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Abstract

Rooted, weighted continuum random trees are used to describe limits of sequences
of random discrete trees. Formally, they are random quadruples (T , d, r, p), where
(T , d) is a tree-like metric space, r ∈ T is a distinguished root, and p is a probability
measure on this space. Intuitively, these trees have a combinatorial “underlying
branching structure” implied by their topology but otherwise independent of the
metric d. We explore various ways of making this rigorous, using the weight p to do
so without losing the fractal complexity possible in continuum trees. We introduce a
notion of mass-structural equivalence and show that two rooted, weighted R-trees
are equivalent in this sense if and only if the discrete hierarchies derived by i.i.d.
sampling from their weights, in a manner analogous to Kingman’s paintbox, have the
same distribution. We introduce a family of trees, called “interval partition trees” that
serve as representatives of mass-structure equivalence classes, and which naturally
represent the laws of the aforementioned hierarchies.
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1 Introduction

This paper explores three related ideas: a notion of “mass-structural equivalence”
between rooted, weighted real trees; a family of such trees, called “interval partition
(IP) trees,” in which the metric is, in a sense, specified by the weight and underlying
branching structure; and continuum random tree representations of exchangeable
random hierarchies on N.

Definition 1.1. A real tree (R-tree) is a complete, separable metric space (T , d) with
the property that: (i) for each x, y ∈ T , there is a unique non-self-intersecting path in T
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Exchangeable hierarchies and mass-structure of R-trees

Figure 1: Left: BCRT. Right: Stable(1.1) CRT. Simulations by I. Kortchemski.

from x to y, called a segment [[x, y]]T , and (ii) each segment is isometric to a closed real
interval.

A rooted, weighted R-tree is a quadruple (T , d, r, p), where (T , d) is a R-tree, r ∈ T
is a distinguished vertex called the root, and p is a probability distribution on T with
respect to the Borel σ-algebra generated by d.

We call two rooted, weighted R-trees isomorphic if there exists a root- and weight-
preserving isometry between them.

R-trees have long been studied by topologists, e.g. [9, 34]. Random R-trees, called
continuum random trees (CRTs), were first studied by Aldous [1, 2]. In particular, Aldous
introduced the Brownian CRT (BCRT), which arises as a scaling limit of various families
of random discrete trees, including critical Galton-Watson trees conditioned on total
progeny. The BCRT is a random fractal in the sense that, if we decompose it around
a suitably chosen random branch point, then the components are each distributed as
scaled copies of a BCRT and are conditionally independent given their sizes. Since
Aldous’s work, other authors have introduced similarly complex CRTs, such as the Stable
CRTs [11, 10]. See Figure 1. For a survey of the field, see [12, 23].

Authors often take “CRT” to refer only to randomR-trees that share certain properties
with the BCRT. We use this term more generally to refer to random R-trees, with the
only additional assumption being boundedness.

In a rooted R-tree (T , d, r), a point x ∈ T is a branch point if T \ {x} has at least
three connected components or a leaf if T \ {x} has only one connected component. The
complement of the set of leaves is the skeleton of the tree. The fringe subtree of (T , d, r)
rooted at x is

FT (x) := {y ∈ T : x ∈ [[r, y]]T }. (1.1)

The “between-ness” relations among the branch points, leaves, and root comprise
complex “underlying combinatorial tree structures” within the Brownian and Stable
CRTs; e.g. Figure 1 appears to depict two vastly complex combinatorial trees. We are
interested in formalizations of the notion of underlying tree structure that depend upon
the topology of the tree but not upon the metrization. We will see in Section 6.2 that
some more direct approaches to this lose sight of the complexity of the Brownian and
other self-similar CRTs. In this paper, we instead formalize the “interaction between tree
structure and mass” in rooted, weighted R-trees in order to retain a rich picture of the
Brownian and other CRTs.

Definition 1.2. Consider a rooted, weighted R-tree (T , d, r, p). The subtree spanned by
(the support of) p is

span(p) :=
⋃

x∈support(p)

[[r, x]]T . (1.2)
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Figure 2: Left: IP tree representation of the hierarchy in (1.7), as in Theorem 1.8(ii).
The root is at the top. The black wedge shape in the middle represents an atom of p. The
heavy, shaded line represents continuous mass on the skeleton. Right: combinatorial
tree representation of a finite version of this hierarchy.

The special points of (T , d, r, p) are:

(a) the locations of atoms of p,

(b) the branch points of span(p), and

(c) the isolated leaves of span(p), by which we mean leaves of span(p) that are not
limit points of the branch points of span(p).

Definition 1.3. Let Si denote the set of special points of a rooted, weighted R-tree
(Ti, di, ri, pi) for i = 1, 2. A mass-structural isomophism between these trees is a bijection
φ : S1 → S2 with the following properties.

(i) Mass preserving. For every x ∈ S1, p1
(
[[r1, x]]T1

)
= p2

(
[[r2, φ(x)]]T2

)
, p1{x} =

p2{φ(x)}, and p1
(
FT1(x)

)
= p2

(
FT2(φ(x))

)
.

(ii) Structure preserving. For x, y ∈ S1 we have x ∈ [[r1, y]]T1 if and only if φ(x) ∈
[[r2, φ(y)]]T2 .

We say that two rooted, weighted R-trees are mass-structurally equivalent if there
exists a mass-structural isomorphism from one to the other. It is straightforward to
confirm that this is an equivalence relation.

Definition 1.4. A rooted, weighted R-tree (T , d, r, p) is an interval partition tree ( IP
tree) if it possesses the following properties.

Spanning Every leaf of T is in the support of p, i.e. T = span(p).

Spacing For x ∈ T , if x is either a branch point or lies in the support of p then

d(r, x) + p(FT (x)) = 1. (1.3)

See Figures 2 and 3 for examples IP trees. Note that, as a consequence of (1.3), each
leaf either is an atom of p or sits at unit distance from the root. Relatedly, not all IP trees
are locally compact: in each of the IP trees depicted in Figure 3, each branch point is a
limit point of other branch points, and each branch extends to a different leaf at unit
distance from the root.

Theorem 1.5. Each mass-structural equivalence class of rooted, weighted R-trees
contains exactly one isomorphism class of IP trees.

In light of this theorem, the isomorphism classes of IP trees can be taken as represen-
tatives of the mass-structural equivalence classes. We could refer to the isomorphism
class of IP trees that are mass-structurally equivalent to a given rooted, weighted R-tree
as the mass-structure of that tree. As one application of this, we show in Section 6.1
that a Brownian CRT (BCRT) is specified, up to isomorphism, by its mass-structure; i.e.
the map from rooted, weighted R-trees to mass-structures has a BCRT-a.s. left inverse.
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(a) (b)

(c) (d)

Figure 3: Simulations of IP trees defined in Section 2.2, represented as in Figure 2.
Leaves from different branches appear to touch on a horizontal bottom line; this is not
intended. Length along this line in (b,c,d) equals continuous mass in the leaf set; in (a)
mass is supported in the shaded bits of the skeleton. (a) Fat Cantor IP tree. (b) Brownian
IP tree. (c) (.2, .2)-IP tree. (d) (.8, .5)-IP tree.

Definition 1.6. (i) A hierarchy on a finite set S is a collection H of subsets of S such
that

(a) if A,B ∈ H then A ∩B equals either A or B or ∅, and

(b) S ∈ H, ∅ ∈ H, and {s} ∈ H for all s ∈ S.

The trivial hierarchy on S is

Ξ(S) := {S,∅} ∪ {{a} : a ∈ S}. (1.4)

(ii) A hierarchy on N is a sequence (Hn, n ≥ 1), with each Hn a hierarchy on [n] :=

{1, 2, . . . , n}, with the consistency condition that

Hn = Hn+1

∣∣
[n]

:=
{
A ∩ [n] : A ∈ Hn+1

}
for n ≥ 1.

(iii) Permutations act on hierarchies by relabeling the contents of constituent sets: if H
is a hierarchy on [n] and π a permutation of [n], then

π(H) := {{π(j) : j ∈ A} : A ∈ H}.

A random hierarchy H on [n] is exchangeable if

π(H)
d
= H for every permutation π of [n].

A hierarchy (Hn, n ≥ 1) onN is said to be exchangeable if everyHn is exchangeable.
Exchangeable hierarchies on N were studied in [14].

(iv) A random hierarchy (Hn, n ≥ 1) on N is independently generated if for every
N and every vector (A1, . . . , Ak) of disjoint subsets of [N ], the restrictions of HN
to these subsets,

(
HN |A1 , . . . ,HN |Ak

)
, are jointly independent. We write e.i.g. to

abbreviate “exchangeable and independently generated.”

The convention in (i) that ∅ must belong to every hierarchy is intended to avoid
unwanted distinctions between two otherwise equal hierarchies, one of which contains
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∅ while the other does not. We could equivalently require that ∅ be excluded from every
hierarchy. The setup in (ii) serves a similar purpose of avoiding unwanted distinctions:
we could instead simply consider the definition in (i) with infinite sets S, but then two
hierarchies might be distinct, despite all of their finite restrictions being equal. We
want to avoid drawing such distinctions. The method in (ii) of representing an infinite
combinatorial object by a projective system has often been used to study limits of
exchangeable combinatorial structures; see e.g. [17], [27, Chapter 2.2].

Think of e.i.g. as an analogue in the setting of combinatorial structures to i.i.d.
sequences. By way of analogy to de Finetti’s Theorem for exchageable sequences, in [14,
Theorem 2] it was shown that exchangeable laws of hierarchies on N can be represented
as convex combinations of e.i.g. laws.

A hierarchy on a finite set S can be represented as a tree rooted at S, with the
non-empty blocks of the hierarchy as the nodes and singleton blocks as the leaves. It can
be constructed by partitioning S, then iteratively partitioning the resulting blocks until
only singletons remain. The collection of subsets obtained in the course of this process,
plus the empty set, forms the hierarchy.

Now, consider a rooted, weighted R-tree (T , d, r, p). Let (xi, i ≥ 1) be an i.i.d. random
sequence with law p. Set

Hn :=
{
{i ∈ [n] : xi ∈ FT (x)} : x ∈ T

}
∪ Ξ([n]) for n ≥ 1. (1.5)

We say that (Hn, n ≥ 1) is derived by sampling from (T , d, r, p). Let Θ(T , d, r, p) denote
the law of (Hn, n ≥ 1). This is an e.i.g. law. If two rooted, weighted R-trees are
isomorphic, then Θ maps them to the same law. If T is an isomorphism class of such
trees, we write Θ(T ) to denote the unique e.i.g. law that appears in the image of the
class under Θ.

