of the system (r,x) since [d]s = 0.)

We emphasize that according to our definition, some of the coordinates of the smallest
solution of the system (r,x) may be infinite. Note also that in (2.1) it is implicit that
x%(s;—) < oo, for all i € [d]s, although by definition s; = oo, for j € [d] \ [d]s. The

JE[dN\[d]s
next lemma is a continuous time and space counterpart of Lemma 1 in [6]. The proof of

the present result follows a similar scheme, however we need to perform it here as it
requires more care. It is done in the Appendix at the end of this paper.

Lemma 2.3. Letx € &y andr = (rq,...,rq) € RE.

1. There exists a solution s = (s1,...,84) € ﬁi of the system (r,x) such that any other
solution t of (r,x) satisfies t > s. The solution s will be called the smallest solution
of the system (r,x).

2. Lets and s’ be the smallest solutions of the systems (r,x) and (1', x), respectively. If

' <, then s’ <s. Moreover if (r,,),>0 iS non decreasing with lim r, =r then the
- n—oo

sequence (s,,),>o of smallest solutions of (r,,x) satisfies lim s, =s.
- n—oo

...
3. Lets be the smallest solution of (r,x). If u is such that for all i € [d],, > ™7 (u;—)
j=1

< —r;, then u > s. As a consequence, for allu € ]Ri such that u < s, there is i € [d]
d
such that ) =" (uj—) > —r;.
i=1

4. The smallest solution s of (r,x) satisfies s; = inf {t xt = O<inf :cﬁ/} for all

<u<s;
i€ [d]s.

3 Fluctuation theory for additive Lévy fields

Vectors of RY will be denoted by x = (z1,...,24) and e; = (0,...,0,1,0,...,0) will
be the i-th unit vector of Ri. We recall the notation !x for the transpose of any vector
x € R? and the notations 1 = #(1,1,...,1), 0 = (0,0,...,0). We will set (x,y), x,y € R?
for the usual scalar product on R and |x| for the Euclidian norm of x. A matrix M =
(mij)ijerq) € Ma(RU{oc}) is said to be irreducible if for all 4, j € [d], there is a sequence
i = i1,%2,...,i, = j, for some n > 1, such that m;, ;, , # 0, forallk =1,...,n — 1. For
two matrices A and B of M;(IR), with columns a® ... al®and b, ... b, respectively,
we define the following special product,

(A, B) = Z (a(j),b(j)>.

J€ld]

A matrix A = (a;;); je[q) is called essentially nonnegative (or a Metzler matrix) if a; ; is
nonnegative whenever i # j. For instance, for any element x = {(z;); je(a), t € R%} of

the set &; introduced at the previous section, the matrix x; = (mi}j )i.jeld) is essentially
nonnegative for all t = (¢1,...,¢5) > 0.
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3.1 SpalLf’s and their first hitting times

In this work, we shall consider d independent Lévy processes X(1), ... X(@ on ]Ri,
such that with the notation X) = *(X'7 ... X%J), for all j € [d], the process X/ is a
real spectrally positive Lévy process, that is, it has no negative jumps, and for all i # 7,
the Lévy process X%/ is a subordinator. We emphasize that the processes X7, ..., X%J
are not necessarily independent. Moreover, we do not exclude the possibility for a
process X*J to be identically equal to 0 and note that for each i € [d], X*® can be a
subordinator. It is known, see Chap. VII, in [3], that the Lévy process X)) admits all
negative exponential moments. We denote by ; its Laplace exponent, that is

_ (7) )
Ele X0 =i >0, A= (A,..., ) € RL.

Then from Lévy Khintchine formula and the above assumptions on X, ¢; has the
following form,

d
1
Pi(N) ==Y aihi+ 5%)\? - /d (1= e — (A X)L (x<1y) (dx), AERE, (3.1)
i=1 R

+

where (a;;); je(q is an essentially nonnegative matrix, ¢; > 0 and 7, is a measure on R%
such that 7;({0}) = 0 and

[ ani X0 ne]| m <.

+ i#]

Note that for all j € [d], ¢; is log-convex, i.e. the function log ¢; is convex on (0, 00)%. In
particular, ¢; is a convex function. Moreover, for all 7 # j and Aq,..., Ai—1, Ait1,. .-, Aa,
the function \; — ¢;(\) is non increasing.

Let us now define the multivariate stochastic field

d
Xe =X 4+ X0 = (3 X , for t=(t1,...,ts) € RL.
j=1

i€[d]

Then X := {X;, t € Ri} is a particular case of additive Lévy field in the sense of [11].
Its law is characterized by the Laplace exponent ¢ := (1, ..., 4), that is

— (A, X)) RZION d
Ele~*X0)] = b)) | ¢ A e RY,

Such an additive Lévy field will be called a spectrally positive additive Lévy field (spaLf).
This terminology is justified by the results of this section which extend fluctuation theory
for spectrally positive Lévy processes. Let us also introduce the field of essentially
nonnegative matrices

{X;,t € RE} = {(Xz;j)i,je[d]vt eR%}.

Note that the spaLl.f X can be defined as X; = X; - 1, where 1 = %(1,1,...,1). Moreover,
we emphasize that the spalf X carries on the same information as the field of essentially
nonnegative matrices {X¢,t € ]Ri}. For this reason, the terminology ‘spalf’ will refer
indifferently to X or to X.

Example. Let us give an example of a 2-dimensional spaLf. Assume that, for j € [2], the
X7i’s are independent Brownian motions BU) with drifts a; € R, that is X7/ = B +a;t
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and that for i # j, X%/ is a pure drift, that is Xf’j = a;;t, a;; > 0. Then the spaLf is
written as follows,

Xy = t(Bt(ll) + aity + arate, azty + Bt(22) +agts), t=(t1,t2) € R,

the Laplace exponents ¢; are explicitly given by
1 .,
QDJ()\) = —)\iaij — )\jaj + 5(]j>\?, 1#£ A€ Ri’
and the associated field of essentially nonnegative matrices is

X, — Bt(ll) +aity a12ta
t = (2) :
as1ty Bt2 + asts

Now let us define the first hitting times of negative levels of the spalf X. Let
r=(ry,...,rq) € IR‘L since X € &4 a.s., according to Lemma 2.3 there is almost surely a
smallest solution to the system

d
LX) D XY =—rie(d. (3.2)
j=1
We will denote by T, = (Tr(l)7 .. ,Tr(d)) this solution and use the notation

d
T, =inf{t: X, = -1}, with X;_ = | Y X}/ : (3.3)
=1 i€[d]
Then T, will be referred to as the (multivariate) first hitting time of level —r by the spaLf

{Xi,t € R%}. Note that according to Lemma 2.3, some of the coordinates of T, can be
infinite.

Proposition 3.1. Let X be a spalLfand forr € Ri, let T, be its first hitting time of level
—r as defined above. Then,

1. forall j € [d] andr € R, X(Tj()j)_ = X(Tj()j> a.s. on {Tr(j) < oo}. In particular, for all
i€ [d],
ZX;<J-7‘>_ =) X', =-r as.ontheset {1 < o0} . (3.4)
j=1 j=1

2. For all T € R% such that P(T,, € R%) > 0, conditionally on {T,, € R%}, the
field {T,4, — Ty, v € R%} has the same law as the field {T,,r € R%} and it is
independent of the field {T,, r < 1'}. In particular, for allr,r’ € R%,

(law

T "= T, + Ty, (3.5)

where T, is an independent copy of T,.

