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A new family of one dimensional martingale couplings
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Abstract

In this paper, we exhibit a new family of martingale couplings between two one-
dimensional probability measures µ and ν in the convex order. This family is parame-
trised by two dimensional probability measures on the unit square with respective
marginal densities proportional to the positive and negative parts of the difference
between the quantile functions of µ and ν. It contains the inverse transform martingale
coupling which is explicit in terms of the quantile functions of these marginal densities.
The integral of |x− y| with respect to each of these couplings is smaller than twice the
W1 distance between µ and ν. When the comonotonous coupling between µ and ν is
given by a map T , the elements of the family minimise

∫
R
|y − T (x)|M(dx, dy) among

all martingale couplings between µ and ν. When µ and ν are in the decreasing (resp.
increasing) convex order, the construction is generalised to exhibit super (resp. sub)
martingale couplings.
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1 Introduction

For all d ∈ N∗, ρ ≥ 1 and µ, ν in the set Pρ(Rd) of probability measures on Rd with
finite ρ-th moment, we define the Wasserstein distance with index ρ by Wρ(µ, ν) =

(infP∈Π(µ,ν)

∫
Rd×Rd |x− y|

ρ P (dx, dy))1/ρ, where Π(µ, ν) denotes the set of couplings be-

tween µ and ν, that is Π(µ, ν) = {P ∈ P1(Rd × Rd) | ∀A ∈ B(Rd), P (A × Rd) =

µ(A) and P (Rd ×A) = ν(A)}. Let ΠM(µ, ν) be the set of martingale couplings between µ
and ν, that is

ΠM(µ, ν) =

{
M ∈ Π(µ, ν) | µ(dx)-a.e.,

∫
Rd
|y|m(x, dy) < +∞ and

∫
Rd
ym(x, dy) = x

}
.
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The celebrated Strassen theorem [22] ensures that if µ, ν ∈ P1(Rd), then ΠM(µ, ν) 6= ∅
iff µ and ν are in the convex order. We recall that two probability measures µ, ν ∈ P1(Rd)

are in the convex order, and denote µ ≤cx ν, if
∫
Rd
f(x)µ(dx) ≤

∫
Rd
f(y) ν(dy) for any

convex function f : Rd → R. We denote µ <cx ν if µ ≤cx ν and µ 6= ν. For all ρ ≥ 1 and
µ, ν ∈ Pρ(Rd), we defineMρ(µ, ν) by

Mρ(µ, ν) =

(
inf

M∈ΠM(µ,ν)

∫
Rd×Rd

|x− y|ρM(dx, dy)

)1/ρ

.

Our main result is the following stability inequality which shows that if µ and ν are in
the convex order and close to each other, then there exists a martingale coupling which
expresses this proximity:

∀µ, ν ∈ P1(R) such that µ ≤cx ν, M1(µ, ν) ≤ 2W1(µ, ν). (1.1)

It is well known (see for instance [23, Remark 2.19 (ii) Chapter 2]) that for all
µ, ν ∈ Pρ(R),

Wρ(µ, ν) =

(∫ 1

0

∣∣F−1
µ (u)− F−1

ν (u)
∣∣ρ du)1/ρ

, (1.2)

where we denote by Fη(x) = η((−∞, x]) and F−1
η (u) = inf{x ∈ R | Fη(x) ≥ u}, u ∈ (0, 1),

the cumulative distribution function and the quantile function of a probability measure η
on R. We prove the inequality (1.1) by exhibiting a new family of martingale couplings
M such that

∫
R×R |x− y|M(dx, dy) ≤ 2W1(µ, ν). We will show (see the proof of Theorem

2.12) that the constant 2 is sharp in (1.1). We will also see that (1.1) cannot be generalised
with M1(µ, ν) and W1(µ, ν) replaced with Mρ(µ, ν) and Wρ(µ, ν) for ρ > 1. The case
ρ = 2 is easy, since for all µ, ν ∈ P2(R) and M ∈ ΠM(µ, ν),

∫
R×R |x − y|

2M(dx, dy) =∫
R
y2 ν(dy) −

∫
R
x2 µ(dx), which is independent from M . For all n ∈ N∗, let µn be the

centred Gaussian distribution with variance n2. Then we get that M2(µn, µn+1) =√
2n+ 1 −→

n→+∞
+∞, whereas Wρ(µn, µn+1) = (

∫ 1

0
|nF−1

µ1
(u) − (n + 1)F−1

µ1
(u)|ρ du)1/ρ =

E[|G|ρ]1/ρ < +∞ for G ∼ N1(0, 1), which makes the equivalent of (1.1) impossible to
hold. Extension to the case ρ > 2 is immediate with the same example thanks to
Jensen’s inequality which providesMρ(µn, µn+1) ≥ M2(µn, µn+1) =

√
2n+ 1, whereas

Wρ(µn, µn+1) is still bounded.
This problem is motivated by the resolution of the Martingale Optimal Transport

(MOT) problem introduced by Beiglböck, Henry-Labordère and Penkner [3] in a discrete
time setting, and Galichon, Henry-Labordère and Touzi [12] in a continuous time setting.
For adaptations of celebrated results on classical optimal transport theory to the MOT
problem, we refer to Henry-Labordère, Tan and Touzi [14] and Henry-Labordère and
Touzi [15]. To tackle numerically the MOT problem, we refer to Alfonsi, Corbetta and
Jourdain [1], Alfonsi, Corbetta and Jourdain [2], De March [7] and Guo and Obłój [13].
On duality, we refer to Beiglböck, Nutz and Touzi [6], Beiglböck, Lim and Obłój [5]
and De March [9]. We also refer to De March [8] and De March and Touzi [10] for the
multi-dimensional case. Once the martingale optimal transport problem is discretised
by approximating µ and ν by probability measures with finite support and in the convex
order, one can raise the question of the convergence of the discrete optimal cost towards
the continuous one. The present paper is a step forward in proving the stability of the
martingale optimal transport problem with respect to the marginals.

We develop in Section 2 an abstract construction of a new family of martingale
couplings between two probability measures µ and ν on the real line with finite first
moments and comparable in the convex order. This family is parametrised by two
dimensional probability measures on the unit square with respective marginal densities
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proportional to the positive and the negative parts of the difference F−1
µ − F−1

ν between
the quantile functions of µ and ν. Moreover, each martingale coupling in the family
is obtained as the image of 1(0,1)(u) du m̃Q(u, dy) by (u, y) 7→ (F−1

µ (u), y) where m̃Q

is a Markov kernel on (0, 1) × R such that
∫

(0,1)
m̃Q(u, {y ∈ R | |y − F−1

ν (u)| = (y −
F−1
ν (u))sg(F−1

µ (u)−F−1
ν (u))})du = 1, where sg(x) = 1{x>0}−1{x<0} for x ∈ R. Therefore,

for (U, Y ) distributed according to 1(0,1)(u) du m̃Q(u, dy), (F−1
µ (U), Y ) is a martingale

coupling and

E[|Y − F−1
ν (U)|] = E[sg(F−1

µ (U)− F−1
ν (U))E[Y − F−1

ν (U)|U ]]

= E[|F−1
µ (U)− F−1

ν (U)|] =W1(µ, ν).
(1.3)

When the comonotonous coupling between µ and ν, that is the probability distribution
of (F−1

µ (U), F−1
ν (U)), is given by a map T , the elements of the family minimise

∫
R
|y −

T (x)|M(dx, dy) among all martingale couplings between µ and ν. We deduce from (1.3)
that E[|Y −F−1

µ (U)|] ≤ E[|Y −F−1
ν (U)|]+E[|F−1

ν (U)−F−1
µ (U)|] = 2W1(µ, ν) which implies

(1.1) as soon as the parameter set of probability measures on the unit square is non
empty.

In Section 3, we give an explicit example of such a probability measure on the unit
square. We call the associated martingale coupling the inverse transform martingale
coupling. This coupling is explicit in terms of the cumulative distribution functions of the
above-mentioned densities and their left-continuous generalised inverses. It is therefore
more explicit than the left-curtain (and right-curtain) coupling introduced by Beiglböck
and Juillet [4] which under the condition that ν has no atoms and the set of local maximal
values of Fν − Fµ is finite can be made explicit according to Henry-Labordère and Touzi
[15] by solving two coupled ordinary differential equations starting from each right-
most local maximiser. We also check that the inverse transform martingale coupling is
stable with respect to its marginals µ and ν for the Wasserstein distance. The building
brick of the inverse transform martingale coupling is a martingale coupling between
µu,v = pδF−1

µ (u) + (1 − p)δF−1
µ (v) and νu,v = pδF−1

ν (u) + (1 − p)δF−1
ν (v) with 0 < u < v < 1

such that
F−1
ν (u) < F−1

µ (u) < F−1
µ (v) < F−1

ν (v), (1.4)

where we choose a common weight p (resp. 1 − p) for F−1
µ (u) and F−1

ν (u) (resp.
F−1
µ (v) and F−1

ν (v)) to help ensuring that the second marginal is equal to ν when
the first is equal to µ. Then p is given by the equality of the means which in view
of the condition (1.4) on the supports is equivalent to the convex order between

µu,v and νu,v:
1−p
p =

F−1
µ (u)−F−1

ν (u)

F−1
ν (v)−F−1

µ (v)
. We rely on the necessary condition of [21, The-

orem 3.A.5 Chapter 3]: µ, ν ∈ P1(R) are such that µ ≤cx ν iff for all u ∈ [0, 1],∫ u
0
F−1
µ (v) dv ≥

∫ u
0
F−1
ν (v)dv with equality for u = 1. This implies that for all u ∈ [0, 1],

Ψ+(u) :=
∫ u

0
(F−1
µ −F−1

ν )+(v) dv ≥
∫ u

0
(F−1
µ −F−1

ν )−(v) dv := Ψ−(u) where x+ := max(x, 0)

and x− := max(−x, 0) respectively denote the positive and negative parts of a real
number x. We now choose v = Ψ−1

− (Ψ+(u)) where Ψ−1
− is the left-continuous gen-

eralised inverse of Ψ−. Then dΨ+(u) a.e. u < v (consequence of Ψ− ≤ Ψ+) and
F−1
ν (u) < F−1

µ (u) < F−1
µ (v) < F−1

ν (v) (consequence of the definitions of Ψ+ and Ψ−, see

Section 3.1). Moreover the key equality dv
du =

(F−1
µ −F

−1
ν )+(u)

(F−1
µ −F−1

ν )−(v)
= 1−p

p explains why the

construction succeeds. More details are given in Section 3.
The cardinality of this new family of martingale couplings between µ and ν is dis-

cussed in Section 4. This family is shown to be convex and is therefore either a singleton
like when ν only weighs two points, or uncountably infinite like when µ({x}) = ν({x}) = 0

for all x ∈ R.
The construction is finally generalised in Section 5 to exhibit super (resp. sub)

martingale couplings as soon as µ is smaller than ν in the decreasing (resp. increasing)
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convex order. We recall that two probability measures µ, ν ∈ P1(R) are in the decreasing
(resp. increasing) convex order and denote µ ≤dcx ν (resp. µ ≤icx ν) if

∫
R
f(x)µ(dx) ≤∫

R
f(x) ν(dx) for any decreasing (resp. increasing) convex function f : R → R. In

particular, we generalise the stability inequality to the super (resp. sub) martingale case.
Throughout the present article, a capital letterM which denotes a coupling between µ

and ν is associated to its small letter m which denotes the regular conditional probability
distribution of M with respect to µ, that is the (µ-a.e.) unique Markov kernel such that
M(dx, dy) = µ(dx)m(x, dy).

2 A new family of martingale couplings

2.1 A simple example

Let us construct a coupling in dimension 1 which shows that (1.1) holds true in
a simple case. We say that a centred probability measure µ ∈ P1(R) is symmetric if
µ = µ̄, where µ̄ denotes the image of µ by x 7→ −x. Let then µ and ν be centred and
symmetric probability measures on R such that F−1

µ (u) ≥ F−1
ν (u) for all u ∈ (0, 1/2] and

F−1
µ (u) ≤ F−1

ν (u) for all u ∈ (1/2, 1). Let U be a random variable uniformly distributed
on (0, 1). According to the inverse transform sampling, the probability distributions of
F−1
µ (U) and F−1

ν (U) are respectively µ and ν. Let Y be the random variable defined by

Y = F−1
ν (U)1

{F−1
ν (U)6=0,V≤F

−1
µ (U)+F

−1
ν (U)

2F
−1
ν (U)

}
− F−1

ν (U)1
{F−1
ν (U)6=0,V >

F
−1
µ (U)+F

−1
ν (U)

2F
−1
ν (U)

}
, (2.1)

where V is a random variable uniformly distributed on (0, 1) independent from U . It is
clear by symmetry of µ that Fµ(0) ≥ 1/2, so F−1

µ (1/2) ≤ 0. Moreover, for all x ∈ R and
u > 1/2, Fµ(x) ≥ u implies x ≥ 0, so F−1

µ (u) ≥ 0. Therefore, we have

∀u ∈ (0, 1/2], F−1
ν (u) ≤ F−1

µ (u) ≤ 0 and ∀u ∈ (1/2, 1), 0 ≤ F−1
µ (u) ≤ F−1

ν (u). (2.2)

In particular, when F−1
ν (U) = 0, then F−1

µ (U) = 0 and Y = 0. Let us check that Y is
distributed according to ν. Using that (F−1

µ (U), F−1
ν (U)) and (−F−1

µ (U),−F−1
ν (U)) are

identically distributed (see Lemma 6.5 below in Section 6), we have for all measurable
and bounded functions h : R→ R,

E[h(Y )] = E

[
h(F−1

ν (U))1
{F−1
ν (U)6=0,V≤F

−1
µ (U)+F

−1
ν (U)

2F
−1
ν (U)

}

]
+ E

[
h(F−1

ν (U))1
{F−1
ν (U)6=0,V >

F
−1
µ (U)+F

−1
ν (U)

2F
−1
ν (U)

}

]
+ h(0)P(F−1

ν (U) = 0)

= E[h(F−1
ν (U))].

Moreover, according to (2.2), we have
F−1
µ (u)+F−1

ν (u)

2F−1
ν (u)

∈ [0, 1] for all u ∈ (0, 1) such that

F−1
ν (u) 6= 0. In addition to that, we have

F−1
ν (u)

F−1
µ (u) + F−1

ν (u)

2F−1
ν (u)

− F−1
ν (u)

(
1−

F−1
µ (u) + F−1

ν (u)

2F−1
ν (u)

)
= F−1

µ (u),

for all u ∈ (0, 1) such that F−1
ν (u) 6= 0. So E[Y |U ] = F−1

µ (U)1{F−1
ν (U)6=0} = F−1

µ (U) since

F−1
ν (U) = 0 implies F−1

µ (U) = 0. So we deduce that E[Y |F−1
µ (U)] = F−1

µ (U). Therefore,
the law of (F−1

µ (U), Y ) is an explicit martingale coupling between µ and ν.
Furthermore, remarking that |Y −F−1

ν (U)| = (Y −F−1
ν (U))sg(F−1

µ (U)−F−1
ν (U)), we

deduce from the equality (1.3) that E[|Y − F−1
µ (U)|] ≤ E[|Y − F−1

ν (U)|] + E[|F−1
ν (U) −

F−1
µ (U)|] = 2W1(µ, ν), so (1.1) holds.
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2.2 Definition

Let µ and ν be two probability measures on R with finite first moment such that∫
R
xµ(dx) =

∫
R
y ν(dy) and µ 6= ν. We recall that Ψ+ and Ψ− are defined for all u ∈ [0, 1]

by Ψ+(u) =
∫ u

0
(F−1
µ − F−1

ν )+(v) dv and Ψ−(u) =
∫ u

0
(F−1
µ − F−1

ν )−(v) dv. Let U+, U− and
U0 be defined by

U+ = {u ∈ (0, 1) | F−1
µ (u) > F−1

ν (u)}, U− = {u ∈ (0, 1) | F−1
µ (u) < F−1

ν (u)}
and U0 = {u ∈ (0, 1) | F−1

µ (u) = F−1
ν (u)}. (2.3)

Notice that dΨ+(u)-a.e. (resp. dΨ−(u)-a.e.), we have u ∈ U+ (resp. u ∈ U−). Since µ
and ν have equal means, we can set γ =

∫ 1

0
(F−1
µ −F−1

ν )+(u) du =
∫ 1

0
(F−1
µ −F−1

ν )−(u) du ∈
(0,+∞). We note Q the set of probability measures Q(du, dv) on (0, 1)2 such that

(i) Q has first marginal 1
γ (F−1

µ − F−1
ν )+(u) du = 1

γ dΨ+(u);

(ii) Q has second marginal 1
γ (F−1

µ − F−1
ν )−(v) dv = 1

γ dΨ−(v);

(iii) Q
(
{(u, v) ∈ (0, 1)2 | u < v}

)
= 1.

Example 2.1. Let µ, ν ∈ P1(R) be such that µ <cx ν. Suppose that the difference of
the quantile functions changes sign only once, that is there exists p ∈ (0, 1) such that
u 7→

∫ u
0

(F−1
µ (v)− F−1

ν (v)) dv is nondecreasing on [0, p] and nonincreasing on [p, 1]. Then
one can easily see that any probability measure Q defined on (0, 1) satisfying properties
(i) and (ii) of the definition of Q is concentrated on (0, p)× (p, 1) and therefore satisfies
(iii). In particular, the probability measure Q1 defined on (0, 1)2 by

Q1(du, dv) =
1

γ2
(F−1
µ − F−1

ν )+(u) du (F−1
µ − F−1

ν )−(v) dv (2.4)

is an element of Q.

In view of (i) and (ii), one could rewrite (iii) as Q ({(u, v) ∈ U+ × U− | u < v}) = 1. A
characterisation of the support of Q in terms of the irreducible components of µ and ν
is given by Proposition 2.8 below. In the general case, the construction of a probability
measure Q ∈ Q is not straightforward, but a direct consequence of Proposition 3.1 below
is that Q is non-empty as long as µ, ν ∈ P1(R) are such that µ <cx ν. Moreover, the
convexity of Q is clear.

Proposition 2.2. Let µ, ν ∈ P1(R) be such that µ <cx ν. Then Q is a non-empty convex
set.

Let Q be an element of Q. Let πQ− and πQ+ be two sub-Markov kernels on (0, 1) such

that for du-almost all u ∈ U+ and dv-almost all v ∈ U−, πQ+(u, (0, 1)) = 1, πQ−(v, (0, 1)) = 1

and

Q(du, dv) =
1

γ
(F−1
µ − F−1

ν )+(u) duπQ+(u, dv) =
1

γ
(F−1
µ − F−1

ν )−(v) dv πQ−(v, du).
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Let (m̃Q(u, dy))u∈(0,1) be the Markov kernel defined by

∫
v∈(0,1)

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)
δF−1

ν (v)(dy)πQ+(u, dv)

+

∫
v∈(0,1)

F−1
ν (v)− F−1

µ (u)

F−1
ν (v)− F−1

ν (u)
πQ+(u, dv) δF−1

ν (u)(dy)

for u ∈ U+ such that πQ+(u, {v ∈ (0, 1) | F−1
ν (v) > F−1

µ (u)}) = 1;

∫
v∈(0,1)

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)
δF−1

ν (v)(dy)πQ−(u, dv)

+

∫
v∈(0,1)

F−1
ν (v)− F−1

µ (u)

F−1
ν (v)− F−1

ν (u)
πQ−(u, dv) δF−1

ν (u)(dy)

for u ∈ U− such that πQ−(u, {v ∈ (0, 1) | F−1
ν (v) < F−1

µ (u)}) = 1;

δF−1
ν (u)(dy) otherwise.

(2.5)

For any Markov kernel (m̃(u, dy))u∈(0,1), we denote by (m(x, dy))x∈R the Markov
kernel defined by

δx(dy) if Fµ(x) = 0 or Fµ(x−) = 1;

1

µ({x})

∫ Fµ(x)

u=Fµ(x−)

m̃(u, dy) du if µ({x}) > 0;

m̃(Fµ(x), dy) otherwise.

(2.6)

For all x ∈ R such that Fµ(x) > 0 and Fµ(x−) < 1, m(x, dy) can be rewritten as

m(x, dy) =

∫ 1

v=0

m̃(Fµ(x−) + v(Fµ(x)− Fµ(x−)), dy) dv. (2.7)

Conversely, let (p(x, dy))x∈R be a Markov kernel. Let then (m̃(u, dy))u∈(0,1) be the
Markov kernel defined for all u ∈ (0, 1) by m̃(u, dy) = p(F−1

µ (u), dy). Let (m(x, dy))x∈R
be the Markov kernel defined by (2.6). Let x ∈ R be such that Fµ(x−) > 0 and
Fµ(x) < 1. If µ({x}) > 0, then for all u ∈ (Fµ(x−), Fµ(x)], F−1

µ (u) = x. Hence m(x, dy) =
1

µ({x})
∫ Fµ(x)

u=Fµ(x−)
m̃(u, dy) du = 1

µ({x})
∫ Fµ(x)

u=Fµ(x−)
p(x, dy) du = p(x, dy). By Lemma 6.3 be-

low, F−1
µ (Fµ(x)) = x, µ(dx)-almost everywhere. So for µ(dx)-almost all x ∈ R such

that Fµ(x−) > 0, Fµ(x) < 1 and µ({x}) = 0, m(x, dy) = p(F−1
µ (Fµ(x)), dy) = p(x, dy).

Therefore, for µ(dx)-almost all x ∈ R, p(x, dy) = m(x, dy).
Throughout the present article, for any Q ∈ Q, (mQ(x, dy))x∈R and MQ will respec-

tively denote the Markov kernel given by (2.6) when (m̃(u, dy))u∈(0,1) = (m̃Q(u, dy))u∈(0,1)

and the probability measure on R2 defined by MQ(dx, dy) = µ(dx)mQ(x, dy).

Proposition 2.3. Let µ and ν be two distinct probability measures on R with finite first
moment and equal means such that Q is non-empty. Let Q ∈ Q. Then the probability
measure MQ is a martingale coupling between µ and ν.

One can easily check thanks to Jensen’s inequality that the existence of a martingale
coupling between µ and ν implies that µ ≤cx ν (see Remark 3.2 for a proof). A direct
consequence of the latter fact and the last two propositions is an easy characterisation
of the emptiness of Q.
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Corollary 2.4. Let µ and ν be two distinct probability measures on R with finite first
moment and equal means. Then Q 6= ∅ iff µ ≤cx ν.

The proof of Proposition 2.3 relies on the two following lemmas.

Lemma 2.5. Let Q ∈ Q. For du-almost all u ∈ (0, 1),{
u ∈ U+ =⇒ F−1

ν (v) > F−1
µ (u), πQ+(u, dv)-a.e;

u ∈ U− =⇒ F−1
ν (v) < F−1

µ (u), πQ−(u, dv)-a.e.