Theorem 1.7. Two rooted, weighted R-trees are mass-structurally equivalent if and
only if they have the same image under Θ.

For a hierarchy (Hn, n ≥ 1), we denote the associated tail σ-algebra by

tail(Hn) :=
⋂
j≥1

σ
(
Hk|{j,j+1,...,k}, k ≥ j

)
. (1.6)

We resolve [14, Conjecture 1] and strengthen Theorem 5, which was the main result of
that paper, as follows.

Theorem 1.8. (i) For (Hn, n ≥ 1) an exchangeable random hierarchy on N, there
exists an a.s. unique, tail(Hn)-measurable random isomorphism class of IP trees,
T , such that Θ(T ) is a regular conditional distribution (r.c.d.) for (Hn, n ≥ 1)

given tail(Hn).

(ii) The map Θ is a bijection from the set of isomorphism classes of IP trees to the set
of e.i.g. laws of hierarchies on N.

This theorem is a hierarchies analogue to Kingman’s paintbox theorem [22], which
describes exchangeable partitions of N, or to de Finetti’s theorem for exchangeable
sequences of random variables [21]. We recall [14, Example 1].

Example 1.9. Informally, the following is a hierarchy on the interval [0, 3):

H := {[0, 1), [1, 2), [2, 3)} ∪
{⋃

n≥1

{[
j

2n
,
j + 1

2n

)
: 0 ≤ j ≤ 2n − 1

}}
∪ {[x, 3) : 2 < x < 3} ∪ {{x} : x ∈ [0, 3)} ∪ {[0, 3),∅};
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c.f. [14, Definition 5]. Let (si, i ≥ 1) be an i.i.d. sequence of Uniform[0, 3) random
variables, and define an e.i.g. hierarchy on N by

Hn := {{i ∈ [n] : si ∈ B} : B ∈H } ∪ Ξ([n]) for n ≥ 1. (1.7)

See Figure 2 for combinatorial and IP tree representations of this hierarchy.

In [14], the authors pose the “Naïve conjecture” that exchangeable hierarchies are
characterized by a mixture of the three behaviors exhibited in Example 1.9: macroscopic
splitting, broom-like explosion, and comb-like erosion. This is formalized in Conjecture 2
of that paper, which is verified by Theorem 1.8 above and the following.

Theorem 1.10. For (T , d, r, p) an IP tree, p can be decomposed uniquely as pa + ps + pl,
with pa purely atomic, ps the restriction of length measure to a subset of the skeleton of
T , and pl a diffuse measure on the leaf set of T .

By length measure we mean the measure supported on the skeleton of T that assigns
mass d(x, y) to each segment [[x, y]]T . The only non-trivial assertion in this theorem
is that the diffuse component of p on the skeleton is a restriction of length measure.
We formulate the theorem in this way, splitting p into three components, to highlight
the connection to the Naïve conjecture. Explosions, erosion, and macroscopic splitting
correspond to pa, ps, and branch points, respectively, with pl corresponding to the
singletons that are eventually isolated by repeated splitting.

1.1 Applications and related literature

The IP tree representation of a BCRT, mentioned after Theorem 1.5, has been applied
in my work on a 1999 conjecture of Aldous [3] on the existence of a continuum analogue
to a natural Markov chain on cladograms. My collaborators and I have constructed two
representations of this continuum analogue in [15]. The first representation – the one
intended by Aldous – is a path-continuous R-tree-valued Markov process, stationary with
the law of the BCRT. However, we find that this representation is not strongly Markovian
at exceptional times when branch points collide. To obtain a strongly Markovian version
of the process, we use an IP tree representation. Informally, this works because IP trees
do a better job than the BCRT or other well-studied CRTs at keeping space between
branch points.

A parallel effort by Löhr, Mytnick, and Winter [24] has proven existence of a con-
tinuum analogue to Aldous’s Markov chain on a space of “algebraic measure trees.”
The algebraic measure trees, introduced in [25] concurrently with and independently
of the present work, serve a similar purpose to IP trees in representing mass-structure,
but the authors take a more algebraic approach. There is an obvious distinction in
that the objects of the present work are all rooted trees, whereas algebraic trees are
unrooted. However, one could naturally define rooted algebraic trees or, going the
other way, accept a convention of rooting an unrooted weighted tree at its centroid in
order to obtain an IP tree representation. It is an open question to determine whether
equivalence of algebraic measure tree representations is the same as mass-structural
equivalence.

The nested Chinese restaurant process (NCRP) [6] is a Markov chain (Hn, n ≥ 1)

where eachHn is an exchangeable hierarchy on [n], and these are projectively consistent,
comprising an exchangeable hierarchy on N. It is applied as a Bayesian non-parametric
nested topic model, in which a collection of documents is automatically clustered into
topics, subtopics, and sub-subtopics, etc.. Rather than being given a fixed hierarchy
of topics, such models infer natural clusters from the set of documents they are given.
In the nested hierarchical Dirichlet process [26], documents are classed as convex
combinations of subtopics, again with a topic tree arising from the NCRP.
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Exchangeable hierarchies also relate to fragmentation and coagulation processes
[5], in which sets break down or aggregate over time. Hierarchies differ from these
processes in that they do not give an account of the times at which sets join or break
apart; they only describe which sets eventually arise in such a process. Hierarchies
relate to other phylogenetic models, as well, such as phylogenetic trees [33]. A more
complete catalog of references related to exchangeable hierarchies can be read from
[14].

Theorem 1.10, with our interpretation as it relates to explosions, erosion, and macro-
scopic splitting, is a hierarchies analogue to Bertoin’s result that the same three behav-
iors characterize self-similar fragmentations [4]. In light of Theorems 1.8 and 1.10, IP
trees may be understood as recipes for combining and interspersing these behaviors.
This insight may be of value where exchangeable hierarchies are used in applications.
For example, new nested topic models could be constructed that would allow all three of
these dynamics in the infinite limit, rather than solely the iterative infinitary macroscopic
splitting that appears in the limit in the nested Chinese restaurant process [6].

In Section 2 we introduce a general “bead-crushing” construction of IP trees and the
related notion of strings of beads from [29]. Section 3 recounts relevant background
from [14] relating hierarchies to CRTs, then connects this material to IP trees. The main
mathematical work of the paper is done in Section 4, with proofs of two key propositions
building towards the main results, all of which are then proved in Section 5. In Section 6
we offer final thoughts and open questions, including discussion of the Brownian IP tree.

2 Interval partition trees

We will construct IP trees as subsets of the following space.

Definition 2.1. Let `1 denote the Banach space of absolutely summable sequences
of reals under the norm ‖(xi, i ≥ 1)‖ =

∑
i |xi|. We write `1(x, y) := ‖y − x‖. Let

(ej , j ≥ 1) be the coordinate vectors, e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), etc.. For m ≥ 1

let πm : `1 → span(e1, . . . , em) denote the projection onto the first m coordinates, and
let π0 send everything to (0, 0, . . .), which we denote by 0. Let cl denote the topological
closure map on subsets of `1.

Definition 2.2. Following Aldous [2], for x ∈ `1 let [[0, x]]` denote the path that proceeds
from 0 to x along successive directions:

[[0, x]]` := {x} ∪
⋃
m≥0

{tπm(x) + (1− t)πm+1(x) : t ∈ [0, 1]}. (2.1)

For x, y ∈ `1 with all non-negative coordinates,

[[0, x]]` ∩ [[0, y]]` = [[0, z]]`

for some z ∈ `1, possibly equal to zero. We define

(x ∧ y)` := z, [[x, y]]` :=
(
[[0, x]]` ∪ [[0, y]]` \ [[0, z]]`

)
∪ {z}. (2.2)

For example, if x = 2e1 + e3 then [[0, x]]` is a union of two segments parallel to the
first and third coordinate axes, e1[0, 2] ∪ (2e1 + e3[0, 1]). Generally, if x has only finitely
many non-zero coordinates then the last of these segments terminates at x, and the
singleton {x} on the right hand side in (2.1) is redundant.

Definition 2.3. We call a probability measure q with compact support K ⊆ [0, 1] uni-
formized if q[0, x) = x for every x ∈ K. Let F : R → [0, 1] be a cumulative distribution
function for a probability measure µ on R. The uniformization of µ is the measure q on
[0, 1] specified by q[0, x] = inf(range(F ) ∩ [x, 1]).
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Note that the uniformization q of a measure µ is uniformized, and that if µ is uni-
formized then q = µ. Gnedin introduced uniformized measures in the context of the
following bijection.

Lemma 2.4 (Gnedin [17], Section 3). The map q 7→ [0, 1) \ support(q) is a bijection from
the uniformized probability measures to the open subsets of (0, 1).

We represent a generic open set U ⊆ (0, 1) as a disjoint finite or countably infinite
union,

⋃
i(ai, bi). Given U , let qa =

∑
i(bi − ai)δai and let qd denote the restriction of

Lebesgue measure to [0, 1)\U . Then q = qa+qd is uniformized and U = [0, 1)\support(q).

Example 2.5 (Fat Cantor measure). Let A0 := [0, 1]. Let A1 := A0\(3/8, 5/8). We carry on
recursively, as follows. For n ≥ 1, An comprises 2n disjoint closed intervals of the same
length. We form An+1 by removing an open interval of length 4−n−1 from the middle of
each component of An. This sequence decreases to a fat Cantor set A∞ =

⋂
n≥1An, also

called a Smith-Volterra-Cantor set, with Lebesgue measure 1/2; see [16, p. 89].
The fat Cantor set is closed. We define the fat Cantor measure to be the unique uni-

formized probability measure supported on A∞. This equals the restriction of Lebesgue
measure to A∞, plus the sum of one atom at the left end of each interval removed in the
construction, each having mass equal to the length of the removed interval.

Lemma 2.6. A probability measure q on R is uniformized if and only if ([0, L], d, 0, q) is
an IP tree, where d is the Euclidean metric and L is the maximum of the compact support
of q.

Proof. The Spanning property follows from our definition of L. The Spacing property is
then equivalent to the uniformization property.

This lemma characterizes all IP trees that lack branch points.

2.1 The bead-crushing construction of IP trees

Bead-crushing constructions were introduced in [29] and generalized in [32]; we dis-
cuss their “strings of beads” and their construction in Sections 2.2 and 6.1, respectively.
Bead-crushing builds upon Aldous’s line-breaking construction [2]. We have adapted
bead-crushing to yield IP trees. See Figure 4.

Ingredients. A finite or infinite sequence of uniformized probability measures, (qn,
n ∈ [1, N ]) or (qn, n ≥ 1), with Ln := max(support(qn)) for each n.

Initial step. (T0, p0) :=
(
{0}, δ0

)
, where 0 denotes the origin in `1.