3. IfP(T, € R%) > 0 for somer € (0,00)?, then P(T, € R%) > 0 for allr € R%. Under
this condition, there is a mapping ¢ = (¢1,...,¢q) : RL — R% such that

Ele= T = e~ N e R, reRYL. (3.6)

Moreover, p(\) > 0 if A € (0,00)¢, the mapping ¢ is differentiable and each ¢; is a
concave function.
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Proof. The first assertion is a consequence of quasi-left continuity for Lévy processes.
Indeed, let us denote by (]—"t(J ))tzo the natural filtration generated by X¥) and set ]-"éi) =

t>0

o (U }'t(j) . Then for all t; > 0, the set

{Tr(j)Stj}: U {Els<u nJrZX%_*O, ie[d]s}

ue(Qu{oo})? k=1
uj=tj

belongs to the sigma-field gﬁj V=0 (.Ft(]] U < U fé?) ) , so that Tr(j )isa stopping time
' i#]

of the filtration (gt(j ))tzo- Moreover, since the processes X(*), i € [d] are independent,

X©) is a Lévy process in the latter filtration. Now let us consider the sequence (T, ),>1,

where r,, =1 —¢;/n. Then from part 2. of Lemma 2.3, Tr(j ) is an increasing sequence of

(G, ( )) -stopping times and this sequence satisfies lim 7.V} = TY). Therefore from the
n—oo

quasi-left continuity of X), see Proposition 1.7 in [3], X;f()j) = X(])) a.s. on {T < 00}
It clearly implies (3.4). '

In order to prove 2. it suffices to see that conditionally on {T,, € R4 %}, the stochastic
field {Xy,t € R} = {Xrp, 4 + 1/, t € R1} is independent of {X, t < T, } and has
the same law as {Xy, t € R%}. We conclude by noticing that T, = inf{t : X; = —r} =
4 N

Assertion 3. follows from Lemma 2.3 and (3.5). Indeed, if there exists r € (0, 00)?
such that P(T, € ]Ri) > 0 then from Lemma 2.3, forallt <r, Ty < T, a.s. and in
particular, P(T; € RY) > 0. On the other hand, for all 1’ € (0, 00)?, identity (3.5) implies
that T, ‘2’ T{) + .. + T%) where p > 1, the r()’s are such that 1) < r for all i € [p],
D+ 4@ =1, and the T()’s are independent copies of T. As a consequence, we

obtain P(T,, € R%) = H ]P(T((f) € R%) > 0. Now let us prove the second part of this

assertion. Let r € (0, oo)d be such that P(T, € R%) > 0 and let A € R?, then by (3.5), for
all 1’ € (0,00)4,

0< fA\r+1) = Ele~MTm)]
E[67<>‘>Tr>]E[67</\aTN>] = FL D) FONT).

Since f is right continuous in r, this equation implies that f(\,r) = e~ ¢}, for some
#(\) € R?. Furthermore take r = re;, for some r > 0 and i € [d], so that E[e~*Tr)] =
e~"%(N)_ Then from right continuity, T, > 0 almost surely, so that f (A1) < 1, for all
A € (0,00)? and thus ¢;()\) € (0,00). On the other hand it is plain from (3.6), that the ¢;’s
are concave functions for all j € [d] and that ¢ is differentiable. O

Note that in (3.4), if for some j # i, Tr(j) = oo with positive probability on the set
{Tr(i) < oo}, then X%7 = 0, a.s. This is due to the fact that X*J are subordinators for
i # j, therefore either X% = 0 a.s. or X%J = oo a.s.

Let us emphasize the following direct consequence of Proposition 3.1,

P(T, € RY) = e (0O (3.7)

so that in particular P(T, € R{) =1, for all r € (0, 00)¢ if and only if ¢(0) = 0. Note also
that Proposition 3.1 does not allow us a full description of the law of the d-dimensional
stochastic field {T,,r € Ri}. This is the case only when d = 1. In particular for d > 2,
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if r and 1’ are not ordered, then we do not know the joint law of (T,, T,/). Moreover,
looking at part 2. of Proposition 3.1, one is tempted to think that, when d > 2, the field
{T,, r e IR‘i} is a spalf, but it is actually not the case. Indeed from the construction of
this field, the processes {T,.,, > 0}, ¢ € [d] are clearly not independent. However, it
is easy to derive from Proposition 3.1, that each of these processes is a multivariate
subordinator whose Laplace exponent is ¢;. The following result, proved in [4] for d = 1,
provides an expression of its Lévy measure. Since it is a consequence of further results
(e.g. Theorem 4.3), it will be proved at the end of this paper.

Proposition 3.2. Assume that P(T, € R%) > 0 forallr € (0,00)?. Then for alli € [d], the
process {T,.,, r > 0} is a multivariate subordinator whose Laplace exponent is ¢; given
in (3.6). Assume moreover for all j € [d] and t; > 0, the j-th column Xg) of the matrix
X admits a density which is continuous on Fy x Fy X --- x Fy, where F; = R, fori # j

~ ~ ~ d . ~ .
and F; = R. Define the matrix X; = (X;)i jeiq by X;' = J;l Xy and Xy = X7, i # j,

and let p; : My(R) — R be the density of X,. Then the Lévy measure of the multivariate
subordinator {T,,, r > 0} is given by

det(—x"?) p:(0)

v; (dt) :/ ——p(x°) | I dxy ;dt, ifd>1and v(dt) = de, ifd=1.
RE-1  t1...%q :
+ k#j
Here X" is the matrix X = (%; ;) je(a) given by T;; = — >_ x;; and @; j = x; ; fori # j

i
in which row and column of index i have been removed and x° = (x;); je[a), Where

) ; = w;j, fori# j and z,; = 0.

3.2 Inverting the Laplace transform of spalf’s

We will now define a d-dimensional Lévy process whose law is obtained from the law
of X through the Esscher transform associated to the martingale

(e~ 1 X —tes (D))

for any 49 € R%. Recall that (F\’’),( denotes the natural filtration generated by X().
Then for¢t > 0and A € ]-"t(] ), the law of this new Lévy process is defined by

prY (A) = ]E[ﬂAe—m(”,Xi”)—w_f(u“))] )

Let us now consider d independent Lévy processes ) CaE) ), j € [d] with respective laws
P~ . The Laplace exponent of xr40) is given by

nel . )
PN = s+ u) — o), A eRY.

Moreover, a new spalf is obtained by setting

™ o
XPo=XE Wy xe D = (1, 1) € RY, (3.8)
where p = (u™, ..., u(¥) € My(R,) is the matrix whose columns are equal to u7), j € [d].

Let us set 7, = o{Xs, s <t} forall t € R%, then F, = cr(}“t(ll) U ]-'t(f) - U ]:t(j)) and the
law of the spalf X* is given by,

PH(A) = B[l ge WX =e)] -t e RE A e F, (3.9)
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where we have set @(u) = (o1(u™"),. .., pa(p?)) and where we recall that (1, X,) =

S (), XE?) We will refer to (3.9) as the Esscher transform of the additive field X.
J€[d] '
The Laplace exponent of X* is then

(1) (d)
) = (e (A,

Let us denote by J,()\), A € (0,+00)¢, the transpose of the negative of the Jacobian
matrix of ¢, that is

(\), AeR?.

0 .
Jo(Nij = =5-0i(X), 4,5 €ld]. (3.10)
Recall that since all processes X%, i, j € [d], are spectrally positive Lévy processes, their

expectation is always defined and E[X!”] € (—oo, oc]. Moreover ¢ is differentiable on
(0,00)? and the partial derivatives of ¢ at 0 satisfy E[X;7] = — )l\in%) 2-;(A). We will set
L0

a2 ©i(0) == fim s5-%;(A), and

1o} i .
Jp(0);; = fﬁgoj(ﬂ) =E[X]7], i,j€]d]. (3.11)

Then let us consider the following hypothesis:
(H) ThesetD:={\eR%:¢;(\) >0, € [d]}is non empty.

This hypothesis implies in particular that none of the processes X7, j € [d] is a subordi-
nator but it is actually stronger as we will see later on. Moreover since all X%/, i # j are
subordinators, it is clear that actually D C (0, c0)<.

