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Abstract

This paper concerns the Vertex Reinforced Jump Process (VRJP) and its representa-
tions as a Markov process in random environment. In [21], it was shown that the
VRJP on finite graphs, under a certain time rescaling, has the distribution of a mixture
of Markov jump processes. This representation was extended to infinite graphs in
[23], by introducing a random potential β. In this paper, we show that all possible
representations of the VRJP as a mixture of Markov processes can be expressed in
a similar form as in [23], using the random field β and harmonic functions for an
associated operator Hβ . This allows to show that the VRJP on Zd (with certain initial
conditions) has a unique representation, by proving that an associated Martin bound-
ary is trivial. Moreover, on infinite trees, we construct a family of representations,
that are all different when the VRJP is transient and the tree is d-regular (with d ≥ 3).
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1 Introduction

This paper concerns the Vertex Reinforced Jump Process (or VRJP) on infinite graphs
and its representations as a Markov process in a random environment. In particular, we
are interested in knowing if the VRJP admits several different representations, and what
form they can take.

Let G = (V,E) be a non-directed locally finite graph, i.e. each vertex i ∈ V has finite
degree. For i, j ∈ V , we write i ∼ j if i and j are neighbors, i.e. if {i, j} ∈ E. We endow
G with positive conductances (We)e∈E , and denote Wi,j = 1{i,j}∈EW{i,j}. The VRJP on
G, with respect to W , is the self-interacting random process (Ys)s∈R+ on V defined as
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Representations of the VRJP as a mixture of Markov processes

follows: the process starts at some vertex i0 ∈ V at time 0, and conditionally on the past
at time s, jumps to a neighbor j of i = Ys at rate

Wi,jLj(s), where Lj(s) = 1 +

∫ s

0

1{Yu=j}du.

In other words, as the local time
∫ s

0
1{Yu=i}du spent by the process at i increases, the

vertex i becomes more attractive. This process was introduced in [8].
In [21], Sabot and Tarrès introduced a time change for the VRJP, by defining the

increasing function D(s) =
∑
i∈V (Li(s)

2 − 1), and taking (Zt)t≥0 = (YD−1(t))t≥0. On
finite graphs, this time-changed VRJP Z started at a vertex i0 is then a mixture of
Markov processes, in the following sense: there exists a random field (ui0(i))i∈V , whose
distribution is explicit, such that the law of Z is the same as that of a Markov process in
a random environment given by jump rates

1

2
Wi,je

ui0 (j)−ui0 (i)

from i to j. The idea behind this time change is that the VRJP (Ys)s≥0 jumps faster and
faster as the vertices become more attractive, and that the time change D is such that
(Zt)t≥0 has more stationary jumping times, which is necessary for it to be a mixture of
Markov processes.

They also showed that the VRJP was related to another self-interacting process,
the Edge Reinforced Random Walk (or ERRW), introduced in [6] by Coppersmith and
Diaconis. On finite graphs, thanks to a de Finetti type theorem for Markov chains (see
[10]), it can be seen as a mixture of Markov chains. This interpretation of the ERRW as a
mixture of random walks was studied in [16], [17], [13], [14], [3]. The link between VRJP
and ERRW proven in [21] gives an explicit representation of the ERRW as a mixture of
random walks on finite graphs.

Finally, the explicit distribution of the random field (ui0(i))i∈V is related to a statistical
mechanics model: the supersymmetric hyperbolic sigma model. It was studied by
Disertori, Spencer and Zirnbauer in [11] and [12], in which they showed localization and
delocalization theorems for the field ui0 . This provided results on the recurrence and
transience of the VRJP and ERRW on lattices Zd.

In [20], Sabot, Tarrès and Zeng showed that the distributions of fields ui0 can be
coupled for i0 ∈ V , using a potential β = (βi)i∈V on V , and a random Schrödinger
operator associated with β. Let us denote by Hβ = 2β −W the random Schrödinger
operator, i.e. the |V | × |V | symmetrical matrix such that (Hβ)i,j = 2βi1i=j −Wi,j for
i, j ∈ V . Moreover, we define by G = (Hβ)−1 the associated Green function. Then ui0
can be defined by

eui0 (i) =
G(i0, i)

G(i0, i0)

for i0, i ∈ V .
This representation using the β field allows a generalization to infinite graphs: in

[23], Sabot and Zeng used a similar potential β on infinite graphs to show that the VRJP
is still a mixture of Markov processes. If we still denote by Hβ = 2β −W the operator
associated with β, we can define the Green function Ĝ = (Hβ)−1 in a certain sense.
Moreover, there exists ψ, a Hβ-harmonic function on V (i.e. Hβψ = 0), obtained as
the limit of a martingale. Then if we define G(i, j) = Ĝ(i, j) + 1

2γψ(i)ψ(j), where γ is
a random Gamma variable independent from β, the time-changed VRJP (Zt) is still a
mixture of Markov processes, with jump rates from i to j given by

1

2
Wi,j

G(i0, j)

G(i0, i)
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Representations of the VRJP as a mixture of Markov processes

The term 1
2γ corresponds to a boundary term. Indeed, to show the result for infinite

graphs, the VRJP is first studied on finite subgraphs, endowed with a wired boundary
condition. This representation also gave results for the ERRW on infinite graphs. In [18],
Poudevigne used a coupling of potentials β on graphs with different weights W to show
monotonicity results, which gave the existence of a phase transition between recurrence
and transience of the VRJP.

In the case of infinite trees, there is another representation of (Zt) as a mixture of
Markov processes. This representation is obtained by using free boundary conditions on
restrictions of the tree, since the representation of the VRJP on finite trees has a simpler
expression. The particular structure of the tree already gave results for the ERRW (see
[16]) and the VRJP (see [9], [4]). We show that in some cases, the representation of the
VRJP obtained this way on the tree differs from the one defined in [23]. This raises the
question of the classification of all possible representations of the VRJP as a mixture of
Markov processes. This issue is related to the behavior of the VRJP at infinity, which
was also studied by Merkl, Rolles and Tarrès in [15], using the point of view of random
interlacements.