Recursive step. Assume (Tn, `1, 0, pn) is a rooted, weighted R-tree embedded in the
first n coordinates in `1 and pn is not purely diffuse. Choose an atom mnδxn of pn and
choose an ∈ (0,mn], perhaps at random. Set

φn(z) := xn +
(
pn(FTn(xn))− an

)
en+1 + zanen+1 for z ∈ [0, Ln+1],

Tn+1 := Tn ∪ [[xn, φn(Ln+1)]]`,

pn+1 := pn − anδxn
+ anφn(qn+1),

(2.3)

where φn(qn+1) denotes the pushforward of the measure.

If pn+1 is purely diffuse or n+ 1 = N then the construction terminates with (T , p) =

(Tn+1, pn+1). If this never arises then the recursive step repeats ad infinitum and we
proceed to the following step.

Take the limit. Let T := cl(
⋃
n≥1 Tn). For every k > n ≥ 1 we have pn = πn(pk), where

πn is as in Definition 2.1. Thus, by the Daniell-Kolmogorov extension theorem, there
exists a measure p on [0, 1]N such that πn(p) = pn for every n ≥ 1. Moreover, since (T , `1)

is complete, p is supported on T .
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q1: q2:

q3: q4:

T1: T2:

T3: T4:

T120:

Figure 4: A color illustration of the bead crushing construction described in Section 2.1.
In each tree image, the root is at the top and leaves are along a line at the bottom. Heavy,
shaded lines mark subsets of the skeleton on which qj or pj equals length measure (in
image of T120, we make these thinner to avoid branches appearing to overlap). Black
wedge shapes, many of which are barely visible, represent atoms, or “beads,” of qj or pj .

Remark 2.7. This construction can be reframed so that all of its inputs are given in
advance, rather than some during each recursive step. In particular, we can adapt [14,
equation (31)] so that each xn is a function of pn and a number un ∈ (0, 1), which need
not depend on (Tn, pn). Likewise, we could define an := mnbn, where bn ∈ (0, 1] does not
depend on (Tn, pn).

Remark 2.8. In the infinite recursive construction, the measures pn can be shown to
converge to p in the first Wasserstein metric (defined, e.g., in [31]), though we will not
use this.
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Figure 5: A string of beads in a discrete tree.

Proposition 2.9. For any finite or infinite sequence, (qn, n ∈ [1, N ]) or (qn, n ≥ 1), of
uniformized probability measures, and any choices of (xn, an), n ≥ 0, in the course of
this construction, the resulting quadruple (T , `1, 0, p) is an IP tree.

We prove this in Section 2.3, after giving some examples of the construction.

Theorem 2.10. Every IP tree can be isomorphically embedded in `1 by the above bead-
crushing construction.

We prove this in Section 5. It is easily seen that any separable R-tree can be isomet-
rically embedded in `1, by constructing in the nth step a tree isometric to one spanned
by the first n points in a countable, dense sequence in the tree. The main assertion
of Theorem 2.10 is rather that this can always be accomplished via the construction
described above.

2.2 Example IP trees, strings of beads, the Brownian IP tree

Definition 2.11. The simple bead-crushing construction of IP trees is a randomization
of the construction in Section 2.1 in which: (i) the measures (qn, n ≥ 1) are i.i.d. picks
from some law on uniformized probability measures, with not all qn = δ0; (ii) at each step,
mnδxn

is a size-biased pick from among the atoms of pn; and (iii) at each step, an = mn.

This variant of the construction always yields a random IP tree with only binary
branch points and a purely diffuse weight measure. If we carry out this construction
with each qn (deterministically) equal to the Fat Cantor measure of Example 2.5, then
we get a binary branching IP tree with length measure interspersed among the branch
points in such a way that the support of the measure does not include any non-trivial
segments, as depicted in Figure 3(a).

Let (T , d, r, p) be a rooted, weightedR-tree, and fix x ∈ T . Consider the decomposition
of T into the path [[r, x]], called a spine, and the collection of subtrees, called bushes,
branching out from the branch points along the spine, with perhaps a final bush rooted
at x, if x is not a leaf. The bushes are totally ordered by increasing distance from the
root. We may project p down onto the spine, replacing the mass distribution over each
bush with an atom at the root of the bush. The resulting measure is called a string of
beads, with the spine being the string and the atoms of the projection of p comprising
the beads; see Figure 5. Spinal decompositions have a long history dating at least to
1981 [20]. Strings of beads were introduced in [29].

Example 2.12. The two-parameter Poisson-Dirichlet distributions [30], denoted by
PoiDir(α, θ) with α ∈ [0, 1) and θ > −α, are probability distributions on the Kingman
simplex: the set of non-increasing infinite sequences of real numbers that sum to 1. These
distributions arise in many settings and applications. Fix α ∈ (0, 1). Let (Ui, i ≥ 1) be
i.i.d. Uniform[0, 1], and let (Pi, i ≥ 1) be independent of this sequence with PoiDir(α, α)

distribution. We define

L := lim
n→∞

n(Pn)αΓ(1− α) and µ :=
∑
i≥1

PiδUiL. (2.4)
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The quantity L, called the α-diversity or sometimes the local time, is known to be a.s.
positive and finite, with a known probability distribution; see [28, eqn. 83] or [29, eqn. 6].
The measure µ is an (α, α)-string of beads [29].

In Section 6.1, we describe the bead crushing construction of [29], which differs from
that in Section 2.1. In particular, plugging i.i.d.

(
1
2 ,

1
2

)
-strings of beads into the former

construction yields a Brownian CRT.

Definition 2.13. Fix α ∈ (0, 1). The (α, α)-IP tree is the IP tree arising from the simple
bead crushing construction of Definition 2.11, with each qn, n ≥ 1, being the uniformiza-
tion of an (α, α)-string of beads. In the case α = 1

2 , we call it a Brownian IP tree. See
Figure 3.

This construction can be carried out with the full two-parameter family of (α, θ)-
strings, with θ ≥ 0, introduced in [29]. We discuss the connection between the Brownian
CRT and the Brownian IP tree in Section 6.1.

2.3 Proof of Propostion 2.9

We begin with a lemma.

Lemma 2.14. For any sequence (qn, n ≥ 1) of uniformized probability measures, and any
choices of (xn, an), n ≥ 0, in the course of the bead-crushing construction of Section 2.1,
the resulting trees (Tn, `1, 0, pn), n ≥ 0, are IP trees.

Proof. It is easily seen that these trees possess the Spanning property, so we need only
check the Spacing property stated in equation (1.3). This holds by construction for n = 0.
Assume for induction that it holds from some n ≥ 0. The reader may check that for
y ∈ Tn, we get

pn+1(FTn+1
(y)) = pn(FTn(y)), (2.5)

regardless of the position of y relative to the point xn of insertion of the new branch.
Thus, (Tn+1, `1, 0, pn+1) satisfies (1.3) at all branch points of Tn and all points in the
closed support of pn. It remains to check (1.3) at points y ∈ Tn+1 \ Tn in the closed
support of pn+1, including xn. By definition of pn+1, each such y equals φn(z) for some z
in the closed support of qn+1. Thus,

pn+1(FTn+1(y)) = pn+1

(
FTn+1(φn(z))

)
= anqn+1([z, Ln+1]) = an(1− z)

=
(
1− ‖xn‖ − p(FT (xn))

)
− an(z − 1) = 1− ‖φn(z)‖,

where the second equality results from the definition of pn+1, the third from the uni-
formized property of qn+1 at z, the fourth from the Spacing property of pn at xn, and the
last from the definition of φn. We conclude that (Tn+1, `1, 0, pn+1) possesses the Spacing
property, as needed for our induction.

The lemma immediately proves Proposition 2.9 in the case that the construction
terminates after finitely many steps. We now resolve the infinitely recursive case,
showing that the limiting tree (T , `1, 0, p) is an IP tree.

Spacing. By construction and the definition of p via projective consistency,

p(FT (y)) = pn(πn(FT (y))) = pn(FTn(y)) for n ≥ 0, y ∈ Tn. (2.6)

Consider y in the closed support of p. We will abbreviate yn := πn(y). For each n ≥ 1, yn
lies in the closed support of pn. Therefore,

p (FT (y)) = p
(⋂

n≥1
FT (yn)

)
= lim
n→∞

p(FT (yn))

= lim
n→∞

pn(FTn(yn)) = lim
n→∞

1− ‖yn‖ = 1− ‖y‖,
(2.7)
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where the first and last equalities follow from the convergence yn → y along the
segment [[0, y]]`, the second follows from the countable additivity of p and the nesting
FT (yn) ⊇ FT (yN ) for n ≤ N , the third from (2.6), and the fourth from the Spacing
property of the trees (Tn, pn) proved in Lemma 2.14.

Spanning. Let y be a leaf of T . As before, let yn := πn(y). Then for all n ≥ 1, either
yn is a leaf in Tn or it lies on an atom of pn, which then arises as an attachment point for
a new branch later in the construction. By the Spanning property of (Tn, pn), yn is in the
closed support of pn regardless. This condition is sufficient to apply the argument (2.7).
In particular, if ‖y‖ < 1 then p{y} = p(FT (y)) = 1− ‖y‖ > 0, so y is in the closed support
of p.

Now, suppose ‖y‖ = 1 and fix ε > 0. We will show the ε-ball about y has positive
p-measure. Take N sufficiently large so that ‖yN‖ > 1− ε/4 and let z denote the point on
[[0, yN ]]` at distance ε/4 from yN . Since ‖z‖ > 1− ε/2 and no point in T lies farther than
one unit from the origin,

‖x− y‖ ≤ ‖x− z‖+ ‖yN − z‖+ ‖y − yN‖ <
ε

2
+
ε

4
+
ε

4
for x ∈ FT (z).

Moreover, by the Spanning property of TN , p(FT (z)) = pN (FTN (z)) > 0. In other words,
the ε-ball about y has positive measure under p.

2.4 Metrization and measurability of spaces of IP trees

IP trees (T , `1, 0, p) constructed by bead crushing have the property

T =
⋃

leaves x∈T
[[0, x]]T =

⋃
x∈support(p)

[[0, x]]`. (2.8)

In particular, T is a function of p. We metrize the set of IP trees (T , `1, 0, p) that
satisfy (2.8) via the Prokhorov metric on their weight measures:

dP (p, q) = inf {ε > 0: ∀A ∈ B, p(Aε) + ε ≥ q(A) and q(Aε) + ε ≥ p(A)} , (2.9)

where B is the Borel σ-algebra on `1 and Aε = {x : ∃y ∈ A s.t. ‖x− y‖ < ε}. We equip this
space of IP trees with the resulting Borel σ-algebra.