Theorem 3.3. Letr = (ry,...,74) € ]Ri and let T, = (T,(l), ... ,Tr(d)) € Ri be the first
hitting time of level —r by the spaLf X, then

1. T, € ]Ri holds with positive probability for some (and hence for all) r € Ri if and
only if (H) holds.

2. Suppose that (H) holds, then ¢()\) € D, for all A € (0,00)?. Moreover, the mapping
¢ : (0,00) — D is a diffeomorphism whose inverse corresponds to the mapping
¢ :D — (0,00)%, that is

<P(¢()\)) =A, A€ (07 oo)d'

Proof. Assume that (H) holds, let 4 € D and let us consider the spaLf X* whose law is
defined in (3.9). In the present case, u also denotes the matrix whose each column is
equal to x. Then as already observed p € (0,00)%, so that all the random variables X{"i’j
are integrable and the mean matrix of X" is given by

i 0 .
BIXE) = — o), ij € [d).

It is actually the transpose of the negative of the Jacobian matrix of ¢ denoted by J, (1)
and defined in (3.10). Note that J,(x) is an essentially nonnegative matrix so that from
Lemma A.2 in [2], there is a real eigenvalue p* such that Re(p) < p* for all the other
eigenvalues p. Moreover, since ¢, is a differentiable convex function and ¢;(0) = 0, one
has

9
. > 0
; I P = 3 (1) > 0,

so that from Theorem 3 of [1], J,(1)T, and therefore J,(u), is a stable matrix in the
sense of [1]. In particular, p* < 0.
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Let us first assume that J¢(u) is irreducible. Then from Lemma A.3 in [2], we can
choose an eigenvector v# = (vl’,...,v}) associated to p* such that v} > 0, for all i € [d].
From the law of large numbers of Lévy processes, we obtain

tliinoo tTIXE = phvt a.s.
Therefore, from part 3. of Lemma 2.3, {X}', t € Ri} reaches each level av*, with a < 0,
almost surely. Then from the definition (3.9) of the law of X#, the field {X;, t € ]Ri}
reaches each level av¥, a < 0, with positive probability and since v} > 0, i € [d], from
part 2. of Lemma 2.3, it reaches each level —r € R% with positive probability.

Now let us assume that J,(¢) is not irreducible that is there exists a permutation
matrix P, and three matrices A, A> and B such that 4; isofsize 1 <p <d-—1and

- A 0
Py Py = (B Az).

In particular, for all (4, j) € I x J where I = {o(1),...,0(p)} and J = {o(p+ 1), ...,0(d)},
E[X/"] =0 thatis X"/ =0 a.s.

Therefore we can write for allr € R?,

d
P(TYeR)) = P(3teRy:Vield,) X*(t)=—r
j=1

= P|dte Ri (Vi € I,ZXﬂ’i’j(tj) = —T;
JeI

and Vi€ J,y XM (t) = — | r+ Y XM (1))
jeJ JeI

Let T/ be the smallest solution of the system (r7, X*7), where we set r; = (r;);cr and
X! = (X#%3); ;cr. Then conditioning on the event {T*/ € R" }, we obtain

P(T¢ € RY) = P(T47 e R P T € RE)P(TH! € RY),

where we have set 1’ = (ri + Y0 XHwbi (Tt J)) . Then T* is the smallest solution of
JEI ey

the system (v, X*7) with Xt/ = (X#87),; e . Theus if A, and A, are irreducible, then we

derive from the previous case that P(T/#! € R ) = 1 and P(T%”’ € RE ?|T#! € RY) = 1.

In other words, we have P(T# € R{) = 1 and then P(T, € R%) > 0. On the other hand,

if A; and/or A, are not irreducible, then we can repeat this argument.

Conversely, let us assume that T, € ]Ri holds with positive probability for all r € ]Ri.
Recall from part 3 of Proposition 3.1 the definition of the function ¢. Let us show that for
all A € (0,00)%, o(¢(\)) = A, which implies in particular that ¢()\) € D. It follows from
the independence and stationarity of the increments of the spalLf {X;, t € Ri} that for
allr,t, A € RY,

Ele M1 ry] = /CE[(“’T”E{KTJ

Xt = X]P(Xt S dX)
- / " AOE[e= N T P(X, € dx)
Cy

o) g (16(V) {ewwmm _ / L / T (X, € dx)] |
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where C; is the union of all the sets F; X --- x E; with at least one ¢ € [d] such that
E; =] — r;,+oo[ and for the others j € [d], E; = R. Then we derive the identity

1—e<r’¢(A)>E[€_<>"Tr>1{t<Tr}c] = (M [e<¢(¢(>\))7t) - /_Tl- X /—’"d e~ AP (X, € dx)]

(3.12)
Let 1/,1” € (0,00)¢ be such that 1’ + 1" = r, then from Proposition 3.1, T, can be
decomposed as T, = T, + Tr-, where T,~ is an independent copy of T,». Moreover
{t < T} C{t < Ty} N{t < Ty} sothat

Ele~ ™1 pye] Bl M 1 op, ye]Ble” M g p ).

If the coordinates of r are integers, then applying this identity recursively, we obtain,
d
E[€_<)"T”>ﬂ{t<Tr}c} < HE[G_O\’Te’j)]l{t(re_}c]” . (3.13)
j=1

Then we can find t whose coordinates are sufficiently small so that for all j,

Ele” M 1o, ye] < Ble” )] = e @),

Therefore lim e(¢(\) szl E[e_<’\’T%‘>Jl{t<Tej}c]’“J‘ = 0 and from (3.13) we derive that

r—00
the left member of (3.12) tends to 1, while the right member tends to e~ (Mt e{e(¢(N).t),
which shows that ¢(¢()\)) = A. This is true in particular for all A € (0,00)? and hence D
is not empty. This achieves the proof of both assertions 1. and 2. O

From part 1. of Theorem 3.3, assuming (H) for a spalf X ensures that X hits all
negative levels in a finite time with positive probability. When d = 1, this is simply
assuming that the spectrally positive Lévy process we consider is not a subordinator.

Example. Let us go back to our 2-dimensional example. Assume that ¢; > 0, j € [2],
where ¢; is defined in (3.1). After some calculations, we obtain the following explicit
form of the set D defined in hypothesis (H),

D:{)\E]Rii)\1> (al—’_ \/Al()‘Q)\/()) and \y > (CLQ—'— VAQ()‘l)\/O>}7
q1 q2

where Aj()\;) = a3 + 2a5q;\; for all j € [2] and i # j. Note that this set is not empty
and so assumption (H) holds. In particular, thanks to Theorem 3.3, the spaLf X reaches
all the level —r € R? with positive probability and according to the second part of this
theorem, we know that the mapping ¢ admits an inverse ¢ on the set D. This inverse

¢ = (¢1,¢2) is given by

1 a; . .,
6i(0) = — /200 + 03 + 2055000 + L, e [2i# A €RE.
q;j 4j

Moreover ¢ is the Laplace exponent of the field of first hitting times of negative levels by
X defined for all r = (r1,72) € R2 by

(1) - _
T, =inf<t>0: Btl + a1t(12)+ gty = " .
as1t1 + Bt2 +asts = —ro
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3.3 Asymptotic behaviour of spaLf’s

In order to carry on with the general study of the fluctuation of the spalf X, we shall
now give a characterization of the condition ¢(0) = 0 in terms of the Jacobian matrix
J,(0). As a first remark, note that if for some j € [d], J,(0),; > 0, then . 1131 X7 = 400

— 400

a.s. and hence the field {X;, t € ]Ri} cannot reach all the levels —r € R¢ with probability
one. Therefore, by Proposition 3.1, #(0) > 0 whenever there is j such that J,(0);; > 0.
Recall that whenever the essentially nonnegative matrices Jw()\), defined in (3.10)
and (3.11) for A € [0, oo)d have finite entries and are irreducible, according to the Perron-
Frobenius theory, there are real eigenvalues p* with multiplicity equal to 1 and such
that the real part of any other eigenvalue is less than p*, see Appendix A of [2]. We set
P’ =p.
Theorem 3.4. Assume that (H) holds and that J,,(0) is irreducible, then

1. the values 0 and $(0) are the only roots of the equation ¢(\) = 0, A\ € R%. Further-
more, either ¢(0) is equal to 0 or it belongs to (0, c0)4.