In this paper, we give several partial answers to the question of the classification of
representations of the VRJP. We first show that any such representation can be expressed
in the same form as before, using a β field, i.e. the random jump rates are given by

1

2
Wi,j

G(i0, j)

G(i0, i)
,

where G(i0, i) = Ĝ(i0, i) + h(i), with h a random Hβ-harmonic function.
In the case where the graph is the lattice Zd, this allows us to show that for certain

initial conductances W , there is only one representation of the VRJP as a mixture of
Markov processes. This is true for strong reinforcement (i.e. small W ), since the VRJP
is recurrent, but also for weak reinforcement (i.e. large W ). In this last case, we use
a local limit theorem for random walks in random environment to show that the only
Hβ-harmonic functions are constants, by proving that the associated Martin boundary is
trivial.

In the case where the graph is an infinite tree, we already know of two different
representations of the VRJP. Using new boundary conditions, we construct a family of
representations, that are all different if the tree is regular enough.

2 Statement of the results

2.1 Previous results

Let G = (V,E) be a finite connected non-directed graph, endowed with conductances
(We)e∈E . We describe (We)e∈E with a matrix (Wi,j)i,j∈V , where

Wi,j =

{
W{i,j} if {i, j} ∈ E,
0 otherwise.

In [21], Sabot and Tarrès proved that the time-changed VRJP on G with respect to W
could be represented as a mixture of Markov processes, i.e. as a random walk in random
environment. With Zeng, they showed in [20] that this environment could be related to a
random Schrödinger operator Hβ, constructed from a random potential β = (βi)i∈V , in
the following way.

For β ∈ RV , we will denote by Hβ = 2β −W the |V | × |V | symmetrical matrix such
that (Hβ)i,j = 2βi1i=j −Wi,j for i, j ∈ V . Let us define the set DWV = {β ∈ RV , Hβ > 0},
where Hβ > 0 means that the matrix Hβ is positive definite. Note that if β ∈ DWV , then
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Representations of the VRJP as a mixture of Markov processes

βi > 0 for all i ∈ V . The following proposition describes the probability distribution of
the random potential that will be used to represent the VRJP.

Proposition 2.1 (Theorem 1 in [20], Lemma 4 in [23]).

(i) Let G = (V,E) be a finite connected graph, endowed with conductances W , and let
η ∈ RV+. We define by νW,ηV the measure on (DWV ,B(DWV )) such that

νW,ηV (dβ) =

(
2

π

) |V |
2

e−
1
2 (〈1,Hβ1〉+〈η,(Hβ)−1η〉)e〈η,1〉

∏
i∈V dβi√
det(Hβ)

.

Then νW,ηV is a probability distribution. Its Laplace transform is∫
e−〈λ,β〉νW,ηV (dβ) = e−

∑
i∈V ηi(

√
1+λi−1)−

∑
i∼jWi,j(

√
(1+λi)(1+λj)−1)

∏
i∈V

1√
1 + λi

,

for λ ∈ RV+. When η = 0, we will write νWV = νW,0V .

(ii) Let us denote by dG the graph distance in G. Under νW,ηV (dβ), if V1, V2 ⊂ V are such
that dG(V1, V2) ≥ 2, then (βi)i∈V1 and (βj)j∈V2 are independent. We will say that the
potential with distribution νWV is 1-dependent.

Let Cr(R+, V ) be the space of right-continuous functions from R+ to V . This will be
the space of trajectories of the random processes we will study in this paper. These
processes will be described by probability distributions on Cr(R+, V ). Let us denote by
(Zt) the canonical process in Cr(R+, V ), where Zt(ω) = ω(t) for ω ∈ Cr(R+, V ). Moreover
for i0 ∈ V , let PV RJP (i0) denote the distribution of the time-changed VRJP on (G,W ),
in the exchangeable time scale described in the introduction. The following theorem
describes how to represent this process as a mixture of Markov processes, using a
random environment that can be constructed from the β field under νWV (dβ).

Theorem 2.2 (Theorem 2 in [21], Theorem 3 in [20]). Let G = (V,E) be a finite graph,
endowed with conductances W . We fix a vertex i0 ∈ V . For β ∈ DWV , we denote by
G = (Hβ)−1 the Green function associated with β, and by Pβ,i0x the distribution of the

Markov jump process started at x ∈ V , with jump rate from i to j given by 1
2Wi,j

G(i0,j)
G(i0,i)

.

Then for all i0 ∈ V , the time-changed VRJP on (G,W ), started at i0, is a mixture of
these Markov jump processes under the distribution νWV (dβ). In other words,

PV RJP (W,i0)[·] =

∫
P
β,i0
i0

[·]νWV (dβ).

An interesting property of the distribution νWV is its behavior with respect to re-
striction. For β ∈ RV and V1, V2 ⊂ V , let us denote βV1 = (βi)i∈V1 , and WV1,V2 =

(Wi,j)i∈V1,j∈V2 .

Proposition 2.3 (Lemma 4 in [23]). Let us fix U ⊂ V , and set η̂i =
∑
j∈UcWi,j for i ∈ U ,

i.e. η̂ = WU,Uc1Uc . Then under νWV (dβ), βU is distributed according to ν
WU,U ,η̂
U .

Hence under νWV (dβ), the distribution of βU depends only on the weights of edges
inside U , and coming out of U . This is useful to define the β field on infinite graphs.

Let now G = (V,E) be an infinite connected non-directed graph, that is locally finite,
i.e. each vertex v ∈ V has finite degree. We endow G with conductances W . To study the
associated VRJP, we want to define an analogue of the β field on G. In [23], Sabot and
Zeng did this by using a wired boundary condition, defined as follows.

Let (Vn)n∈N be an increasing sequence of finite connected subsets of V , such that⋃
n∈N

Vn = V.
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Representations of the VRJP as a mixture of Markov processes

For n ∈ N, we introduce a new vertex δn, and define a new graph G(n) = (Ṽ (n), Ẽ(n)),
where

Ṽ (n) = Vn ∪ {δn}

and Ẽ(n) = {{i, j} ∈ E, i, j ∈ Vn} ∪ {{i, δn}, i ∈ Vn and ∃j /∈ Vn, i ∼ j} .