Likewise we metrize the space of isomorphism classes of IP trees with the pointed
Gromov-Prokhorov metric of [18], which is the infimum of Prokhorov distances between
the two weight measures over all isometric embeddings of the two trees into a common
space with a common root. Again, we equip this space with the resulting Borel σ-algebra.

We must confirm that the pointed Gromov-Prokhorov metric is positive-definite
between isometry classes of IP trees; it finds zero distance between trees if and only if
there is a measure- and root-preserving isometry between the supports of the measures
unioned with their roots. Indeed, in the setting of R-trees with the Spanning property, if
such a map between the roots and supports exists then it can be extended to a measure-
and root-preserving isometry between the entire trees. This observation relates to the
representation of R-trees as ultrametric spaces and [19, Theorem 4]. We sketch its
proof.

Proof sketch. Suppose (Ti, di, ri, pi), i = 1, 2, are rooted, weighted R-trees with the
Spanning property with φ : {r1} ∪ support(p1)→ {r2} ∪ support(p2) a weight-preserving
isometry. Let (t1i , i ≥ 1) denote i.i.d. samples from p1 and t2i := φ(t1i ), i ≥ 1, so that the
latter are i.i.d. samples from p2. The distance from the root to the branch point separating
two points in an R-tree is a function of the pairwise distances between the root and the
two points: d(r, (x ∧ y)) = (d(r, x) + d(r, y)− d(x, y))/2. Thus, since {r1} ∪ {t1j , 1 ≤ j ≤ n}
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is isometric to {r2} ∪ {t2j , 1 ≤ j ≤ n} for any n, it follows that the subtrees spanned by
these points are also isometric. Let φn denote this isometry. This gives rise to a sequence
of consistent isometries between two sequences of growing subtrees. Since every point
in the skeletons of T1 and T2 eventually falls into these spanned subtrees, the skeletons
are isometric. And since the skeletons are dense and both trees are complete, the trees
are isometric.

Under this σ-algebra, the following map is measurable: the map from an (isomorphism
class of) IP tree(s) to the law of the infinite matrix of pairwise distances between the
root and a sequence of i.i.d. samples from the weight measure [18, Definition 2.8].
The hierarchy generated by n samples can be obtained as a function of that matrix of
distances, so that the resulting law on hierarchies is also a measurable function of the IP
tree.

3 IP tree representation of an exchangeable hierarchy

The proofs of our main results build upon the study of CRT representations of
exchangeable hiearchies in [14]. We recall the relevant background and connect it to IP
trees in this section.

Definition 3.1. A hierarchy H on a finite set S is partially ordered under the subset
relation. For x, y ∈ S, their most recent common ancestor (MRCA) is

(x ∧ y) :=
⋂

G∈H : x,y∈G
G. (3.1)

If (Hn, n ≥ 1) is hierarchy on N, then we define the MRCA of i and j in this hierarchy to
be

(i ∧ j) :=
⋃

n≥max{i,j}

(i ∧ j)n, (3.2)

where (i ∧ j)n denotes the MRCA of i and j in Hn.

MRCAs in hierarchies on N are projectively consistent [14, Proposition 1]:

(i ∧ j)n = (i ∧ j)N ∩ [n] = (i ∧ j) ∩ [n] for i, j ≤ n ≤ N. (3.3)

When constructing a R-tree representation of a hierarchy, we find it convenient to
work with a hierarchy on Z. Our strategy is to construct the tree by a line-breaking
procedure, with the endpoints of successively added branch corresponding to −1, −2,
. . . , in the hierarchy. Then, the positive indices correspond to samples t1, t2, . . . , in the
tree, which, by exchangeability, specify a driving measure on the tree.

Let (H′n, n ≥ 1) be an exchangeable hierarchy on N and let b : N → Z denote the
bijection that sends odd numbers to sequential non-positive numbers and evens to
sequential positive numbers. For n ≥ 1 set

Hn :=
{
{b(k) : k ∈ A} : A ∈ H′2n+1

}
. (3.4)

Then Hn is a hierarchy on [±n] := {−n, . . . , 0, . . . , n} and Hn+1

∣∣
[±n] = Hn for every n ≥ 1.

Definition 3.1 extends to this context without modification.

Proposition 3.2 ([17] Theorem 11, [8] Theorem 5, [14] Proposition 2). Let (Hn, n ≥ 1)

be an exchangeable hierarchy on Z.

(i) For i, j ∈ Z, the following limit exists almost surely:

Xi
j := 1− lim

n→∞

#((i ∧ j) ∩ [±n])

2n
. (3.5)
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(ii) For bijections σ : Z→ Z with finitely many non-fixed points,(
Xi
j ; i, j ∈ Z, i 6= j

) d
=
(
X
σ(i)
σ(j); i, j ∈ Z, i 6= j

)
. (3.6)

In particular, for i ∈ Z, the family (Xi
j , j ∈ Z \ {i}) is exchangeable.

(iii) For i, j, k ∈ N, the following events are almost surely equal:

{Xi
j ≤ Xi

k} = {(i ∧ k) ⊆ (i ∧ j)} = {k ∈ (i ∧ j)}. (3.7)

Recall the notation of Definitions 2.1 and 2.2 for a standard basis (en, n ≥ 1),
projection maps (πn, n ≥ 1), and segments [[0, x]]` in `1. We adopt the convention
that for k < 0, [k] := {k, k + 1, . . . ,−1}.
Definition 3.3. For all j ∈ Z, set t0j = 0. Iteratively, for each k ≤ 0, we define

tk−1j := tkj + e|k−1|
(
Xk−1
j −

∥∥tkj∥∥)+ for j ∈ Z \ [k − 1],

Tk := cl
(⋃

j≥1

q
0, tkj

y
`

)
,

(3.8)

where (a)+ := max{a, 0}. We treat 0 as the root of each of the trees.

It is easily checked that∥∥tkj∥∥ = max
m∈[k]

Xm
j and π|i|

(
tkj
)

= tij for k < i ≤ 0, j /∈ [k].

Thus, for any j, the sequence (
∥∥tkj∥∥, k < 0) is monotone increasing as k decreases. When

this magnitude holds constant from k to k − 1, so does tkj ; and when the magnitude

increases, it does so because tk−1j − tkj is a vector in the e|k−1| direction. In this latter

case, we say that tk−1j is “pushed out” from tkj .

Proposition 3.4 (Lemma 1 and Propositions 4, 5, and 6 of [14]).

(i) Line-breaking property of T . For k ≤ −1 and j ∈ Z \ [k − 1], if tk−1j 6= tkj then

tkj = tkk−1. Informally, all samples that are “pushed out” in passing from tkj to tk−1j

come from the same spot on Tk, namely tkk−1. Moreover, regardless of whether

tk−1j = tkj , (
Xk−1
j −

∥∥tkj∥∥)+ =
(
Xk−1
j −

∥∥tkk−1∥∥)+. (3.9)

(ii) For each j ≥ 1, (tkj , k < 0) converges a.s. in `1. Call the limit tj .

(iii) The family (tj , j ≥ 1) is exchangeable and has a driving measure p supported on a
subset of

T := cl
(⋃

k<0
Tk
)
.

Likewise, for every k < 0, the family (tkj , j ≥ 1) is exchangeable and has a driving
measure pk.

(iv) For distinct u, v ∈ N,

(u ∧ v)H ∩N = {j ∈ N : tj ∈ FT ((tu ∧ tv)`)}. (3.10)

Theorem 3.5 (Theorem 5 and its proof in [14]). Let (H′n, n ≥ 1) denote a hierarchy
on N, and let (T , p) be as in Proposition 3.4 above, following from the construction in
Definition 3.3. Then the random law Θ(T , `1, 0, p) is a r.c.d. for (H′n, n ≥ 1) on tail(H′n).

To this description, we add the following.
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Proposition 3.6. In the setting of Theorem 3.5, (T , `1, 0, p) is a random IP tree arising
from a bead crushing construction as in Section 2.1, with the caveat that at some steps
k, (Tk−1, pk−1) = (Tk, pk).

The formulation of bead crushing in Section 2.1 does not allow this possibility of the
tree going unchanged in one of the steps. We refer to this variant of bead crushing as
bead crushing with pauses. Of course, trees arising from the construction with pauses
are still IP trees.

Proof of Proposition 3.6. We restate (2.3) from the recursive step in the bead-crushing
construction, for use in the present setting:

φk(z) := tkk−1 +
(
pk
(
FTk

(
tkk−1

))
− ak

)
e|k−1| + zake|k−1|, z ∈ [0, Lk−1],

Tk−1 := Tk ∪
q
tkk−1, φk(Lk−1)

y
`
,

pk−1 := pk − akδtkk−1
+ akφk(qk−1),

(3.11)

where Lk−1 = max(support(qk−1)) and ak ∈
(
0, pk

{
tkk−1

}]
. We will prove that, at each

step in the iterative construction of (T , p), if (Tk−1, pk−1) 6= (Tk, pk) then there exists
a uniformized law qk−1 and a mass ak ∈ (0,mk], where mk := pk{tkk−1} > 0, such that
(Tk−1, pk−1) is obtained from (Tk, pk) as in (3.11).

Base step: k = 0. By definition, t0−1 = 0 and t−1j = X−1j e1 for each j 6= −1. We set
a0 := m0 = 1. Then, following (3.11), φ−1(z) = ze1 for z ∈ [0, 1]. Let q−1 denote the
driving measure of the sequence (X−1j , j ≥ 1).

1−X−1j = lim
n→∞

#((−1 ∧ j) ∩ [±n])

2n

= lim
n→∞

#{i ∈ [±n] : X−1i ≥ X−1j }
2n

= q−1[X−1j , 1],

(3.12)

where the first equation follows from (3.5), the second from (3.7), and the last from the
definition of q−1. Since the X−1j are dense in the closed support of q−1, we find that

q−1 is uniformized, in the sense of Definition 2.3. Since t−1j = φ−1(X−1j ) and p−1 is the

driving measure of the (t−1j ), we conclude that p−1 = φ−1(q−1), consistent with the last
line of (3.11). Thus (T1, `1, 0, p1) is an IP tree arising from a single step of a bead crushing
construction.

Inductive step. Fix k < 0 and assume that (Tk, `1, 0, pk) is an IP tree arising from |k|
steps of the bead crushing construction with pauses. Let

S :=
{
j ∈ Z \ [k − 1] : ((k − 1) ∧ j)H ∩ [k] = ∅

}
.