2. IfE[X!7] = oo, for some i, j € [d], then $(0) > 0. Assume that E[X 7] < oo, for all
1,7 € [d], then ¢(0) = 0 if and only if p < 0.

Proof. Let us assume that .J,(0) is irreducible. Since ¢ : D — (0,00)? is the inverse
of ¢ : (0,00)% — D, ¢(0) is the only solution of the equation ¢(\) = 0 on D. Indeed,
let 1 € D such that ¢(x) = 0 and p,, € D such that lirf tn = p. Then by continuity,
n—-+oo
lim ¢(p,) =0and ¢(0) = lim ¢(e(p,)) = lm p,, sothat u = ¢(0).
n——+0oo n—-+o0o

n——+00

Now let € R% \ {0, ¢(0)} be a solution of the equation ¢(\) = 0 and u = ' Then

[lull”
we consider, for all j € [d], the function f; : a € R — ¢;(p + au). Let us first note that

since ¢, is convex, so is f;. Furthermore, for all j € [d], we have f;(0) = ¢;(n) =0 =
©;(0) = f;(—||]])- On the one hand, if there exists j € [d] such that p; = 0, then for all
a € R, p; +au; = 0thatis f;(a) = ¢;(1+ au) < 0. Since 0 and —||u|| < 0 are zeros of the
real convex function f;, it implies that f; is constant equal to 0. In other words, for all
t>0,

= > (pitau;) X7

Ele #i ] — etwilptan) _ 1

and then for all i € [d], X" = 0 a.s. that is J,(0) is reducible. Since we assumed .J,,(0)
irreducible, we necessarily have y; > 0, j € [d] and then, by convexity, f; is negative on
(—||¢]|,0) and positive on (0, 40c0). In other words, for all integers j € [d] and for all € > 0,
¢;j(p + €eu) > 0 that is 4 € D which is a contradiction. As a consequence, when J,,(0) is
irreducible, there is at most two solutions of the equation ¢(A\) =0, A € ]Ri which are 0
and ¢(0) € D. Furthermore, when .J,,(0) is irreducible, we have seen that ¢(0) = 0 or
6(0) € (0, 50)".

Let us now prove assertion 2. Suppose that E[X 7] = oo, for some 4, j € [d]. Then for
all A € (0,00)¢ small enough, ¢;(\) < 0. Indeed, let A € (0,00)?. Since the spectrally pos-
itive Lévy process (A, Xt(j )> drifts to oo, for all « € (0, 00) small enough, its characteristic
exponent evaluated at « is negative, that is ¢;(a - \) < 0. But if ¢(0) = 0, since 0 € D,
there is A € (0,00)? small enough such that ¢;(\) > 0. Therefore, ¢(0) > 0.

Suppose now that E[X}7] < oo, for all 4,j € [d] and that p < 0. Let u = (uy, ..., uq)
be the unique right eigenvector corresponding to p such that u; > 0 for all ¢ € [d], and
u1 + -+ ug =1, see Lemma A.2 in [2]. Then from the law of large numbers,

lim ¢ X,y =pu, a.s.
t—+4o0
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Therefore, {X;, t € ]Ri} reaches a.s. all the levels au, a < 0 and from Proposition 3.1 it
reaches all the levels —r € R? a.s. We conclude from (3.7) that ¢(0) = 0.

Assume that p = 0. Let u = (uy,...,uq) be a right eigenvector corresponding to p,
then from the law of large numbers,

lim ¢t !X, =0, as.
t——+o0

tu

. ) ) d .
Therefore, for all i € [d], the process Y = (Y}!);>¢, defined for all ¢t > 0, by Y} = > X
j=1

is a real Lévy process such that

lim tilYti =0, a.s.
t—+o0
that is, for all i € [d], Y oscillates. On the other hand, if $(0) > 0, then, by convexity of
the ¢;’s, there exists A € R¢ such that ¢;()\) < 0, for all j € [d]. Consequently, for all
direction v € R4, we have

E[e_<>‘7xtv>] — e("'vv‘p()\» — 0.
t—+o0

It implies that for all direction v € ]Ri, the Lévy process (), X;,) tends to co in probability
(and hence almost surely), as t — oo. In particular, for v = u, there exists ¢ € [d] such
that Y;’ tends to co almost surely, as t — oo, which is a contradiction. In conclusion,
¢(0) = 0. o

Conversely, assume that ¢(0) = 0 then 0 € D and by convexity, there exists u €
(0, +00)?, small enough, such that () > 0, for all i € [d]. Recall from (3.7) and (3.9)
the definition of the Esscher transform X* of the spaLf X, with u(") = ... = p(9) = ;. We
have seen in the proof of Theorem 3.1 that the Perron-Frobenius eigenvalue of J, (1)

0
satisfies p* < 0. Since the ¢;’s are C*°-functions, for all 7, j € [d], I, P are continuous
7

and hence lir% Jo(p) = J,(0). Furthermore, the eigenvalues of the matrix J,(;) depend
n—

continuously on its entries because they are the roots of its characteristic polynomial

whose coefficients are polynomial functions of the entries of the matrix. Then since

pt = m?j]{ Re(\) and p = m?d)]c Re()\;) where \!" and )\; are respectively the eigenvalues
ic ic

of J,(u) and J,(0), we have that lim0 pt=p<O0. O
=

Assuming (H), we will say that the additive Lévy field (X;,t € R%) drifts to —oo,
oscillates or drifts to 400 according as p <0, p=0or p > 0.
Example. In our example, we already have the explicit form of ¢, the set D and the
inverse ¢. Let us now find the solutions of the equation ¢(\) = 0, A € R2. Assume
that J,(0) is irreducible, that is a;; > 0 for all i # j. Then the solutions of the equation

VAL(A VAz(A
©(A\) =0, A € R% are 0 = (0,0) and points of the form <a1 i i 2), G2+ 2( 1)>
q1 a2

where Aj()\;) = a? + 2ai;q;\i, j € [2],i # j. It is easy to check that there is only one
solution of the second kind. It belongs to (0,+oc)? or it is equal to 0. According to
the expression of ¢, ¢(0) is this solution. We can show that ¢(0) = 0 if and only if
a1 <0, az <0and ajaz > a;2a2,1. Furthermore, we can compute the Perron-Frobenius
eigenvalue p of the Jacobian J,(0). It has the form

_aytag+ \/(al —a2)? + 4ay 2a2 1
= 5 )
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Then it is easy to see that p < 0 if and only if a; < 0, a2 < 0 and ajas > a1 2a2:. In
conclusion, we find ¢(0) =0 < p < 0.

Note that if J,(0) is reducible then at least one of the q; ; is equal to zero, for i, j € [d].
Then ¢ has at most four zeros. These are the values:

2ao 2a;
9 9 a1+@/A1(—2) a2+1/A2(T)
0, (;10) , (0‘”) and — — | =00,
1 1 2

q2

whenever they belong to R3 .

Remark 3.5. By carefully reading the proof of Theorem 3.4, it appears that we have
proved a little more than what is in the statement.

Indeed, in part 1. we have proved that if there exists a solution to the equation
©(\) = 01in (0, +00)?, then it is unique and equal to ¢(0). This is when J,,(0) is irreducible
but we can see from the proof that this is also true when J,(0) is reducible. Let us also
notice that in the reducible case, there may exist solutions A € R?\ {0} with \; = 0 for
some j € [d] as the above example shows.

Moreover it can be derived from arguments in the proof of part 2. that when ¢(0) > 0,
for each direction v € Ri, almost surely, there is at least one coordinate of the field X
which goes to +oc.