Proof of Lemma 2.5. We have∫
(0,1)

(∫
(0,1)

1{F−1
ν (v)≤F−1

µ (u)}π
Q
+(u, dv)

)
(F−1
µ − F−1

ν )+(u) du

= γ

∫
(0,1)2

1{F−1
ν (v)≤F−1

µ (u)}Q(du, dv) ≤ γ
∫

(0,1)2

1{F−1
ν (v)≤F−1

µ (v)}Q(du, dv)

=

∫
(0,1)2

1{F−1
µ (v)−F−1

ν (v)≥0}(F
−1
µ − F−1

ν )−(v) dv πQ−(v, du) = 0,

where we used for the inequality that u < v, Q(du, dv)-almost everywhere and that
F−1
µ is nondecreasing. So for du-almost all u ∈ U+, πQ+(u, dv)-a.e., F−1

ν (v) > F−1
µ (u).

With a symmetric reasoning, we obtain that for du-almost all u ∈ U−, πQ−(u, dv)-a.e.,
F−1
ν (v) < F−1

µ (u).

Lemma 2.6. Let (m̃(u, dy))u∈(0,1) be a Markov kernel and let (m(x, dy))x∈R be given by
(2.6). Then

µ(dx)m(x, dy) = (F−1
µ (u), y)]

(
1(0,1)(u) du m̃(u, dy)

)
,

where ] denotes the pushforward operation.

Proof of Lemma 2.6. Let h : R2 → R be a measurable and nonnegative function. By
Lemma 6.4 below, Fµ(x) > 0 and Fµ(x−) < 1, µ(dx)-almost everywhere. So using (2.7),
we have∫

R×R
h(x, y)µ(dx)m(x, dy)

=

∫
R×R×(0,1)

h(x, y)1{0<Fµ(x),Fµ(x−)<1} µ(dx) m̃(Fµ(x−) + v(Fµ(x)− Fµ(x−)), dy) dv.

Let θ : (x, v) 7→ Fµ(x−) + v(Fµ(x)− Fµ(x−)). By Lemma 6.6 below, x = F−1
µ (θ(x, v)),

µ(dx)⊗dv-almost everywhere on R× (0, 1) and θ(x, v)](µ(dx)⊗1(0,1)(v) dv) = 1(0,1)(u) du.
So∫
R×R

h(x, y)µ(dx)m(x, dy)

=

∫
R×R×(0,1)

h(F−1
µ (θ(x, v)), y)1{0<Fµ(F−1

µ (θ(x,v))),Fµ(F−1
µ (θ(x,v)−))<1} µ(dx) m̃(θ(x, v), dy) dv

=

∫
R×(0,1)

h(F−1
µ (u), y)1{0<Fµ(F−1

µ (u)),Fµ(F−1
µ (u)−)<1} m̃(u, dy) du.

By Lemma 6.4 below and the inverse transform sampling, Fµ(F−1
µ (u)) > 0 and

Fµ(F−1
µ (u)−) < 1, du-almost everywhere on (0, 1), hence∫

R×R
h(x, y)µ(dx)m(x, dy) =

∫
R×(0,1)

h(F−1
µ (u), y) m̃(u, dy) du.
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Proof of Proposition 2.3. Let us show that MQ defines a coupling between µ and ν. Let
h : R → R be a measurable and nonnegative (or bounded) function. We want to show
that ∫

R×R
h(y)µ(dx)mQ(x, dy) =

∫
R

h(y) ν(dy),

which by Lemma 2.6 and the inverse transform sampling is equivalent to∫ 1

0

∫
R

h(y) m̃Q(u, dy) du =

∫ 1

0

h(F−1
ν (u)) du. (2.8)

Thanks to Lemma 2.5, we get for du-almost all u ∈ (0, 1),∫
R

h(y) m̃Q(u, dy)

=

∫
(0,1)

(
1−

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)

)
h(F−1

ν (u))
(
πQ+(u, dv)1{F−1

µ (u)>F−1
ν (u)}

+πQ−(u, dv)1{F−1
µ (u)<F−1

ν (u)}

)
+

∫
(0,1)

(
F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)

)
h(F−1

ν (v))
(
πQ+(u, dv)1{F−1

µ (u)>F−1
ν (u)}

+πQ−(u, dv)1{F−1
µ (u)<F−1

ν (u)}

)
+ h(F−1

ν (u))1{F−1
µ (u)=F−1

ν (u)}

= h(F−1
ν (u)) +

∫
(0,1)

(F−1
µ − F−1

ν )+(u)

F−1
ν (v)− F−1

ν (u)
(h(F−1

ν (v))− h(F−1
ν (u)))πQ+(u, dv)

+

∫
(0,1)

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (v)
(h(F−1

ν (v))− h(F−1
ν (u)))πQ−(u, dv).

(2.9)

Since ∫
(0,1)2

(F−1
µ − F−1

ν )+(u)

F−1
ν (v)− F−1

ν (u)
(h(F−1

ν (v)− h(F−1
ν (u)))πQ+(u, dv) du

= γ

∫
(0,1)2

h(F−1
ν (v))− h(F−1

ν (u))

F−1
ν (v)− F−1

ν (u)
Q(du, dv)

=

∫
(0,1)2

h(F−1
ν (v))− h(F−1

ν (u))

F−1
ν (v)− F−1

ν (u)
(F−1
µ − F−1

ν )−(v)πQ−(v, du) dv

= −
∫

(0,1)2

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (v)
(h(F−1

ν (v))− h(F−1
ν (u)))πQ−(u, dv) du,

we deduce that
∫ 1

0

∫
R
h(y) m̃Q(u, dy) du =

∫ 1

0
h(F−1

ν (u)) du. We conclude that MQ is a
coupling between µ and ν. In particular for h : y 7→ |y|, using the inverse transform
sampling, we have∫ 1

0

∫
R

|y| m̃Q(u, dy) du =

∫ 1

0

|F−1
ν (u)| du =

∫
R

|y| ν(dy) < +∞.

So
∫
R
y m̃Q(u, dy) is well defined du-almost everywhere on (0, 1).
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Let us show now that MQ defines a martingale coupling between µ and ν. By Lemma
2.5, for du-almost all u ∈ U+,∫

R

y m̃Q(u, dy) =

∫
(0,1)

(
1−

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)

)
F−1
ν (u)πQ+(u, dv)

+

∫
(0,1)

(
F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)

)
F−1
ν (v)πQ+(u, dv)

=

∫
(0,1)

(F−1
ν (u) + F−1

µ (u)− F−1
ν (u))πQ+(u, dv)

= F−1
µ (u). (2.10)

In the same way, for du-almost all u ∈ U−,∫
R

y m̃Q(u, dy) = F−1
µ (u). (2.11)

Else if u ∈ U0, then by definition of m̃Q(u, dy),∫
R

y m̃Q(u, dy) = F−1
ν (u) = F−1

µ (u),

so for du-almost all u ∈ (0, 1),
∫
R
y m̃Q(u, dy) = F−1

µ (u).
Let h : R→ R be a measurable and bounded function. By Lemma 2.6,∫
R×R

h(x)(y − x)µ(dx)mQ(x, dy) =

∫ 1

0

h(F−1
µ (u))

(∫
R

(y − F−1
µ (u)) m̃Q(u, dy)

)
du = 0.

So µ(dx)mQ(x, dy) is a martingale coupling between µ and ν.

Let H : R2 → R be a measurable and bounded function. Lemma 2.6 and (2.9) written
with h : y 7→ H(F−1

µ (u), y) yield the following formula, which illustrates well how the

martingale coupling MQ differs from the comonotous coupling between µ and ν:∫
R×R

H(x, y)MQ(dx, dy)−
∫ 1

0
H(F−1

µ (u), F−1
ν (u)) du

= γ

∫
(0,1)2

H(F−1
µ (u), F−1

ν (v))−H(F−1
µ (u), F−1

ν (u)) +H(F−1
µ (v), F−1

ν (u))−H(F−1
µ (v), F−1

ν (v))

F−1
ν (v)− F−1

ν (u)
Q(du, dv).

(2.12)

Notice that the last integral is well defined since we have Q(du, dv) = 1
γ (F−1

µ −
F−1
ν )+(u) duπQ+(u, dv) and according to Lemma 2.5, there holds Q(du, dv)-almost every-

where F−1
ν (v) > F−1

µ (u) > F−1
ν (u). Moreover, the fact that µ and ν have finite first

moment along with the inverse transform sampling show that (2.12) also holds for any
measurable map H : R2 → R with at most linear growth. As shown in the next proposi-
tion, we can easily deduce from this formula that the map Q 3 Q 7→MQ is one-to-one as
soon as Fµ and Fν are continuous.

Proposition 2.7. Let µ, ν ∈ P1(R) be such that µ <cx ν. If Fµ and Fν are continuous,
then the map Q 3 Q 7→MQ is one-to-one.

Proof. Let Q,Q′ ∈ Q be such that Q 6= Q′. Then there exists a borel set A ⊂ (0, 1)2 such
that Q(A) 6= Q′(A). Let

H : (x, y) 7→ (y − F−1
ν (Fµ(x)))+1{Fµ(x)∈(0,1)}1A(Fµ(x), Fν(y))1{Fµ(x)<Fµ(y)}.
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Since Fµ and Fν are continuous, for all u, v ∈ (0, 1), we have Fµ(F−1
µ (u)) = u and

Fν(F−1
ν (v)) = v, so H(F−1

µ (u), F−1
ν (v)) = (F−1

ν (v)− F−1
ν (u))+1A(u, v)1{u<v}. We deduce

that for all u, v ∈ (0, 1), H(F−1
µ (u), F−1

ν (u)) = H(F−1
µ (v), F−1

ν (v)) = 0 and since (Q +

Q′)(du, dv)-almost everywhere on (0, 1)2, u < v, we have that (Q + Q′)(du, dv)-almost
everywhere on (0, 1)2, H(F−1

µ (v), F−1
ν (u)) = 0. Since H(x, y) grows at most linearly in

F−1
ν (Fµ(x)) and y, one can easily deduce from the integrability of µ and ν and the inverse

transform sampling that (2.12) holds. Using that (Q+Q′)(du, dv) almost everywhere on
(0, 1)2, F−1

ν (u) < F−1
µ (u) < F−1

ν (v), which is a consequence of Lemma 2.5, we obtain∫
R×R

H(x, y)MQ(dx, dy)−
∫
R×R

H(x, y)MQ′(dx, dy)

= γ

∫
(0,1)2

H(F−1
µ (u), F−1

ν (v))

F−1
ν (v)− F−1

ν (u)
Q(du, dv)− γ

∫
(0,1)2

H(F−1
µ (u), F−1

ν (v))

F−1
ν (v)− F−1

ν (u)
Q′(du, dv)

= γ(Q(A)−Q′(A)) 6= 0,

hence MQ 6= MQ′ and the map Q 3 Q 7→MQ is one-to-one.

According to [4, Theorem A.4], there exist N ∈ N∗ ∪ {+∞} and a sequence of disjoint
open intervals ((tn, tn))1≤n≤N such that{

t ∈ R |
∫ t

−∞
Fµ(x) dx <

∫ t

−∞
Fν(x) dx

}
=

N⋃
n=1

(tn, tn). (2.13)

These intervals are called the irreducible components of the pair (µ, ν). Moreover,
there exists a unique decomposition of probability measures (µn, νn)1≤n≤N , such that
the choice of any martingale coupling M between µ and ν reduces to the choice of a
sequence of martingale couplings (Mn)1≤n≤N . More precisely, for all 1 ≤ n ≤ N ,

Fµ(tn) ≤ Fν(tn) ≤ Fν((tn)−) ≤ Fµ((tn)−), Fµ(tn) < Fµ((tn)−), (2.14)

and µn and νn are given by
µn(dx) = 1

Fµ((tn)−)−Fµ(tn)
1(tn,tn)(x)µ(dx);

νn(dy) = 1
Fµ((tn)−)−Fµ(tn)

(
1(tn,tn)(y) ν(dy) + (Fν(tn)− Fµ(tn)) δtn(dy)

+ (Fµ((tn)−)− Fν((tn)−)) δtn(dy)
)
.

(2.15)

Then a probability measure M on R2 is a martingale coupling between µ and ν if
and only if there exists a sequence (Mn)1≤n≤N such that for all 1 ≤ n ≤ N , Mn is a
martingale coupling between µn and νn and

M(dx, dy) = 1R\
⋃N
n=1(tn,tn)(x)µ(dx) δx(dy) +

N∑
n=1

µ((tn, tn))Mn(dx, dy).

We can establish a strong connection between the support of any probability measure
Q ∈ Q and the irreducible components of (µ, ν).

Proposition 2.8. Let µ, ν ∈ P1(R) be such that µ <cx ν. Let (tn, tn)1≤n≤N denote the
irreducible components of (µ, ν). Then for all Q ∈ Q, we have

Q

 ⋃
1≤n≤N

(
Fµ(tn), Fµ((tn)−)

)2 = 1.
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Proof. Let Q ∈ Q. By [2, Lemma A.8], we have

W :=

N⋃
n=1

(
Fµ(tn), Fµ((tn)−)

)
=

{
u ∈ (0, 1) |

∫ u

0

F−1
µ (v) dv >

∫ u

0

F−1
ν (v) dv

}
.

Let u ∈ (0, 1) be such that F−1
µ (u) > F−1

ν (u), that is u ∈ U+. Since µ ≤cx ν, according
to the necessary condition of [21, Theorem 3.A.5 Chapter 3] (see also Remark 3.2 for a
proof), for all q ∈ [0, 1],

∫ q
0
F−1
µ (v) dv ≥

∫ q
0
F−1
ν (v) dv. By left-continuity of F−1

µ and F−1
ν ,

we deduce that
∫ u

0
F−1
µ (v) dv >

∫ u
0
F−1
ν (v) dv, that is u ∈ W. So U+ ⊂ W.

Let 1 ≤ n ≤ N . Then MQ transports (tn, tn) to [tn, tn], namely for µ(dx)-almost all
x ∈ (tn, tn), mQ(x, [tn, tn]) = 1. So using Lemma 2.6 for the last equality, we have∫ Fµ((tn)−)

Fµ(tn)

du = µ((tn, tn)) =

∫
R

1{tn<x<tn}µ(dx)

=

∫
R2

1{tn<x<tn}1{tn≤y≤tn} µ(dx)mQ(x, dy)

=

∫
(0,1)×R

1{tn<F
−1
µ (u)<tn}1{tn≤y≤tn} du m̃

Q(u, dy).

Using Lemma 6.3 below, one can easily see that for all u ∈ (0, 1),

1{Fµ(tn)<u<Fµ((tn)−)} ≤ 1{tn<F−1
µ (u)<tn} ≤ 1{Fµ(tn)<u≤Fµ((tn)−)},

so ∫ Fµ((tn)−)

Fµ(tn)

du =

∫
(0,1)×R

1{Fµ(tn)<u<Fµ((tn)−)}1{tn≤y≤tn} du m̃
Q(u, dy)

=

∫ Fµ((tn)−)

Fµ(tn)

m̃Q(u, [tn, tn]) du.

So for du-almost all u ∈ (Fµ(tn), Fµ((tn)−)), m̃Q(u, [tn, tn]) = 1. By Lemma 2.5,
dΨ+(u)-almost everywhere on (Fµ(tn), Fµ((tn)−)),

1 = πQ+(u, {v ∈ (0, 1) | F−1
ν (v) ∈ [tn, tn]})

= πQ+(u,U− ∩ (u, 1) ∩ {v ∈ (0, 1) | F−1
ν (v) ∈ [tn, tn]}),

where the last equality derives from conditions (ii) and (iii) satisfied by Q. Let u ∈
(Fµ(tn), Fµ((tn)−)). Let us check that

U− ∩ (u, 1) ∩ {v ∈ (0, 1) | F−1
ν (v) ∈ [tn, tn]} ⊂ U− ∩ (u, 1) ∩ (Fµ(tn), Fµ((tn)−)]. (2.16)

Let v ∈ (0, 1) be such that F−1
ν (v) ∈ [tn, tn]. First of all, if v > u then v >

Fµ(tn). Second, if v > Fµ((tn)−), then according to (2.14) and Lemma 6.3 below,
we have Fν((tn)−) ≤ Fµ((tn)−) < v ≤ Fν(tn). In that case, if v ≤ Fµ(tn), then
v ∈ (Fν((tn)−), Fν(tn)] ∩ (Fµ((tn)−), Fµ(tn)], so F−1

ν (v) = F−1
µ (v) = tn and v ∈ U0. Else if

v > Fµ(tn), then v ∈ (Fµ(tn), Fν(tn)] so F−1
ν (v) ≤ tn < F−1

µ (v) and v ∈ U+. This proves
(2.16).

Using conditions (ii) and (iii) satisfied by Q again and the fact that the second
marginal ofQ has a density, we get that dΨ+(u)-almost everywhere on (Fµ(tn), Fµ((tn)−)),

1 = πQ+(u,U− ∩ (u, 1) ∩ {v ∈ (0, 1) | F−1
ν (v) ∈ [tn, tn]})

≤ πQ+(u,U− ∩ (u, 1) ∩ (Fµ(tn), Fµ((tn)−)])

= πQ+(u, (Fµ(tn), Fµ((tn)−))).
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We deduce that

Q

 ⋃
1≤n≤N

(
Fµ(tn), Fµ((tn)−)

)2 =

N∑
n=1

Q
((
Fµ(tn), Fµ((tn)−)

)2)

=
1

γ

N∑
n=1

∫ Fµ((tn)−)

Fµ(tn)

dΨ+(u)πQ+(u, (Fµ(tn), Fµ((tn)−)))

=
1

γ

N∑
n=1

∫ Fµ((tn)−)

Fµ(tn)

dΨ+(u) =
1

γ
dΨ+(W)

≥ 1

γ
dΨ+(U+)

= 1,

where we used the fact that U+ ⊂ W for the inequality.

The next proposition clarifies the structure of the set of martingale couplings deriving
from Q and states a linearity property of the map Q ∈ Q 7→MQ. In particular, it ensures
that the set of martingale couplings deriving from Q is either a singleton, or uncountably
infinite.

Proposition 2.9. Let µ, ν ∈ P1(R) be such that µ <cx ν. Then for all Q,Q′ ∈ Q and
λ ∈ [0, 1],

MλQ+(1−λ)Q′ = λMQ + (1− λ)MQ′ .

In particular, the set {MQ | Q ∈ Q} is convex.

Proof. Let Q,Q′ ∈ Q and let λ ∈ [0, 1]. It is straightforward that for du-almost all u ∈ U+

and dv-almost all v ∈ U−,

π
λQ+(1−λ)Q′

+ (u, dy) = λπQ+(u, dy) + (1− λ)πQ
′

+ (u, dy);

π
λQ+(1−λ)Q′

− (v, dy) = λπQ−(v, dy) + (1− λ)πQ
′

− (v, dy).

Using Lemma 2.5, we get that for du-almost all u ∈ (0, 1),

m̃λQ+(1−λ)Q′(u, dy) = λm̃Q(u, dy) + (1− λ)m̃Q′(u, dy).

Let h : R2 → R be a measurable and bounded function. By Lemma 2.6,∫
R×R

h(x, y)MλQ+(1−λ)Q′(dx, dy)

=

∫
R×R

h(x, y)µ(dx)mλQ+(1−λ)Q′(x, dy) =

∫ 1

0

(∫
R

h(F−1
µ (u), y) m̃λQ+(1−λ)Q′(u, dy)

)
du

= λ

∫ 1

0

(∫
R

h(F−1
µ (u), y) m̃Q(u, dy)

)
du+ (1− λ)

∫ 1

0

(∫
R

h(F−1
µ (u), y) m̃Q′(u, dy)

)
du

= λ

∫
R×R

h(x, y)µ(dx)mQ(x, dy) + (1− λ)

∫
R×R

h(x, y)µ(dx)mQ′(x, dy)

=

∫
R×R

h(x, y) (λMQ + (1− λ)MQ′)(dx, dy).

So MλQ+(1−λ)Q′ = λMQ + (1− λ)MQ′ .
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We deduce that if Q,Q′ ∈ Q are such that MQ 6= MQ′ , then there exists a whole
segment of martingale couplings between µ and ν, all parametrised by Q. More details
are given in Section 4. Let us complete this section by revisiting the example given in
Section 2.1.

Example 2.10. Suppose now that µ, ν ∈ P1(R) are symmetric with common mean α ∈ R,
that is (x− α)]µ(dx) = (α− x)]µ(dx) and (y − α)]ν(dy) = (α− y)]ν(dy) where ] denotes
the pushforward operation. Suppose in addition that their respective quantile functions
satisfy F−1

µ ≥ F−1
ν on (0, 1/2] and F−1

µ ≤ F−1
ν on (1/2, 1). We saw in Section 2.1 that when

U is a random variable uniformly distributed on [0, 1] and Z is given by (2.1), (F−1
µ (U), Z)

is an explicit coupling between µ and ν in the case α = 0. Let us show here that this
coupling is in fact associated to a particular element of Q. According to Lemma 6.5
below, we have F−1

µ (u) = 2α− F−1
µ (1− u) and F−1

ν (u) = 2α− F−1
ν (1− u) for du-almost

all u ∈ (0, 1), which is helpful in order to see that the probability measure Q2 defined on
(0, 1)2 by

Q2(du, dv) =
1

γ
(F−1
µ − F−1

ν )+(u) du δ1−u(dv) (2.17)

is an element of Q (in particular to check that it satisfies (ii)). For that element Q2, using
(2.5), Lemma 2.5 and Lemma 6.5 below, we have for du-almost all u ∈ U+ ∪ U−,

m̃Q2(u, dy) =
F−1
µ (u) + F−1

ν (u)− 2α

2(F−1
ν (u)− α)

δF−1
ν (u)(dy) +

F−1
ν (u)− F−1

µ (u)

2(F−1
ν (u)− α)

δ2α−F−1
ν (u)(dy),

(2.18)
and m̃Q2(u, dy) = δF−1

ν (u)(dy) if u ∈ U0. Let u ∈ (0, 1). If F−1
µ (u) = F−1

ν (u) 6= α, then

δF−1
ν (u)(dy) coincides with the right-hand side of (2.18). Furthermore if F−1

ν (u) = α,

since α ≥ F−1
µ (u) ≥ F−1

ν (u) or α ≤ F−1
µ (u) ≤ F−1

ν (u) by an easy generalisation of (2.2),
then F−1

µ (u) = α. Therefore (2.18) holds for du-almost all u ∈ (0, 1) such that F−1
ν (u) 6= α

and m̃Q2(u, dy) = δF−1
ν (u)(dy) for du-almost all u ∈ (0, 1) such that F−1

ν (u) = α.
Let U and V be two independent random variables uniformly distributed on (0, 1) and

let Y be defined as in (2.1) but with the mean α taken into account, that is

Y = F−1
ν (U)1

{F−1
ν (U)6=α,V≤F

−1
µ (U)+F

−1
ν (U)−2α

2(F
−1
ν (U)−α)

}

+ (2α− F−1
ν (U))1

{F−1
ν (U)6=α,V >F

−1
µ (U)+F

−1
ν (U)−2α

2(F
−1
ν (U)−α)

}
+ α1{F−1

ν (U)=α}.

Then (U, Y ) is distributed according to 1(0,1)(u) du m̃Q2(u, dy). By Lemma 2.6, the
random vector (F−1

µ (U), Y ) is distributed according to µ(dx)m(x, dy).