Informally, S is the set of indices that remain in a block with k − 1 in the hierarchy until
after k − 1 has branched away from all of the indices k, k + 1, . . . ,−1. By (3.7) and the
definition of the (tij),

S =
{
j ∈ Z \ [k − 1] : Xk−1

j > max
i∈[k]

Xi
j

}
=
{
j ∈ Z \ [k − 1] : tk−1j 6= tkj

}
.

Thus, S = ∅ if and only if (Tk−1, pk−1) = (Tk, pk), in which case we have nothing to prove.
So assume S 6= ∅.

The family (1{j ∈ S}, j ∈ Z \ [k − 1]) is exchangeable, and S 6= ∅ means that not all
entries are zero, so by de Finetti’s theorem,

ak := lim
n→∞

#(S ∩ [±n])

2n
> 0.
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By Proposition 3.4(i), every index j ∈ S satisfies tkj = tkk−1. Thus, ak is bounded above by
mk = pk{tkk−1}.

Now, for j ∈ S, let

Yj := 1−
1−Xk−1

j

ak
= 1− lim

n→∞

#
(
((k − 1) ∧ j) ∩ [±n]

)
#(S ∩ [±n])

. (3.13)

Here, the rightmost formula follows by plugging in the definitions of ak and Xk−1
j and

canceling out factors of 2n. Let f denote the unique increasing bijection from N to
S ∩N. The sequence (Yf(j), j ∈ N) is exchangeable; let qk−1 denote its driving measure.
By an argument similar to that in (3.12), Yj = 1 − qk−1[Yj , 1] for each j ∈ S. Since the
(Yj , j ∈ S) are dense in the closed support of qk−1, we conclude that qk−1 is uniformized.

Now, consider the map φk as defined in (3.11). Note that∥∥φk(Yj)
∥∥ =

∥∥tkk−1∥∥+ pk(FT (tkk−1)) + ak
(
Yj − 1

)
= Xk−1

j ,

where the second equality follows by appealing to the Spacing property of (Tk, pk) at
tkk−1 and plugging in the definition of Yj . Thus, for j ∈ S, φk(Yj) is a point embedded in
the first |k|+ 1 coordinates in `1 whose projection onto the first |k| coordinates is tkk−1,

and with |k| + 1st coordinate equal to Xk−1
j −

∥∥tkk−1∥∥. We conclude that φk(Yj) = tk−1j .

Since pk−1 is the driving measure for the sequence (tk−1j , j ≥ 1), we find that it satisfies
the third formula in (3.11). Therefore, (Tk−1, `1, 0, pk−1) is an IP tree arising from |k|+ 1

steps of a bead-crushing construction with pauses, which completes our induction.

4 Two key propositions

To prove our theorems we require two more major intermediate steps. Let (S, d, r, q)
be a rooted, weighted R-tree, let (si, i ∈ Z) denote i.i.d. samples from q, and let
(Hn, n ≥ 1) denote the hierarchy on Z derived from (S, d, r) via these samples. In other
words, modulo our choice to label with Z rather than N, (Hn) is exchangeable and
independently generated (e.i.g.) with law Θ(S, d, r, q). Let (T , `1, 0, p) and (tj , j ≥ 1)

denote the random IP tree and samples that arise from applying the construction of
Section 3 to (Hn).

Proposition 4.1. For every rooted, weighted R-tree, there is a deterministic bead-
crushing construction, as in Section 2.1, that yields an IP tree that: (i) is mass-structurally
equivalent to (S, d, r, q) and (ii) has the same image under Θ as (S, d, r, q). In particular,
the law of the random IP tree (T , `1, 0, p) is supported on the set of IP trees with these
two properties.

Proposition 4.2. If two IP trees are mass-structurally equivalent then they are isomor-
phic.

We prove these propositions in Sections 4.1 and 4.2, respectively. To do so, we require
two lemmas. Extending the notation (y ∧ z)` of Definition 2.2, for y, z ∈ S, let (y ∧ z)S
denote the unique point in the intersection [[r, y]]∩ [[r, z]]∩ [[y, z]]. This equals the branch
point that separates y, z, and r, except in the degenerate circumstance that all three lie
on a common segment, in which case (y ∧ z)S equals whichever of y, z, or r lies between
the other two.

Lemma 4.3. It is a.s. the case that for every j ∈ N and ε > 0, there is some i 6= j for
which d((si ∧ sj)S , sj) < ε.

Proof. Fix j ∈ N and ε > 0. Recall from Definition 1.1 that we require R-trees to be
separable and thus second countable. Thus, there exists a countable collection A of
open sets of diameter at most ε that cover S. It is a.s. the case that for every U ∈ A,
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if q(U) = 0 then {i : si ∈ U} = ∅. Consequently, the ε-ball about sj a.s. has positive
q-measure. Therefore there is a.s. some other sample si with d(si, sj) < ε. Finally,
d((si ∧ sj)S , sj) < d(si, sj) < ε.

We define

IS(a) := {j ∈ Z : a ∈ [[r, sj ]]S} for a ∈ S
and IT (b) := {j ∈ N : b ∈ [[0, tj ]]`} for b ∈ T .

(4.1)

Lemma 4.4. For i, j, u, v ∈ N with i 6= j and u 6= v, up to null events,

IS((su ∧ sv)S) ∩N = (u ∧ v) ∩N = IT ((tu ∧ tv)`), (4.2)

IS(su) ∩N = N ∩
⋂

k∈Z\{u}

(u ∧ k) = IT (tu), (4.3)

{
(su ∧ sv)S = (si ∧ sj)S

}
=
{

(tu ∧ tv)` = (ti ∧ tj)`
}
, (4.4)

and {su = sv} = {tu = tv}. (4.5)

Proof. (4.2): Note that for u, v ∈ N distinct and n > u, v,

(u ∧ v)n =
⋂

A∈Hn : u,v∈A
A =

⋂
x∈S : su,sv∈FS(x)

(
[±n] ∩ IS(x)

)
= [±n] ∩ IS((su ∧ sv)S),

where the first equation is Definition 3.1 of the MRCA, the second follows from the
definition of Hn via the samples (sj), and the last follows because every fringe subtree
containing both su and sv must contain the branch point (su ∧ sv)S . This proves the first
equation in (4.2). The second has already been established in Proposition 3.4(iv).

(4.3): By Lemma 4.3,

FS(su) =
⋂

k∈Z\{u}

FS((su ∧ sk)S);

thus, IS(su) ∩N = N ∩
⋂

k∈Z\{u}

IS((su ∧ sk)S) = N ∩
⋂

k∈Z\{u}

(u ∧ k)H,

with the last equation following from (4.2). By Proposition 3.4(iii), the (ti, i ≥ 1) have p
as their driving measure, so the same argument via Lemma 4.3 applies to IT (tu), thus
proving (4.3).

(4.4): Note that (si ∧ sj)S = (su ∧ sv)S if and only if both i, j ∈ IS((su ∧ sv)S) and
u, v ∈ IS((si ∧ sj)S). The corresponding claim holds for samples in T . Thus, (4.4) follows
from (4.2).

(4.5): Note that su = sv if and only if both v ∈ IS(su) and u ∈ IS(sv). The correspond-
ing claim holds for tu and tv. Thus, (4.5) follows from (4.3).

4.1 Proof of Proposition 4.1

We know from Theorem 3.5 that Θ(T , `1, 0, p) = Θ(S, d, r, q) a.s.. Thus, it suffices to
show that these two trees are a.s. mass-structurally equivalent. First, we will define a
function φ mapping the special points of S, in the sense of Definition 1.2, to those of T ,
and we will show that it is a bijection. Then we will show that φ is mass and structure
preserving.

Recall that, by Proposition 3.6, (T , `1, 0, p) is an IP tree. In particular, it possesses the
Spanning property, T = span(p).
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Definition of a bijection, φ Recall from Definition 1.2 that there are three types of
special points: locations of atoms, branch points of the subtree spanned by the measure,
and isolated leaves of said subtree. Therefore, we define a bijection φ in these three
cases.

(a) If y is the location of an atom of q then there is a.s. some i for which si = y. We
define φ(y) := ti. By (4.5), it is a.s. the case that tj = ti if and only if sj = si, for j ≥ 1, so
this is well-defined. Moreover, by the law of large numbers and Proposition 3.4(iii),

q{si} = lim
n→∞

#{j ∈ [n] : sj = si}
n

= lim
n→∞

#{j ∈ [n] : tj = ti}
n

= p{ti}.

By the preceding argument, φ is injective from atoms of q to those of p. The same
argument in reverse shows that it bijects these sets of atoms.

(b) If x is a branch point of span(q), in the sense of Definition 1.2, then there is
a.s. some pair i, j ∈ N for which x = (si ∧ sj)S with x 6= si and x 6= sj . In particular,
si /∈ [[r, sj ]]S and vice versa. By (4.3), ti /∈ [[r, tj ]]S and vice versa, so (ti ∧ tj)` is a branch
point of T = span(p). And by (4.4), the vertex (ti∧ tj)` is a.s. the same across all pairs i, j
for which x = (si ∧ sj)S . We define φ(x) := (ti ∧ tj)`. By this same argument in reverse,
starting with a branch point of T , we see that φ bijects the branch points of span(q) with
those of T .

In the special case that q has an atom located at the branch point x, this agrees with
our previous definition of φ for atoms. In this case, there exist samples su = sv = x with
u 6= v. Then (si ∧ sj)S = x = su = (su ∧ sv)S . By (4.4) this means (si ∧ sj)S = (tu ∧ tv)`,
and by (4.5), tu = tv. Then we conclude φ(x) = (ti ∧ tj)` = tu.

(c) Now suppose z ∈ S is an isolated leaf of span(q), in the sense that there is a
non-trivial segment [[x, z]]S ⊆ [[r, z]]S that contains no branch points of span(q) and every
such segment has positive mass under q. Recall the map IS defined in (4.1). Consider

J :=
{
i ≥ 1

∣∣ ∀j ∈ IS(si), z ∈ FS(sj)
}
. (4.6)

This is the set of indices of all samples that lie on a branch with the properties mentioned
above. The samples (si, i ∈ J) all lie along [[r, z]]S , and they are totally ordered, up
to equality, along this segment. Since z is in the closed support of q, it is the unique
limit point of this set at maximal distance from r. By (4.3), the samples (ti, i ∈ J) are
correspondingly totally ordered along a segment. As T is bounded and complete under
`1, these samples also have a unique limit point z′ ∈ T at maximal distance from 0. We
define φ(z) := z′.

To show that this is a bijection between the sets of isolated leaves, we consider
properties of the set J . This set a.s. satisfies:

(i) ∀i ∈ J, N ∩ IS(si) ⊆ J and

(ii) ∀i, j ∈ J, j ∈ IS(si) and/or i ∈ IS(sj).