4 On the distribution of the field (T,, Xr,)

Let us recall the definition of the matrix valued field X = {X¢,t € R} given in the
beginning of Section 3. As already noticed, this field carries on the same information as
the spaLf X. However, whereas the vector X, is deterministic on the set {T, € Ri} (and
is actually equal to —r), the matrix X, is random whenever d > 2. From another point
of view, the fact that the field r — (T,, X, ) has independent and stationary increments
(see the next theorem) induces an analogy with fluctuation theory in dimension 1. More
specifically, this bivariate field can be considered as the analogue of the scale process
describing the fluctuations of any one dimensional Lévy process at its infimum. The
aim of this section is to characterize the law of the field r — (T,, Xr,), first through its
Laplace exponent and then from a Kemperman'’s type identity relating its law to that of
the field X.

4.1 Characterization through the Laplace transform

Recall that we denote by p?) the j-th column of the matrix y = (#i,5)ijela)- Then
given a spalLf X we define the set

My ={(\n) € RE x Ma(Ry) : A = 0 (u"), j € [d]}.

Theorem 4.1. Assume that (H) holds. Letr = (r1,...,rq) € R and let T, be the first
hitting time of level —r by the spaLf X, then there exits a mapping ® = (®,...,Dy) :
M, — R4 such that

E e—M,Tr)—((;hXT,-))ﬂ{TreRi} — e—<1r7<1’(>\7u)>7 (A 1) € My,
Moreover ® satisfies the equations,

0 + e\ w) =Xj, Geld], (A n) €My, 4.1
and it is explicitly determined by

DN\, 1) = " (M — o1 (D), Aa — wa(uD)) (4.2)
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w ()
where ¢* is the inverse of the Laplace exponent ¢* = (¢} *,..., ¢4 ") of the Esscher

transform X* defined in (3.8).

Proof. Let us first note that the random field {M;, t € R?} := {e= (@ —(nX) 't ¢ R4},
where @(u) = (e1(pM),. .., 0a(p?)), is a multi-indexed martingale with respect to
the filtration 7 = o{X,, s < t} = a(}'t(ll) U }}(22) N ft(;i)), t € R4 in the sense of
[12]. Fixr = (r1,...,74) € ]Ri and define the sequence of multivariate random times
T = (T, ..., TS), n > 1 by

Tnl Z 27"k + 1)1 {2*"k§Tr“)<2*"(k+1)} +oo- ]l{Tr(i)zoc}'
k>0

Then T, and T, ,, n > 1 are stopping times of the filtration (ft)telRi in the sense of [12].

Moreover, for each i € [d], the sequence (T,(sz)nzl is non increasing and tends to T
almost surely. Now for all u € R?, define Tg“ 2 by

W .

n,r *

T,, on {T,,<u}
u on {T,, <u}°.

Then T; ; is a stopping time (see for instance the proof of Lemma (2.3) in [12]). Moreover,

MT&UQ = Z Mvﬂ{Tn’r:v} + Muﬂ{TnvrSu}C < Z M, + Mu7
: veD,,v<u veD,,v<u
where D,, := {v € R% : v = 27"k, k > 0}. Since the set {v € D,,v < u} is finite,

E [M (u)} < 00. Moreover T<“3 and M, clearly satisfy the conditions (2.4) and (2.5) of
Lemma (2.3) in [12]. Therefore, in virtue of this lemma,

E [Mmﬂ —1.

Then lim T4} = T{") almost surely, where
n—oo

T(u) — Tr on {Tr S u}

r u on {T, <u}°,
so that by Fatou’s Lemma and the right continuity of {M;, t € R4}, we obtain as n
tends to oo, E {MT“,)} < 1. Then by applying Fatou’s Lemma again, we obtain as each

coordinate of u tends to oo that E {MTrﬂ'{TrE]Ri}} < 1. It implies that for all (A, u) € M,
E [67<A,Tr>—<<u>xn>>]l — }] <1.
Then we prove in the same way as for (3.5) in Proposition 3.1, that for all r,’ € RZ,

(law)

(Tepe, X, e, erey = (T T, Xoo, + X )pr, 17, ere ) (4.3)

where X'’ is an independent copy of X and T’ is its first hitting time process. Recall that
under assumption (H), P(T, € R%) > 0 for all r € R%. The existence of the mapping ®
follows by using (4.3), in the same way as for the existence of the mapping ¢ in 3. of
Proposition 3.1. (Note that in particular ®(),0) = ¢(\), A € R%.)

Then it is readily seen that

(Tr,XTr):(r,xr)+(t~rr+xr,§gi+xr) a.s. on {T, € R}, (4.4)
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where X; = Xt — X, and Ty = inf{t >0: X, = —k}. Since X is a spaLf, for all t € R?,
X has the same law as X; and is independent of {X; : s < r}. Thus conditionally on
{T. e R4}, T,1x, and Xg,,,, are independent of X;. Let (A, u) € My, then using (4.4),
we obtain

e =t /M (R) Ele~ Wm0 Freni1 g cpayle IP(X, € dx),
d

where x = (z(, ..., z(¥)andx = 3 xU) = < St a:d’j). This equality can
JE€ld] J€ld] JE€ld]
also be written as

o~ () _ ef(A,r)/ e~ HHEO) () P(X, € dx)
Ma(R)

= e_<>\7f>e—(T‘v‘I’(AaH»E[e—((u+‘i’(>\7u)7xr>)]’

where ®()\, ) is the matrix whose all columns are equal to ®(), ). Thanks to the
independence of the X()’s, the latter equality is reduced to

(D) €]
e = T mle O FPOX2

JE€ld]

As a consequence, the Laplace exponent ¢ of (T,, X, ) satisfy (4.1).
Now recall the definition of the Esscher transform X*"+() of each X% given after
Proposition 3.1, with Laplace exponent

[€)

@A) =AY — (), XeRY, jeld].

From these Esscher transforms we defined, see (3.8), the spalf X* by

) (4
Xt =3 xt"V teRrd.
J€ld]

Let D, == {A e R¢ : cp?m (A) > 0,7 € [d]}. Then under assumption (H), from part 1. of
Theorem 3.3 and from the absolute continuity relationship (3.9) between X and X*,
the set D, is not empty. Moreover, thanks to Theorem 3.3, the Laplace exponent ¢" =
(gp‘f(l), cey <p§<d)) of X* is a diffeomorphism from D,,, whose inverse ¢* : (0,00)¢ — D,, is
the Laplace exponent of the field {T#,r € R}, where T# := inf{t > 0: X}' = —r}.

On the other hand, from (4.1), ® satisfies

@O ) = A — i (u?), Geldl, (\p)eM,.

Thus the Laplace exponent ® of the couple (T, X, ) exists and is given for all (X, u) €
M., such that \; > ¢; (), j € [d] by

O\, 1) = (M — (M), A — pa(p)). (4.5)

Finally this relation is extended to the whole set M, by continuity. O

Remark 4.2. We emphasize that Theorem 4.1 provides an extension of the case d = 1.
More specifically, (4.1) can be compared to relation (2), p. 191 in [3].
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Example. An explicit form of ® can be derived from our example. Let (1) = Hpi,, po1) €

R2, u® = "(u12, p22) € R?) and(/f = (™M, ). Then the Esscher transform X* has
1 2
Laplace exponent " = (¢} ", 5 ") where for all j € [2] and A € R?,

L) 1
P (V) = 0N + qipi Ay = —aighi = (a5 = g )N + 542 -

Assume ¢; > 0, j € [2]. Hence after some calculations, we obtain

= VAT
DW:{AeRi:AQ(al Dby 1(2)\/0>and

q1

Ny > (CIQ — qapiz2 + /AL (A1) v 0) } ,

q2

where A/ (\;) = (a; — qjpu;,5)? + 2aijq; M for all j € [2] and i # j. Note that Dy, C Dyu. In
particular, if (H) is satisfied then (H*") is satisfied too and both sets D, and D are non
empty. Under this assumption, thanks to Theorem 3.3, the spalLf X* reaches all the level
—r € R2 with positive probability and according to the second part of this theorem, we
know that the mapping ¢* admits an inverse ¢* on the set D*. This inverse ¢* = (¢!, ¢5)
is given by