2.3 Optimality property

Let µ, ν ∈ P1(R). It is well known that F−1
ν is constant on the jumps of Fµ, that is F−1

ν

is constant on the intervals of the form (Fµ(x−), Fµ(x)], iff the comonotonous coupling
between µ and ν is concentrated on the graph of a map T : R→ R, and then

T = F−1
ν ◦ Fµ. (2.19)

We will refer to T as the Monge transport map.

Proposition 2.11. Let µ, ν ∈ P1(R) be such that µ <cx ν. Suppose in addition that F−1
ν

is constant on the intervals of the form (Fµ(x−), Fµ(x)]. Let T be the Monge transport
map. Let Q ∈ Q. Then

inf
M∈ΠM(µ,ν)

∫
R×R

|y − T (x)|M(dx, dy) =

∫
R×R

|y − T (x)|MQ(dx, dy) =W1(µ, ν).
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Proof. This is a particular case of Proposition 2.18 below. Indeed, let M(dx, dy) =

µ(dx)m(x, dy) be a martingale coupling between µ and ν. Let (m̃(u, dy))u∈(0,1) be the
kernel defined for all u ∈ (0, 1) by m̃(u, dy) = m(F−1

µ (u), dy). Using the inverse transform
sampling, we have∫

R×R
|y − T (x)|µ(dx)m(x, dy) =

∫
(0,1)×R

|y − T (F−1
µ (u))| dum(F−1

µ (u), dy)

=

∫
(0,1)×R

|y − F−1
ν (Fµ((F−1

µ (u))))| du m̃(u, dy),

where we used for the last equality that T = F−1
ν ◦ Fµ. Let u ∈ (0, 1). If there ex-

ists x ∈ R such that u = Fµ(x), then Fµ(F−1
µ (u)) = Fµ(F−1

µ (Fµ(x))) = Fµ(x) = u,
so F−1

ν (Fµ(F−1
µ (u))) = F−1

ν (u). Else there exists x in the set of discontinuities of Fµ
such that Fµ(x−) ≤ u < Fµ(x). In that case, if u > Fµ(x−) then x = F−1

µ (u), so
F−1
ν (Fµ(F−1

µ (u))) = F−1
ν (Fµ(x)) = F−1

ν (u) since F−1
ν is constant on the jumps of Fµ.

Hence

du-a.e. on (0, 1), F−1
ν (Fµ(F−1

µ (u))) = F−1
ν (u). (2.20)

We deduce that∫
(0,1)×R

|y − F−1
ν (Fµ(F−1

µ (u)))| du m̃(u, dy) =

∫
(0,1)×R

|y − F−1
ν (u)| du m̃(u, dy).

With a similar reasoning, we have
∫
R×R |y − T (x)|µ(dx)mQ(x, dy) =

∫
(0,1)×R |y −

F−1
ν (u)| du m̃Q(u, dy). Therefore, using Proposition 2.18 combined with Remark 2.19

below, we get that
∫
R×R |y − T (x)|M(dx, dy) is minimised when M = MQ, for which we

have
∫
R×R |y − T (x)|MQ(dx, dy) =W1(µ, ν).

2.4 Stability inequality

We can now state our main result. In the minimisation of the cost function (x, y) 7→
|x − y| with respect to the couplings between µ and ν, the addition of the martingale
constraint does not cost more than a factor 2.

Theorem 2.12. For all µ, ν ∈ P1(R) such that µ <cx ν and for all Q in the non-empty set
Q, ∫

R×R
|x− y|MQ(dx, dy) ≤ 2W1(µ, ν). (2.21)

Consequently,

M1(µ, ν) ≤ 2W1(µ, ν). (2.22)

Moreover, the constant 2 is sharp.

The proof of Theorem 2.12 relies on Proposition 2.18 below. Note that since
ΠM(µ, ν) ⊂ Π(µ, ν), we always have W1(µ, ν) ≤ M1(µ, ν). Moreover, the stability in-
equality (2.22) can be tensorised: it holds in greater dimension when the marginals are
independent, as the next corollary states.

Corollary 2.13. Let d ∈ N∗ and µ1, · · · , µd, ν1, · · · , νd ∈ P1(R) be such that for all
1 ≤ i ≤ d, µi ≤cx νi. Let µ = µ1 ⊗ · · · ⊗ µd and ν = ν1 ⊗ · · · ⊗ νd. Then µ ≤cx ν and

M1(µ, ν) ≤ 2W1(µ, ν),

when Rd is endowed with the L1-norm.
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Proof of Corollary 2.13. For all 1 ≤ i ≤ d, since µi ≤cx νi, Strassen’s theorem or Proposi-
tion 2.3 and Corollary 2.4 ensure the existence of a martingale coupling Mi(dxi, dyi) =

µi(dxi)mi(xi, dyi) between µi and νi. Let then M be the probability measure on Rd ×Rd
defined by M(dx, dy) = µ(dx)m1(x1, dy1) · · · md(xd, dyd). Then it is clear that M is a
martingale coupling between µ and ν, which shows that µ ≤cx ν, and

M1(µ, ν) ≤
∫
Rd×Rd

|x− y|M(dx, dy) =

d∑
i=1

∫
Rd×Rd

|xi − yi|M(dx, dy)

=

d∑
i=1

∫
R×R

|xi − yi|Mi(dxi, dyi).

For all 1 ≤ i ≤ d, let Qi denote the set Q with respect to µ = µi and ν = νi and let
Qi ∈ Qi. Then for M1 = MQ1 , · · · ,Md = MQd , we deduce from Theorem 2.12 that

M1(µ, ν) ≤
d∑
i=1

∫
R×R

|xi − yi|MQi(dxi, dyi) ≤ 2

d∑
i=1

W1(µi, νi).

Let P ∈ Π(µ, ν) be a coupling between µ and ν. For all 1 ≤ i ≤ d, let Pi be the
marginals of P with respect to the coordinates i and i + d, so that Pi is a coupling
between µi and νi. Then

d∑
i=1

W1(µi, νi) ≤
d∑
i=1

∫
R×R

|xi − yi|Pi(dxi, dyi) =

∫
Rd×Rd

d∑
i=1

|xi − yi|P (dx, dy)

=

∫
Rd×Rd

|x− y|P (dx, dy).

Since the inequality above is true for any coupling P between µ and ν, we deduce
that

∑d
i=1W1(µi, νi) ≤ W1(µ, ν), which proves the assertion.

In the following remarks, we first look in which case the minimiser of (2.22), studied
by Hobson and Klimmek [16], derives from Q. Second, we see that the left-curtain
martingale coupling introduced by Beiglböck and Juillet [4] does not always satisfy
(2.22).

Remark 2.14. The optimal martingale couplingM ∈ ΠM(µ, ν) which minimises
∫
R×R |x−

y|M(dx, dy) was actually characterised by Hobson and Klimmek [16] under the dis-
persion assumption that there exists a bounded interval E of positive length such
that (µ − ν)+(E{) = (ν − µ)+(E) = 0. They show that the optimal coupling MHK

is unique. Moreover, in the simpler case where µ ∧ ν = 0, if a < b denote the end-
points of E, then there exist two nonincreasing functions R : (0, 1) → (−∞, a] and
S : (0, 1)→ [b,+∞) such that for all u ∈ (0, 1), denoting m̃HK(u, dy) = mHK(F−1

µ (u), dy)

where mHK(x, dy)µ(dx) = MHK(dx, dy), one has

m̃HK(u, dy) =
S(u)− F−1

µ (u)

S(u)−R(u)
δR(u)(dy) +

F−1
µ (u)−R(u)

S(u)−R(u)
δS(u)(dy).

We can discuss in which case MHK derives from Q. Suppose first that F−1
ν takes at

least three different values, that is there exist u, v, w ∈ (0, 1) such that F−1
ν (u) < F−1

ν (v) <

F−1
ν (w). By left-continuity of F−1

ν , there exists ε > 0 such that F−1
ν (u) < F−1

ν (v − ε) and
F−1
ν (v) < F−1

ν (w − ε). Let I1 = (0, u], I2 = (v − ε, v] and I3 = (w − ε, 1]. Those three
intervals are such that for all s ∈ I1 (resp. s ∈ I2) and t ∈ I2 (resp. t ∈ I3), we have
F−1
ν (s) < F−1

ν (t). Since R is nonincreasing, if the graph of R meets the graph of F−1
ν on
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one of those three intervals, then they cannot meet on the two others. We can assert
the same with the graph of S since S is nonincreasing as well. Therefore, there exists
k ∈ {1, 2, 3} such that the intersection of F−1

ν (Ik) and R(Ik)∪S(Ik) is empty. In particular,
for all t ∈ Ik, m̃HK(t, {F−1

ν (t)}) = 0. However, thanks to Lemma 2.5, we can see that
for all Q ∈ Q, the Markov kernel m̃Q is such that m̃Q(u, {F−1

ν (u)}) > 0 for du-almost all
u ∈ (0, 1). Therefore, MHK does not derive from Q.

If F−1
ν does not take more than two different values, that is if ν is reduced to two

atoms at most, then there exists a unique martingale coupling between µ and ν, so MHK

derives of course from Q.
Note that the maximisation problem supM∈ΠM(µ,ν)

∫
R×R |x− y|M(dx, dy) is discussed

by Hobson and Neuberger [17].

Example 2.15. For instance, if µ and ν are defined by µ(dx) = 1
21[−1,1](x) dx and ν(dy) =

1
2 (1[−2,−1) + 1(1,2])(y) dy, then (see [16, Example 6.1] for an equivalent calculation)

mHK(x, dy) =

(
1

2
− 3x

2
√

12− 3x2

)
δ− 1

2 (x+
√

12−3x2)(dy)

+

(
1

2
+

3x

2
√

12− 3x2

)
δ 1

2 (−x+
√

12−3x2)(dy),

which satisfies mHK(x, {F−1
ν (Fµ(x))}) > 0 iff x ∈ {(3 −

√
33)/6, (

√
33 − 3)/6}. On the

other hand, for all Q ∈ Q, the Markov kernel mQ is such that mQ(x, {F−1
ν (Fµ(x))}) > 0

for dx-almost all x ∈ (−1, 1).

Remark 2.16. We investigate an example where the left-curtain martingale coupling
introduced by Beiglböck and Juillet [4] does not satisfy (2.21). Let µ ∈ P1(R) be with
density fµ and let u > 1 and d > 0. Let MLC be defined by

MLC(dx, dy) = µ(dx)
(
1{x>0} (q δux(dy) + (1− q) δ−dx(dy)) + 1{x≤0}δx(dy)

)
,

where q = 1+d
u+d . Let ν denote the second marginal of MLC . So ν has density fν defined

by fν(x) = q
ufµ(xu ) for all x > 0 and fν(x) = fµ(x) + 1−q

d fµ(−xd ) for all x ≤ 0. Then MLC

is the left-curtain martingale coupling between µ and ν. One can easily compute
∫
Rd
|y −

x|MLC(dx, dy) = 2 (u−1)(1+d)
u+d

∫
R+

xfµ(x) dx. On the other hand, W1(µ, ν) =
∫
R
|Fµ(t) −

Fν(t)| dt (see for instance [23, Remark 2.19 (iii) Chapter 2]). From the relation between
fν and fµ, one can deduce that for all x ≥ 0, Fν(x) = 1 − q + qFµ(x/u), and for all
x ≤ 0, Fν(x) = Fµ(x) + (1− q)Fµ(−x/d), where Fµ : x 7→ µ((x,+∞)) = 1− Fµ(x). Using
|x| = x+ 2x−, we have

W1(µ, ν)

=

∫
R−

(1− q)Fµ(−x/d) dx+

∫
R+

|Fµ(x)− qFµ(x/u)| dx

=

∫
R−

(1− q)Fµ(−x/d) dx+

∫
R+

(Fµ(x)− qFµ(x/u)) dx+ 2

∫
R+

(Fµ(x)− qFµ(x/u))− dx

= d(1− q)
∫
R+

xfµ(x) dx+ (1− qu)

∫
R+

xfµ(x) dx+ 2

∫
R+

(Fµ(x)− qFµ(x/u))− dx

= 2

∫
R+

(Fµ(x)− qFµ(x/u))− dx.

Then MLC satisfies (2.21) iff

(u− 1)(1 + d)

u+ d

∫
R+

xfµ(x) dx ≤ 2

∫
R+

(
F̄µ(x)− qF̄µ(x/u)

)−
dx. (2.23)
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The next example illustrates a contradiction of (2.23) and therefore (2.21) for MLC .

Example 2.17. Let µ(dx) = λ exp(−λx)1{x>0} dx, where λ > 0, and let ν be the prob-
ability distribution with density fν given by fν(x) = q

ufµ(x/u) for x > 0 and fν(x) =
1−q
d fµ(−x/d) for x ≤ 0. Then for all x ∈ R, Fµ(x) = exp(−λx), and (2.23) is equivalent to

(u− 1)(1 + d)

u+ d
× 1

λ
> 2

∫
R+

(exp(−λx)− q exp(−λx/u))
−
dx

= 2

∫ +∞

ln q

λ( 1
u
−1)

(q exp(−λx/u)− exp(−λx)) dx

⇐⇒ (u− 1)q

λ
> 2

(
qu

λ
exp

(
− ln q

1− u

)
− 1

λ
exp

(
− ln q

1
u − 1

))
= 2

q

λ
(u− 1)q−1/(1−u)

⇐⇒ 21−u > q =
1 + d

u+ d
,

which can be satisfied for example with u = 5
4 and d = 1

4 . Note that this condition does
not depend on the value of λ. Therefore, the left-curtain martingale coupling

MLC(dx, dy) = λ exp(−λx)1{x>0} dx

(
5

6
δ 5x

4
(dy) +

1

6
δ− x4 (dy)

)
does not satisfy (2.21), for any λ > 0.

Proposition 2.18. Let µ, ν ∈ P1(R) be such that µ <cx ν. Let Q ∈ Q. Then the Markov
kernel (m̃Q(u, dy))u∈(0,1) minimises∫ 1

0

∫
R

|F−1
ν (u)− y| m̃(u, dy) du

among all Markov kernels (m̃(u, dy))u∈(0,1) such that∫
u∈(0,1)

m̃(u, dy) du = ν(dy),

∫
R

|y| m̃(u, dy) < +∞,

and

∫
R

y m̃(u, dy) = F−1
µ (u), du-almost everywhere on (0, 1).

(2.24)

Moreover,
∫ 1

0

∫
R
|F−1
ν (u)− y| m̃Q(u, dy) du =W1(µ, ν).

Remark 2.19. If (m̃(u, dy))u∈(0,1) is a Markov kernel satisfying (2.24), then using Lemma
2.6, we get that µ(dx)m(x, dy) with (m(x, dy))x∈R denoting the Markov kernel given by
(2.6) is a martingale coupling between µ and ν.

Conversely, if µ(dx)m(x, dy) is a martingale coupling between µ and ν, then using
the inverse transform sampling, we get that the Markov kernel (m(F−1

µ (u), dy))u∈(0,1)

satisfies (2.24).

Remark 2.20. The martingale couplings parametrised by Q ∈ Q are not the only ones to
minimise

∫ 1

0

∫
R
|F−1
ν (u)− y| m̃(u, dy) du among all Markov kernels (m̃(u, dy))u∈(0,1) which

satisfy (2.24). Indeed, let µ = 1
2δ−1 + 1

2δ1, ν = 1
8δ−8 + 1

4δ−6 + 5
8δ4 and

M =
1

8

(
2δ(−1,−6) + 2δ(−1,4) + δ(1,−8) + 3δ(1,4)

)
.

For m(−1, dy) = 1
2δ−6 + 1

2δ4 and m(1, dy) = 1
4δ−8 + 3

4δ4, we have M(dx, dy) =

µ(dx)m(x, dy). Let (m̃(u, dy))u∈(0,1) be defined by m̃(u, dy) = m(F−1
µ (u), dy) for all

u ∈ (0, 1). It is easy to see that M is a martingale coupling between µ and ν, so
(m̃(u, dy))u∈(0,1) satisfies (2.24). For all u ∈ (0, 1), we have F−1

µ (u) = 1{u≤1/2}(−1) +
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1{u>1/2} and F−1
ν (u) = 1{u≤1/8}(−8)+1{1/8<u≤3/8}(−6)+1{u>3/8}×4. So for all u ∈ (0, 1),

we have

m̃(u, dy) = 1{u≤ 1
2}

(
1

2
δ−6 +

1

2
δ4

)
+ 1{u> 1

2}

(
1

4
δ−8 +

3

4
δ4

)
.

We can compute
∫ 1

0

∫
R
|F−1
ν (u) − y| m̃(u, dy) du = 17

4 =
∫ 1

0
|F−1
µ (u) − F−1

ν (u)| du =

W1(µ, ν), so (m̃(u, dy))u∈(0,1) is optimal.

Thanks to Lemma 2.5, we can see that for all Q ∈ Q, the Markov kernel m̃Q is such
that m̃Q(u, {F−1

ν (u)}) > 0 for du-almost all u ∈ (0, 1). However for all u ∈ (0, 1/8], we
have m̃(u, {F−1

ν (u)}) = m̃(u, {−8}) = 0. Therefore, m̃ does not derive from Q.

Proof of Proposition 2.18. Let m̃ be a Markov kernel satisfying (2.24). By Jensen’s
inequality, for du-almost every u ∈ (0, 1),

|F−1
ν (u)− F−1

µ (u)| =
∣∣∣∣∫
R

(F−1
ν (u)− y) m̃(u, dy)

∣∣∣∣ ≤ ∫
R

|F−1
ν (u)− y| m̃(u, dy).

So
∫ 1

0
|F−1
ν (u)− F−1

µ (u)| du ≤
∫ 1

0

∫
R
|F−1
ν (u)− y| m̃(u, dy) du.

Therefore, to conclude, it is sufficient to prove that
∫
R
|F−1
ν (u) − y| m̃Q(u, dy) =

|F−1
ν (u)− F−1

µ (u)|, du-almost everywhere on (0, 1).

Applying (2.9) to the measurable and nonnegative function h : y 7→ |F−1
ν (u)− y| yields

for du-almost all u ∈ (0, 1)∫
R

|F−1
ν (u)− y| m̃Q(u, dy) =

∫
(0,1)

(F−1
µ − F−1

ν )+(u)

F−1
ν (v)− F−1

ν (u)
|F−1
ν (u)− F−1

ν (v)|πQ+(u, dv)

+

∫
(0,1)

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (v)
|F−1
ν (u)− F−1

ν (v)|πQ−(u, dv).

Using Lemma 2.5, we deduce that for du-almost all u ∈ (0, 1)∫
R

|F−1
ν (u)− y| m̃Q(u, dy)

=

∫
(0,1)

(F−1
µ − F−1

ν )+(u)πQ+(u, dv) +

∫
(0,1)

(F−1
µ − F−1

ν )−(u)πQ−(u, dv)

= |F−1
ν (u)− F−1

µ (u)|.

Proof of Theorem 2.12. Let Q ∈ Q and let m̃Q be the Markov kernel defined by (2.5). By
Lemma 2.6 and Proposition 2.18,∫

R×R
|y − x|µ(dx)mQ(x, dy) =

∫ 1

0

∫
R

|y − F−1
µ (u)| m̃Q(u, dy) du

≤
∫ 1

0

∫
R

|y − F−1
ν (u)| m̃Q(u, dy) du

+

∫ 1

0

∫
R

|F−1
ν (u)− F−1

µ (u)| m̃Q(u, dy) du

= 2W1(µ, ν).

Since MQ(dx, dy) = µ(dx)mQ(x, dy) is a martingale coupling between µ and ν (Propo-
sition 2.3), we get (2.22).
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Let us show now that the constant 2 is sharp, that is

sup
µ,ν∈P1(R)
µ<cxν

M1(µ, ν)

W1(µ, ν)
= 2.

Let a, b ∈ R be such that 0 < a < b. Let µ = 1
2δ−a + 1

2δa and ν = 1
2δ−b + 1

2δb. Since µ and
ν are two probability measures with equal means such that µ is concentrated on [−a, a]

and ν on R\[−a, a], then µ <cx ν. Any coupling H between µ and ν is of the form

H = rδ(−a,−b) + r′δ(−a,b) + pδ(a,b) + p′δ(a,−b),

where r, r′, p, p′ ≥ 0 and p+ p′ = r + r′ = p+ r′ = p′ + r = 1/2. One can easily see that H
is a martingale coupling iff b(p− p′) = a/2 and b(r′ − r) = −a/2, that is

H =
(b+ a)

4b
δ(−a,−b) +

(b− a)

4b
δ(−a,b) +

(b+ a)

4b
δ(a,b) +

(b− a)

4b
δ(a,−b). (2.25)

Since there is only one martingale coupling, we trivially have

M1(µ, ν) =

∫
R×R

|x− y|H(dx, dy) =
b2 − a2

b
·

On the other hand, sinceW1(µ, ν) =
∫
R
|Fµ(t)−Fν(t)| dt (see for instance [23, Remark

2.19 (iii) Chapter 2]),

W1(µ, ν) =

∫ −b
−∞

0 dt+

∫ −a
−b

1

2
dt+

∫ a

−a
0 dt+

∫ b

a

1

2
dt+

∫ +∞

b

0 dt = b− a.

So, we have
M1(µ, ν)

W1(µ, ν)
= 1 +

a

b
,

which tends to 2 as b tends to a.

Also, the stability inequality (2.22) does not generalise withM1(µ, ν) and W1(µ, ν)

replaced with Mρ(µ, ν) and Wρ(µ, ν) for ρ > 1, as shown in the next proposition in
general dimension.

Proposition 2.21. Let d ≥ 1 and ρ > 1. Then

sup
µ,ν∈Pρ(Rd)
µ<cxν

Mρ(µ, ν)

Wρ(µ, ν)
= +∞.

The proof of Proposition 2.21 will use the following lemma for the case 1 < ρ < 2.

Lemma 2.22. Let d ≥ 1 and ρ ∈ (1, 2). Let | · | denote the Euclidean norm on Rd. Then
there exists Cρ > 0 such that

∀(x, y) ∈ Rd ×Rd, |x− y|ρ ≥ Cρ
(
|x|ρ − ρ

ρ− 1
|x|ρ−2〈x, y〉Rd +

1

ρ− 1
|y|ρ
)
, (2.26)

where, by convention, for all y ∈ Rd and for x = 0 we choose |x|ρ−2〈x, y〉Rd equal to its
limit 0 as x→ 0.

When ρ = 2, both sides of the inequality are equal with C2 = 1.
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Proof of Lemma 2.22. If x = 0, any Cρ ≤ ρ− 1 suits. Else, dividing by |x|ρ and using that
y/|x| explores Rd when y explores Rd, we see that the statement reduces to show that
for all x, y ∈ Rd such that |x| = 1,

|x− y|ρ ≥ Cρ
(

1− ρ

ρ− 1
〈x, y〉Rd +

1

ρ− 1
|y|ρ
)
.