Condition (i) asserts, roughly, that J comprises indices of all samples that fall into some
fringe subtree B ⊆ S. Condition (ii) asserts that these samples are totally ordered, up to
equality, along a branch going away from r. I.e. the support of q on B is contained within
a single segment aligned with r. By its definition, J is maximal with these two properties.
If we view (4.6) as a map sending z to J , then this is a bijection from isolated leaves of
span(q) to maximal sets of indices J that satisfy properties (i) and (ii) above. Likewise,

z′ 7→
{
i ≥ 1

∣∣ ∀j ∈ IT (ti), z
′ ∈ FT (tj)

}
.

is a bijection from isolated leaves of T to maximal sets J satisfying:
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(i’) ∀i ∈ J, IT (ti) ⊆ J and

(ii’) ∀i, j ∈ J, j ∈ IT (ti) and/or i ∈ IT (tj).

Finally, by (4.3), conditions (i) and (ii) are equivalent to (i’) and (ii’). Therefore, φ bijects
the isolated leaves of span(q) with those of T .

In the special case that q has an atom at z, this again agrees with our previous
definition of φ for atoms. In this case, there exists some i with si = z. Since z is a leaf of
span(q), i ∈ J and si is the least upper bound of samples (sj , j ∈ J). By (4.3), ti is then
the least upper bound of samples (tj , j ∈ J). Thus, φ(z) = ti, as desired.

Mass preserving We have already established that q{x} = p{φ(x)} for all points x ∈ S
at which q has atoms, and that φ bijects the locations of atoms of q with those of p.

Recall the maps IS and IT defined in (4.1). For j ≥ 1, it is a.s. the case that

q([[r, sj ]]S) = lim
n→∞

#{i ∈ [n] : si ∈ [[r, sj ]]S}
n

= lim
n→∞

#{i ∈ [n] : j ∈ IS(i)}
n

= lim
n→∞

#{i ∈ [n] : j ∈ IT (i)}
n

= lim
n→∞

#{i ∈ [n] : ti ∈ [[r, tj ]]`}
n

= p([[0, tj ]]`),

with the first and last equations a consequence of q and p being driving measures for
the (si) and (ti), respectively; the second and fourth following from the definition of
fringe subtrees; and the third following from (4.3). An analogous derivation, making use
of (4.2) in place of (4.3), shows that q([[r, (si ∧ sj)S ]]S) = p([[0, (ti ∧ tj)`]]`). This proves
that q([[r, x]]S) = p([[0, φ(x)]]`) when x is the location of an atom of q or a branch point of
span(q). Finally, the map x 7→ q([[r, x]]S) is continuous at points x that are neither branch
points nor locations of atoms of q, and correspondingly for p. Thus, by passing through
a limit with samples converging to an isolated leaf, the result also holds when x is an
isolated leaf of span(q).

If z is an isolated leaf of q at which there is no atom, then q (FS(z)) = 0 = p (FT (φ(z))).
Finally, for y a branch point of span(q) or the location of an atom of q, we can write
y = (si ∧ sj)S for some 1 ≤ i < j. Then, by (4.2),

q (FS((si ∧ sj)S)) = lim
n→∞

n−1#
(
IS((si ∧ sj)S) ∩ [n]

)
= lim
n→∞

n−1#
(
IT ((ti ∧ tj)`) ∩ [n]

)
= p (FT ((ti ∧ tj)`)) ,

as desired.

Structure preserving We must confirm that structure is preserved, in the sense of
Definition 1.3(ii), between any two special points in S. Again, we approach this case-by-
case for the different types of special points.

For branch points y1 and y2 of span(q), we have y1 = (si ∧ sj)S and y2 = (su ∧ sv)S
for some i, j, u, v ∈ N. Then by (4.2) and the definition of (a ∧ b)S ,

(si ∧ sj)S ∈ [[r, (su ∧ sv)S ]]S ⇔ u, v ∈ IS((si ∧ sj)S)

⇔ u, v ∈ IT ((ti ∧ tj)`)
⇔ (ti ∧ tj)` ∈ [[0, (tu ∧ tv)`]]`.

The same argument shows that φ preserves structure between two locations of atoms
x1, x2, or between a branch point and an atom, by taking si = sj = x1 for some pair i 6= j

so that (si ∧ sj)S = x1, and correspondingly for x2.
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If z1 and z2 are both isolated leaves of span(q) then z1 /∈ [[r, z2]]S and z2 /∈ [[r, z1]]S ,
since both are leaves of the same tree, and likewise for φ(z1) and φ(z2). Thus, structure
is preserved here as well.

Finally, suppose that z is an isolated leaf of span(q) with q{z} = 0 and x is either the
location of an atom of q or a branch point of span(q). In either case, x = (si ∧ sj)S for
some distinct i, j ∈ N. We cannot have z ∈ [[r, x]]S , nor can we have φ(z) ∈ [[0, φ(x)]]`,
since z and φ(z) are leaves and do not equal x or φ(x), respectively. Let J be as in (4.6).
Then

(si ∧ sj)S ∈ [[r, z]]S ⇔ IS((si ∧ sj)S) ∩ J 6= ∅
⇔ IT ((ti ∧ tj)`) ∩ J 6= ∅ ⇔ (ti ∧ tj)` ∈ [[0, φ(z)]]`.

Thus, φ preserves structure between isolated leaves of span(q) and other special points.

4.2 Proof of Proposition 4.2

Let (Ti, di, ri, pi) for i = 1, 2 be a pair of IP trees, with special point sets S1 and S2

and φ : S1 → S2 a mass-structural isomorphism. We begin with a pair of observations.
First, the roots r1 and r2 need not be special points. However, for x ∈ S1,

d2(r2, φ(x)) = 1− p2 (FT2(φ(x))) = 1− p1 (FT1(x)) = d1(r1, x), (4.7)

by the Spacing properties of the two IP trees and the mass preserving property of φ.
Taking x = r1 or φ(x) = r2 shows that r1 is a special point if and only if r2 is, in which
case φ(r1) = φ(r2). If they are not special points, then we define φ(r1) := r2.

Second, since S1 and S2 contain all branch points of the two trees, it follows from
the structure preserving property that φ((x ∧ y)T1) = (φ(x), φ(y))T2 for every x, y ∈ S1.
Thus,

d1(x, y) = d1
(
x, (x ∧ y)T1)

)
+ d1

(
(x ∧ y)T1 , y

)
= 2p

(
FT1((x ∧ y)T1)

)
− p
(
FT1(x)

)
− p
(
FT1(y)

)
= 2p

(
FT2(φ((x ∧ y)T1))

)
− p
(
FT2(φ(x))

)
− p
(
FT2(φ(y))

)
= d2

(
φ(x), φ((x ∧ y)T1)

)
+ d2

(
φ((x ∧ y)T1), φ(y)

)
= d2(φ(x), φ(y)),

where the second and fourth lines follow from the Spacing properties of T1 and T2 and
the third is an application of the mass preserving property of φ. In other words, φ is an
isometry from (S1 ∪ {r1}, d1) to (S2 ∪ {r2}, d2).

We must show that the IP trees (Ti, di, ri, pi) for i = 1, 2 are isomorphic. First, we will
define a map ψ : T1 → T2 that preserves distance from the root; then, we show that ψ is
an isometry; and finally we prove that ψ is measure-preserving.

Definition of ψ We extend φ to define ψ : T1 → T2 by two mechanisms, which we call
overshooting and approximation. Consider z ∈ T1 \S1.

Case 1 (overshooting): FT1(z) ∩S1 6= ∅. Consider x ∈ FT1(z) ∩S1. Define ψ(z) to be
the point along [[r2, φ(x)]]T2 at distance d1(r1, z) from r2. This definition does not depend
on our choice of x: if x1, x2 ∈ FT1(z) ∩S1 then x∗ := (x1 ∧ x2)T ∈ FT1(z) ∩S1 as well. In
that case, d1(r1, z) < d1(r1, x

∗) = d2(r2, φ(x∗)), and by the structure preserving property
of φ,

[[r2, φ(x∗)]]T2 = [[r2, φ(x1)]]T2 ∩ [[r2, φ(x2)]]T2 .

Thus, the points along [[r2, φ(xi)]]T2 at distance d1(r1, z) from r2 are the same for i = 1, 2,
as both lie in [[r2, φ(x∗)]]T2 .
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Case 2 (approximation): FT1(z) ∩ S1 = ∅. Then there is no branch point, nor any
isolated leaf of span(p1) = T1 beyond z. Thus, z must be a leaf with a sequence of
branch points (xi, i ≥ 1) converging to it along [[r1, z]]T1 . Moreover, since z is a leaf
and not the location of an atom, d1(r1, z) = 1 by the Spacing property. Since φ is an
isometry, the sequence (φ(xi), i ≥ 1) is a Cauchy sequence in d2, so it has a limit z′ with
d2(r2, z

′) = 1. We define φ(z) := z′. Again, this is well-defined. If (yi, i ≥ 1) is another
sequence of branch points converging to z, then so is x1, y1, x2, y2, . . ., so the φ-images of
these sequences must have the same limit.

Note that ψ preserves distance from the root, by definition. Moreover, if z is defined
by approximation then

d2(φ(x), φ(z)) = d1(x, z) for branch points x ∈ [[r1, z]]T1 . (4.8)

Isometry It follows from Lemma 4.3 and the definition above that ψ is a surjection.
The definition also implies that ψ preserves distance from the root. Thus, to show
that it is an isometry, it suffices to show that it preserves structure, in the sense
that ψ(x) ∈ [[r2, ψ(y)]]T2 if and only if x ∈ [[r1, y]]T1 . We consider two cases in which
x ∈ [[r1, y]]T1 and one in which x /∈ [[r1, y]]T1 .

Case A.I: x ∈ [[r1, y]]T1 and y ∈ [[r1, z]]T1 for some z ∈ S1. Then both ψ(x) and
ψ(y) lie on [[r2, ψ(z)]]T2 , at respective distances d1(r1, x) and d1(r1, y) from r2. Since
d1(r1, x) ≤ d1(r1, y), we get ψ(x) ∈ [[r2, ψ(y)]]T2 , as desired.

Case A.II: x ∈ [[r1, y]]T1 and ψ(y) is defined by approximation. This means that we
can take z ∈ [[r1, y]] to be a branch point with d1(z, y) < d1(x, y)/2. Then z must belong
to FT1(x), so by the definition of ψ(x) by overshooting, ψ(x) ∈ [[r2, ψ(z)]]T2 . Moreover,

d2(ψ(x), ψ(z)) = d1(x, z) > d1(z, y) = d2(ψ(z), ψ(y)),

with the first equation following from preservation of distance from the root, the inequal-
ity from our assumption that d1(z, y) < d1(x, y)/2, and the final equation from (4.8). The
entire closed ball of radius d2(ψ(x), ψ(z)) about ψ(z) lies inside FT2(ψ(x)). In particular,
ψ(y) ∈ FT2(ψ(x)), as desired.