The graph G(n) is called the restriction of G to Vn with wired boundary condition. We
endow this graph with the conductances W̃ (n) defined by W̃ (n)

i,j = Wi,j if i, j ∈ Vn, and

W̃
(n)
i,δn

=
∑
j∼i,j /∈VnWi,j .

For all n ∈ N, let (β
(n)
i )i∈Ṽ (n) be a random potential on the graph G(n) distributed

according to νW̃
(n)

Ṽ (n) . Then from Proposition 2.3, we know that the restriction β(n)
Vn

is dis-

tributed according to νW
(n),η(n)

Vn
, where W (n) = WVn,Vn and η(n) := W̃

(n)
Vn,{δn} = WVn,V cn

1V cn .

In fact, for a fixed n ∈ N and any n′ ≥ n, the restrictions β(n′)
Vn

have the same distri-

bution νW
(n),η(n)

Vn
. By Kolmogorov extension theorem, this allows the construction of a

distribution νWV for infinite V .
For β ∈ RV , let us still denote by Hβ = 2β −W the Schrödinger operator associated

with (βi)i∈V , i.e. for all f ∈ RV and i ∈ V , (Hβf)i = 2βifi −
∑
j∼iWi,jfj . We also define

the set DWV = {β ∈ RV , (Hβ)U,U > 0 for all finite subset U of V }, where (Hβ)U,U > 0

means that the symmetrical matrix (Hβ)U,U is positive definite.

Proposition 2.4 (Proposition 1 in [23]). Let G = (V,E) be an infinite locally finite graph,
endowed with conductances W . There exists a unique probability distribution νWV on DWV
such that under νWV (dβ), for all finite subset U ⊂ V , βU ∼ ν

WU,U ,η
U where η = WU,Uc1Uc .

Its Laplace transform is∫
e−〈λ,β〉νWV (dβ) = e−

∑
i∼jWi,j(

√
1+λi
√

1+λj−1)
∏
i∈V

1√
1 + λi

for λ ∈ RV+ with finite support.

The wired boundary condition is not only useful to define νWV on infinite graphs, but
also to link this distribution to representations of the VRJP, by applying Theorem 2.2
to the graph G(n). Indeed from Proposition 2.4, for any n ∈ N, under νWV (dβ) we have

βVn ∼ νW
(n),η(n)

Vn
. Hence, from Proposition 2.3, we can extend βVn into a potential

β(n) ∼ νW̃ (n)

Ṽ (n) such that β(n)
Vn

= βVn . We denote H(n)
β = 2β(n) − W̃ (n) and G(n) = (H

(n)
β )−1.

From Theorem 2.2, we know that G(n) gives a representation of the VRJP on G(n).

Definition 2.5.

(i) For β ∈ DWV , let us define Ĝ(n) : V × V → R+ by (Ĝ(n))Vn,Vn = ((Hβ)Vn,Vn)−1, and
Ĝ(n)(i, j) = 0 if i /∈ Vn or j /∈ Vn.

(ii) For β ∈ DWV , let ψ(n) ∈ RVn+ be defined by{
(Hβψ

(n))Vn = 0

ψ
(n)
V cn

= 1.

Note that ψ(n)
Vn

= (Ĝ
(n)
Vn,Vn

)η(n).

It is possible, using a decomposition of the Green function as a sum over paths (see
[23], or Proposition 3.4), to write

G(n)(i, j) = Ĝ(n)(i, j) + ψ(n)(i)G(n)(δn, δn)ψ(n)(j)
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for i, j ∈ Vn. Under νWV (dβ), G(n)(δn, δn) is independent of βVn , and 1/2G(n)(δn, δn) is
always distributed according to a Gamma(1/2, 1) distribution (see Proposition 3.1 (ii)).
The following theorem describes how taking n→∞ in this previous expression gives a
representation of the VRJP on infinite graphs.

Theorem 2.6 (Theorem 1 in [23]).

(i) Under νWV (dβ), for i, j ∈ V , the increasing sequence Ĝ(n)(i, j) converges almost
surely to a finite random variable Ĝ(i, j).

(ii) Let Fn be the σ-field generated by βVn . Then under νWV (dβ), for all i ∈ V , ψ(n)(i)

is a nonnegative (Fn)-martingale which converges almost surely to an integrable
random variable ψ(i). Moreover, ψ is Hβ-harmonic on V , i.e. Hβψ(i) = 2βiψ(i)−∑
j∼iWi,jψ(j) = 0 for i ∈ V .

(iii) From now on, we will denote νWV (dβ, dγ) = νWV (dβ)⊗ 1{γ>0}√
πγ e−γdγ, where the density

1{γ>0}√
πγ e−γdγ is that of a Gamma(1/2, 1) distribution.

Let now i0 ∈ V be fixed. For β ∈ DWV and γ > 0, we define

G(i, j) = Ĝ(i, j) +
1

2γ
ψ(i)ψ(j),

and denote by Pβ,γ,i0x the distribution of the Markov jump process started at x ∈ V ,
where the jump rate from i to j is 1

2Wi,j
G(i0,j)
G(i0,i)

.

Then the time-changed VRJP on (G,W ), started at i0, is a mixture of these Markov
jump processes under νWV (dβ, dγ), i.e.

PV RJP (i0)[·] =

∫
P
β,γ,i0
i0

[·]νWV (dβ, dγ).

(iv) For νWV -almost all β and all i0 ∈ V , we have:

– The Markov process with law Pβ,γ,i0x is recurrent if and only if ψ(i) = 0 for all
i ∈ V .

– The Markov process with law Pβ,γ,i0x is transient if and only if ψ(i) > 0 for all
i ∈ V .