For all x, y ∈ Rd such that |x| = 1, there exist y1, y2 ∈ R such that y = y1x + y2x
⊥,

where x⊥ is an element of span(x)⊥ such that |x⊥| = 1. The inequality to prove becomes

∀(y1, y2) ∈ R2,
(
(1− y1)2 + y2

2

)ρ/2 ≥ Cρ(1− ρ

ρ− 1
y1 +

1

ρ− 1
(y2

1 + y2
2)ρ/2

)
. (2.27)

Let L : (y1, y2) 7→
(
(1− y1)2 + y2

2

)ρ/2
and R : (y1, y2) 7→ 1 − ρ

ρ−1y1 + 1
ρ−1 (y2

1 + y2
2)ρ/2.

When (y1, y2)→ (1, 0), we have

R(y1, y2) =
1

ρ− 1

(
ρ− 1− ρ(y1 − 1 + 1) + (1 + 2(y1 − 1) + (y1 − 1)2 + y2

2)ρ/2
)

=
1

ρ− 1

(
−1− ρ(y1 − 1) + 1 + ρ(y1 − 1) +

ρ

2
(y1 − 1)2 +

ρ

2
y2

2

+ρ(
ρ

2
− 1)(y1 − 1)2 + o((y1 − 1)2 + y2

2)
)

=
1

ρ− 1

(ρ
2

(y1 − 1)2 +
ρ

2
y2

2 − ρ(1− ρ

2
)(y1 − 1)2 + o((y1 − 1)2 + y2

2)
)
.

Since ρ < 2, L(y1, y2) ≥ (1− y1)2 + y2
2 for any (y1, y2) in the ball centred at (1, 0) with

radius 1. So

lim sup
(y1,y2)→(1,0)
(y1,y2)6=(1,0)

R(y1, y2)

L(y1, y2)
≤ ρ

2(ρ− 1)
,

On the other hand, when y2
1 + y2

2 → +∞,

R(y1, y2)

L(y1, y2)
∼ (y2

1 + y2
2)ρ/2

(ρ− 1)(y2
1 + y2

2)ρ/2
=

1

ρ− 1
·

So (y1, y2) 7→ R(y1, y2)/L(y1, y2) is defined and continuous on (Rd × Rd)\{(1, 0)},
bounded from above in the ball centred at (1, 0) with radius 1 and has a finite limit when
the norm of (y1, y2) tends to +∞. Therefore this function is bounded from above on
(Rd ×Rd)\{(1, 0)} by a certain constant K ≥ 1

ρ−1 . Since both sides of (2.27) vanish for

(y1, y2) = (1, 0), we conclude that this inequality holds with constant Cρ = 1
K and (2.26)

with constant Cρ = 1
K .

Proof of Proposition 2.21. Since all norms on Rd are equivalent, we can suppose that Rd

is endowed with the Euclidean norm. The case ρ ≥ 2 was addressed in the introduction
in the one dimensional case. Its extension to dimension d is immediate. Indeed, for all
n ∈ N∗, let µn = N1(0, n2) and µ′n(dx1, · · · , dxd) = (x1, 0, · · · , 0)]µn(dx1) where ] denotes
the pushforward operation. By reduction to the one dimensional case, we have

Mρ(µ
′
n, µ
′
n+1)

Wρ(µ′n, µ
′
n+1)

=
Mρ(µn, µn+1)

Wρ(µn, µn+1)
−→

n→+∞
+∞·

We now consider the case 1 < ρ < 2. Let µ, ν ∈ Pρ(Rd) be such that µ <cx ν, and
let M be a martingale coupling between µ and ν, which exists according to Strassen’s
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theorem or Proposition 2.3 and Corollary 2.4. Thanks to Lemma 2.22, there exists Cρ > 0

such that∫
Rd×Rd

|x− y|ρM(dx, dy) ≥ Cρ
(∫

Rd
|x|ρ µ(dx)− ρ

ρ− 1

∫
Rd×Rd

|x|ρ−2〈x, y〉RdM(dx, dy)

+
1

ρ− 1

∫
Rd
|y|ρ ν(dx)

)
.

Since M(dx, dy) = µ(dx)m(x, dy) is a martingale coupling, we have for µ(dx)-almost
all x ∈ Rd,

∫
Rd
|x|ρ−2〈x, y〉Rd m(x, dy) = |x|ρ, where both sides are equal to 0 when x = 0.

So we get ∫
Rd×Rd

|x− y|ρM(dx, dy) ≥ Cρ
ρ− 1

(∫
Rd
|y|ρ ν(dx)−

∫
Rd
|x|ρ µ(dx)

)
.

For all n ∈ N, let µn = Nd(0, n2Id). Let G ∼ Nd(0, Id). Then for all n ∈ N,
Wρ
ρ (µn, µn+1) ≤ E[|G|ρ] and

Mρ
ρ(µn, µn+1)

Wρ
ρ (µn, µn+1)

≥ Cρ
ρ− 1

(E[|(n+ 1)G|ρ]− E[|nG|ρ])
E[|G|ρ]

=
((n+ 1)ρ − nρ)Cρ

ρ− 1

∼n→+∞
ρCρ
ρ− 1

nρ−1 −→
n→+∞

+∞.

3 The inverse transform martingale coupling

3.1 Definition and stability of the inverse transform martingale coupling

Let µ, ν ∈ P1(R) be such that µ <cx ν. We recall that Ψ+ and Ψ− are defined for
all u ∈ [0, 1] by Ψ+(u) =

∫ u
0

(F−1
µ − F−1

ν )+(v) dv and Ψ−(u) =
∫ u

0
(F−1
µ − F−1

ν )−(v) dv. Let

Ψ−1
− (resp. Ψ−1

+ ) denote the left continuous generalised inverse of Ψ− (resp. Ψ+). Let
ϕ : [0, 1]→ [0, 1] and ϕ̃ : [0, 1]→ [0, 1] be defined for all u ∈ [0, 1] by

ϕ(u) = Ψ−1
− (Ψ+(u)) = inf{r ∈ [0, 1] | Ψ−(r) ≥ Ψ+(u)};

ϕ̃(u) = Ψ−1
+ (Ψ−(u)) = inf{r ∈ [0, 1] | Ψ+(r) ≥ Ψ−(u)},

which are well defined thanks to the equality Ψ−(1) = Ψ+(1), consequence of the equality
of the means.

Let QIT be the measure defined on (0, 1)2 by

QIT (du, dv) =
1

γ
(F−1
µ −F−1

ν )+(u) duπIT+ (u, dv) where πIT+ (u, dv) = 1{0<ϕ(u)<1} δϕ(u)(dv),

(3.1)
with γ = Ψ−(1) = Ψ+(1). According to the next proposition, this measure belongs to Q.

Proposition 3.1. Let µ, ν ∈ P1(R) be such that µ <cx ν. The measure QIT is an element
of Q as defined in Section 2. Moreover,

QIT (du, dv) =
1

γ
(F−1
µ − F−1

ν )−(v) dv πIT− (v, du) where πIT− (v, du) = 1{0<ϕ̃(v)<1} δϕ̃(v)(du).

From now on we write (m̃IT (u, dy))u∈(0,1) instead of (m̃QIT (u, dy))u∈(0,1) and write

(mIT (x, dy))x∈R instead of (mQIT (x, dy))x∈R. Then Proposition 2.3 implies that the prob-
ability measure M IT (dx, dy) = µ(dx)mIT (x, dy) is a martingale coupling between µ and
ν, which we call the inverse transform martingale coupling.
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We deduce from the expression of πIT− given in Proposition 3.1 that the definition of
(m̃IT (u, dy))u∈(0,1) reduces to

F−1
µ (u)− F−1

ν (u)

F−1
ν (ϕ(u))− F−1

ν (u)
δF−1

ν (ϕ(u))(dy) +

(
1−

F−1
µ (u)− F−1

ν (u)

F−1
ν (ϕ(u))− F−1

ν (u)

)
δF−1

ν (u)(dy)

if F−1
ν (ϕ(u)) > F−1

µ (u) > F−1
ν (u) and ϕ(u) < 1;

F−1
ν (u)− F−1

µ (u)

F−1
ν (u)− F−1

ν (ϕ̃(u))
δF−1

ν (ϕ̃(u))(dy) +

(
1−

F−1
ν (u)− F−1

µ (u)

F−1
ν (u)− F−1

ν (ϕ̃(u))

)
δF−1

ν (u)(dy)

if F−1
ν (ϕ̃(u)) < F−1

µ (u) < F−1
ν (u) and ϕ̃(u) < 1;

δF−1
ν (u)(dy) otherwise.

(3.2)

Note that if F−1
µ (u) > F−1

ν (u), then by left-continuity of F−1
µ and F−1

ν , Ψ+(u) > 0,
which implies ϕ(u) > 0. Therefore F−1

µ (u) > F−1
ν (u) implies ϕ(u) > 0 so that with the

condition ϕ(u) < 1, F−1
ν (ϕ(u)) makes sense. For similar reasons, if F−1

µ (u) < F−1
ν (u) and

ϕ̃(u) < 1 then F−1
ν (ϕ̃(u)) makes sense.

Remark 3.2. We recall the celebrated Strassen theorem: if µ, ν ∈ P1(R), then µ ≤cx ν
iff there exists a martingale coupling between µ and ν. The sufficient condition is a
straightforward consequence of Jensen’s inequality. Indeed, if M(dx, dy) = µ(dx)m(x, dy)

is a martingale coupling between µ, ν ∈ P1(R), then for all convex functions f : R→ R,∫
R

f(x)µ(dx) =

∫
R

f

(∫
R

ym(x, dy)

)
µ(dx) ≤

∫
R2

f(y)m(x, dy)µ(dx) =

∫
R

f(y) ν(dy).

Conversely, suppose that µ, ν ∈ P1(R) are such that µ ≤cx ν. For t ∈ R,
∫
R

(t −
x)+ µ(dx) ≤

∫
R

(t − x)+ ν(dx) by convexity of x ∈ R 7→ (t − x)+. By the Fubini-Tonelli

theorem,
∫
R

(t − x)+ µ(dx) =
∫ t
−∞ Fµ(x) dx. Hence ϕµ(t) =

∫ t
−∞ Fµ(x) dx ≤ ϕν(t) =∫ t

−∞ Fν(x) dx for all t ∈ R. Hence the respective Fenchel-Legendre transforms ϕ∗µ and
ϕ∗ν of ϕµ and ϕν satisfy ϕ∗µ ≥ ϕ∗ν . For all u ∈ (0, 1) and for all t ∈ R, F−1

µ (u) ≤ t ⇐⇒ u ≤
Fµ(t), so

sup
q∈[0,1]

(
qt−

∫ q

0

F−1
µ (u) du

)
=

∫ Fµ(t)

0

(t− F−1
µ (u)) du =

∫ 1

0

(t− F−1
µ (u))+ du = ϕµ(t).

Since q 7→ (
∫ q

0
F−1
µ (u) du) is convex on [0, 1], we get the well known fact (see

for instance [11, Lemma A.22]) that for all q ∈ R, ϕ∗µ(q) = (
∫ q

0
F−1
µ (u) du)1[0,1](q) +

(+∞)1[0,1]{(q). Hence∫ q

0

F−1
µ (u) du ≥

∫ q

0

F−1
ν (u) du for all q ∈ [0, 1], with equality for q = 1. (3.3)

We will see in the proof of Proposition 3.1 that if µ 6= ν, then (3.3) implies that QIT

belongs to Q, which ensures that the inverse transform martingale coupling M IT exists.
If µ = ν, the existence of a martingale coupling is straightforward. Therefore, the
construction of the inverse transform martingale coupling gives a constructive proof of
the necessary condition in Strassen’s theorem in dimension 1.

Proof of Proposition 3.1. By Lemma 6.1 below,

QIT ((0, 1)2) =
1

γ

∫ 1

0

(F−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1} du

=
1

γ

∫ 1

0

(F−1
µ − F−1

ν )−(u)1{0<u<1} du = 1,
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so QIT is a probability measure on (0, 1)2. Let h : (0, 1)2 → R be a measurable and
bounded function. We have∫

(0,1)2

h(u, v)QIT (du, dv) =
1

γ

∫
(0,1)

h(u, ϕ(u))(F−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1} du. (3.4)

Since Ψ− is continuous, one has Ψ−(Ψ−1
− (u)) = u for all u ∈ (0, 1). By Lemma 6.3

below, we deduce that ϕ̃(ϕ(u)) = u, (F−1
µ − F−1

ν )+(u) du-almost everywhere on (0, 1).
Therefore, by Lemma 6.1 below,∫

(0,1)

h(u, ϕ(u))(F−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1} du

=

∫
(0,1)

h(ϕ̃(ϕ(u)), ϕ(u))(F−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1}1{0<ϕ̃(ϕ(u))<1} du

=

∫
(0,1)

h(ϕ̃(v), v)(F−1
µ − F−1

ν )−(v)1{0<v<1}1{0<ϕ̃(v)<1} dv

=

∫
(0,1)2

h(u, v)(F−1
µ − F−1

ν )−(v)1{0<ϕ̃(v)<1} δϕ̃(v)(du) dv.

(3.5)

So∫
(0,1)2

h(u, v)QIT (du, dv) =
1

γ

∫
(0,1)2

h(u, v)(F−1
µ − F−1

ν )−(v)1{0<ϕ̃(v)<1} δϕ̃(v)(du) dv.

Hence we have QIT (du, dv) = 1
γ (F−1

µ − F−1
ν )−(v) dv πIT− (v, du), where πIT− (v, du) =

1{0<ϕ̃(v)<1} δϕ̃(v)(du). Moreover, since QIT is a probability measure on (0, 1)2, it proves
that

dΨ+(u)-a.e. (resp. dΨ−(u)-a.e.), 0 < ϕ(u) < 1 (resp. 0 < ϕ̃(u) < 1). (3.6)

Therefore, it is clear that QIT has first marginal 1
γ (F−1

µ − F−1
ν )+(u) du and second

marginal 1
γ (F−1

µ − F−1
ν )−(v) dv. For h : (u, v) 7→ 1{u<v}, (3.4) writes

QIT
(
{(u, v) ∈ (0, 1)2 | u < v}

)
=

1

γ

∫ 1

0

1{u<ϕ(u)}(F
−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1} du.

Let us show that u < ϕ(u), (F−1
µ − F−1

ν )+(u) du-almost everywhere on (0, 1). By the

definition of ϕ and Lemma 6.3 below, for all u ∈ (0, 1), ϕ(u) ≤ u ⇐⇒ Ψ−1
− (Ψ+(u)) ≤

u ⇐⇒ Ψ+(u) ≤ Ψ−(u). Recall that since µ ≤cx ν, according (3.3), for all u ∈ (0, 1),∫ u
0
F−1
µ (v) dv ≥

∫ u
0
F−1
ν (v) dv, so Ψ+(u) ≥ Ψ−(u). Therefore, we get that

∀u ∈ (0, 1), ϕ(u) ≤ u ⇐⇒ Ψ+(u) = Ψ−(u). (3.7)

Suppose F−1
µ (u) > F−1

ν (u). Since F−1
µ and F−1

ν are left continuous, this implies
F−1
µ (u − ε) > F−1

ν (u − ε) for ε > 0 small enough. So, for ε > 0 small enough, Ψ−(u) =

Ψ−(u− ε) ≤ Ψ+(u− ε) < Ψ+(u), which implies

u < ϕ(u), (F−1
µ − F−1

ν )+(u) du-almost everywhere on (0, 1). (3.8)

So

QIT
(
{(u, v) ∈ (0, 1)2 | u < v}

)
=

1

γ

∫ 1

0

(F−1
µ − F−1

ν )+(u)1{0<ϕ(u)<1} du = QIT ((0, 1)2)

= 1,

since QIT is a probability measure on (0, 1)2.
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We end this section with the stability of the inverse transform martingale coupling
with respect to its marginals µ and ν for the Wasserstein distance topology. The following
proposition is a direct consequence of Proposition 5.10, whose proof is given in the
supermartingale setting. For the sake of generality, the only martingale coupling between
a probability measure µ ∈ P1(R) and itself, namely µ(dx) δx(dy), is still called inverse
transform martingale coupling.

Proposition 3.3. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. Let (µn)n∈N and (νn)n∈N be two
sequences of probability measures on R with finite first moments such that for all n ∈ N,
µn ≤cx νn. For all n ∈ N, let M IT

n (resp. M IT ) be the inverse transform martingale
coupling between µn and νn (resp. between µ and ν).

IfW1(µn, µ) −→
n→+∞

0 andW1(νn, ν) −→
n→+∞

0, then

W1(M IT
n ,M IT ) −→

n→+∞
0.

3.2 Optimality properties

Let us now suppose that µ, ν ∈ P1(R) are such that µ <cx ν and there exists p ∈ (0, 1)

such that u 7→
∫ u

0
(F−1
µ (v)− F−1

ν (v)) dv is nondecreasing on [0, p] and nonincreasing on
[p, 1]. We saw in Example 2.1 a concrete example of an element Q1 ∈ Q. Any probability
measure Q defined on (0, 1) satisfying properties (i) and (ii) of the definition of Q is
concentrated on (0, p)× (p, 1) and therefore satisfies (iii). The probability measure Q1

is a simple example that comes to mind. The inverse transform martingale coupling
presented in this section is a valid example as well and inspires another coupling which
is sort of the nonincreasing twin of the inverse transform martingale coupling.

Let χ− : u ∈ [0, 1] 7→
∫ 1

1−u(F−1
µ − F−1

ν )−(v) dv =
∫ u

0
(F−1
µ − F−1

ν )−(1 − v) dv, χ+ : u ∈
[0, 1] 7→

∫ u
0

(F−1
µ − F−1

ν )+(v) dv and Γ = χ−1
− ◦ χ+ where χ−1

− denotes the left continuous
generalised inverse of χ−, that is

Γ : u ∈ [0, 1] 7→ inf{r ∈ [0, 1] | χ−(r) ≥ χ+(u)},

which is well defined since χ+(1) = χ+(p) = χ−(1− p) = γ, consequence of the equality
of the means. Let QNIT be the probability measure defined on (0, 1)2 by

QNIT (du, dv) =
1

γ
(F−1
µ − F−1

ν )+(u) duπNIT+ (u, dv),

where πNIT+ (u, dv) = 1{Γ(u)>0} δ1−Γ(u)(dv).

(3.9)

Proposition 3.4. Let µ, ν ∈ P1(R) be such that µ <cx ν. Assume that there exists p ∈
(0, 1) such that u 7→

∫ u
0

(F−1
µ (v)− F−1

ν (v)) dv is nondecreasing on [0, p] and nonincreasing
on [p, 1]. Then QNIT ∈ Q.

In the symmetric case, that is when µ and ν are symmetric and p = 1/2, we have
Γ(u) = u and therefore QNIT = Q2 (see (2.17)). Hence QNIT is a generalisation of the
symmetric coupling.

Proof of Proposition 3.4. Note that Γ(1) ≤ 1 − p, hence Γ(u) < 1 for all u ∈ (0, 1). It
is clear that QNIT satisfies property (i) of the definition of Q. By Lemma 6.1 below
applied with the functions f1 : u ∈ (0, 1) 7→ (F−1

µ − F−1
ν )+(u) and f2 : u ∈ (0, 1) 7→

(F−1
µ − F−1

ν )−(1− u), we have

1

γ

∫ 1

0

(F−1
µ − F−1

ν )+(u)h(1− Γ(u))1{Γ(u)>0} du =
1

γ

∫ 1

0

(F−1
µ − F−1

ν )−(1− v)h(1− v) dv

=
1

γ

∫ 1

0

(F−1
µ − F−1

ν )−1(v)h(v) dv,
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for any measurable and bounded function h : (0, 1)→ R. So QNIT satisfies (ii) as well,
and therefore (iii).

We saw with Proposition 2.18 that for all Q ∈ Q,
∫ 1

0

∫
R
|F−1
ν (u) − y| m̃Q(u, dy) du =

W1(µ, ν). The next proposition shows that the inverse transform martingale coupling
and its nonincreasing twin, when it exists, play particular roles among the martingale
couplings which derive from Q when |F−1

ν (u) − y| is replaced with |F−1
ν (u) − y|ρ with

ρ ∈ R.

Proposition 3.5. Let µ, ν ∈ P1(R) be such that µ <cx ν. For all ρ ∈ R and for any
Markov kernel (m̃(u, dy))u∈(0,1), let Cρ(m̃) be defined by

Cρ(m̃) =

∫
R×(0,1)

|F−1
ν (u)− y|ρ1{y 6=F−1

ν (u)} m̃(u, dy) du. (3.10)

Then, for all Q ∈ Q,

∀ρ ∈ (−∞, 1] ∪ [2,+∞), Cρ(m̃IT ) ≤ Cρ(m̃Q);

∀ρ ∈ [1, 2], Cρ(m̃Q) ≤ Cρ(m̃IT );

∀ρ ∈ {1, 2}, Cρ(m̃IT ) = Cρ(m̃Q).

(3.11)

Let us now assume that there exists p ∈ (0, 1) such that u 7→
∫ u

0
(F−1
µ (v)− F−1

ν (v)) dv

is nondecreasing on [0, p] and nonincreasing on [p, 1] and denote (m̃NIT (u, dy))u∈(0,1) for

(m̃QNIT (u, dy))u∈(0,1). Then, for all Q ∈ Q,

∀ρ ∈ (−∞, 1] ∪ [2,+∞), Cρ(m̃Q) ≤ Cρ(m̃NIT );

∀ρ ∈ [1, 2], Cρ(m̃NIT ) ≤ Cρ(m̃Q);

∀ρ ∈ {1, 2}, Cρ(m̃NIT ) = Cρ(m̃Q).

(3.12)

Remark 3.6. Let µ, ν ∈ P1(R) be such that µ <cx ν. By Proposition 3.5 for ρ = 0, we
deduce that

sup
Q∈Q
{P(Y = F−1

ν (U)) | (U, Y ) ∼ 1(0,1)(u) du m̃Q(u, dy)}

is attained for the inverse transform martingale coupling.
Suppose in addition that F−1

ν is constant on the intervals of the form (Fµ(x−), Fµ(x)],
x ∈ R. Let M(dx, dy) = µ(dx)m(x, dy) be a martingale coupling between µ and ν. Let
(m̃(u, dy))u∈(0,1) be the kernel defined for all u ∈ (0, 1) by m̃(u, dy) = m(F−1

µ (u), dy). Let
T be the Monge transport map. According to (2.20), F−1

ν (u) = F−1
ν (Fµ(F−1

µ (u))) for
du-almost all u ∈ (0, 1). So by Lemma 2.6, for all ρ ∈ R,∫

R×R
|y − T (x)|ρ1{y 6=T (x)} µ(dx)m(x, dy)

=

∫ 1

0

∫
R

|y − T (F−1
µ (u))|ρ1{y 6=T (F−1

µ (u))} m̃(u, dy) du

=

∫ 1

0

∫
R

|y − F−1
ν (u)|ρ1{y 6=F−1

ν (u)} m̃(u, dy) du.

We deduce that the supremum of P(Y = T (X)) among all random variables X and
Y such that (X,Y ) ∼ MQ for Q ∈ Q is attained for the inverse transform martingale
coupling.