Case B: x /∈ [[r1, y]]T1 and y /∈ [[r1, x]]T1 . We take up the case in which ψ(x) is
defined by overshooting and ψ(y) by approximation; the other cases can be addressed
similarly. Let z be a special point in FT1(x) and z′ a branch point in [[r1, y]]T1 with
d1(z′, y) < d1((x ∧ y)T1 , y)/2. Then (z ∧ z′)T1 = (x ∧ y)T1 . Moreover, by the structure-
preserving property of φ,

ψ((x ∧ y)T1) = φ((z ∧ z′)T1) = (φ(z) ∧ φ(z′))T2 = (ψ(z) ∧ ψ(z′))T2 .

By definition,

d2(ψ(x), ψ(z)) = d1(x, z) < d1(z, (x ∧ y)T1) = d2
(
ψ(z), ψ((x ∧ y)T1)

)
.

Thus, ψ(x) is in the component of FT2(ψ((x ∧ y)T1)) \ {ψ((x ∧ y)T1)} that contains ψ(z).
Correspondingly,

d2(ψ(y), ψ(z′)) = d1(y, z′) < d1(z′, (x ∧ y)T1) = d2(z′, ψ((z ∧ z′)T1)).

Thus, ψ(y) is in the component of FT2(ψ((x ∧ y)T1)) \ {ψ((x ∧ y)T1)} that contains ψ(z′).
We conclude that ψ(x) /∈ [[r2, ψ(y)]]T2 and vice versa, as desired.

Measure-preserving The fringe subtrees of T1 comprise a π-system that generates
the Borel σ algebra on T1, and likewise for T2. Because ψ is a root-preserving isometry,
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for x ∈ T1, ψ
(
FT1(x)

)
= FT2(ψ(x)). Thus, by a monotone class argument, it suffices to

show that for every x ∈ T1, p1 (FT1(x)) = p2 (FT2(ψ(x))). We argue this in four cases.
Case 1: x = r1. Then p1 (FT1(x)) = 1 = p2 (FT2(ψ(x))).
Case 2: x ∈ S1. Then ψ(x) = φ(x), and the desired equality is exactly the Mass

preserving property of φ.
Case 3: x is not special but is the limit of a sequence of special points (xi, i ≥ 1) in

[[r1, x]]T1 ∪ FT1(x). Then x is neither a branch point nor the location of an atom, and
likewise for ψ(x), so

p1 (FT1(x)) = lim
i→∞

p1 (FT1(xi)) = lim
i→∞

p2 (FT2(ψ(xi))) = p2 (FT2(ψ(x))) .

Case 4: x is not special and is not a limit of special points. Then x cannot be a leaf.
Let y and z be the points closest to x in (cl(S1) ∪ {r1}) ∩ [[r1, x]]T1 and cl(S1) ∩ FT1(x),
respectively. The map w 7→ p1([[r1, w]]T1) is continuous except at locations of atoms of p1,
and correspondingly for p2. By the Mass preserving property of φ, the isometry property
of ψ, and this continuity,

M := p1
(
[[y, z]]T1 \ {z}

)
= p1([[r1, z]]T1)− p1{z} − p1([[r1, y]]T1)

= p2
(
[[r2, ψ(z)]]T2

)
− p2{ψ(z)} − p2

(
[[r2, ψ(y)]]T2

)
= p2

(
[[ψ(y), ψ(z)]]T2 \ {ψ(z)}

)
By the Spacing property, d1(y, z) = p1 (FT1(y)) − p1 (FT1(z)) ≥ M . Let v be the point in
[[y, z]]T1 at distance M from z. Then the Spacing property of T1 implies that p1 is null on
[[y, v]]T1 \ {y} and equals length measure on [[v, z]]T1 \ {z}. Correspondingly, the Spacing
property of T2 implies that p2 is null on [[ψ(y), ψ(v)]]T2 and equals length measure on
[[ψ(v), ψ(z)]]T2 \ {ψ(z)}. In particular,

p1(FT1(x)) = p1([[x, z]]T1 \ {z}) + p1(FT1(z))

= min{d1(x, z),M}+ p1 (FT1(z))

= min
{
d2(ψ(x), ψ(z)),M

}
+ p2

(
FT2(ψ(z))

)
= p2

(
FT2(ψ(x))

)
.

5 Proofs of theorems

Proof of Theorem 1.5. Consider a rooted, weighted R-tree (T , d, r, p). By Proposition 4.1,
it is mass-structurally equivalent to at least one IP tree. By Proposition 4.2, all such IP
trees are isomorphic to each other.

Proof of Theorem 2.10. Consider an IP tree (T , d, r, p). By Proposition 4.1, there ex-
ists an IP tree arising from a deterministic bead crushing construction that is mass-
structurally equivalent to (T , d, r, p). By Proposition 4.2, the two IP trees are thus
isomorphic.

Proof of Theorem 1.10. By Theorem 2.10, it suffices to prove this theorem for IP trees
that arise from the bead-crushing construction of Section 2.1. Consider such an IP tree
(T , `1, 0, p) constructed from a sequence of uniformized probability measures qn, n ≥ 1,
with atom locations xn and masses an, n ≥ 1, chosen during the construction. We need
only show that the restriction of the non-atomic component of p to the skeleton of T
equals the restriction of the length measure to a subset of the skeleton.

In the “Take the limit” step in Section 2.1 we note that the sequence of measures
(pn, n ≥ 1) arising in the construction is projectively consistent, pn = πn(pn+1) for n ≥ 1,
and we define the limiting measure p via the Daniell-Kolmogorov extension theorem. The
skeleton of the tree contains only points in `1 with finitely many positive coordinates.
Thus, the diffuse component of p on the skeleton, ps, is the sum over n of the diffuse
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measure on the nth branch added in the construction. To get the diffuse measure on
each new branch, the construction takes the diffuse component of qn – call it qdn – scales
down both its total mass and the length of the segment supporting it by some factor
an ∈ (0, 1), i.e. qdn 7→ anq

d
n( · /an), and it transposes the measure from the line segment to

the branch in T . Now, the theorem follows from Lemma 2.4, which states that qdn is the
restriction of Lebesgue measure to a subset of [0, 1].

Proposition 5.1. Two IP trees (Ti, di, ri, pi), i = 1, 2, are isomorphic if and only if

Θ(T1, d1, r1, p1) = Θ(T2, d2, r2, p2).

Proof. We have already mentioned, and it is easily seen, that isomorphic trees have
the same image under Θ. Now, suppose that the two trees have the same image under
Θ. Let (Hn, n ≥ 1) be an exchangeable random hierarchy with law Θ(T1, d1, r1, p1).
Let (T , `1, 0, p) denote the random IP tree representation of (Hn) obtained from the
construction in Section 3. By Proposition 4.1, all three IP trees are a.s. mass-structurally
equivalent. Then, by Proposition 4.2 they are a.s. isomorphic. In particular, the two
deterministic trees must be isomorphic.

Proof of Theorem 1.7. First, suppose that (Ti, di, ri, pi), i = 1, 2, are two rooted, weighted
R-trees with the same image as each other under Θ. Then by the same argument as in
the proof of Proposition 5.1, they must be mass-structurally equivalent to each other.

Now, suppose instead that the two rooted, weighted R-trees are mass-structurally
equivalent. By Proposition 4.1, each tree (Ti, di, ri, pi) is then mass-structurally equivalent
to some IP tree (Si, `1, 0, qi) for which Θ(Ti, di, ri, pi) = Θ(Si, `1, 0, qi). By the transitivity
of mass-structural equivalence, the two IP trees are mass-structurally equivalent. By
Proposition 4.2, that means the IP trees are isomorphic, so

Θ(T1, d1, r1, p1) = Θ(S1, `1, 0, q1) = Θ(S2, `1, 0, q2) = Θ(T2, d2, r2, p2).

Proof of Theorem 1.8. (i) Let (Hn, n ≥ 1) be an exchangeable random hierarchy. By
Theorem 3.5 and Proposition 3.6, there exists a random IP tree (T , `1, 0, p) with the
property that Θ(T , `1, 0, p) is a r.c.d. for (Hn, n ≥ 1) given its tail σ-algebra, tail(Hn).
Since Θ(T , `1, 0, p) is tail(Hn)-measurable, it follows from Proposition 5.1 that the random
isomorphism class T of (T , `1, 0, p) is as well. Then Θ(T ) = Θ(T , `1, 0, p) is a r.c.d.
for (Hn).

(ii) Proposition 5.1 states that the map Θ from isomorphism classes of IP trees to
e.i.g. hierarchy laws is injective. By Theorem 3.5 and Proposition 3.6, every e.i.g. law is
the Θ image of an IP tree, so it is also surjective.

6 Complements

6.1 Connections to the Brownian CRT

Recall Definition 2.13 of the Brownian IP tree. The following result justifies that
terminology.

Proposition 6.1. It is possible to construct a Brownian CRT (BCRT) and a Brownian
IP tree on a common probability space coupled so that they are a.s. mass-structurally
equivalent.

Proof. Following [29, 32], we can construct a BCRT via a bead crushing construction
similar to that in Section 2.1. In fact, we will construct a coupled BCRT and Brownian IP
tree.
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Let (qn, n ≥ 1) denote an i.i.d. sequence of
(
1
2 ,

1
2

)
-strings of beads, as described in

Example 2.12. For each n, denote by Ln the maximum of the support of qn; this is a.s.
finite. As in Section 2.1, we define T0 := {0} and p0 := δ0 and proceed recursively to
construct a tree embedded in `1.