Note that for i0 ∈ V fixed, in this representation of the VRJP started at i0, the β field
cannot be expressed as a function of the random jump rates Wi,j

2
G(i0,j)
G(i0,i)

that define the

environment. However, we can define the β̃ field rooted at i0, where β̃i is the rate of the
exponential holding time at i for the associated Markov process.

Proposition 2.7. For all i ∈ V , β ∈ DWV and γ > 0, we define

β̃i =
∑
j∼i

Wi,j

2

G(i0, j)

G(i0, i)
= βi − 1{i=i0}

1

2G(i0, i0)
.

Then under νWV (dβ, dγ), 1/2G(i0, i0) has distribution Gamma(1/2, 1) and is independent
from β̃. Moreover the Laplace transform of β̃ is∫

e−〈λ,β̃〉νWV (dβ, dγ) = e−
∑
i∼jWi,j(

√
1+λi
√

1+λj−1)
∏
i 6=i0

1√
1 + λi

for λ ∈ RV+ with finite support.

EJP 25 (2020), paper 108.
Page 6/45

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP510
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representations of the VRJP as a mixture of Markov processes

2.2 A common form for all representations

We still consider G = (V,E) to be an infinite connected graph, locally finite and
endowed with conductances (Wi,j)i,j∈V . Thanks to Theorem 2.6, we already know
that the time-changed VRJP with distribution PV RJP (i0) can be written as a mixture of
Markov jump processes, using the distribution νWV . We will refer to this as the standard
representation. We are now interested in other possible random environments, that
would represent the VRJP in the same sense, and whether they can be expressed in a
form similar to the standard representation.

We will denote by J EV the set of jump rates on G, i.e. the set of (ri,j)i,j∈V ∈ RV×V+

such that ri,j = 0 if {i, j} /∈ E.

Definition 2.8. Let R(dr) be a probability distribution on J EV . For i0 ∈ V fixed, we will
say thatR(dr) is the distribution of a random environment representing the time-changed
VRJP started at i0 if

PV RJP (i0)[·] =

∫
Pri0 [·]R(dr),

where for r ∈ J EV , Pr is the distribution of the Markov jump process with jump rate from
i to j given by ri,j . We will also say that R(dr) defines a representation of PV RJP (i0).

The following result tells us that in fact, any representation of the VRJP can be
expressed in a similar form as the standard representation, using a β field as well as
Hβ-harmonic functions.

For i ∈ V and r ∈ J EV , we define ri =
∑
j∼i ri,j .

Theorem 2.9. Let i0 ∈ V be fixed, and let R(dr) be the distribution of a random envi-
ronment representing the time-changed VRJP with law PV RJP (i0). We write R(dr, dγ) =

R(dr)⊗ 1{γ>0}√
πγ e−γdγ.

For r ∈ J EV and γ > 0, we define β ∈ (R+)V by βi = ri + 1{i=i0}γ for i ∈ V . Then
under R(dr, dγ), β ∼ νWV , and there exists a random Hβ-harmonic function h : V → R+,
such that for all i ∼ j,

ri,j =
Wi,j

2

G(i0, j)

G(i0, i)
,

where G(i0, i) = Ĝ(i0, i)+h(i) for i ∈ V , and Ĝ is the function of β defined in Theorem 2.6.

In order to try and classify all representations of the VRJP, we now need to identify
Hβ-harmonic functions, and to determine which ones can appear in the expression of a
representation, as in Theorem 2.9. Two interesting cases arise, depending on (G,W ):
when the VRJP is almost surely recurrent, or almost surely transient.

In the first case, we can use the law of large numbers to show that the representation
of the VRJP as a mixture of Markov processes is unique.

Proposition 2.10. If (G,W ) is such that the VRJP is almost surely recurrent, then the
representation of the time-changed VRJP started at i0 as a mixture of Markov processes is
unique, i.e. ifR(dr) andR′(dr) define representations of PV RJP (i0), thenR(dr) = R′(dr).

Note that in this case, according to Theorem 2.6 (iv), under νWV (dβ), we have a.s.
ψ(i) = 0 for all i ∈ V , and the jump rates in the standard representation are given by
Wi,j

2
Ĝ(i0,j)

Ĝ(i0,i)
. Therefore, the Hβ-harmonic function associated with the unique representa-

tion (by Theorem 2.9) is h ≡ 0.
In the second case, i.e. when the VRJP is almost surely transient, we can introduce a

random conductance model, associated with ψ.

Proposition 2.11. If (G,W ) is such that the VRJP is almost surely transient, then under
νWV (dβ):

(i) We have a.s. ψ(i) > 0 for all i ∈ V , where ψ is defined in Theorem 2.6.
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(ii) We define the random conductances cψi,j = Wi,jψ(i)ψ(j) for all i, j ∈ V . Then the
associated reversible random walk is a.s. transient.

(iii) Let ∆ψ be the discrete Laplacian associated with the random conductances cψi,j .

Then a function ϕ : V → R is ∆ψ-harmonic if and only if i 7→ ψ(i)ϕ(i) is Hβ-
harmonic.

Remark 2.12. The introduction of the operator ∆ψ allows a more convenient expression
of representations in the transient case. Indeed, if R(dr) defines a representation of
PV RJP (i0), Theorem 2.9 allows us to construct a β field distributed according to νWV ,
and to express the jump rates ri,j using β and a Hβ-harmonic function h. According to
Proposition 2.11 (iii), we have h = ψϕ, where ϕ is a ∆ψ-harmonic function, i.e. harmonic
for a transient random walk. As a result, ϕ can be expressed using the Martin boundary
associated with ∆ψ, as described below.

The notion of Martin boundary is a useful tool to represent harmonic functions with
respect to a transient random walk on a graph G = (V,E). Indeed, V admits a boundary
M so that V ∪M is compact for a certain topology, and there is a kernel K : V ×M so
that any positive harmonic function h can be written as

h(x) =

∫
M
K(x, α)µh(dα)

for x ∈ V , where µh is a positive measure on (M,B(M)). M is called the Martin
boundary of V with respect to the random walk, and K is the Martin kernel, which is
defined using the Green kernel associated with the random walk. For more details on
Martin boundaries, see Section 3.3.