Proof of Proposition 3.5. Let ρ ∈ R and Q ∈ Q. Let ε > 0 and fε : R→ R be defined for
all x ∈ R by

fε(x) = ερ−2 ((ρ− 1)x+ (2− ρ)ε)1{x≤ε} + xρ−11{x>ε}.
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It is clear that fε is convex for ρ ∈ (−∞, 1] ∪ [2,+∞) and concave for ρ ∈ [1, 2].
Let cε : (0, 1)2 → R be the right-continuous function defined for all (u, v) ∈ (0, 1)2 by
cε(u, v) = fε(|F−1

ν (u+)− F−1
ν (v+)|).

If ρ ∈ (−∞, 1]∪[2,+∞), then cε satisfies the Monge condition, that is for all u, u′, v, v′ ∈
(0, 1) such that u ≤ u′ and v ≤ v′,

cε(u
′, v′)− cε(u, v′)− cε(u′, v) + cε(u, v) ≤ 0,

which follows from the monotonicity of F−1
ν and the fact that (x, y) 7→ fε(|x−y|) is convex

and therefore satisfies the Monge condition. Since Q has marginals dΨ+/γ and dΨ−/γ,
by [19, Theorem 3.1.2 Chapter 3], we have∫ 1

0

cε(Ψ
−1
+ (γu),Ψ−1

− (γu)) du ≤
∫

(0,1)2

cε(u, v)Q(du, dv)

≤
∫ 1

0

cε(Ψ
−1
+ (γu),Ψ−1

− (γ(1− u))) du.

It is easy to check that for all u, v ∈ (0, 1), the map (0, 1) 3 ε 7→ cε(u, v) is nonincreas-
ing, bounded from below by 2− ρ and converges to |F−1

ν (u+)− F−1
ν (v+)|ρ−1 when ε→ 0

where by convention, we choose 00 = 1 and for all α < 0 and x = 0, we choose xα equal
to its limit +∞ as x→ 0+. Therefore, by the monotone convergence theorem for ε→ 0,
we have

∀ρ ∈ (−∞, 1] ∪ [2,+∞),∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γu)+)|ρ−1 du

≤
∫

(0,1)2

|F−1
ν (u+)− F−1

ν (v+)|ρ−1Q(du, dv)

≤
∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γ(1− u))+)|ρ−1 du. (3.13)

If 1 ≤ ρ ≤ 2, then (x, y) 7→ fε(|x− y|) is concave so −cε satisfies the Monge condition
and a symmetric reasoning shows that∫ 1

0

cε(Ψ
−1
+ (γu),Ψ−1

− (γ(1− u))) du ≤
∫

(0,1)2

cε(u, v)Q(du, dv)

≤
∫ 1

0

cε(Ψ
−1
+ (γu),Ψ−1

− (γu)) du.

(3.14)

It is easy to check that for all u, v ∈ (0, 1), the map (0, 1) 3 ε 7→ cε(u, v) is bounded
from above by 1 + |F−1

ν (u+)− F−1
ν (v+)|ρ−1 and converges to its lower bound |F−1

ν (u+)−
F−1
ν (v+)|ρ−1 when ε→ 0. Consider one of the three integrals in (3.14). If the pointwise

limit for ε→ 0 of its integrand is integrable, then we can apply the dominated conver-
gence theorem. Otherwise, the integral is infinite for all ε ∈ (0, 1). Therefore, for ε→ 0,
we have

∀1 ≤ ρ ≤ 2,

∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γ(1− u))+)|ρ−1 du

≤
∫

(0,1)2

|F−1
ν (u+)− F−1

ν (v+)|ρ−1Q(du, dv)

≤
∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γu)+)|ρ−1 du. (3.15)
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For all ρ ∈ R, applying (2.9) to the measurable and nonnegative function h : y 7→
|F−1
ν (u)− y|ρ1{y 6=F−1

ν (u)} yields du-almost everywhere on (0, 1),∫
R

|F−1
ν (u)− y|ρ1{y 6=F−1

ν (u)} m̃
Q(u, dy)

=

∫
(0,1)

(F−1
µ − F−1

ν )+(u)

F−1
ν (v)− F−1

ν (u)
|F−1
ν (u)− F−1

ν (v)|ρ1{F−1
ν (v) 6=F−1

ν (u)} π
Q
+(u, dv)

+

∫
(0,1)

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (v)
|F−1
ν (u)− F−1

ν (v)|ρ1{F−1
ν (v) 6=F−1

ν (u)} π
Q
−(u, dv),

where according to Lemma 2.5, for (F−1
µ − F−1

ν )+(u) du-almost all u ∈ (0, 1), πQ+(u, dv)-

a.e., F−1
ν (v) > F−1

ν (u) and for (F−1
µ − F−1

ν )−(u) du-almost all u ∈ (0, 1), πQ−(u, dv)-a.e,
F−1
ν (v) < F−1

ν (u). We deduce that

Cρ(m̃
Q) =

∫
(0,1)2

(F−1
µ − F−1

ν )+(u)|F−1
ν (u)− F−1

ν (v)|ρ−1 duπQ+(u, dv)

+

∫
(0,1)2

(F−1
µ − F−1

ν )−(u)|F−1
ν (u)− F−1

ν (v)|ρ−1 duπQ−(u, dv)

= 2γ

∫
(0,1)2

|F−1
ν (u)− F−1

ν (v)|ρ−1Q(du, dv).

(3.16)

Since the set of discontinuities of F−1
ν is at most countable and since the marginals

of Q have densities, we have

Cρ(m̃
Q) = 2γ

∫
(0,1)2

|F−1
ν (u+)− F−1

ν (v+)|ρ−1Q(du, dv). (3.17)

Let us show that

Cρ(m̃IT ) = 2γ

∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γu)+)|ρ−1 du. (3.18)

By Lemma 6.3 below, Ψ−1
+ (Ψ+(u)) = u, dΨ+(u)-almost everywhere on (0, 1), so using

(3.16), Proposition 6.2 below and the fact that 0 < Ψ−1
± (u) < 1 for all u ∈ (0, γ), we have

Cρ(m̃IT ) = 2

∫ 1

0

(F−1
µ − F−1

ν )+(u)|F−1
ν (u)− F−1

ν (ϕ(u))|ρ−11{0<ϕ(u)<1} du

= 2

∫ 1

0

|F−1
ν (Ψ−1

+ (Ψ+(u)))− F−1
ν (Ψ−1

− (Ψ+(u)))|ρ−11{0<Ψ−1
− (Ψ+(u))<1} dΨ+(u)

= 2

∫ γ

0

|F−1
ν (Ψ−1

+ (u))− F−1
ν (Ψ−1

− (u))|ρ−11{0<Ψ−1
− (u)<1} du

= 2γ

∫ 1

0

|F−1
ν (Ψ−1

+ (γu))− F−1
ν (Ψ−1

− (γu))|ρ−1 du.

Since the set of discontinuities of Ψ−1
+ , Ψ−1

− , (Ψ+◦Fν)−1 = F−1
ν ◦Ψ−1

+ and (Ψ−◦Fν)−1 =

F−1
ν ◦Ψ−1

− are at most countable, we get that for du-almost all u ∈ (0, 1), F−1
ν (Ψ−1

+ (γu)) =

F−1
ν ◦ Ψ−1

+ (γu+) = F−1
ν (Ψ−1

+ (γu)+) and F−1
ν (Ψ−1

− (γu)) = F−1
ν (Ψ−1(γu)+), which proves

(3.18). Then (3.11) is deduced from (3.13), (3.15), (3.17) and (3.18).
Assume now that there exists p ∈ (0, 1) such that u 7→

∫ u
0

(F−1
µ (v) − F−1

ν (v)) dv is
nondecreasing on [0, p] and nonincreasing on [p, 1]. For all u ∈ (0, 1), χ+(u) = Ψ+(u) and
χ−(u) = γ −Ψ−(1− u). If U is a random variable uniformly distributed on (0, 1), one can
easily check that 1−Ψ−1

− (γ(1−U)) has distribution dχ−/γ. Since u 7→ 1−Ψ−1
− (γ(1−u)) is
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nondecreasing, it is shown in [2, Lemma A.3] that 1−Ψ−1
− (γ(1−u)) = χ−1

− (γu), du-almost
everywhere on (0, 1). So we show with similar arguments as above that

Cρ(m̃NIT ) = 2γ

∫ 1

0

|F−1
ν (Ψ−1

+ (γu)+)− F−1
ν (Ψ−1

− (γ(1− u))+)|ρ−1 du. (3.19)

Then (3.12) is deduced from (3.13), (3.15), (3.17) and (3.19).

4 On the uniqueness of martingale couplings parametrised by Q
Let µ, ν ∈ P1(R) be such that µ <cx ν. A direct consequence of Proposition 2.9 is

that the set of martingale couplings between µ and ν parametrised by Q is either a
singleton, or uncountably infinite. Since Q is convex, we deduce from Proposition 4.2
below that Q is infinite as soon as µ <cx ν. When µ and ν are such that Fµ and Fν are
continuous, Corollary 4.5 below ensures that there exist uncountably many martingale
couplings between µ and ν parametrised by Q. However this does not necessarily hold
in the general case. We saw that when ν is reduced to two atoms only, there exists
a unique martingale coupling between µ and ν. Suppose now that the comonotonous
coupling is a martingale coupling between µ and ν, and µ, ν ∈ P2(R). For any martingale
coupling M ∈ ΠM(µ, ν), we have

∫
R×R |x− y|

2M(dx, dy) =
∫
R
y2 ν(dy)−

∫
R
x2 µ(dx). So

all the martingale couplings between µ and ν yield the same quadratic cost. In particular,
they yield the same quadratic cost as the comonotonous coupling, which is the only
minimiser of the quadratic cost among Π(µ, ν). So the comonotonous coupling is the only
martingale coupling between µ and ν. The next proposition states that this conclusion
still holds when µ and ν only have finite first order moments.

Proposition 4.1. Let µ, ν ∈ P1(R) be such that µ <cx ν. If the comonotonous coupling
between µ and ν is a martingale coupling, that is for U a random variable uniformly
distributed on (0, 1),

E[F−1
ν (U)|F−1

µ (U)] = F−1
µ (U) almost surely,

then it is the only martingale coupling between µ and ν.

Proof. Let U be a random variable uniformly distributed on (0, 1). The couple (U,F−1
ν (U))

is distributed according to 1(0,1)(u) du δF−1
ν (u)(dy). By Lemma 2.6 applied with the

Markov kernel (m̃(u, dy))u∈(0,1) = (δF−1
ν (u)(dy))u∈(0,1), we get that (F−1

µ (U), F−1
ν (U)) is

distributed according to µ(dx)m(x, dy) where (m(x, dy))x∈R is given by (2.6). By Lemma
6.4 below combined with the inverse transform sampling and (2.7), (F−1

µ (U), F−1
ν (U)) is

distributed according to µ(dx)
∫ 1

v=0
δF−1

ν (Fµ(x−)+v(Fµ(x)−Fµ(x−)))(dy) dv. So almost surely,

F−1
µ (U) = E

[
F−1
ν (U)|F−1

µ (U)
]

=

∫ 1

v=0

(∫
y∈R

y δF−1
ν (Fµ(F−1

µ (U)−)+v(Fµ(F−1
µ (U))−Fµ(F−1

µ (U)−)))(dy)

)
dv

=

∫ 1

0

F−1
ν (Fµ(F−1

µ (U)−) + v(Fµ(F−1
µ (U))− Fµ(F−1

µ (U)−))) dv.

By the inverse transform sampling, we deduce that for µ(dx)-almost all x ∈ R,∫ 1

0

F−1
ν (Fµ(x−) + v(Fµ(x)− Fµ(x−))) dv = x. (4.1)

Let (tn, tn)1≤n≤N denote the irreducible components of (µ, ν), whose definition is
given by (2.13). We recall that the choice of any martingale coupling M between µ and
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ν reduces to the choice of a sequence of martingale couplings (Mn)1≤n≤N such that for
all 1 ≤ n ≤ N , Mn is a martingale coupling between the probability measures µn and νn
defined by (2.15). If for each n, µn reduces to a single atom, then we necessarily have
Mn(dx, dy) = µn(dx) νn(dy), so there is a unique choice of the sequence (Mn)1≤n≤N and
therefore M , which is the comonotonous coupling. Let us then prove that µn reduces to
a single atom.

Let I be the at most countable set of x ∈ R such that µ({x}) > 0 and F−1
ν is

nonconstant on (Fµ(x−), Fµ(x)]. Let us show that

⋃
x∈I

(Fµ(x−), Fµ(x)) =

N⋃
n=1

(
Fµ(tn), Fµ((tn)−)

)
. (4.2)

By [2, Lemma A.8], we have

N⋃
n=1

(
Fµ(tn), Fµ((tn)−)

)
=

{
u ∈ (0, 1) |

∫ u

0

F−1
µ (v) dv >

∫ u

0

F−1
ν (v) dv

}
. (4.3)

Let u ∈ (0, 1). Suppose first that there exists t ∈ R such that u = Fµ(t). We recall that

(F−1
µ (U), F−1

ν (U)) follows µ(dx)
∫ 1

v=0
δF−1

ν (Fµ(x−)+v(Fµ(x)−Fµ(x−)))(dy) dv. So∫ Fµ(t)

0

F−1
ν (v) dv

=

∫ 1

0

1{v≤Fµ(t)}F
−1
ν (v) dv =

∫ 1

0

1{F−1
µ (v)≤t}F

−1
ν (v) dv

=

∫
x∈R

(∫ 1

v=0

1{x≤t}

(∫
y∈R

y δF−1
ν (Fµ(x−)+v(Fµ(x)−Fµ(x−)))(dy)

)
dv

)
µ(dx)

=

∫
x∈R

1{x≤t}

(∫ 1

v=0

F−1
ν (Fµ(x−) + v(Fµ(x)− Fµ(x−))) dv

)
µ(dx)

=

∫
x∈R

1{x≤t}xµ(dx) =

∫ 1

0

1{F−1
µ (v)≤t}F

−1
µ (v) dv =

∫ Fµ(t)

0

F−1
µ (v) dv,

where we used (4.1) for the fifth equality and the inverse transform sampling for the

sixth equality. By continuity, we also deduce that for all t ∈ R,
∫ Fµ(t−)

0
F−1
ν (v) dv =∫ Fµ(t−)

0
F−1
µ (v) dv.

Suppose now that there exists x ∈ R in the set of discontinuities of Fµ such that

Fµ(x−) < u < Fµ(x). According to (4.1), we have
∫ Fµ(x)

Fµ(x−)
F−1
ν (v) dv = µ({x})x =∫ Fµ(x)

Fµ(x−)
x dv =

∫ Fµ(x)

Fµ(x−)
F−1
µ (v) dv.

If F−1
ν is constant on (Fµ(x−), Fµ(x)], then for all v ∈ (Fµ(x−), Fµ(x)], F−1

ν (v) = x =

F−1
µ (v), so∫ u

0

F−1
ν (v) dv

=

∫ Fµ(x−)

0

F−1
ν (v) dv +

∫ u

Fµ(x−)

F−1
ν (v) dv =

∫ Fµ(x−)

0

F−1
µ (v) dv +

∫ u

Fµ(x−)

F−1
µ (v) dv

=

∫ u

0

F−1
µ (v) dv.

If F−1
ν is nonconstant on (Fµ(x−), Fµ(x)], then using the monotonicity of F−1

ν , one
can easily show that for all u ∈ (Fµ(x−), Fµ(x)),

1

u− Fµ(x−)

∫ u

Fµ(x−)

F−1
ν (v) dv <

1

Fµ(x)− Fµ(x−)

∫ Fµ(x)

Fµ(x−)

F−1
ν (v) dv.

EJP 25 (2020), paper 136.
Page 29/50

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP543
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A new family of one dimensional martingale couplings

We deduce that for all u ∈ (Fµ(x−), Fµ(x)),∫ u

Fµ(x−)

F−1
ν (v) dv <

u− Fµ(x−)

Fµ(x)− Fµ(x−)
xµ({x}) = (u− Fµ(x−))x

=

∫ u

Fµ(x−)

x dv =

∫ u

Fµ(x−)

F−1
µ (v) dv,

and
∫ u

0
F−1
µ (v) dv >

∫ u
0
F−1
ν (v) dv. With (4.3), we deduce (4.2). Since the intervals

((tn, tn))1≤n≤N are disjoint, the intervals ((Fµ(tn), Fµ((tn)−)))1≤n≤N are disjoint as well.
By equality of unions of disjoint intervals, we proved that for all 1 ≤ n ≤ N , there exists
x ∈ I such that (Fµ(tn), Fµ((tn)−)) = (Fµ(x−), Fµ(x)). So x ∈ (tn, tn) and µ((tn, tn)) =

Fµ((tn)−) − Fµ(tn) = Fµ(x) − Fµ(x−) = µ({x}). So µn = δx, and the discussion above
concludes that there exists only one martingale coupling between µ and ν, namely the
comonotonous coupling.

We saw in Section 3.1 that we can build a nonincreasing twin of the inverse transform
martingale coupling (see (3.9)) as soon as the two marginals satisfy the assumption in
Proposition 3.4. This corresponds to a general inversion of the monoticity of ϕ on (0, 1).
In the general case, such an inversion is not possible on (0, 1), but can be made locally.

Let µ, ν ∈ P1(R) be such that µ <cx ν. Since µ 6= ν, there exists u ∈ (0, 1) such
that Ψ+(u) > Ψ−(u). Let v = Ψ−1

+ (Ψ+(u)). Then Ψ+(v) = Ψ+(Ψ−1
+ (Ψ+(u)) = Ψ+(u) so

that v > 0 and Ψ+(v) > Ψ−(u) ≥ Ψ−(v). By left-continuity of Ψ− and Ψ+, there exists
η ∈ (0, v) such that Ψ+(w) > Ψ−(w) for all w ∈ [v − η, v]. By definition of v, we have
Ψ+(v − η) < Ψ+(v), so there exists u0 ∈ (v − η, v) such that (F−1

µ − F−1
ν )+(u0) > 0. Since

u0 ∈ (v − η, v), we have Ψ+(v) > Ψ+(u0) > Ψ−(u0) so 1 > ϕ(u0) > u0 according to (3.7).
By left-continuity of F−1

µ , F−1
ν and ϕ, there exists ε ∈ (0, u0) such that

∀u ∈ [u0 − ε, u0], 1 > ϕ(u) > u0 and F−1
µ (u) > F−1

ν (u). (4.4)

Since (u0 − ε, u0] ⊂ U+, Ψ+ is increasing and is therefore one-to-one onto from
(u0 − ε, u0] to (Ψ+(u0 − ε),Ψ+(u0)]. Since the set of discontinuities of Ψ−1

− is at most
countable, up to choosing ε smaller, we may also suppose that in addition to (4.4), ε is
such that Ψ−1

− is continuous at Ψ+(u0 − ε). Let then ζ : [0, 1]→ [0, 1] and ζ̃ : [0, 1]→ [0, 1]

be defined for all u ∈ (0, 1) by

ζ(u) = Ψ−1
− (G(Ψ+(u))) and ζ̃(u) = Ψ−1

+ (G(Ψ−(u))), (4.5)

where G : u 7→ u1(u0−ε,u0]{(Ψ−1
+ (u)) + (Ψ+(u0)− u+ Ψ+(u0 − ε))1(u0−ε,u0](Ψ

−1
+ (u)). Let

Qζ be the measure defined on (0, 1)2 by

Qζ(du, dv) =
1

γ

(
F−1
µ − F−1

ν

)+
(u) duπζ+(u, dv), where πζ+(u, dv) = 1{0<ζ(u)<1} δζ(u)(dv),

(4.6)
with γ = Ψ−(1) = Ψ+(1).

Proposition 4.2. Let µ, ν ∈ P1(R) be such that µ <cx ν. The measure Qζ defined by
(4.6) is an element of Q. Moreover,

Qζ(du, dv) =
1

γ
(F−1
µ − F−1

ν )−(v) dv πζ−(v, du), where πζ−(v, du) = 1{0<ζ̃(v)<1} δζ̃(v)(du).

As said above, Ψ+ is one-to-one onto from (u0 − ε, u0] to (Ψ+(u0 − ε),Ψ+(u0)]. So, for
all u ∈ (u0 − ε, u0], Ψ−1

+ (Ψ+(u)) = u and G(Ψ+(u)) = Ψ+(u0)−Ψ+(u) + Ψ+(u0 − ε). So

∀u ∈ (u0 − ε, u0], ζ(u) = Ψ−1
− (Ψ+(u0)−Ψ+(u) + Ψ+(u0 − ε)). (4.7)
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Since Ψ− is continuous, Ψ−1
− is one-to-one. Moreover, Ψ+ is increasing on (u0 − ε, u0],

so for all u ∈ (u0 − ε, u0]\{Ψ−1
+ (Ψ+(u0)+Ψ+(u0−ε)

2 )}, ζ(u) 6= ϕ(u). Since (u0 − ε, u0] ⊂ U+,
considering the first marginal of Qζ and QIT , we deduce that Qζ 6= QIT . As a direct
consequence of the convexity of Q, we deduce that Q is uncountably infinite.

Corollary 4.3. Let µ, ν ∈ P1(R) be such that µ <cx ν. Then Q is uncountably infinite.

Proof of Proposition 4.2. Let h : (0, 1)2 → R be a measurable and bounded function. We
have∫

(0,1)2

h(u, v)Qζ(du, dv) =
1

γ

∫
(0,1)2

h(u, v)(F−1
µ − F−1

ν )+(u)1{0<ζ(u)<1} δζ(u)(dv) du

=
1

γ

∫ 1

0

h(u, ζ(u))1{0<ζ(u)<1} dΨ+(u)

=
1

γ

∫ 1

0

h(Ψ−1
+ (Ψ+(u)), ζ(u))1{0<ζ(u)<1}1{0<u<1} dΨ+(u),

(4.8)

where the last equality is a consequence of Lemma 6.3 below. By Proposition 6.2 below,∫
(0,1)2

h(u, v)Qζ(du, dv)

=
1

γ

∫ Ψ+(1)

0

h(Ψ−1
+ (u),Ψ−1

− (G(u)))1{0<Ψ−1
− (G(u))<1}1{0<Ψ−1

+ (u)<1} du.

By Lemma 6.3 below, for all u ∈ (0,Ψ+(1)), u0 − ε < Ψ−1
+ (u) ≤ u0 ⇐⇒ Ψ+(u0 − ε) <

u ≤ Ψ+(u0). Hence G is a piecewise affine function which satisfies G(G(u)) = u for all
u ∈ (0,Ψ+(1))\{Ψ+(u0)} and G(G(Ψ+(u0))) = Ψ+(u0 − ε). So by the change of variables
w = G(u), we have∫

(0,1)2

h(u, v)Qζ(du, dv)

=
1

γ

∫ Ψ+(1)

0

h(Ψ−1
+ (G(w)),Ψ−1

− (w))1{0<Ψ−1
− (w)<1}1{0<Ψ−1

+ (G(w))<1} dw.