Assume (Tn, 0, `1, pn) is a rooted, weighted R-tree embedded in the first n coordinates
in `1, with pn a purely atomic measure. Let Xn be a sample from pn, so pn(Xn) =: Mn > 0.
I.e. MnδXn is a size-biased random atom of pn. Set

φn(z) := Xn + z
√
Mnen+1 for z ∈ [0, Ln+1],

Tn+1 := Tn ∪ φn[0, Ln+1] = Tn ∪ [[Xn, φn(Ln+1)]]`,

pn+1 := pn +Mn (−δXn + φn (qn+1)) ,

(6.1)

where φn(qn+1) denotes the pushforward of the measure. As in Section 2.1, pn = πn(pN )

for N > n, so again, by the Daniell-Kolmogorov extension theorem, there exists a
measure p on `1 with πn(p) = pn for n ≥ 1. Setting T := cl(

⋃
n≥1 Tn), the tree (T , `1, 0, p)

is a BCRT [29].
We now construct a Brownian IP tree coupled with this BCRT. For n ≥ 1, let q′n be the

uniformization of qn, as in Definition 2.3. There is a natural bijection from atoms of qn to
those of q′n – in fact, this bijection is a mass-structural isomorphism from ([0, Ln], d, 0, qn)

to ([0, 1], d, 0, q′n). We plug the measures (q′n, n ≥ 1) into the bead-crushing construction
of Section 2.1 to recursively construct trees (T ′n, `1, 0, p′n). We see inductively that at
each step, this resulting IP tree is mass-structurally equivalent to (Tn, `1, 0, pn) from the
other construction, and so to proceed to the next step we can crush an atom X ′nδMn

of
p′n that corresponds to the atom XnδMn

that was crushed in the other construction. In
particular, this choice of X ′n is a sample from p′n. The resulting limiting tree (T ′, `1, 0, p′)
is a Brownian IP tree, as in Definition 2.13.

Both p and p′ are diffuse measures supported on the leaves of T and T ′, respectively.
It follows from our inductive argument that there is a mass- and structure-preserving
bijection from branch points of T to those of T ′. Thus, the two trees are mass-structurally
equivalent.

The next result requires additional notation. Consider a rooted, weighted R-tree
(T , d, r, p), where p does not assign any continuous mass to the skeleton of T . For y ∈ T ,
we define a purely atomic probability measure py on [[r, y]]T ,

py{x} := p(BT (x, y)) where BT (x, y) := FT (x) \
⋃

z∈[[x,y]]T \{x}

FT (z)

for x ∈ [[r, y]]T . Note that BT (y, y) = FT (y), and for x 6= y, BT (x, y) = {x} if and only if x
is not a branch point. In the language of Section 2.2, BT (x, y) is the bush that branches
off of the spine [[r, y]]T at x.

Proposition 6.2. Let L denote the BCRT probability distribution on a measurable space
(S,S) of rooted, weighted R-trees. Let A denote the set of trees (T , d, r, p) ∈ S in which:
branch points are dense, p does not assign any continuous mass to the skeleton of T , and

d(r, y) =
√
π lim
h→0

√
h#
{
x ∈ [[r, y]]T : py{x} > h

}
for all y ∈ T . (6.2)

Then L(A) = 1 and any two trees in A are isomorphic if and only if they are mass-
structurally equivalent.

Informally, this proposition states that the BCRT is a.s. uniquely specified, up to
isomorphism, by its mass-structural equivalence class.
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Proof. It follows from well-known properties of the BCRT and, for equation (6.2), results
in [29], that L(A) = 1.

Now, consider two trees (Ti, di, ri, pi) ∈ A, i = 1, 2, and suppose they are mass-
structurally equivalent via a mass-structural isomorphism φ from T1 to T2. Then for any
two branch points x, y ∈ T1 with x ∈ [[r1, y]]T1 , we get py1(x) = p

φ(y)
2 (φ(x)). Thus, for any

branch point y ∈ T1,

d1(r1, y) =
√
π lim
h→0

√
h#
{
x ∈ [[r1, y]]T1 : py1{x} > h

}
=
√
π lim
h→0

√
h#
{
x ∈ [[r1, y]]T1 : p

φ(y)
2 {φ(x)} > h

}
=
√
π lim
h→0

√
h#
{
z ∈ [[r2, φ(y)]]T2 : p

φ(y)
2 {z} > h

}
= d2(r2, φ(y)).

Together with structure-preserving property of φ, this shows that φ is an isometry from
the branch points of T1 to those of T2. As branch points are dense in both trees, we can
extend φ uniquely to a root-preserving isometry ψ : T1 → T2.

The mass-preserving property of φ and the root-preserving isometry property of ψ
yield that for any branch point x ∈ T1 we have

p1
(
FT1(x)

)
= p2

(
FT2(φ(x))

)
= p2

(
ψ
(
FT1(x)

))
.

The fringe subtrees rooted at branch points in T1 comprise a π-system that generates
the Borel σ-algebra, and likewise for T2. Thus, by Dynkin’s π-λ theorem, ψ is measure-
preserving. We conclude that ψ is an isomorphism.

6.2 Structural equivalence

In the introduction to this paper, we heuristically described mass-structural equiva-
lence as equivalence of the interaction between mass and “underlying tree structure.”
Here, we present one notion of underlying structure as an object in itself. One ap-
proach to this would be to define structural equivalence as topological equivalence, i.e.
equivalence up to homeomorphism. However, the coupled Brownian CRT and IP tree
of Proposition 6.1 are not homeomorphic to each other. We present a weaker notion of
structural equivalence.

Definition 6.3. Consider a rooted R-tree (T , d, r). A leaf x ∈ T is a discrete leaf if there
exists some branch point y ∈ T (its parent) that separates x from all other branch points.
These discrete leaves, along with the branch points and the root r, comprise the set of
structural points of (T , d, r).

Let Vi denote the set of structural points of a tree (Ti, di, ri) for i = 1, 2. A structural
isomophism between these R-trees is a bijection f : V1 → V2 with the property that, for
x, y ∈ V1, we have x ∈ [[r1, y]]T1 if and only if f(x) ∈ [[r2, f(y)]]T2 .

Two rooted R-trees are said to be structurally equivalent if there exists a structural
isomorphism from one to the other. It is straightforward to confirm that this is an
equivalence relation.

The following example illustrates the subtle distinction between the discrete leaves
defined here and the isolated leaves of Definition 1.2. We conjecture, and it should not
be difficult to show, that replacing isolated leaves with discrete leaves of span(p) in
Definition 1.2 would yield an equivalent notion of mass-structural equivalence, but we
will not prove this.

Example 6.4. Let (T , `1, 0, p) be a Brownian CRT embedded in `1 via the bead crushing
construction discussed in the proof of Proposition 6.1. Let x1, x2, . . . be i.i.d. samples
from p. For n ≥ 2, let φn denote the linear transformation on `1 that sends each
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coordinate vector ek to enk for k ≥ 1. Then, define

T2 := φ2(T ) ∪
⋃
k≥1

(
φ2(xk) + [0, 2−k]e2k−1

)
,

T3 := φ3(T ) ∪
⋃
k≥1

(
φ3(xk) +

(
[0, 2−k−1]e3k−2 ∪ [0, 2−k−1]e3k−1

))
, and

T4 := φ4(T ) ∪
⋃
k≥1

(
φ4(xk) +

(
[0, 2−k−1]e4k−3 ∪ [0, 2−k−2]e4k−2 ∪ [0, 2−k−2]e4k−1

))
.

In other words, T2 is formed by isometrically re-embedding T into the even coordinates
in `1, and then attaching new, macroscopic branches at each of the leaves xk, k ≥ 1;
and T3 and T4 are correspondingly formed by attaching two or three new branches at
each sampled leaf. For n = 2, 3, 4, let pn denote the length measure on Tn \ φn(T ), and
consider (Tn, `1, 0, pn) as a rooted, weighted R-tree. Then T2 = span(p2) and the leaves
φ(xk) + 2−ke2k−1 are isolated leaves in the sense of Definition 1.2, and correspondingly
for T3 and T4. However, the newly added leaves in T2, in particular, are not “discrete” in
the sense of Definition 6.3, since leaves in a Brownian CRT do not have parent branch
points but rather arise as limit points of branch points.

If we did not include isolated leaves, like those in T2, T3, and T4, as special points, but
otherwise left Definitions 1.2 and 1.3 of special points and mass-structural equivalence as
is, then (T3, `1, 0, p3) and (T4, `1, 0, p4) would be considered mass-structurally equivalent,
and Theorems 1.5 and 1.7 would fail.

Now, define

T ′2 := φ2(T ) ∪
(
φ2((x1 ∧ x2)T ) + [0, 1]e1

)
and

T ′3 := φ2(T ) ∪
(
φ2((x1 ∧ x2)T ) + ([0, 1]e1 ∪ [0, 1]e3)

)
.

Consider (T ′2 , `1, 0, φ2(p)) and (T ′3 , `1, 0, φ2(p)). The newly added branches do not belong
to span(φ2(p)), so their endpoints are not isolated leaves, in the sense of Definition 1.2.
But these endpoints are discrete leaves, in the sense of Definition 6.3. Consequently,
the two trees are mass-structurally equivalent to each other and to (T , `1, 0, p), but not
structurally equivalent.

Structural equivalence may be an interesting notion of equivalence, but the “underly-
ing structure” – i.e. structural equivalence class – as an object sacrifices much of what
makes CRTs interesting. For example, Croyden and Hambly [7] showed that there is a
homeomorphism class of R-trees that a.s. contains the Brownian CRT; i.e. its underlying
structure is deterministic. Without either distances or masses to indicate relative “sizes”
of components in a decomposition of the Brownian CRT, the randomness and much of
the interesting fractal structure are lost.

6.3 Directions for further study

(1) Introduce and study growth processes for exchangeable hierarchies on N, in the
spirit of the Chinese restaurant process for exchangeable partitions [27], for use in ap-
plications such as Bayesian non-parametric hierarchical clustering, e.g. for nested topic
models [6, 26]. The three behaviors mentioned around the statement of Theorem 1.10
– macroscopic branching, broom-like explosion, and comb-like erosion – cannot all be
distinguished in the discrete regime, but the insight that all three can appear in scaling
limits may aid in defining models for finite exchangeable random hierarchies. Such
models would also give rise to potentially interesting random IP trees, via Theorem 1.8.

(2) In connection with (1), do random IP trees arise as scaling limits of suitably
metrized random discrete trees? Can we learn about the IP trees from this perspective?
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This may tie back to the perspective in Theorem 1.7, of IP trees as corresponding to e.i.g.
hierarchies on N, and the latter being represented as projectively consistent sequences,
as in Definition 1.6.

(3) Study the images of other rooted, weighted CRTs, for example those arising from
bead-crushing constructions as in [29, 32] (including stable CRTs), under the map from
a rooted, weighted R-tree to an isomorphism class of mass-structurally equivalent IP
trees.

(4) Relate IP trees and mass-structural equivalence to the algebraic measure trees
of [25].

(5) Characterize mass-structural equivalence in terms of deformations or correspon-
dences, in the sense described in [13]. How can a tree be stretched, pruned, contracted,
or otherwise modified without changing its mass-structure?

(6) Study notions of structural equivalence of CRTs that do not depend on either
mass or quantified distance, such as that in Definition 6.3 or equivalence up to homeo-
morphism, as in [7]. Look at a space of R-tree structures. Consider random elements,
metrize the space, etc..
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