L 1 a; . . .
P (\) = ;\/Q%‘Aj + (a5 — qjpg5)* + 2aijq;05 (N) + qu_ — i, JERi#j AeR:,
J J

Then according to Theorem (4.1), the Laplace exponent & = (&4, ®,) of the field (T,, X,)
is given for all (A, u) € M, and j € [2] by

(I)](A,,LL) = ¢§L(A1 - (,01(#(1))7 )\2 — SDQ(H'(Q)))

1 .
= ;\/2%‘(%' = @i () + (a5 = gj1;,5)* + 205587 (A — 1(uD), Ag — @2(n))
J

+ 4 Wi g
Qj WAV

4.2 An explicit form of the distribution
Let us define the set
]\//Zi(]R) = {x € M;(R) : x is essentially nonnegative and x - 1 < 0}

endowed with some matrix norm, || - || and equipped with its Borel o-field. From Theo-

rem 4.1, the measure P(T, € dt, X € dx)dr on R¢ x R? x My(RR) has Laplace transform

/ e {laen ==X p(T, € dt, X; € dx)dr
R% xR4 x My(R)

= [(a1 + @1(\ p)) (a2 + P2(\, 1) - . (@ + Ra(A, 1))~ (4.6)
The following result shows that this measure can be expressed only in terms of the law
of the spalf.
Theorem 4.3. Assume that (H) is satisfied. Then for all « € R% and (\, 1) € M,

/ e~(@n) =) =) P(T, € dt, X, € dx)dr
R¢ xRY x My(R)
det(—
:/ plax )=ty —(ux) _4€ (=%) P(X, € dx)dt. (4.7)
RiXﬁd(R) tltg...td
EJP 25 (2020), paper 161. https://www.imstat.org/ejp
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In other words, the measure
P(T, € dt, X, € dx)dr, t€ R, x € My(R), r € RY,
is the image of the measure

det(—x)

— T P(X; edx)dt, teRL, xe My(R),
tita ... tg

through the mapping (t,x) — (t,x,—x-1).

When d = 1, the above identity can be read as
P(T, € dt)dz = _Tle(Xt e da)dt, (tz) e (0,00) x (—00,0), (4.8)

and is known as Kemperman'’s identity for spectrally positive Lévy processes. It can be
found in [3], see Proposition VII.2.

We shall prove Theorem 4.3 through discrete approximation. As a first step, we
need to recall the discrete time and space counterpart of spalf’s. Those are matrix
valued fields of the form {S,, n € Z{} = {(S}/)i e, n € Z4}, where the columns
SU) =*(S13 ..., 8%7), j € [d] are independent random walks. Moreover, all coordinates
S%J start from 0 and take their values in k~17, where k > 1 is some integer which will be
fixed until mentioned otherwise. For i # j they are non decreasing and for i = j they are
downward skip free, that is S5 — Sfl’il > —k~1, for all n > 1. This setting is introduced
in [7] (for k£ = 1 and up to transposition of the matrix $). Equivalently to the continuous
case, we define the field S := $ - 1 and its first hitting time process

TS .= inf{n:S,=-r}, re kle‘j_,
see Lemma 2.2 in [7]. The field $ (or equivalently S) will be called a downward skip free
random field (dsfrf for short). An essential result for the proof of Theorem 4.3, is the
following extension of the ballot theorem

kidet(—
P(TS = 1,8, = x) = L9 UX pg (4.9)
ny...nyq
for all n € IN? and all essentially nonnegative matrix x of My(k~!Z) such that x- 1 = —.

(Here we have used the notation IN = Z \ {0}.) Identity (4.9) is proved for k = 1 in [7],
see Theorem 3.4 therein. Its extension to any k£ > 1 is straightforward.

The next step is to consider lattice valued spalf’s. Let us first define these processes.
Let XU) = (X% ... X%J), j € [d] be a family of d independent d-dimensional Lévy
processes such that for i # j, X% is non-decreasing k~!Z-valued Lévy process and for
each j € [d], X7 is a k~'Z-valued Lévy process such that for all ¢ > 0, X7/ — X7/ > —k~1,
Then there exists a dsfrf $ as defined above and d independent Poisson processes N (),
Jj € [d] also independent of § such that

X = SNJU i,jeld, t>o. (4.10)

The random fields {X¢, t € R1} = {(Xf_;j)iyje[d], t € R} and X = X - 1 will be referred
to as lattice valued spaLf’s. Let (655))"20, j € [d] be the sequences of exponentially
distributed random variables satisfying

) _
Ny = Z 1{e§”+~-+e$ﬂ)§t}'
n>0
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The first hitting time process of X can be defined in the same way as for spaLf’s in
Lemma 2.3 and Proposition 3.1. It is denoted by

T, =inf{t: X, = -1}, rek'Z%.

We can easily check that the latter is related to the first hitting time process of S through

the identity,
Tr(j) ,S

79 = 3" e, jeld (4.11)
1=1
The following proposition is a direct consequence of (4.9). Although it can also be found
in [6] for k = 1, we give a more direct proof here.
Proposition 4.4. Let {X;, t € R4} = {(Xtij’_j)i,je[d], t € R4} be a lattice valued spalLf.
Then for fixed r € k=74, the joint law of (T, Xr,) is given by

kldet(—
KdeU=%) b x¢, = x)dtrdts . .. dtg,
tits . tg

P(T, € dt, X; =x) =
for all essentially nonnegative matrices x of My(k~1'Z) such thatx-1 = —r.

Proof. Letrand x = (z;,); je[q) be as in the statement. Then the straightforward identity
ST§ = X, together with expressions (4.10) and (4.11) allow us to write,

Tr(j)‘s
P(T, edt, X, =x)=P | Y e edt;, j€ld], $ps =x
=1
=Y II]r (Zel(]) € dt, ) P(TS = 1,8, =x)
nelNd je[d]
g\ - -
=y A d om0 i - det(t X)]P(Sn = x)dt
nelNd ny:...Nnyq-: 1..-0g
dd t(—
- ¢ Z [T PV = n))P(S, = x)dt
nelNd je[d]
d Jet(—
— MP(Xt — x)dt,
... tg
which proves our result. O

From now on, we will add % as a superscript to all objects referring to the discrete val-
ued spalLf defined above. For instance, the latter will be denoted by X (%) = (X ”k)z jeld)
or X(®), where XU):k = t(x1Lik X4k It is pretty clear that lattice valued spaLf’s
satisfy analogous properties to those of spalLf’s introduced in Section 3. In particular,
the discrete time field r — (T(k) X! ()k)), r € k7174 has independent and stationary
increments and can be treated in a very similar way as its continuous space counterpart
involved in Theorem 4.1. That is why we will content ourselves with stating the next
theorem as well as some preliminary results without giving any proof.

Recall the definition of the Laplace exponent <p§-k) of XU)k that is

Ble=OX7 = VM) >0 A= (M. ) €RE
Then as in Theorem 3.3, we can prove that the hypothesis

(H®)  D® = {xeR:: M (A) >0, j€[d]} is non empty
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is equivalent to the fact that Tgk) € ]le_ holds with positive probability, for all r € klei.
As in Theorem 3.3, the proof of this equivalence is based on the Esscher transform X (*)-#,
for u € My(RR;) whose Laplace exponent is given by

N, (9) . .
P = P+ uD) — P (), NeR. (4.12)
Let us define the set
ME = {(\ 1) € RE x My(Ry) = A; > o8 (D), j € [d]}.