In order to study representations of the VRJP in the transient case, we want to
describe ∆ψ-harmonic functions, according to Remark 2.12. We will therefore need to
identify the Martin boundaryMψ associated with ∆ψ. This will be possible when G is
Zd, or an infinite tree.

2.3 Main results

2.3.1 Representations of the VRJP on Zd

Let us consider the case where G is the lattice Zd, i.e. G = (V,E) with

V = Zd and E = Ed := {{x, y}, |x− y| = 1}

where |x| is the Euclidean norm of x. Let us endow G with constant initial conductances
W . Since this model is invariant by isometries of Zd, we will only consider the VRJP
started at 0.

We can identify several situations in which the representation is unique. For d = 2, or
if W is small enough, the VRJP is almost surely recurrent (see [19], and Corollary 1 in
[21]), so that the representation of PV RJP (0) is unique according to Proposition 2.10. For
d ≥ 3 and W large enough, the VRJP is almost surely transient (see Corollary 3 in [21]),
hence we can introduce the operator ∆ψ defined in Proposition 2.11. Since (G,W ) is
vertex transitive, from Proposition 3 of [23], under νWV (dβ), ψ is stationary and ergodic.
This allows us to apply a local limit theorem for random walks in random conductances
(from [1]), and show that the Martin boundaryMψ associated with ∆ψ is almost surely
trivial for W large enough. These cases are regrouped in the following result.

Theorem 2.13. Let G be the Zd lattice, endowed with constant edge weights, i.e.
Wi,j = W > 0 for all i ∼ j. We consider representations of PV RJP (0) as a mixture of
Markov processes.

Then:
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• If d ∈ {1, 2}, there is a unique representation of PV RJP (0).

• If d ≥ 3, there are constants 0 < W < W such that for 0 < W < W or for W > W ,
there is a unique representation of PV RJP (0).

2.3.2 A family of representations on infinite trees

Let us now consider the case where the graph is an infinite tree T = (T,E), that we
assume to be locally finite, and endow with conductances W . In [5], Chen and Zeng
described a representation of the time-changed VRJP with a different expression than the
standard representation. Indeed, if (Tn)n∈N is an increasing and exhausting sequence
of finite connected subsets of T , the subgraphs T (n) = (Vn, En) of G are finite trees
(where En = {{i, j} ∈ E, i, j ∈ Vn}). These are called restrictions of G with free boundary
conditions.

Moreover, on finite trees, Theorem 2.2 gives a representation of the VRJP where jump
rates are independent. Therefore, a representation of the VRJP on T can be obtained
from representations on T (n), using independent jump rates.

Theorem 2.14 (Theorem 3 in [5]). Let φ be an arbitrary root for T . For all i ∈ T\{φ},
we denote by ~i the parent of i. Let also (Ai)i∈T\{φ} be independent random variables
where Ai is an inverse Gaussian random variable with parameter (W ~i,i, 1), i.e.

P[Ai ∈ ds] = 1s≥0

√
W ~i,i

2πs3
e−W ~i,i

(s−1)2

2s ds.

Then the process with law PV RJP (φ) on T is a mixture of Markov jump processes, in

which the jump rate from ~i to i is 1
2W ~i,iAi, and the jump rate from i to ~i is 1

2

W ~i,i

Ai
, for all

i ∈ T\{φ}.
In some cases, this representation is different from the standard representation.

Proposition 2.15. Let T = (T,E) be an infinite d-regular tree with d ≥ 3, i.e. such
that each vertex in T has exactly d neighbors. We endow T with constant conductances
W . Then for W large enough, the distribution of the random environment described in
Theorem 2.14 is different from the distribution of the standard representation.

We now know two ways of constructing representations of the VRJP on T , that are
associated with different boundary conditions on restrictions to finite graphs, and can
have distinct distributions. This leads us to introduce new boundary conditions in order
to construct a family of different representations of the VRJP, following the same method
as for the standard representation.

Let us start by giving a few notations on trees. For all x, y ∈ T , we denote by d(x, y)

the graph distance between x and y, and by [x, y] the unique shortest path between x

and y:
[x, y] =

(
x = [x, y]0, [x, y]1, ..., [x, y]d(x,y)−1, y = [x, y]d(x,y)

)
.

Note that any path σ from x to y necessarily crosses all vertices [x, y]k for 0 ≤ k ≤ d(x, y).
Let us fix an arbitrary root φ in T . Then, for all x ∈ T , we denote by |x| = d(φ, x) the

depth of the vertex x ∈ T . If x 6= φ, we also denote by ~x = [φ, x]|x|−1 the parent of x.
Finally, for any x ∈ T , we define the set of x’s children S(x) = {y ∈ T, x = ~y}, and the set
of its descendants Tx = {y ∈ T, ∃k ≥ 0, [φ, y]k = x}.

For x, y ∈ T , we denote by x ∧ y the “closest common ancestor” of x and y, i.e.
x ∧ y = [φ, x]Nx,y where Nx,y = max{k ≥ 0, [φ, x]k = [φ, y]k}. Note that we also have
x ∧ y = [x, y]k0

, where k0 is such that |[x, y]k0
| = min{|[x, y]k|, 0 ≤ k ≤ d(x, y)}.

For n ∈ N, we denote by D(n) = {x ∈ T, |x| = n} the tree’s nth generation. Let us then
define T (n) =

⋃
0≤k≤nD

(k), as well as E(n) =
{
{i, j} ∈ E, i, j ∈ T (n)

}
. The restriction of
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the tree to the first n generations, with free boundary conditions, is the graph (T (n), E(n)),
that we endow with the induced conductances W (n) = WT (n),T (n) . For x ∈ T and n ≥ |x|,
we also denote T (n)

x = Tx ∩ T (n) the set of descendants of x in T (n).
Finally, we define the set Ω of ends of T , i.e. the set of infinite self-avoiding paths (or

rays) in T starting at φ. For x ∈ T , we denote by Ωx the subset of Ω corresponding to the
branch Tx, i.e. the set of rays in T that cross x. Note that the Martin boundary associated
with a transient walk on a tree is always Ω, which depends only on the geometry of the
tree. This will be convenient to express ∆ψ-harmonic functions, where ∆ψ is the random
Laplace operator introduced in Proposition 2.11.