(4.9)

By continuity of Ψ− and Proposition 6.2 below, using that Ψ+(1) = Ψ−(1), we have∫
(0,1)2

h(u, v)Qζ(du, dv)

=
1

γ

∫ 1

0

h(Ψ−1
+ (G(Ψ−(u))),Ψ−1

− (Ψ−(u)))1{0<Ψ−1
− (Ψ−(u))<1}1{0<Ψ−1

+ (G(Ψ−(u)))<1} dΨ−(u)

=
1

γ

∫ 1

0

h(ζ̃(u), u)1{0<ζ̃(u)<1} dΨ−(u),

where we used for the last equality that Ψ−1
− (Ψ−(u)) = u, dΨ−(u)-almost everywhere on

(0, 1) according to Lemma 6.3 below.
Hence we have that Q(du, dv) = 1

γ (F−1
µ − F−1

ν )−(v) dv πζ−(v, du) where πζ−(v, du) =

1{0<ζ̃(v)<1} δζ̃(v)(du).

For h : (u, v) 7→ 1, (4.9) writes

Qζ((0, 1)2) =
1

γ

∫ Ψ+(1)

0

1{0<Ψ−1
− (w)<1}1{0<Ψ−1

+ (G(w))<1} dw.

By continuity of Ψ−, Proposition 6.2 and Lemma 6.3 below,
∫ Ψ+(1)

0
1{0<Ψ−1

− (w)<1} dw =∫ 1

0
1{0<Ψ−1

− (Ψ−(w))<1} dΨ−(w) =
∫ 1

0
dΨ−(u) = Ψ−(1) = Ψ+(1). So 0 < Ψ−1

− (w) < 1, dw-

almost everywhere on (0,Ψ+(1)). By a similar reasoning, 0 < Ψ−1
+ (w) < 1 for dw-almost
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all w ∈ (0,Ψ+(1)). Since G is piecewise affine and bijective from (0,Ψ+(1))\{Ψ+(u0)} to
itself, 0 < Ψ−1

+ (G(w)) < 1 for dw-almost all w ∈ (0,Ψ+(1)). Hence

Qζ((0, 1)2) =
1

γ

∫ Ψ+(1)

0

dw = 1,

so Qζ is a probability measure, with first marginal 1
γ (F−1

µ − F−1
ν )+(u) du and second

marginal 1
γ (F−1

µ − F−1
ν )−(v) dv.

We have

Qζ
(
{(u, v) ∈ (0, 1)2 | u < v}

)
=

1

γ

∫ 1

0

1{u<ζ(u)}1{0<ζ(u)<1} dΨ+(u).

According to (3.8), u < ϕ(u), dΨ+(u)-almost everywhere on (0, 1). According to (4.7)
and (4.4), for all u ∈ (u0 − ε, u0], ζ(u) ≥ ζ(u0) and

ζ(u0) = ϕ(u0 − ε) > u0. (4.10)

So for all u ∈ (u0−ε, u0], ζ(u) > u0 ≥ u. Moreover, by Lemma 6.3 below, Ψ−1
+ (Ψ+(u)) =

u, dΨ+(u)-almost everywhere on (0, 1). So ζ coincides with ϕ, dΨ+-almost everywhere
on (u0 − ε, u0]{, hence u < ζ(u), dΨ+(u)-almost everywhere on (0, 1). So using (4.8) for
h = 1, we get that

Qζ
(
{(u, v) ∈ (0, 1)2 | u < v}

)
=

1

γ

∫ 1

0

1{0<ζ(u)<1} dΨ+(u) = Qζ((0, 1)2),

which is equal to 1 since Qζ is a probability measure on (0, 1)2.

Corollary 4.4. Let µ, ν ∈ P1(R) be such that µ <cx ν. Let u0 ∈ (0, 1) and ε ∈ (0, u0) be
such that (4.4) is satisfied and Ψ−1

− is continuous at Ψ+(u0 − ε). If F−1
ν is nonconstant

on (ϕ(u0 − ε), ϕ(u0)] and if F−1
µ is such that for all ε′ ∈ (0, ε), the set {u ∈ (0, 1) |

F−1
µ (u0 − ε′) < F−1

µ (u) < F−1
µ (u0)} has positive Lebesgue measure, then there exist

uncountably many martingale couplings parametrised by Q between µ and ν.

Notice that by left-continuity, the condition on F−1
µ in the statement of Corollary 4.4

is satisfied if for all ε′ ∈ (0, ε), F−1
µ takes at least three different values on [u0 − ε′, u0].

A direct consequence of Corollary 4.4 is the infinite amount of martingale couplings
between µ and ν when F−1

µ and F−1
ν are increasing, or equivalently when Fµ and Fν are

continuous.

Corollary 4.5. Let µ, ν ∈ P1(R) be such that µ <cx ν and µ({x}) = ν({x}) = 0 for all
x ∈ R. Then there exist uncountably many martingale couplings parametrised by Q
between µ and ν.

Remark 4.6. Corollary 4.5 is also a consequence of Corollary 4.3 together with Proposi-
tion 2.7.

Proof of Corollary 4.4. Let ζ be defined by (4.5) and let Qζ be the probability measure
defined by (4.6). By Proposition 3.1, Proposition 4.2 and Lemma 2.5, for du-almost all
u ∈ (u0 − ε, u0), F−1

ν (ζ(u)) > F−1
µ (u) > F−1

ν (u) and F−1
ν (ϕ(u)) > F−1

µ (u) > F−1
ν (u).

Since F−1
ν is left-continuous and nonconstant on (ϕ(u0−ε), ϕ(u0)], F−1

ν is nonconstant
on (ϕ(u0 − ε), ϕ(u0)). So there exist a, b ∈ (ϕ(u0 − ε), ϕ(u0)) such that F−1

ν (a) < F−1
ν (b).

Let then c = inf{u ∈ (a, b) | F−1
ν (u) = F−1

ν (b)}. Let u ∈ [a, b]. If F−1
ν (u) = F−1

ν (b), then
c ≤ u. Else if F−1

ν (u) < F−1
ν (b), then c ≥ u. We deduce that a ≤ c ≤ b and for all

u, v ∈ (ϕ(u0 − ε), ϕ(u0)) such that u < c < v, we have F−1
ν (u) < F−1

ν (b) ≤ F−1
ν (v).

Using (4.10), we have F−1
ν (ϕ(u0)) > F−1

ν (ϕ(u0 − ε)) = F−1
ν (ζ(u0)). The map ϕ is left-

continuous, and since ε is such that Ψ−1
− is continuous at Ψ+(u0−ε), ζ is left-continuous at
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u0. So there exists τ ∈ (0, ε) such that for all u ∈ [u0 − τ, u0], ζ(u) < c < ϕ(u). We deduce
that for all u ∈ [u0 − τ, u0], F−1

ν (ϕ(u)) > F−1
ν (ζ(u)). So for du-almost all u ∈ [u0 − τ, u0],

we have

F−1
ν (ϕ(u)) > F−1

ν (ζ(u)) > F−1
µ (u) > F−1

ν (u). (4.11)

Let a, b, c, d ∈ R be such that a > b > c > d. Then(
c− d
a− d

)
a2 +

(
a− c
a− d

)
d2 =

ca2 − da2 + ad2 − cd2

a− d
=

(a− d)(ac− ad+ dc)

(a− d)

= a(c− d) + dc > b(c− d) + dc

=

(
c− d
b− d

)
b2 +

(
b− c
b− d

)
d2.

Thanks to (4.11) and this inequality applied with

(a, b, c, d) = (F−1
ν (ϕ(u)), F−1

ν (ζ(u)), F−1
µ (u), F−1

ν (u)),

we deduce that for du-almost all u ∈ [u0 − τ, u0],∫
R

y2 m̃IT (u, dy) >

∫
R

y2 m̃Qζ (u, dy). (4.12)

By Lemma 2.6, we have∫
R2

1{F−1
µ (u0−τ)<x<F−1

µ (u0)}y
2M IT (dx, dy)

=

∫ 1

u=0

1{F−1
µ (u0−τ)<F−1

µ (u)<F−1
µ (u0)}

∫
y∈R

y2 m̃IT (u, dy) du.

For all u ∈ (0, 1) such that F−1
µ (u0 − τ) < F−1

µ (u) < F−1
µ (u0), we have u ∈ [u0 − τ, u0].

So by (4.11), for Q ∈ {QIT , Qζ} and for du-almost all u ∈ (0, 1) such that F−1
µ (u0 − τ) <

F−1
µ (u) < F−1

µ (u0), y2 ≤ max(F−1
ν (ϕ(u0))2, F−1

ν (u0 − ε)2), m̃Q(u, dy)-almost everywhere.
Therefore, for Q ∈ {QIT , Qζ}, we have∫ 1

u=0

1{F−1
µ (u0−τ)<F−1

µ (u)<F−1
µ (u0)}

∫
y∈R

y2 m̃Q(u, dy) du ≤ max(F−1
ν (ϕ(u0))2, F−1

ν (u0 − ε)2)

< +∞.

Since by assumption the Lebesgue measure of {u ∈ (0, 1) | F−1
µ (u0 − τ) < F−1

µ (u) <

F−1
µ (u0)} is positive, according to (4.12), we get that∫

R2

1{F−1
µ (u0−τ)<x<F−1

µ (u0)}y
2M IT (dx, dy)

>

∫ 1

u=0

1{F−1
µ (u0−τ)<F−1

µ (u)<F−1
µ (u0)}

∫
y∈R

y2 m̃Qζ (u, dy) du

=

∫
R2

1{F−1
µ (u0−τ)<x<F−1

µ (u0)}y
2MQζ (dx, dy).

So M IT 6= MQζ . By Proposition 2.9, we deduce that (MλQIT+(1−λ)Qζ )λ∈[0,1] is a family
of distinct martingale couplings between µ and ν.

EJP 25 (2020), paper 136.
Page 33/50

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP543
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A new family of one dimensional martingale couplings

5 Corresponding super and submartingale couplings

We recall that two probability measures µ, ν ∈ P1(R) are in the decreasing (resp.
increasing) convex order and denote µ ≤dcx ν (resp. µ ≤icx ν) if

∫
R
f(x)µ(dx) ≤∫

R
f(y) ν(dy) for any decreasing (resp. increasing) convex function f : R→ R. For two

probability measures µ, ν ∈ P1(R) such that µ ≤dcx ν (resp. µ ≤icx ν), let

S1(µ, ν) = inf

∫
R×R

|x− y|M(dx, dy),

where the infimum is taken over all supermartingale (resp. submartingale) couplings
M between µ and ν. Our main result, namely Theorem 2.12, can be generalised for the
decreasing and increasing convex orders. We use the definitions of U+, U−, U0 given by
(2.3) and the definitions of Ψ+ and Ψ− given at the beginning of Section 3.1.

Theorem 5.1. For all µ, ν ∈ P1(R) such that µ ≤dcx ν,

S1(µ, ν) ≤ 2Ψ−(1) +W1(µ, ν). (5.1)

For all µ, ν ∈ P1(R) such that µ ≤icx ν,

S1(µ, ν) ≤ 2Ψ+(1) +W1(µ, ν). (5.2)

Remark 5.2. In the martingale case, that is µ ≤cx ν, we have that 2Ψ−(1) = 2Ψ+(1) =

W1(µ, ν), consequence of the equality of the means and (1.2), so that we find Theorem
2.12 again.

The statement (5.2) for the increasing convex order can easily be deduced from (5.1)
for the decreasing convex order. Indeed, let µ, ν ∈ P1(R) be such that µ ≤icx ν. For
any probability measure τ on R or R2, let τ denote the image of τ by x 7→ −x, so that
µ ≤dcx ν. By the inverse transform sampling, −F−1

µ (1− U) is distributing according to
µ for U a random variable uniformly distributed on (0, 1). Since u 7→ −F−1

µ (1 − u) is

nondecreasing, we have F−1
µ (u) = −F−1

µ (1− u), du-almost everywhere on (0, 1) (see for
instance [2, Lemma A.3] and Lemma 6.5 below for an idea of the proof). The fact that
quantile functions are left-continuous and have at most countable sets of discontinuities
then yields F−1

µ (u) = −F−1
µ ((1 − u)+) for all u ∈ (0, 1). Since the map M 7→ M is a

one-to-one correspondence between the set of supermartingale couplings between µ and
ν and the set of submartingale couplings between µ and ν, we have S1(µ, ν) = S1(µ, ν).
So if (5.1) is true for µ ≤dcx ν, then

S1(µ, ν) = S1(µ, ν) ≤ 2

∫ 1

0

(F−1
µ − F−1

ν )−(u) du+W1(µ, ν)

= 2

∫ 1

0

(F−1
ν − F−1

µ )−(u) du+W1(µ, ν) = 2

∫ 1

0

(F−1
µ − F−1

ν )+(u) du+W1(µ, ν)

= 2Ψ+(1) +W1(µ, ν),

hence (5.2) holds.
Frow now on, we suppose µ ≤dcx ν. We recall that two probability measures η, τ ∈

P(R) are in the stochastic order, denoted η ≤st τ , iff for all u ∈ (0, 1), F−1
η (u) ≤ F−1

τ (u),
and in that case τ ≤dcx η. If ν ≤st µ, then for U a random variable uniformly distributed
on (0, 1), by the inverse transform sampling, (F−1

µ (U), F−1
ν (U)) is a supermartingale

coupling between µ and ν, that is E[F−1
ν (U)|F−1

µ (U)] ≤ F−1
µ (U) almost surely. In that

case,

S1(µ, ν) ≤ E[F−1
ν (U)− F−1

µ (U)] =W1(µ, ν), (5.3)
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so (5.1) is satisfied as soon as ν ≤st µ, which is equivalent to Ψ−(1) = 0. If ν 6≤st µ, then
Inequality (5.1) is a direct consequence of Proposition 5.5 and Proposition 5.7 below. As
mentioned above, this concludes the proof of Theorem 5.1.

Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ, so that Ψ−(1) > 0. According
to [21, Theorem 4.A.3 Chapter 4], for all u ∈ [0, 1],

∫ u
0
F−1
µ (v) dv ≥

∫ u
0
F−1
ν (v) dv. This

implies that for all u ∈ [0, 1], Ψ+(u) ≥ Ψ−(u). Let Ũ+ be a measurable subset of U+ which
satisfies

∀u ∈ (0, 1),

∫ u

0

1Ũ+(v)(F
−1
µ − F−1

ν )+(v) dv ≥
∫ u

0

(F−1
µ − F−1

ν )−(v) dv,

with equality for u = 1.

(5.4)

Let ud = Ψ−1
+ (Ψ−(1)). Since Ψ+ is continuous, Ψ+(ud) = Ψ−(1). If ud = 0, then

Ψ−(1) = 0, which implies that for all u ∈ (0, 1), F−1
µ (u) ≥ F−1

ν (u). We deduce that the
condition ν 6≤st µ is equivalent to ud > 0. One readily sees that (5.4) is satisfied for
Ũ+ = (0, ud). Let

u = sup{u ∈ [0, 1] | Ψ+(u) = Ψ−(u)}. (5.5)

We deduce from the definition of u and (5.4) that Ψ+(u) =
∫ u

0
1Ũ+

(u)(F−1
µ −

F−1
ν )+(u) du, so for du-almost all u ∈ U+ ∩ [0, u], u ∈ Ũ+. Therefore, the only room

for manoeuvre of Ũ+ is [u, 1].

Let γ =
∫ 1

0
(F−1
µ − F−1

ν )−(u) du ∈ (0,+∞). We note Q the set of probability measures

Q on (0, 1)2 such that there exists a measurable subset Ũ+ of U+ which satisfies (5.4) and

(i) Q has first marginal 1
γ1Ũ+

(u)(F−1
µ − F−1

ν )+(u) du;

(ii) Q has second marginal 1
γ (F−1

µ − F−1
ν )−(v) dv;

(iii) Q
(
{(u, v) ∈ (0, 1)2 | u < v}

)
= 1.

For Ũ+ a measurable subset of U+ satisfying (5.4), let Ψ̃+ : [0, 1] → R+ be defined
for all u ∈ [0, 1] by Ψ̃+(u) =

∫ u
0
1Ũ+

(v)(F−1
µ − F−1

ν )+(v) dv. Let ϕ : [0, 1] → [0, 1] and

ϕ̃ : [0, 1]→ [0, 1] be defined for all u ∈ [0, 1] by

ϕ(u) = Ψ−1
− (Ψ̃+(u)) = inf{r ∈ [0, 1] | Ψ−(r) ≥ Ψ̃+(u)};

ϕ̃(u) = Ψ̃−1
+ (Ψ−(v)) = inf{r ∈ [0, 1] | Ψ̃+(r) ≥ Ψ−(u)},

which are well defined thanks to the equality Ψ−(1) = Ψ̃+(1), consequence of (5.4). Let
then QIT

Ũ+
be the measure defined on (0, 1)2 by

QITŨ+
(du, dv) =

1

γ
1Ũ+

(u)(F−1
µ − F−1

ν )+(u) duπQ+(u, dv),

where πQ+(u, dv) = 1{0<ϕ(u)<1} δϕ(u)(dv).

(5.6)

Proposition 5.3. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ. Let Ũ+ be a
measurable subset of U+ such that (5.4) holds. The measure QIT

Ũ+
defined by (5.6) is an

element of Q. Moreover,

QITŨ+
(du, dv) =

1

γ
(F−1
µ − F−1

ν )−(v) dv πQ−(v, du), where πQ−(v, du) = 1{0<ϕ̃(v)<1} δϕ̃(v)(du).

(5.7)
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Proof of Proposition 5.3. A mild adaptation of the proof of Proposition 3.1 is conclusive.
In particular, (3.5) is replaced with∫ 1

0

h(u, ϕ(u)) dΨ̃+(u) =

∫ 1

0

h(ϕ̃(v), v) dΨ−(v),

for any measurable and bounded function h : [0, 1]2 → R, consequence of Lemma 6.1
below with f1 : u 7→ 1Ũ+

(u)(F−1
µ −F−1

ν )+(u), f2 : v 7→ (F−1
µ −F−1

ν )−(v) and u0 = 1, which

gives the key property to show that QIT
Ũ+
∈ Q.

The existence of the inverse transform supermartingale coupling introduced below for
the choice Ũ+ = (0, ud) implies that Q is non-empty. More generally, for any measurable
subset Ũ+ of U+ satisfying (5.4), there exists Q ∈ Q with first marginal 1

γ1Ũ+
(u)(F−1

µ −
F−1
ν )+(u) du. For Q an element of Q, let πQ+ and πQ− be two sub-Markov kernels such that

Q(du, dv) =
1

γ
1Ũ+

(u)(F−1
µ (u)− F−1

ν )+(u) duπQ+(u, dv) =
1

γ
(F−1
µ − F−1

ν )−(v) dv πQ−(v, du).

Let (m̃Q(u, dy))u∈(0,1) be the Markov kernel defined by

∫
(0,1)

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)
δF−1

ν (v)(dy)πQ+(u, dv) +

∫
(0,1)

F−1
ν (v)− F−1

µ (u)

F−1
ν (v)− F−1

ν (u)
πQ+(u, dv)δF−1

ν (u)(dy)

for u ∈ Ũ+ such that πQ+(u, {v ∈ (0, 1) | F−1
ν (v) > F−1

µ (u)}) = 1;

∫
Ũ+

F−1
µ (u)− F−1

ν (u)

F−1
ν (v)− F−1

ν (u)
δF−1

ν (v)(dy)πQ−(u, dv) +

∫
Ũ+

F−1
ν (v)− F−1

µ (u)

F−1
ν (v)− F−1

ν (u)
πQ−(u, dv)δF−1

ν (u)(dy)

for u ∈ U− such that πQ−(u, {v ∈ (0, 1) | F−1
ν (v) < F−1

µ (u)}) = 1;

δF−1
ν (u)(dy) otherwise.

(5.8)
The idea of this construction is as follows: for u ∈ U−, we can associate to F−1

µ (u)

a martingale contribution with F−1
ν (u) and F−1

ν (v) as in Section 2. If F−1
µ (u) = F−1

ν (u),

we associate F−1
ν (u) to F−1

µ (u). For u ∈ U+\Ũ+, we only associate F−1
ν (u) < F−1

µ (u)

to F−1
µ (u) since there is no partner v ∈ U− ∩ (u, 1) available to construct a martingale

contribution: all such possible partners have already been associated to values in Ũ+.
Since du-almost all u in U+∩[0, u] belong to Ũ+, our construction is such that we associate
to F−1

µ (u) a martingale contribution at least for du-almost all u ∈ U+ ∩ [0, u], which is
actually not a particularity of our construction but a common property satisfied by all
supermartingale couplings, as shown in the next proposition.

Proposition 5.4. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν, M(dx, dy) = µ(dx)m(x, dy)

be a supermartingale coupling between µ and ν and u be defined by (5.5). Then∫
R
ym(x, dy) = x for µ(dx)-almost all x ≤ F−1

µ (u), or equivalently,∫
R

(
x−

∫
R

ym(x, dy)

)
1{x≤F−1

µ (u)} µ(dx) = 0. (5.9)

Proof. Let (m̃(u, dy))u∈(0,1) = (m(F−1
µ (u), dy))u∈(0,1) and η be the image of µ by the map

x 7→
∫
R
ym(x, dy). Since M is a supermartingale coupling, we deduce by the inverse

transform sampling that F−1
µ (u) ≥

∫
R
y m̃(u, dy) for du-almost all u ∈ (0, 1). Therefore,∫ u

0

F−1
µ (u) du ≥

∫ u

0

∫
R

y m̃(u, dy) du =

∫ u

0

∫
R

ym(F−1
µ (u), dy) du. (5.10)
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Let U and V be two independent random variables uniformly distributed on (0, 1). By
the inverse transform sampling,

∫
R
ym(F−1

µ (U), dy) is distributed according to η, so by
Lemma 6.6 below, the map f : (0, 1)2 → R defined for all u, v ∈ (0, 1) by

f(u, v) = Fη

((∫
R

ym(F−1
µ (u), dy)

)
−

)
+ vη

({∫
R

ym(F−1
µ (u), dy)

})
is such that the random variable f(U, V ) is uniformly distributed on (0, 1) and satisfies
F−1
η (f(U, V )) =

∫
R
ym(F−1

µ (U), dy) almost surely. For d ∈ {1, 2}, let λd denote the
Lebesgue measure on [0, 1]d and A = f((0, u) × (0, 1)). Then u = λ2((0, u) × (0, 1)) ≤
λ2(f−1(f((0, u)×(0, 1)))) = λ1(A). We deduce that λ1(A∩(0, u){) = λ1(A)−λ1(A∩(0, u)) ≥
λ1((0, u))− λ1(A ∩ (0, u)) = λ1(A{ ∩ (0, u)) and∫ u

0

∫
R

ym(F−1
µ (u), dy) du =

∫
(0,u)×(0,1)

F−1
η (f(u, v)) du dv

=

∫
A∩(0,u){

F−1
η (u) du+

∫
A∩(0,u)

F−1
η (u) du

≥ λ1(A ∩ (0, u){)F−1
η (u) +

∫
A∩(0,u)

F−1
η (u) du

≥ λ1(A{ ∩ (0, u))F−1
η (u) +

∫
A∩(0,u)

F−1
η (u) du

≥
∫
A{∩(0,u)

F−1
η (u) du+

∫
A∩(0,u)

F−1
η (u) du =

∫ u

0

F−1
η (u) du.