The following theorem is the analog of Theorem 4.1 for lattice valued spaLf’s.
Theorem 4.5. Assume that (H®) holds. Letr = (r1,...,rq) € k~'Z% and let T*)
be the first hitting time of level —r by the spaLf X(¥), then there exits a mapping
o® . MY - RY such that

— (AT — (X))

) e
E|e " ]l{Tﬁ’“)eRi} =e (r,® (/\,,u)>’ ()\,,u) EMEOk)

Moreover ®¥) satisfies the equations,

P B () =Ny, jeld, (hp)eMP, (4.13)
and it is explicitly determined by

W (X, 1) = o1 (0 — o (M), ag = @ (uD)), (4.14)

where ¢(¥)# is the inverse of the Laplace exponent ¢*):# of the Esscher transform X ().~
recalled in (4.12).

In order to end the proof of Theorem 4.3, we need to prove that any spalfis the weak
limit of a sequence of lattice valued spaLf’s. The index k is now a variable that will be
taken to infinity.

Lemma 4.6. Let Y be a d-dimensional Lévy process whose all coordinates are spectrally
positive. Then there exists a sequence of (k~'Z)%-valued Lévy processes Y*) which
converges weakly in the J; Skohorod’s topology toward Y. Moreover, the sequence
(Y*)) can be chosen so that for each k, all coordinates of Y*) take their values in the
set {—k=1,0, k71, 2k~ 3k~1 ... ).

The proof of this lemma is transferred to the Appendix. We have now gathered all
necessary ingredients for the proof of Theorem 4.3.

Proof of Theorem 4.3. Let (X(*));~, be a sequence of lattice valued spaLf’s such that
each sequence of columns (X):*);+,, where XUk = {(X1ok X4k converges
weakly to X(). The existence of such a sequence is ensured by Lemma 4.6. This
convergence means in particular that
lim 0¥ (A) =@;(\), A>0, jeld. (4.15)
k—o0
Since (H) is satisfied, by continuity of the functions ¢; and from (4.15), there is ky such
that for all k& > kg, (H(k)) is satisfied. Then let £ > kg and let ]\//_Tdyr(k_lZ) be the set of
essentially nonnegative matrices x of My(k~'Z) such that x-1 = —r. We derive from
Theorem 4.5 that for all @ € R% and (X, 1) € MY,

S kmdemlon S e M pr® e at, XM =x)
d

rek=174 + xeMy . (k—17)
= [k(1— e—kfl(al-s-d’(lk)()\,u))) X oo x k(1 — e—k’l(ad+¢’§k)(>\7u)))]—1_ (4.16)
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Now take (), i) € M, such that \; > ¢;(u)) for all j € [d]. Then by continuity of pj,
J € [d], there is k{, such that for all k > kG, (A p) € /\/l( Clearly (¢, () s )i>1 defined

in (4.12) converges pointwise to <pj , for all j € [d]. Hence, the sequence of inverses
(¢(k ) x>1 also converges pointwise to ¢*. Therefore, from (4.2), (4.14) and by continuity,
(@®) (X, 1))x>1 converges to ®(\, ).
Now let us extend the definition of T](fk) toallr € ]Ri by setting Tgk) = Tgf), where
k= k7Y(|kr1],...,|krq)) and where |z| denotes the lower integer part of z. Then by
taking £ to infinity in (4.16), we obtain from (4.6) that for all a € Ri and (A, pu) € M,
such that \; > ¢;(u()), for all j € [d],

T d—(ar) o= A0 —(ux) (k) (k) _

kgrolo Z k™ > P(T® e dt, X{¥ = x)
-1zd xeMd (k=17)

= lim e~ lan=00=(x) p(Tk) e qt, X¥) € dx)dr

k—o0 Rix]R.ixJ/VTd(]R)
= (o + @100 @) (05 + Ba(A 1)) - (g + Ba(A, )]

/ e~ {en=A8=(nx) p(T, € dt, X, € dx)dr. (4.17)
R% xR4 x My(R)

On the other hand, let ]\//.Td(k_lZ) be the set of essentially nonnegative matrices x of
My (k~'7Z) such that x-1 < 0. Then as a direct consequence of Proposition 4.4, we obtain

that for all a € R% and (A, p) € MY,

ST kmdemlow S e M0 pr® e dt, XM =x)
rek=1z4 t xeMy,(k—17)
_ 3 e—(an—un =) BEUTH) e _ ¢
" tits .. .t t

trek=12%  x€Ma . (k~1Z)

. T clox -t 90U ) _ g
a A tita ... tg
+ xeMy(k=17)

/ / (ax-1)y— (A )y —(p,x) 22\ 4) det( ) P(ng) c dX) dt .
RY Md(]R) tita. .. tq

Then it follows from the above calculation and from (4.17) that for all o € Ri and
(A, 1) € M,, such that \; > ¢; (")), j € [d],

/ e~ {0 =AO=(nx) p(T, € dt, X, € dx)dr
R xRE x My (R)
det
- hm/ / plox1)= ()~ (e U= )]P(X,Ek) €dx)dt. (4.18)
k—oco Rd Md(R t1t2 t

Now, we derive from the weak convergence of Xg ) toward X for each t that

lim el )= () et (—x)P(XF) € dx) = / el ) =(x) qet(—x)P (X € dx),
k—oo Jar,(R) Ma(R)

so that for all e > 0,

lim / / plax )= (0 ux) dEHX )P(ng)edx)dt
k=00 J{t>e.1} J M, (R) titz .. . ta

/ / elox ) =(At)—(px) ZZA72) det( x) ——— P(X; € dx)dt.
{t>e-1} Md(lR) fatz.. - 1a
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Then from Proposition 4.4,

/ / elax)=n) Gy 98U b s & gy g
{t>e-1}c J My(R) tite ... tq

_ / e en=0n=09 p(T® ¢ dt, X*) = x) dr
{t>e-1}exRY x M4 (R)

— (AT — (x5
:/ 6_<(1,1">]E |:e < > <<H Tgk)»]l dr7
R4

{TM>e1)e

which entails from a trivial extension of (4.18) that,

det
lim/ / plax )= (0~ ux) 9= )P(ng)edx)dt
k=00 Jri>e1ye Md(]R) tita ..

— /d e (o >E[ —(AT)— <<uXTr)>]1{T ey o] dr. (4.19)
R

But from part 2. of Theorem 3.3, for all ¢, j € [d], lim ¢;(se;) = oo, which implies that for
S§—00
allt > 0and all i € [d], P(T\” > 0) > 0. In particular,

d
i >e.11%) < i (2) —
lim P({T, > -1} )_g%ZTIP(Tr <e)=0,

therefore by dominated convergence, expression (4.19) can be made arbitrarily small as
€ tends to 0.

Then we have proved that the identity (4.7) is valid for all « € RY and (A, p) € M,
such that \; > ¢;(u9)), j € [d]. Now let any (\, 1) € M, and assume that \; = ¢;(u(")
for some i € [d]. Then identity (4.7) is valid if we replace A\; by \; = \; +¢;, fore; > 0 and
we obtain it for (A, u) by letting ¢; going to 0 and applying monotone convergence. [

Proof of Proposition 3.2. Assume first that d > 1. Then taking 4 = 0 in Theorem 4.3
gives

/ e () =AY P(T, € dt)dr / e<a’x'1>’<)"t>M]P(Xt € dx)dt
R4 xR4 R x My (R)

tits ...t
- det(—Xjy)
— ADE | eleXe1) ZENTAE) _ b
/]Ri ‘ |:€ tita...tq {XieMa(R)}
(4.20)

Note that from our assumptions the density p; : M4(R) — R of )‘A&t is continuous on the
set of matrices whose columns belong to F; x F5 x --- X Fy. Let Hd(IR) be the set of
essentially nonnegative matrices whose elements of the diagonal are non-positive. Then

d
. det(—X ) S ixi det(-(i-ﬁ-D(X))
(0, Xg-1) VAT ) . . pa det(=(X+ D(x))
tita...tq ﬂ{xte]wd(R)}:| - et ..ty pe(x)dx,
‘M4(R)

E e

where D(x) = (d; j);,je[q is defined by d; ; = x;; and d; ; = 0 fori # j, and T = (T4 ;) je[q)
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such that7; ;, = — > z; ; and 7; ; = x; ; for i # j. Let I; be the identity matrix. Then
J#i

Xd: aimii det(—(X + D(x))

i=1 d
€ t1...tq pt(X) X
Mg (R)
— / / e_<a7r)det(t(x—+rld dek]dr (4.21)
L b k#j

where x" is the matrix x in which the variable z; ; has been replaced by r;, for all i € [d].
Then we derive from (4.20) and (4.21) that for fixed r € R<,

det 1)
P(T, € dt) = / ‘%(t("# x) [ dew.dt. (4.22)
Ré@-D L k#j
:

Leti € [d] and r = re;, then

det(
P(T, € dt) = / 7“:7 9] de s,
Ré@-1D ! k#j
¢

where X" is the matrix obtained from X by deleting the row and the column i. From
Exercise 1. in Chapter I of [3], the Lévy measure of the subordinator (T,e,),>0 is the
vague limit of P(T, € dt)/r as r tends to 0, on sets of the form {|t| > a}, a > 0. Hence
the expression of the statement follows from continuity property of px.