With these definitions out of the way, let us present new boundary conditions on trees,
and the associated representations for the VRJP.

In the construction of the standard representation, the wired boundary condition
was defined by adding a single boundary point δ to a finite graph, where δ could be
interpreted as a point at infinity for the graph. We will now introduce a variant of this
boundary condition, by adding multiple boundary points, each being a point at infinity
for a different branch of the tree.

Let us first fix a generation m ≥ 0, and to each vertex x ∈ D(m), we associate a
boundary point δx, that will be the point at infinity for Tx. We denote by Bm = {δx, x ∈
D(m)} the boundary set associated to this generation. For all n ≥ m, let us then define
the graph

G(n)
m =

(
T̃ (n)
m , Ẽ(n)

m

)
, where T̃ (n)

m = T (n) ∪Bm

and Ẽ(n)
m = E(n) ∪

⋃
x∈D(m)

{
{y, δx}, y ∈ Tx ∩D(n)

}
.

φ

x1 x2 x3

δx1
δx2

δx3

m=1

n=3

T (n)
T̃

(n)
m

This graph is the restriction of T to T (n) with a variant of the wired boundary
condition. Note that we get the standard wired boundary condition by taking m = 0. We
endow G(n)

m with the conductances W̃ (n)
m , defined for e ∈ Ẽ(n) by(

W̃ (n)
m

)
e

=

{
W

(n)
e = We if e ∈ E(n)∑
j∈S(i)Wi,j if e = {i, δx}, where i ∈ Tx ∩D(n).
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As with the wired boundary condition, these weights are defined so that for n ≥ m, the
weights coming out of T (n) are given by WT (n),(T (n))c1(T (n))c = η(n). This will allow for

the compatibility of β(n)
m fields defined on G(n)

m for n ≥ m. Note that these weights do not
depend on m, i.e. do not depend on the choice of the boundary condition.

For β ∈ DWT , we still define Hβ = 2β − W and take Vn = T (n) for all n ∈ N in
Definition 2.5. We then get Ĝ(n) = ((Hβ)T (n),T (n))−1 and ψ(n) = Ĝ(n)η(n), which converge

νWV -a.s. to Ĝ and ψ respectively, according to Theorem 2.6.

Moreover, for all n ≥ m, under νWT (dβ), we can extend βT (n) into a potential β(n)
m ∼

ν
W̃ (n)
m

T̃
(n)
m

on G(n)
m (see Lemma 6.1). Let us then denote by G

(n)
m = (2β

(n)
m − W̃

(n)
m )−1 the

associated Green function. From Theorem 2.2, we know how to represent the time-
changed VRJP on G(n)

m using G(n)
m . In order to obtain a result on the infinite tree T , we

will see that G(n)
m converges when n → ∞, by writing it as a sum over paths in G(n)

m .
Some new terms, defined below, appear in this expression.

Definition 2.16. For n ≥ m ≥ 0, let χ(n)
m ∈ RT

(n)×Bm
+ be defined by

(Hβχ
(n)
m (·, δx))T (n) = 0,

χ
(n)
m (i, δx) = 1 if i ∈ Tx\T (n)

x ,

χ
(n)
m (i, δx) = 0 if i ∈ T\(Tx ∪ T (n)),

for x ∈ D(m). Note that (χ
(n)
m (·, δx))T (n) = (Ĝ(n))T (n),T (n)WT (n),(T (n))c1Tx\T (n)

x
.

Remark 2.17. For n ≥ m, χ(n)
m is βT (n) -measurable, and for x ∈ D(m) and y ∈ T (n),∑

b∈Bm

χ(n)
m (y, b) =

∑
x∈D(m)

χ(n)
m (y, δx) = Ĝ(n)(y, ·)WT (n),(T (n))c1(T (n))c

= Ĝ(n)(y, ·)η(n) = ψ(n)(y).

The decomposition of G(n)
m as a sum over paths in G(n)

m gives the following expression
(see Lemma 6.2): for i, j ∈ T (n),

G(n)
m (i, j) = Ĝ(n)(i, j) +

∑
x,x′∈D(m)

χ(n)
m (i, δx)G(n)

m (δx, δx′)χ
(n)
m (j, δx′).

Once again, we will study the limit of this expression when n→∞, to obtain a represen-
tation of the VRJP on (T ,W ). However under νWT (dβ), contrary to ψ(n), χ(n)

m (·, δx) is not

a martingale when m 6= 0. Moreover, the term (G
(n)
m )Bm,Bm is not independent of βT (n)

for m 6= 0. Therefore, we cannot use the same argument as in the proof of Theorem 2.6.
However, we will still be able to show the almost sure convergence of χ(n)

m , using the
structure of the tree and the associated Martin boundary, and deduce the convergence
in distribution of (G

(n)
m )Bm,Bm conditionally on β.

Let us give a few more details on the Martin boundary: we expect χ(n)
m (·, δx) to

converge to a Hβ-harmonic function on T , for all x ∈ D(m) and νWV -almost all β. When
ψ > 0, we can introduce the operator ∆ψ in order to study Hβ-harmonic functions (see
Proposition 2.11), thanks to the associated Martin boundaryMψ. Since the graph is a
tree, the Martin boundary is equal to the set Ω of ends of T , which is deterministic. Note
that the boundary condition used to define G(n)

m corresponds to identifying Ωx to a single
point δx, for all x ∈ D(m). We will see that the limit of χ(n)

m (·, δx) can be expressed with
the family of harmonic measures (µψi )i∈T defined, on the Martin boundaryMψ = Ω, as
the exit measure of the transient walk associated with ∆ψ started at i (for more details,
see Section 3.3). For β ∈ DWT such that ψ ≡ 0, we adopt the convention that µψi is the
null measure on Ω for all x ∈ T .
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The following theorem states the almost sure convergence of χ(n)
m , and the existence

of a family of representations constructed as previously described.