For any convex function f : R→ R, Jensen’s inequality yields∫
R

f(y) η(dy) =

∫
R

f

(∫
R

ym(x, dy)

)
µ(dx) ≤

∫
R

∫
R

f(y)m(x, dy)µ(dx) =

∫
R

f(y) ν(dy),

hence η ≤cx ν. We then deduce from (3.3) that
∫ u

0
F−1
η (u) du ≥

∫ u
0
F−1
ν (v) dv. Finally, we

showed that

0 = Ψ+(u)−Ψ−(u) =

∫ u

0

F−1
µ (u) du−

∫ u

0

F−1
ν (u) du

≥
∫ u

0

F−1
µ (u) du−

∫ u

0

∫
R

ym(F−1
µ (u), dy) du ≥ 0,

where the last inequality comes from (5.10). Therefore we have
∫ u

0
(F−1
µ (u) −∫

R
ym(F−1

µ (u), dy)) du = 0. Let u ∈ (0, 1) be such that u ≤ u and F−1
µ (u) = F−1

µ (u).
Then Ψ+(u) = Ψ+(u) = Ψ−(u) ≤ Ψ−(u) ≤ Ψ+(u), so these inequalities are equalities and
u = u by definition of u. Therefore, u ≤ u ⇐⇒ F−1

µ (u) ≤ F−1
µ (u) and by the inverse

transform sampling,

0 =

∫ 1

0

(
F−1
µ (u)−

∫
R

ym(F−1
µ (u), dy)

)
1F−1

µ (u)≤F−1
µ (u) du

=

∫ 1

0

(
x−

∫
R

ym(x, dy)

)
1x≤F−1

µ (u) µ(dx),

which proves (5.9).

Let (mQ(x, dy))x∈R be the Markov kernel defined as in (2.6) with (m̃(u, dy))u∈(0,1) re-
placed with (m̃Q(u, dy))u∈(0,1). Then µ(dx)mQ(x, dy) is expected to be a supermartingale
coupling between µ and ν, as the next proposition states.
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Proposition 5.5. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ. Then for all
Q in the non-empty set Q, the probability measure MQ(dx, dy) = µ(dx)mQ(x, dy) is a
supermartingale coupling between µ and ν.

Notice that MQ is a martingale coupling between µ and ν iff µ and ν have equal
means, which is equivalent to Ψ+(1) = Ψ−(1).

Proof of Proposition 5.5. With the very same arguments as in Section 2, we show that
MQ(dx, dy) is a coupling between µ and ν (see Proposition 2.3). The same calculation as
(2.10) for du-almost all u ∈ Ũ+ ∪ U− and the definition of m̃Q for u ∈ U0 and u ∈ U+\Ũ+

yield ∫
R

|y|m̃Q(u, dy) < +∞,

and

∫
R

y m̃Q(u, dy) =


F−1
µ (u) for du-almost all u ∈ Ũ+ ∪ U−;

F−1
ν (u) = F−1

µ (u) for u ∈ U0;

F−1
ν (u) < F−1

µ (u) for u ∈ U+\Ũ+.

(5.11)

Therefore, for du-almost all u ∈ (0, 1),
∫
R
y m̃Q(u, dy) ≤ F−1

µ (u). Let h : R → R be a
measurable nonnegative and bounded function. By Lemma 2.6,∫
R×R

h(x)(y − x)µ(dx)mQ(x, dy) =

∫ 1

0

h(F−1
µ (u))

(∫
R

(y − F−1
µ (u)) m̃Q(u, dy)

)
du ≤ 0.

(5.12)

Therefore, for all Q ∈ Q, MQ(dx, dy) is a supermartingale coupling between µ and
ν.

For Ũ+ a measurable subset of U+ which satifies (5.4), let us write (mIT
Ũ+

(x, dy))x∈R in-

stead of (m
QITŨ+ (x, dy))x∈R and (m̃IT

Ũ+
(u, dy))u∈(0,1) instead of (m̃

QITŨ+ (u, dy))u∈(0,1), whose

definition, given by (5.8), reduces to



F−1
µ (u)− F−1

ν (u)

F−1
ν (ϕ(u))− F−1

ν (u)
δF−1

ν (ϕ(u))(dy) +

(
1−

F−1
µ (u)− F−1

ν (u)

F−1
ν (ϕ(u))− F−1

ν (u)

)
δF−1

ν (u)(dy)

if u ∈ Ũ+, F
−1
ν (ϕ(u)) > F−1

µ (u) > F−1
ν (u) and ϕ(u) < 1;

F−1
ν (u)− F−1

µ (u)

F−1
ν (u)− F−1

ν (ϕ̃(u))
δF−1

ν (ϕ̃(u))(dy) +

(
1−

F−1
ν (u)− F−1

µ (u)

F−1
ν (u)− F−1

ν (ϕ̃(u))

)
δF−1

ν (u)(dy)

if F−1
ν (ϕ̃(u)) < F−1

µ (u) < F−1
ν (u) and ϕ̃(u) < 1;

δF−1
ν (u)(dy) otherwise.

(5.13)

Then M IT
Ũ+

(dx, dy) = µ(dx)mIT
Ũ+

(x, dy) is a supermartingale coupling. Let QITS =

QIT(0,ud), that is the element of Q defined by (5.6) for Ũ+ = (0, ud). From now on,

we write (m̃ITS(u, dy))u∈(0,1) and (mITS(x, dy))x∈R instead of (m̃QITS (u, dy))u∈(0,1) =

(m̃IT
(0,ud)(u, dy))u∈(0,1) and (mQITS (x, dy))x∈R = (mIT

(0,ud)(x, dy))x∈R respectively, and call

inverse transform supermartingale coupling the probability measure M ITS(dx, dy) =

µ(dx)mITS(x, dy).

The next statement generalises Proposition 2.18.
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Proposition 5.6. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ. Let Q ∈ Q. Then
the Markov kernel (m̃Q(u, dy))u∈(0,1) minimises∫ 1

0

∫
R

|F−1
ν (u)− y| m̃(u, dy) du

among all Markov kernels (m̃(u, dy))u∈(0,1) such that∫
u∈(0,1)

m̃(u, dy) du = ν(dy),

∫
R

|y| m̃(u, dy) < +∞,

and

∫
R

y m̃(u, dy) ≤ F−1
µ (u), du-almost everywhere on (0, 1).

(5.14)

Moreover,
∫ 1

0

∫
R
|F−1
ν (u)− y| m̃Q(u, dy) du = 2Ψ−(1).

Proof. Let m̃ be a Markov kernel satisfying (5.14). By monotonicity of the negative part
and Jensen’s inequality, for du-almost every u ∈ (0, 1),

(F−1
µ − F−1

ν )−(u) ≤
(∫

R

(y − F−1
ν (u)) m̃(u, dy)

)−
≤
∫
R

(y − F−1
ν (u))− m̃(u, dy).

Using the equality 2x− = |x| − x valid for x ∈ R and the inverse transform sampling,
we deduce that

2Ψ−(1) ≤ 2

∫ 1

0

∫
R

(y − F−1
ν (u))− m̃(u, dy) du

=

∫ 1

0

∫
R

|y − F−1
ν (u)| m̃(u, dy) du−

∫ 1

0

∫
R

y m̃(u, dy) du+

∫ 1

0

F−1
ν (u) du

=

∫ 1

0

∫
R

|y − F−1
ν (u)| m̃(u, dy) du−

∫
R

y ν(dy) +

∫
R

y ν(dy)

=

∫ 1

0

∫
R

|y − F−1
ν (u)| m̃(u, dy) du.

According to Proposition 5.5, µ(dx)mQ(x, dy) is a coupling between µ and ν, so
by Lemma 2.6,

∫
u∈(0,1)

m̃Q(u, dy) dy = ν(dy). Moreover, we deduce from (5.11) that

(m̃Q(u, dy))u∈(0,1) satisfies (5.14). Therefore, to conclude, it is sufficient to prove that∫ 1

0

∫
R
|y − F−1

ν (u)| m̃Q(u, dy) du = 2Ψ−(1).
Using the definition (5.8) of m̃Q, we get for du-almost all u ∈ (0, 1)∫
R

|F−1
ν (u)− y| m̃Q(u, dy) =

∫
(0,1)

1Ũ+
(u)

(F−1
µ − F−1

ν )+(u)

F−1
ν (v)− F−1

ν (u)
|F−1
ν (u)− F−1

ν (v)|πQ+(u, dv)

+

∫
(0,1)

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (v)
|F−1
ν (u)− F−1

ν (v)|πQ−(u, dv).

A mild adaptation of the proof of Lemma 2.5 yields for du-almost all u ∈ (0, 1),{
u ∈ Ũ+ =⇒ F−1

ν (v) > F−1
µ (u), πQ+(u, dv)-a.e;

u ∈ U− =⇒ F−1
ν (v) < F−1

µ (u), πQ−(u, dv)-a.e.
(5.15)

We deduce that
∫
R
|F−1
ν (u)−y| m̃Q(u, dy) ≤ 1Ũ+

(u)(F−1
µ −F−1

ν )+(u)+(F−1
ν −F−1

µ )−(u)

for du-almost all u ∈ (0, 1). Using (5.4) for u = 1, we conclude that
∫ 1

0

∫
R
|y −

F−1
ν (u)| m̃Q(u, dy) du ≤ 2Ψ−(1).
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The next statement generalises the first statement in Theorem 2.12.

Proposition 5.7. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ. For all Q in the
non-empty set Q, ∫

R×R
|x− y|MQ(dx, dy) ≤ 2Ψ−(1) +W1(µ, ν). (5.16)

Proof. Let Q ∈ Q and let m̃Q be the Markov kernel defined by (5.8). By Lemma 2.6 and
Proposition 5.6,∫

R×R
|y − x|MQ(dx, dy)

=

∫
R×R

|y − x|µ(dx)mQ(x, dy) =

∫ 1

0

∫
R

|y − F−1
µ (u)| m̃Q(u, dy) du

≤
∫ 1

0

∫
R

|y − F−1
ν (u)| m̃Q(u, dy) du+

∫ 1

0

∫
R

|F−1
ν (u)− F−1

µ (u)| m̃Q(u, dy) du

= 2Ψ−(1) +W1(µ, ν).

Among all the measurable subsets Ũ+ of U+ which satisfy (5.4), (0, ud) is the leftmost
one. This is one of the reasons for which the inverse transform supermartingale coupling
plays a particular role among the supermartingale couplings which derive from Q, as
stated in the next Proposition. It is also natural to investigate the rightmost measurable
subset Ũ+ of U+ which satisfies (5.4), that is such that Ψ̃+ is as small as possible. Notice
that a measurable subset Ũ+ of U+ satisfies (5.4) iff it satisfies

∀u ∈ (0, 1),

∫ 1

1−u
1Ũ+(v)(F

−1
µ − F−1

ν )+(v) dv ≤
∫ 1

1−u
(F−1
µ − F−1

ν )−(v) dv,

with equality for u = 1.

(5.17)

Therefore, we look for a measurable subset Ũ+ of U+ such that for u ∈ [0, 1],∫ 1

1−u 1Ũ+
(v) (F−1

µ − F−1
ν )+(v) dv is as big as possible while still being smaller than∫ 1

1−u(F−1
µ − F−1

ν )−(v) dv with equality for u = 1. This is equivalent to have

∫ 1

1−u
(F−1
µ − F−1

ν )(v) dv −
∫ 1

1−u
1U+\Ũ+

(v)(F−1
µ − F−1

ν )(v) dv

=

∫ 1

1−u
1Ũ+

(v) (F−1
µ − F−1

ν )+(v) dv −
∫ 1

1−u
(F−1
µ − F−1

ν )−(v) dv ≤ 0,

with equality for u = 1. Therefore, we look for a measurable subset Ũ+ of U+ such that∫ 1

1−u 1U+\Ũ+
(v)(F−1

µ − F−1
ν )(v) dv is as small as possible while still being greater than∫ 1

1−u(F−1
µ − F−1

ν )(v) dv. Let then R : [0, 1]→ R be defined for all u ∈ [0, 1] by

R(u) = sup
v∈[0,u]

∫ 1

1−v
(F−1
µ − F−1

ν )(w) dw, (5.18)

which can easily be proved to be the minimum of the set of nonnegative and nonde-
creasing functions f : [0, 1] → R which satisfy f(u) ≥

∫ 1

1−u(F−1
µ − F−1

ν )(v) dv for all
u ∈ [0, 1]. The following proposition makes the connection between R and the rightmost
measurable subset Ũ+ of U+ which satisfies (5.4).
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Proposition 5.8. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν, R be defined by (5.18) and
B : [0, 1] 3 u 7→

∫ 1

1−u(F−1
µ − F−1

ν )(v) dv. Let

ŨR+ = {u ∈ U+ | R(1− u) > B(1− u)} and Ψ̃R
+ : u 7→

∫ u

0

1ŨR+
(v)(F−1

µ − F−1
ν )(v) dv.

(5.19)
Then ŨR+ is a measurable subset of U+ which satisfies (5.4) and for any measurable

subset Ũ+ of U+ satisfying (5.4), we have that

∀u ∈ [0, 1], Ψ̃R
+(u) ≤ Ψ̃+(u).

Proof. For ε > 0, let ϕε : R→ R be a continuously differentiable map such that ϕε(x) = 0

for x ≤ −ε, ϕε(x) = x for x ≥ ε, ϕ′ε(x) ∈ [0, 1] for x ∈ R and ϕ′ε(0) = 1. One could choose
for instance

ϕε : x 7→
(
ε

2
+ x+

1

2ε
x2

)
1{−ε<x≤0} +

(
ε

2
+ x− 3

2ε
x2 +

1

ε2
x3

)
1{0<x≤ε} + x1{x>ε}.

Since ϕε is continuously differentiable, the chain rule formula (see for instance [20,
Proposition 4.6 Chapter 0]) yields for all 0 ≤ u < v ≤ 1,

ϕε((B −R)(v))− ϕε((B −R)(u)) =

∫
(u,v]

ϕ′ε((B −R)(w)) d(B −R)(w).

We deduce from the dominated convergence theorem for ε→ 0 that for all 0 ≤ u <
v ≤ 1,

(B −R)+(v)− (B −R)+(u) =

∫
(u,v]

1{(B−R)(w)≥0} d(B −R)(w).

Since R(u) ≥ B(u) for all u ∈ [0, 1], we get that

0 = d(B −R)+(u) = 1{R(u)=B(u)} dB(u)− 1{R(u)=B(u)} dR(u). (5.20)

According to [18, Theorem 1.1.1], the map R solves a Skorokhod problem and may in-
crease only at points u ∈ (0, 1) such that R(u) = B(u), that is dR(u) = 1{R(u)=B(u)} dR(u).
With (5.20), we deduce that

dR(u) = 1{R(u)=B(u)}(F
−1
µ − F−1

ν )(1− u) du.

By monotonicity of R, we have

0 ≤
∫

(0,1)

1{F−1
µ (1−u)≤F−1

ν (1−u)} dR(u)

=

∫
(0,1)

1{R(u)=B(u)}1{F−1
µ (1−u)≤F−1

ν (1−u)}(F
−1
µ − F−1

ν )(1− u) du ≤ 0,

so those inequalities are equalities and for dR(u)-almost all u ∈ (0, 1), 1 − u ∈ U+.
Therefore, dR(u) = 1{R(u)=B(u)}1{(1−u)∈U+}(F

−1
µ − F−1

ν )(1− u) du, so that the set ŨR+ :=

{u ∈ U+ | R(1−u) > B(1−u)} is such that for all u ∈ [0, 1], R(u) =
∫ 1

1−u 1U+\ŨR+
(v)(F−1

µ −
F−1
ν )(v) dv.

Let us now prove that ŨR+ satisfies (5.4), which will end the proof. Let Ψ̃R
+ : u 7→∫ u

0
1ŨR+

(v)(F−1
µ −F−1

ν )(v) dv. On the one hand, using that Ψ+(u) ≥ Ψ−(u) for all u ∈ [0, 1],

we have

B(1) ≤ R(1) = sup
v∈[0,1]

B(v) = sup
v∈[0,1]

(Ψ+(1)−Ψ−(1)−Ψ+(1− v) + Ψ−(1− v))

≤ Ψ+(1)−Ψ−(1) = B(1),
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so those inequalities are equalities and R(1) = Ψ+(1)−Ψ−(1). We deduce that Ψ̃R
+(1) =

Ψ+(1)−R(1) = Ψ−(1). On the other hand, for u ∈ [0, 1],

Ψ̃R
+(u) = Ψ̃R

+(1)+R(1−u)−Ψ+(1)+Ψ+(u) ≥ Ψ−(1)+B(1−u)−Ψ+(1)+Ψ+(u) = Ψ−(u),

so ŨR+ satisfies (5.4).

Proposition 5.9. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν and ν 6≤st µ. For all ρ ∈ R and
for any Markov kernel (m̃(u, dy))u∈(0,1), let Cρ(m̃) be defined by

Cρ(m̃) =

∫
R×(0,1)

|F−1
ν (u)− y|ρ1{y 6=F−1

ν (u)} m̃(u, dy) du. (5.21)

Let (m̃R(u, dy))u∈(0,1) = (m̃IT
ŨR+

(u, dy))u∈(0,1), where ŨR+ is defined by (5.19). Then, for

all Q ∈ Q,

∀ρ ∈ (−∞, 1], Cρ(m̃ITS) ≤ Cρ(m̃Q);

∀ρ ∈ [1, 2], Cρ(m̃Q) ≤ Cρ(m̃ITS);

∀ρ ∈ [2,+∞), Cρ(m̃R) ≤ Cρ(m̃Q).

(5.22)

Proof. Let Ũ+ be a subset of U+ which satisfies (5.4). Let Q be any element of Q with
first marginal 1

γ1Ũ+
(u)(F−1

µ − F−1
ν )+(u) du, and QIT

Ũ+
be defined by (5.6). Reasoning like

in the derivation of (3.13) and (3.15), we obtain

∀ρ ∈ (−∞, 1] ∪ [2,+∞),

∫ 1

0

|F−1
ν (Ψ̃−1

+ (γu)+)− F−1
ν (Ψ−1

− (γu)+)|ρ−1 du

≤
∫

(0,1)2

|F−1
ν (u+)− F−1

ν (v+)|ρ−1Q(du, dv), (5.23)

and

∀1 ≤ ρ ≤ 2,

∫
(0,1)2

|F−1
ν (u+)− F−1

ν (v+)|ρ−1Q(du, dv)

≤
∫ 1

0

|F−1
ν (Ψ̃−1

+ (γu)+)− F−1
ν (Ψ−1

− (γu)+)|ρ−1 du. (5.24)

Moreover, (3.17) and (3.18) generalise into Cρ(m̃
Q) = 2γ

∫
(0,1)2 |F−1

ν (u+) −
F−1
ν (v+)|ρ−1Q(du, dv) and Cρ(m̃IT

Ũ+
) = 2γ

∫ 1

0
|F−1
ν (Ψ̃−1

+ (γu)+)−F−1
ν (Ψ−1

− (γu)+)|ρ−1 du. We

deduce that

∀ρ ∈ (−∞, 1] ∪ [2,+∞), Cρ(m̃IT
Ũ+

) ≤ Cρ(m̃Q) and ∀ρ ∈ [1, 2], Cρ(m̃Q) ≤ Cρ(m̃IT
Ũ+

).

(5.25)
Notice that since Ψ−(u) ≤ Ψ̃+(u) for u ∈ [0, 1], we have Ψ−1

− (v) ≥ Ψ̃−1
+ (v) for v ∈ (0, γ),

so by monotonicity of F−1
ν , we also have

Cρ(m̃
IT
Ũ+

) = 2γ

∫ 1

0

(
F−1
ν (Ψ−1

− (γu)+ − F−1
ν (Ψ̃−1

+ (γu)+))
)ρ−1

du. (5.26)

Let Ψ̃ITS
+ : [0, 1] → R and Ψ̃R

+ : [0, 1] → R be defined for all u ∈ [0, 1] by Ψ̃ITS
+ (u) =∫ u∧ud

0
(F−1
µ − F−1

ν )+(v) dv and Ψ̃R
+(u) =

∫ u
0
1ŨR+

(v)(F−1
µ − F−1

ν )+(v) dv. For all u ∈ [0, ud],

Ψ̃+(u) =
∫ u

0
1Ũ+

(v)(F−1
µ −F−1

ν )+(v) dv ≤
∫ u

0
(F−1
µ −F−1

ν )+(v) dv ≤ Ψ̃ITS
+ (u) and for all u ∈
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[ud, 1], Ψ̃+(u) ≤ Ψ̃+(1) = Ψ−(1) = Ψ̃ITS(u). Moreover, let α : u 7→
∫ 1

1−u 1U+\Ũ+
(v)(F−1

µ −
F−1
ν )(v). The map α is nonnegative, nondecreasing and satisfies

α(u) =

∫ 1

1−u
1U+

(v)(F−1
µ − F−1

ν )(v) dv − Ψ̃+(1) + Ψ̃+(1− u)

≥
∫ 1

1−u
(F−1
µ − F−1

ν )+(v) dv −Ψ−(1) + Ψ−(1− u)

=

∫ 1

1−u
(F−1
µ − F−1

ν )(v) dv,

where we used (5.4) for the inequality. By definition of R, we deduce that for all u ∈ [0, 1],
α(u) ≥ R(u), hence

Ψ̃R
+(u) = Ψ̃R

+(1)−
∫ 1

u

1ŨR+
(v)(F−1

µ − F−1
ν )+(v) dv

= Ψ̃+(1)−
∫ 1

u

1ŨR+
(v)(F−1

µ − F−1
ν )+(v) dv

= Ψ̃+(1)−Ψ+(1) + Ψ+(u) +

∫ 1

u

1U+\ŨR+
(v)(F−1

µ − F−1
ν )+(v) dv

= Ψ̃+(1)−Ψ+(1) + Ψ+(u) +R(1− u)

≤ Ψ̃+(1)−Ψ+(1) + Ψ+(u) + α(1− u) = Ψ̃+(u).

Since Ψ̃R
+(u) ≤ Ψ̃+(u) ≤ Ψ̃ITS

+ (u) for all u ∈ [0, 1], we deduce that

∀u ∈ (0, γ), (Ψ̃ITS
+ )−1(u) ≤ Ψ̃−1

+ (u) ≤ (Ψ̃R
+)−1(u). (5.27)

By (5.26), (5.27) and monotonicity of the maps R+ 3 x 7→ xρ−1 and F−1
ν , we have

∀ρ ∈ (−∞, 1], Cρ(m̃
ITS) ≤ Cρ(m̃IT

Ũ+
) ≤ Cρ(m̃R),

and ∀ρ ∈ [1,+∞), Cρ(m̃
R) ≤ Cρ(m̃IT

Ũ+
) ≤ Cρ(m̃ITS).

(5.28)

Then (5.22) is deduced from (5.25) and (5.28).

We now show the stability of the inverse transform supermartingale coupling with
respect to its marginals for the Wasserstein distance topology. So far, the inverse
transform supermartingale coupling has been defined just before Proposition 5.6 for all
µ, ν ∈ P1(R) such that µ ≤dcx ν and ν 6≤st µ. When ν ≤st µ, we simply define the inverse
transform supermartingale coupling as the comonotonous coupling between µ and ν.