The expression for d = 1 is obtained in the same way by using the simpler form (4.8)
of P(T, € dt) in this case. O

A Appendix
Proof of Lemma 2.3. This proof is based on the observation that for each i € [d], as a

d ..
function of t, the term ) z*7(¢;) has no negative jumps. Moreover, when ¢; is fixed, it is
j=1
non decreasing

Let us set v; 1) _ r; and forn > 1,

s = inf{t: 2l = —o™} and "V =1, + Z xi’j(sgn)—) ,
J#i
where inf ) = co. Set also s’ = 0 and note that [d],o) = [d]. Then since for i # j, the
x"J’s are positive and non decreasing, we have

s(m) < st and [d)sntn C [dgmy, n>0.

Let us set s(>) = lim s(®). Then s(>) is the smallest solution of the system (r,x) in the

n—roo
sense which is defined in part 1. of Lemma 2.3. Indeed, let i € [d] (). By definition and
since z' has no negative jumps, for all n > 1, 2%i(s{"™ —) = —{"). Moreover, since the
processes t —» 2% (t—) are left continuous, lim 2% (s —) = 2¢(s°)—) and lim o\ =
n—oo n—oo
.. d ..
i+ > x”(sy’o)—). Hence (2.1) is satisfied for s(>), that is r; + xw(s;(x’)—) =0, for
iFi j=1
all i € [d]y). Now let t € E‘i satisfy (2.1), that is

ri+ Y at (=) + a2t (ti—) =0, i € [d]; . (A.1)
J#i
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We can prove by induction that t > s(™) for all n > 1. Firstly for (A.1) to be satisfied, we
should have t; > inf{s : 2%%(s—) = —r;}, for all i € [d];, hence t > s(!). Now assume that
t > s(™. Then [d]; C [d]» and from (A.1), for each i € [d]s,

o (=) = — | i + Zwi’j(tj—) <—|rm+ Zx”(sgm—)
J#i J#i
Therefore t; > inf {s cati(s—) = — (ri +3 xi’j(s;n)—)> } so that t > s("*1) and the
J#i
first assertion is proved.

If i/ < r, then one can easily prove by induction that, with obvious notation, s’ (") < s(™)
for all n > 1 and the first part of assertion 2. follows. For the second part, sets’ := lim s,,.

n—oo
Then first part of assertion 2. yields s’ < s. Moreover, from the left continuity of the

- d .
functions ¢ — x?, r; + Y 2" (s—) = 0, i € [d]¢ hence ¢’ is a solution of (r,x) and thus

Jj=1
s =s.
d d
Let u € R%, such that ) z7(u;—) < —r;, forall i € [d], and set 7}, = — > 2 (u;—).
j=1 j=1

~

Since 1’ > 1, it follows from 2. that the smallest solution s’ of the system (1/,x) is such
that s’ > s. But since u is also a solution of (r/,x), 1. implies u > s’ and the first assertion
of 3. follows. The second assertion of 3. is a consequence of the first one. Indeed, u < s
implies that u > s is not satisfied.

Assertion 4. follows from the above construction of s = s(°). Indeed, if there exists
i € [d]s and t; < s; such that z%¢(¢,—) < 2%%(s;—) then

in’j(sj—) + 2 (t—) < Z I (s;—) = -7 (A.2)

JFi J€ld]

and for all k € [d]s \ {i},

Z:ck’j(sjf) + 2Pt —) < Z ahI(sj—) = -1 . (A.3)
J#i J€[d]
Then set for all k € [d];, 7, = — (Z oI (s;—) —&—x’”(ti—)) and for all & € [d] \ [d]s,
JF#i

r, = rx. Let s’ be the smallest solution of the system (1’,x). From part 2. of the present
lemma, since r’ > r, s’ > s. On the other hand, from (A.2), (A.3) and part 3. of the present
lemma, s > (s1,...,8i—1,ti, Si+1,---,84) > s which is a contradiction. O

Proof of Lemma 4.6. Let us first assume that Y has bounded variation. Then the charac-
teristic exponent ¢ of Y can be written as

V() = —ila, A) +/ (1— &9 n(dx), AeRY,
(0,00)4
where a = (ay, .. .,aq) € R? and the Lévy measure 7 satisfies f(o Oo)d(l A x]) m(dx) < 0.
Let 7(¥) be the restriction of 7 to the set [k~!, 00)? i.e. 7" (dx) = L1 ooyam(dx).
For z € R, set sign(z) = 1{;~0} — L{z<0}. Then we consider the following sequence of
(k~=1Z)4-valued Lévy processes

N
k —1ny(k
n=0
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where N*) = (sign(a;)NV¥, ..., sign(ag)N“*) and NV, ..., N%* are independent Pois-

son processes with respective intensities k|a;], (Nt( ))tZO is a Poisson process with

intensity 7([k~!,00)?) and for each k > 1, (Z%k))nzo is a sequence of i.i.d random
variables such that Z” "2’ k=1|kZ;| and 7, has law (r([k!, 00)?))~17(®) (dx). (Here
|x] = (|x1],..., |zq]) and we recall that |z;| denotes the lower integer part of z; € R.)
Moreover, the sequences {(NE’”)DO, k> 1}, {(Nt(k))t>0, k> 1} and {(Z%k))n>0, k> 1} are
independent. Then we can check that Y*) has characteristic exponent -

d 4Ajsi n(aj) .
Yr(\) = Zk‘\aj\ <1 — TR ) + /(0 )d(l — NN M) (dx), N e RY,
=1 09

whose limit, as k& tends to oo, is (), for all A € R?. It proves that the sequence of
random variables (ng))kzl converges weakly towards Y.

Then recall that from Theorem 2.7 in [14], which can be extended in higher dimension,
see Section 5 in the same paper, the weak convergence of the sequence of random
variables (ng)) k>1 toward Y, implies the weak convergence of the sequence of processes
{(ng))tzo, k > 1} towards (Y}:):>o in the J; Skohorod’s topology. Hence our result is
proved in the case where Y has bounded variation.

Let us now assume that Y is any Lévy process as described in the statement and set
A; =Y, — Y,_. Then it is well known that the sequence of processes

Zgn) = Zﬂ{\Asbn’l}AS — t/(o v xﬂ{‘xbna}ﬂ(dx), t >0,
s<t ,O0

converges weakly toward Y as n tends to oo, see the proof of Theorem 1 of Chapter I in
[3] and the above argument on weak convergence in the J; Skohorod’s topology. Since,
for each n, Z(™ is a Lévy process with bounded variation whose all coordinates have
no negative jumps, in application of what has just been proved, there is a sequence of
(k~='Z)%-valued Lévy processes Z(™k) I > 1 which converges weakly in the .J; Skohorod’s
topology toward Z(™. Moreover, for each k, all the coordinates of process Z("*) take
their values in the set {—k~1,0,k~', 2k~ 3k~ ... }. Then it suffices to set Y(*) := Z(k:k)
in order to obtain the desired sequence. O
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