Theorem 2.18.

(i) For all m ≥ 0, for y ∈ T and x ∈ D(m), we have νWT -almost surely χ(n)
m (y, δx) →

ψ(y)µψy (Ωx). For all y ∈ T , we define the measure χ(y, ·) = ψ(y)µψy (·) on Ω.

(ii) Let m ≥ 0 be fixed. For νWT -almost all β, we define the |Bm| × |Bm| matrix Čm by

(Čm)δx,δx′ =

{
0 if x = x′,
χ(x∧x′,Ωx)χ(x∧x′,Ωx′ )

Ĝ(x∧x′,x∧x′) otherwise.

From now on, let us write: νWT,Bm(dβ, dρm) = νWT (dβ)νČmBm (dρm).

For νWT -almost all β and for ρm ∈ DČmBm , we define Ǧm = (2ρm − Čm)−1, as well as

ǧm : Ω2 → R+ a locally constant function, such that for x, x′ ∈ D(m) and ω ∈ Ωx,
τ ∈ Ωx′ , we have ǧm(ω, τ) = Ǧm(δx, δx′). Finally, for νWT -almost all β and for

ρm ∈ DČmBm , for i, j ∈ T , we define

Gm(i, j) = Ĝ(i, j) +

∫
Ω2

χ(i, dω)χ(j, dτ)ǧm(ω, τ),

and denote by Pβ,ρm,i0x the distribution of the Markov jump process started at x ∈ V ,
where the jump rate from i to j is 1

2Wi,j
Gm(i0,j)
Gm(i0,i)

.

Then the process with law PV RJP (i0) is a mixture of these Markov jump processes,
under the mixing measure νWT,Bm(dβ, dρm), i.e.

PV RJP (i0)[·] =

∫
P
β,ρm,i0
i0

[·]νWT,Bm(dβ, dρm).

(iii) The distribution under νWT,Bm(dβ, dρm) of the jump rates ( 1
2Wi,j

Gm(i0,j)
Gm(i0,i)

)i∼j con-
verges weakly to the distribution of jump rates in the representation described in
Theorem 2.14.

Let us now consider the case where T is a d-regular tree, with d ≥ 3, endowed
with constant conductances, i.e. We = W > 0 for all e ∈ E. Then (T ,W ) is vertex
transitive, and from Proposition 3 of [23], we know that under νWT (dβ), ψ is stationary
and ergodic. Therefore, depending on d and W , we either have P[∀i ∈ T, ψ(i) = 0] = 1,
or P[∀i ∈ T, ψ(i) > 0] = 1.

In the first case, from Theorem 2.6 (iv), this means that the VRJP is a.s. recurrent,
and therefore admits a unique representation (see Proposition 2.10). Note that in
Theorem 2.18, we have a.s. Gm = Ĝ for all m ∈ N, so that all the corresponding
representations are indeed equal. The following proposition describes the second case,
i.e. when the VRJP is a.s. transient. According to a result from [9], this is true for large
enough initial weights W .

Proposition 2.19. Let T be a d-regular tree, with d ≥ 3, endowed with constant con-
ductances W large enough so that the VRJP on (T ,W ) is a.s. transient. Then the
representations of the VRJP given in Theorem 2.18 are different for distinct values of m,

i.e. if m 6= m′, the distributions of jump rates
(

1
2Wi,j

Gm(i0,j)
Gm(i0,i)

)
i∼j

under νWT,Bm(dβ, dρm)

and
(

1
2Wi,j

Gm′ (i0,j)
Gm′ (i0,i)

)
i∼j

under νWT,Bm′ (dβ, dρm′) are different for all i0 ∈ T .
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2.4 Open questions

A first question concerns the case of Zd with constant conductances W : is it possible
to show that the Martin boundary associated with ∆ψ is a.s. trivial for any W such that
the VRJP is transient? In this case, it would prove the uniqueness of the representation
of the VRJP on Zd for any constant initial conductances W .

Another question concerns a possible classification of all representations on trees
using partitions of the Martin boundary. We have constructed a family of representations
from different boundary conditions on the tree, corresponding to some finite partitions
of the Martin boundary Ω, more precisely the partition Ω =

⋃
x∈D(m) Ωx for m ∈ N. It

should be possible to define more representations using the same method, with boundary
conditions associated with other finite partitions of Ω, where each set in the partition
can be written as a finite union of sets Ωx. To generalize this, we can ask if it is
possible to determine which partitions give us a valid representation, and whether all
representations can be written in this form, or as a limit of such representations, as in
Theorem 2.18 (iii).

2.5 Organization of the paper

Section 3 exposes some useful technical results concerning the β field, as well as
basic definitions and properties of the Martin boundary. In Section 4, we prove how
all representations of the VRJP have a common form, i.e. Theorem 2.9. We use these
results in Section 5 to study the case of the graph Zd, and show Theorem 2.13 using a
local limit theorem in random environment. In Section 6, we construct a family of new
representations of the VRJP on infinite trees (Theorem 2.18). Section 7 presents several
properties of this family, in particular that the representations are all different in the
case of a regular tree (Proposition 2.19).

3 Technical prerequisite

3.1 The random potential β on finite graphs

Let G = (V,E) be a finite connected non-directed graph, endowed with conductances
(We)e∈E . Let us give some useful properties on the distribution νWV .

Proposition 3.1 (Proposition 2, Theorem 3 in [20]). For β ∈ DWV , let G = (Hβ)−1 be the
Green function associated with β. We define F : V × V → R by

F (i, j) =
G(i, j)

G(j, j)
.

Then under νWV (dβ), for all i0 ∈ V , we have the following properties:

(i) (F (i, i0))i∈V is (βi)i∈V \{i0}-measurable.

(ii) If we denote γ = 1
2G(i0,i0) , then γ is a Gamma random variable with parameter

(1/2, 1). Moreover, γ is independent of (βi)i 6=i0 , and therefore independent of
(F (i, i0))i∈V .