Proposition 5.10. Let µ, ν ∈ P1(R) be such that µ ≤dcx ν. Let (µn)n∈N and (νn)n∈N
be two sequences of probability measures on R with finite first moments such that for
all n ∈ N, µn ≤dcx νn. For all n ∈ N, let M ITS

n (resp. M ITS) be the inverse transform
supermartingale coupling between µn and νn (resp. µ and ν).

IfW1(µn, µ) −→
n→+∞

0 andW1(νn, ν) −→
n→+∞

0, then

W1(M ITS
n ,M ITS) −→

n→+∞
0.

Proof. For all n ∈ N, let Ψn+ : u ∈ [0, 1] 7→
∫ u

0
(F−1
µn − F

−1
νn )+(v) dv, Ψn− : u ∈ [0, 1] 7→∫ u

0
(F−1
µn − F−1

νn )−(v) dv, (ud)n = Ψ−1
n+(Ψn−(1)) if νn 6≤st µn and (ud)n = 0 otherwise,

Ũn+ = (0, (ud)n), Ψ̃n+ : u ∈ [0, 1] 7→
∫ u

0
1Ũn+

(v)(F−1
µn − F

−1
νn )+(v) dv, ϕn = Ψ−1

n− ◦ Ψ̃n+ and

ϕ̃n = Ψ̃−1
n+ ◦Ψn−. Let H : R2 → R be a bounded and continuous function such that h is

EJP 25 (2020), paper 136.
Page 43/50

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP543
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A new family of one dimensional martingale couplings

Lipschitz continuous with respect to its second variable. One can easily prove that (2.12)
still holds in the supermartingale case, which writes, for Q = QIT

Ũn+
,

∫
R2

H(x, y)M ITS
n (dx, dy)

=

∫
(0,1)

H(F−1
µn (u), F−1

νn (u)) du

+

∫
(0,1)

1Ũn+
(u)

(F−1
µn − F

−1
νn )+(u)

F−1
νn (ϕn(u))− F−1

νn (u)
(H(F−1

µn (u), F−1
νn (ϕn(u)))−H(F−1

µn (u), F−1
νn (u))) du

+

∫
(0,1)

(F−1
µn − F

−1
νn )−(u)

F−1
νn (u)− F−1

νn (ϕ̃n(u))
(H(F−1

µn (u), F−1
νn (ϕ̃n(u)))−H(F−1

µn (u), F−1
νn (u))) du,

(5.29)

where the last two integrands are zero when νn ≤st µn. Since µn converges weakly
towards µ, then F−1

µn (u) (resp. F−1
νn (u)) converges towards F−1

µ (u) (resp. F−1
ν (u)) du-

almost everywhere on (0, 1). Since H is continuous and bounded, by the dominated
convergence theorem,∫

(0,1)

H(F−1
µn (u), F−1

νn (u)) du −→
n→+∞

∫
(0,1)

H(F−1
µ (u), F−1

ν (u)) du. (5.30)

Since for all u ∈ [0, 1], x 7→ x+ is Lipschitz continuous with constant 1,

|Ψn−(u)−Ψ−(u)| ≤
∫ u

0

|(F−1
µn − F

−1
νn )−(v)− (F−1

µ − F−1
ν )−(v)| dv

≤
∫ u

0

|F−1
µn (v)− F−1

µ (v)| dv +

∫ u

0

|F−1
νn (v)− F−1

ν (v)| dv

≤ W1(µn, µ) +W1(νn, ν),

so Ψn− converges uniformly to Ψ− on [0, 1]. We deduce with the same reasoning that Ψn+

converges uniformly to Ψ+ on [0, 1]. Since Ũn+ = (0, (ud)n), we deduce from the definition
of (ud)n that for all u ∈ [0, 1], Ψ̃n+(u) = Ψn+(u∧(ud)n) = Ψn+(u)∧Ψn−(1). Let (a, b, c, d) ∈
R4. Then ((a−b)+−(c−d)+)((b−a)+−(d−c)+) = −(a−b)+(d−c)+−(c−d)+(b−a)+ ≤ 0,
so (a − b)+ − (c − d)+ and (b − a)+ − (d − c)+ have opposite signs. Therefore, we can
apply the inequality |x| ≤ |x+ α| ∨ |x+ β| valid for (x, α, β) ∈ R3 such that α and β have
opposite signs with (x, α, β) = (a∧ b− c∧ d, (a− b)+− (c− d)+, (b− a)+− (d− c)+), which
yields

|a ∧ b− c ∧ d| ≤ |a ∧ b− c ∧ d+ (a− b)+ − (c− d)+| ∨ |a ∧ b− c ∧ d+ (b− a)+ − (d− c)+|
= |a− c| ∨ |b− d|.

(5.31)

Using (5.31) with (a, b, c, d) = (Ψn+(u),Ψn−(1),Ψ+(u),Ψ−(1)), we deduce that

|Ψ̃n+(u)− Ψ̃+(u)| = |Ψn+(u) ∧Ψn−(1)−Ψ+(u) ∧Ψ−(1)|
≤ |Ψn+(u)−Ψ+(u)| ∨ |Ψn−(1)−Ψ−(1)|,

hence Ψ̃n+ converges uniformly to Ψ̃+ on [0, 1]. If ν ≤st µ, then we deduce from the
Lipschitz continuity of H with respect to its second variable, (5.29) and (5.30) that there
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exists K ∈ R+ such that∣∣∣∣∫
R×R

H(x, y)M ITS
n (dx, dy)−

∫
R×R

H(x, y)M ITS(dx, dy)

∣∣∣∣
≤

∣∣∣∣∣
∫

(0,1)

H(F−1
µn (u), F−1

νn (u)) du−
∫

(0,1)

H(F−1
µ (u), F−1

ν (u)) du

∣∣∣∣∣+K(Ψ̃n+(1) + Ψn−(1))

−→
n→+∞

K(Ψ̃+(1) + Ψ−(1)) = 0.

We conclude that M ITS
n −→

n→+∞
M ITS for the weak convergence topology as soon as

ν ≤st µ. From now on, we suppose ν 6≤st µ. Since Ψn−(1) −→
n→+∞

Ψ−(1) > 0, νn 6≤st µn for

n large enough, so we can suppose without loss of generality that νn 6≤st µn for all n ∈ N.
Using Lemma 6.3 below for the first equality, then Proposition 6.2 below for the second
equality and the change of variables u = Ψ̃n+(1)v with the equality Ψ̃n+(1) = Ψn−(1) for
the last equality, we have

∫
(0,1)

(F−1
µn
− F−1

νn
)+(u)

F−1
νn (ϕn(u))− F−1

νn (u)
(H(F

−1
µn

(u), F
−1
νn

(ϕn(u)))−H(F
−1
µn

(u), F
−1
νn

(u))) du

=

∫
(0,1)

H(F−1
µn

(Ψ̃−1
n+(Ψ̃n+(u))), F−1

νn
(Ψ−1
n−(Ψ̃n+(u))))−H(F−1

µn
(Ψ̃−1
n+(Ψ̃n+(u))), F−1

νn
(Ψ̃−1
n+(Ψ̃n+(u))))

F−1
νn (Ψ−1

n−(Ψ̃n+(u)))− F−1
νn (Ψ̃−1

n+(Ψ̃n+(u)))
dΨ̃n+(u)

=

∫
(0,Ψ̃n+(1))

H(F−1
µn

(Ψ̃−1
n+(u)), F−1

νn
(Ψ−1
n−(u)))−H(F−1

µn
(Ψ̃−1
n+(u)), F−1

νn
(Ψ̃−1
n+(u)))

F−1
νn (Ψ−1

n−(u))− F−1
νn (Ψ̃−1

n+(u))
du

= Ψ̃n+(1)

∫
(0,1)

H(F−1
µn

(Ψ̃−1
n+(Ψ̃n+(1)v)), F−1

νn
(Ψ−1
n−(Ψn−(1)v)))−H(F−1

µn
(Ψ̃−1
n+(Ψ̃n+(1)v)), F−1

νn
(Ψ̃−1
n+(Ψ̃n+(1)v)))

(F−1
νn (Ψ−1

n−(Ψn−(1)v))− F−1
νn (Ψ̃−1

n+(Ψ̃n+(1)v)))
dv.

Since H is Lipschitz continuous with respect to its second variable, then the integrand
above is bounded. Moreover, for all x ∈ R, |Ψ̃n+(Fµn(x))− Ψ̃+(Fµ(x))| ≤ sup[0,1] |Ψ̃n+ −
Ψ̃+| + |Ψ̃+(Fµn(x)) − Ψ̃+(Fµ(x))|, so Ψ̃n+(Fµn(x))/Ψ̃n+(1) →

n→+∞
Ψ̃+(Fµ(x))/Ψ̃+(1) for

all x ∈ R outside the at most countable set of discontinuities of Fµ. This implies that

d(Ψ̃n+(Fµn(x))/Ψ̃n+(1)) converges to d(Ψ̃+(Fµ(x))/Ψ̃+(1)) for the weak convergence
topology. We deduce the pointwise convergence of the left continuous pseudo-inverses
du-almost everywhere on (0, 1), that is F−1

µn (Ψ̃−1
n+(Ψ̃n+(1)u)) −→

n→+∞
F−1
µ (Ψ̃−1

+ (Ψ̃+(1)u)) for

du-almost all u ∈ (0, 1). In the same way, F−1
νn (Ψ̃−1

n+(Ψ̃n+(1)u)) −→
n→+∞

F−1
ν (Ψ̃−1

+ (Ψ̃+(1)u))

and F−1
νn (Ψ−1

n−(Ψn−(1)u)) −→
n→+∞

F−1
ν (Ψ−1

− (Ψ−(1)u)) for du-almost all u ∈ (0, 1). Therefore,

by the dominated convergence theorem,

∫
(0,1)

(F−1
µn
− F−1

νn
)+(u)

F−1
νn (ϕn(u))− F−1

νn (u)
(H(F

−1
µn

(u), F
−1
νn

(ϕn(u)))−H(F
−1
µn

(u), F
−1
νn

(u))) du

−→
n→+∞

Ψ̃+(1)

∫
(0,1)

H(F−1
µ (Ψ̃−1

+ (Ψ̃+(1)v)), F−1
ν (Ψ−1

− (Ψ−(1)v)))−H(F−1
µ (Ψ̃−1

+ (Ψ̃+(1)v)), F−1
ν (Ψ̃−1

+ (Ψ̃+(1)v)))

(F−1
ν (Ψ−1

− (Ψ−(1)v))− F−1
ν (Ψ̃−1

+ (Ψ̃+(1)v)))
dv

=

∫
(0,1)

(F−1
µ − F−1

ν )+(u)

F−1
ν (ϕ(u))− F−1

ν (u)
(H(F

−1
µ (u), F

−1
ν (ϕ(u)))−H(F

−1
µ (u), F

−1
ν (u))) du.

We can show in the same way that∫
(0,1)

(F−1
µn − F

−1
νn )−(u)

F−1
νn (u)− F−1

νn (ϕ̃n(u))
(H(F−1

µn (u), F−1
νn (ϕ̃n(u)))−H(F−1

µn (u), F−1
νn (u))) du

−→
n→+∞

∫
(0,1)

(F−1
µ − F−1

ν )−(u)

F−1
ν (u)− F−1

ν (ϕ̃(u))
(H(F−1

µ (u), F−1
ν (ϕ̃(u)))−H(F−1

µ (u), F−1
ν (u))) du.
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Finally, we showed that∫
R×R

H(x, y)M ITS
n (x, dy) −→

n→+∞

∫
R×R

H(x, y)M ITS(x, dy),

for any bounded and continuous function H : R2 → R which is Lipschitz continuous
with respect to its second variable, that is M ITS

n −→
n→+∞

M ITS for the weak convergence

topology.
Since the convergence for the Wasserstein distance topology is equivalent to the

convergence for the weak convergence topology and the convergence of the first order
moments (see for instance [24, Theorem 6.9 Chapter 6]),

∫
R
|x|µn(dx) −→

n→+∞

∫
R
|x|µ(dx)

and
∫
R
|y| νn(dy) −→

n→+∞

∫
R
|y| ν(dy). Therefore,W1(M ITS

n ,M ITS) −→
n→+∞

0 when R2 is en-

dowed with the L1-norm. Since all norms onR2 are equivalent,W1(M ITS
n ,M ITS) −→

n→+∞
0

when R2 is endowed with any norm.

6 Appendix

We begin with a key result for the construction of the inverse transform martingale
coupling.

Lemma 6.1. Let f1, f2 : (0, 1) → R be two measurable nonnegative and integrable
functions and u0 ∈ [0, 1] be such that

∫ u0

0
f1(u) du =

∫ 1

0
f2(u) du. Let Ψ1 : [0, 1] 3 u 7→∫ u

0
f1(v) dv, Ψ2 : [0, 1] 3 u 7→

∫ u
0
f2(v) dv and Γ = Ψ−1

2 ◦ Ψ1 where Ψ−1
2 denotes the càg

pseudo-inverse of Ψ2. Then Γ is well defined on [0, u0] and for any measurable and
bounded function h : [0, 1]→ R,∫ u0

0

h(Γ(u))f1(u) du =

∫ 1

0

h(v)f2(v) dv.

The proof of Lemma 6.1 relies on the next proposition, which is a well known result
of integration by continuous and nondecreasing substitution, whose proof can be found
for instance in [20, Proposition 4.10 Chapter 0].

Proposition 6.2. Let a, b ∈ R be such that a < b. Let Ψ : [a, b]→ R be a continuous and
nondecreasing function. Then for any Borel function f : [Ψ(a),Ψ(b)]→ R,∫ b

a

f(Ψ(s)) dΨ(s) =

∫ Ψ(b)

Ψ(a)

f(t) dt.

Proof of Lemma 6.1. Let h : [0, 1]→ R be a measurable and bounded function. Since Ψ1

is nondecreasing and continuous, using Proposition 6.2, we have∫ u0

0

h(Γ(u))f1(u) du =

∫ u0

0

h(Ψ−1
2 (Ψ1(u))) dΨ1(u) =

∫ Ψ1(u0)

0

h(Ψ−1
2 (w)) dw.

Since
∫ u0

0
f1(u) du =

∫ 1

0
f2(u) du, we have Ψ1(u0) = Ψ2(1), and since Ψ2 is nondecreas-

ing and continuous, using once again Proposition 6.2, we have∫ Ψ1(u0)

0

h(Ψ−1
2 (w)) dw =

∫ Ψ2(1)

0

h(Ψ−1
2 (w)) dw =

∫ 1

0

h(Ψ−1
2 (Ψ2(v))) dΨ2(v).

Since by Lemma 6.3 below, Ψ−1
2 (Ψ2(v)) = v, dΨ2(v)-almost everywhere on (0, 1), we

conclude that ∫ 1

0

h(Ψ−1
2 (Ψ2(v))) dΨ2(v) =

∫ 1

0

h(v)f2(v) dv.
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We complete this section with standard lemmas with their proofs, so that the present
article is self-contained.

Lemma 6.3. Let I ⊂ R be an interval, F : I → R be a bounded and nondecreasing càdlàg
function, F (I) be the image of I by F and F−1 be the left continuous pseudo-inverse of
F , that is

F−1 : u ∈ F (I) 7→ inf{r ∈ I | F (r) ≥ u}

Then for all (x, u) ∈ I × F (I), F (x) ≥ u ⇐⇒ x ≥ F−1(u). Moreover, F−1(F (x)) = x,
dF (x)-almost everywhere on I.

Proof. Let (x, u) ∈ I × F (I). If F (x) ≥ u, then by definition of the infimum, x ≥ F−1(u).
Conversely, if x ≥ F−1(u), then let (rn)n∈N ∈ IN be a decreasing sequence converging
to F−1(u). For all n ∈ N, F (rn) ≥ u. By right-continuity of F , we get F (F−1(u)) ≥ u for
n→ +∞. By monotonicity of F , we have F (x) ≥ F (F−1(u)) ≥ u.

Let us now prove the second statement. Let a = inf F (I) and b = supF (I). If
a = b, then dF (x) is the trivial measure on I so the statement is straightforward.
Else, let G : I → [0, 1] be defined for all x ∈ I by G(x) = (F (x) − a)/(b − a) and let
G−1 be its left-continuous pseudo-inverse. It is well known that for all u ∈ (0, 1),
G−1(G(G−1(u))) = G−1(u). So G−1(G(G−1(U))) = G−1(U), where U is a random
variable uniformly distributed on [0, 1]. By the inverse transform sampling, it im-
plies that G−1(G(x)) = x, dG(x)-almost everywhere on I. For all u ∈ F (I), we have
F−1(u) = G−1((u− a)/(b− a)), hence F−1(F (x)) = G−1(G(x)) = x, dG(x)-almost every-
where on I. Since dG(x) = 1

b−adF (x), dG(x) and dF (x) are equivalent, so F−1(F (x)) = x,
dF (x)-almost everywhere on I.

Lemma 6.4. Let µ ∈ P(R). Then Fµ(x) > 0 and Fµ(x−) < 1, µ(dx)-almost everywhere
on R.

Proof. If {x ∈ R | Fµ(x) = 0} is nonempty, then it is an interval of the form (−∞, a]

or (−∞, a), depending on whether Fµ(a) = 0 or not. If Fµ(a) = 0, then µ({x ∈ R |
Fµ(x) = 0}) = µ((−∞, a]) = Fµ(a) = 0. Else, since for all x < a, Fµ(x) = 0, then
µ({x ∈ R | Fµ(x) = 0}) = µ((−∞, a)) = Fµ(a−) = 0.

If {x ∈ R | Fµ(x−) = 1} is nonempty, then it is an interval of the form [a,+∞)

or (a,+∞), depending whether Fµ(a−) = 1 or not. If Fµ(a−) = 1, then µ({x ∈ R |
Fµ(x−) = 1}) = µ([a,+∞)) = 1− Fµ(a−) = 0. Else, since for all x > a, Fµ(x−) = 1, then
µ({x ∈ R | Fµ(x−) = 1}) = µ((a,+∞)) = 1− Fµ(a) = 1− limx→a,x>a Fµ(x−) = 0, by right
continuity of Fµ.

Lemma 6.5. Let µ ∈ P1(R). Then µ is symmetric with mean α ∈ R, that is (x−α)]µ(dx) =

(α− x)]µ(dx) where ] denotes the pushforward operation, iff

F−1
µ (u+) = 2α− F−1

µ (1− u),

for all u ∈ (0, 1). In that case, F−1
µ (u) = 2α− F−1

µ (1− u) for u ∈ (0, 1) up to the at most
countable set of discontinuities of F−1

µ .

Proof. Let U be a random variable uniformly distributed on [0, 1]. Then, by the inverse
transform sampling, F−1

µ (1 − U) ∼ µ, so 2α − F−1
µ (1 − U) ∼ µ since µ is symmetric

with mean α. Since u 7→ 2α − F−1
µ (1 − u) is nondecreasing, then one can show that

2α−F−1
µ (1−u) = F−1

µ (u), du-almost everywhere on (0, 1). Indeed, as shown in [2, Lemma
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A.3], for all u, q ∈ (0, 1) such that q < u, if F−1
µ (u) < 2α− F−1

µ (1− q), then

P(2α− F−1
µ (1− U) ≤ F−1

µ (u)) ≤ P(2α− F−1
µ (1− U) < 2α− F−1

µ (1− q)) ≤ q
< u ≤ P(F−1

µ (U) ≤ F−1
µ (u))

= P(2α− F−1
µ (1− U) ≤ F−1

µ (u)),

which is contradictory, so F−1
µ (u) ≥ supq∈(0,u)(2α − F−1

µ (1 − q)). By symmetry, 2α −
F−1
µ (1 − u) ≥ supq∈(0,u) F

−1
µ (q) = F−1

µ (u) by left-continuity and monotonicity of F−1
µ .

Since F−1
µ has an at most countable set of discontinuities, then for du-almost all u ∈ (0, 1),

2α − F−1
µ (1 − u) = supq∈(0,u)(2α − F−1

µ (1 − q)) ≤ F−1
µ (u) ≤ 2α − F−1

µ (1 − u). Therefore,
2α − F−1

µ (1 − u) = F−1
µ (u+), du-almost everywhere on (0, 1) and even everywhere on

(0, 1) since both sides are right-continuous.

Lemma 6.6. Let µ ∈ P(R), let X : Ω→ R be a random variable with distribution µ and
let V be a random variable independent from X and uniformly distributed on (0, 1). Let
W : Ω→ R be the random variable defined by

W = Fµ(X−) + V (Fµ(X)− Fµ(X−)).

Then W is uniformly distributed on (0, 1), and F−1
µ (W ) = X almost surely.

Proof. Let h : R→ R be a measurable and bounded function. Then

E[h(W )] = E[h(Fµ(X−) + V (Fµ(X)− Fµ(X−))]

=

∫ 1

0

∫
R

h(Fµ(x−) + v(Fµ(x)− Fµ(x−)))µ(dx) dv

=

∫ 1

0

∫
R

1{µ({x})=0}h(Fµ(x−) + v(Fµ(x)− Fµ(x−)))µ(dx) dv

+

∫ 1

0

∫
R

1{µ({x})>0}h(Fµ(x−) + v(Fµ(x)− Fµ(x−)))µ(dx) dv

=

∫
R

1{µ({x})=0}h(Fµ(x))µ(dx) +
∑

x∈R:µ({x})>0

∫ Fµ(x)

Fµ(x−)

h(v) dv

=

∫ 1

0

1{µ({F−1
µ (u)})=0}h(Fµ(F−1

µ (u))) du+
∑

x∈R:µ({x})>0

∫ Fµ(x)

Fµ(x−)

h(v) dv

=

∫ 1

0

1{µ({F−1
µ (u)})=0}h(u) du+

∑
x∈R:µ({x})>0

∫ Fµ(x)

Fµ(x−)

h(v) dv,

where we used for the last but one equality the inverse transform sampling, and for the
last equality the fact that Fµ(F−1

µ (u)) = u if Fµ is continuous at F−1
µ (u). One can easily

see that for all x ∈ R and u ∈ (0, 1),

Fµ(x−) < u ≤ Fµ(x) =⇒ x = F−1
µ (u) =⇒ Fµ(x−) ≤ u ≤ Fµ(x),

which implies ⋃
x∈R:µ({x})>0

(Fµ(x−), Fµ(x)] ⊂ {u ∈ (0, 1) | µ({F−1
µ (u)}) > 0}

⊂
⋃

x∈R:µ({x})>0

[Fµ(x−), Fµ(x)],
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so ∑
x∈R:µ({x})>0

∫ Fµ(x)

Fµ(x−)

h(v) dv =

∫ 1

0

1{µ({F−1
µ (u)})>0}h(u) du.

Therefore,

E[h(W )] =

∫ 1

0

1{µ({F−1
µ (u)})=0}h(u) du+

∫ 1

0

1{µ({F−1
µ (u)})>0}h(u) du =

∫ 1

0

h(u) du,

so W is uniformly distributed on (0, 1). Moreover, on {Fµ(X−) = Fµ(X)}, W = Fµ(X)

and by Lemma 6.3, F−1
µ (W ) = X almost surely. Since V > 0 a.s., on {Fµ(X−) < Fµ(X)},

a.s., Fµ(X−) < W ≤ Fµ(X) so F−1
µ (W ) = X.
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