This proposition explains the presence of γ in the expression on G in Theorem 2.6.
Moreover, it allows us to prove Proposition 2.7, describing the distribution of the β̃ field.

Proof of Proposition 2.7. Let G = (V,E) be an infinite connected non-directed graph,
and (Vn)n∈N an increasing exhausting sequence of finite connected subsets of V . For
n ∈ N, let G(n) = (Ṽ (n), Ẽ(n)) be the restriction of G to Vn with wired boundary condition,
endowed with conductances W̃ (n), defined as in section 2.1. Moreover, for n ∈ N, we
still define Ĝ(n) and ψ(n) as in Definition 2.5.
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The proof of Theorem 2.6 (iii) uses the fact that under νWV (dβ, dγ), there exists a

coupling of random fields (β(n))n∈N, such that for all n ∈ N: β(n) ∼ νW̃
(n)

Ṽ (n) ; β(n)
Vn

= βVn ;

and G(n) = (2β(n) − W̃ (n))−1, where for i, j ∈ Ṽ (n),

G(n)(i, j) = Ĝ(n)(i, j) +
1

2γ
ψ(n)(i)ψ(n)(j).

We can then apply Proposition 3.1 to β(n) at i0: since G(n) = (2β(n) − W̃ (n))−1, we have

β
(n)
i = β̃

(n)
i + 1{i=i0}

1

2G(n)(i0, i0)

for all i ∈ Ṽ (n), where

β̃
(n)
i =

∑
j∼i

W̃
(n)
i,j

2

G(n)(i0, j)

G(n)(i0, i)
.

According to Proposition 3.1, 1/2G(n)(i0, i0) is a random Gamma(1/2, 1) variable, which

is independent of (β
(n)
i )i∈Ṽ (n)\{i0}. Moreover, for i 6= i0, β̃(n)

i = β
(n)
i , and

β̃
(n)
i0

=
∑
j∼i0

W̃
(n)
i,j

2

G(n)(i0, j)

G(n)(i0, i0)
=
∑
j∼i0

W̃
(n)
i,j

2
F (n)(j, i0),

so that β̃(n) is (β
(n)
i )i∈Ṽ (n)\{i0}-measurable, and therefore independent of G(n)(i0, i0).

Taking the limit when n→∞, we deduce that 1/2G(i0, i0) is a random Gamma(1/2, 1)

variable, independent from the β̃ field, where for i ∈ V ,

β̃i =
∑
j∼i

Wi,j

2

G(i, j)

G(i, i)
= βi − 1{i=i0}

1

2G(i0, i0)
.

Since the Laplace transform of a Gamma(1/2, 1) variable is, for t ≥ 0,∫
e−tγ

1{γ>0}√
πγ

e−γdγ =
1√

1 + t
,

and given the Laplace transform of νWV in Proposition 2.4, we now know that the Laplace
transform of β̃ is, for λ ∈ RV+ with finite support,

E[e−〈λ,β̃〉] =
1√

1 + λi0
e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)
∏
i 6=i0

1√
1 + li

.

On finite graphs, the distribution νWV , and more generally νW,ηV for η ∈ RV+, behaves
well with respect to restriction, as shown in the next proposition, which is a generalization
of Proposition 2.3.

Proposition 3.2 (Lemma 4 in [23]). Let us fix U ⊂ V and η ∈ (R+)V . Then, under
νW,ηV (dβ), we have:

(i) βU is distributed according to ν
WU,U ,η̂
U , where

η̂ = ηU +WU,Uc1Uc .

(ii) Conditionally on βU , βUc is distributed according to νW̌ ,η̌
Uc , where

W̌ = WUc,Uc +WUc,U ((Hβ)U,U )−1WU,Uc and η̌ = ηUc +WUc,U ((Hβ)U,U )−1ηU .

Proposition 2.3 is a direct consequence of (i), in the case where η = 0. Moreover,
(ii) is useful to extend a potential βU ∼ ν

WU,U ,η̂
U where η̂ = WU,Uc1Uc into a potential

βV ∼ νWV , using the distribution of βUc conditionally on βU .
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3.2 Green function and sums over paths

Let us still consider a finite connected non-directed graph G = (V,E) endowed with
conductances W . For β ∈ DWV , it will be useful to express the Green function G = H−1

β

as a sum over paths in G. We first introduce some notations for sets of paths.

Definition 3.3.

(i) For i, j ∈ V , we denote by PVi,j the set of paths σ from i to j in V , i.e. the set of finite
sequences σ = (σ0, ...σl) in V , where σ0 = i, σl = j and σk ∼ σk+1 for 0 ≤ k ≤ l − 1.
We denote by |σ| = l the length of the path σ.

(ii) For U ⊂ V , i ∈ U and j /∈ U , we denote by PUi,j the set of paths σ ∈ PVi,j such that
σk ∈ U for 0 ≤ k ≤ |σ| − 1.

(iii) For U ⊂ V and i, j ∈ V , we denote by PVi,U,j the set of paths σ ∈ PVi,j such that
σk ∈ U for some k ∈ J0, |σ|K.

(iv) For i, j ∈ V and σ ∈ PVi,j , we define the following notations:

Wσ =

|σ|−1∏
k=0

Wσk,σk+1
, (2β)σ =

|σ|∏
k=0

2βσk and (2β)−σ =

|σ|−1∏
k=0

2βσk .

We get the following expressions, in terms of sums over paths, for G and related
quantities.

Proposition 3.4 (Proposition 6 in [20]). Let β ∈ DWV . Then:

(i) For i, j ∈ V ,

G(i, j) =
∑
σ∈PVi,j

Wσ

(2β)σ
.

In particular, for U ⊂ V we denote ĜU = ((Hβ)U,U )−1, then for i, j ∈ U , we obtain

ĜU (i, j) =
∑
σ∈PUi,j

Wσ

(2β)σ
.

(ii) For i, j ∈ V ,

F (i, j) =
∑

σ∈PV \{j}i,j

Wσ

(2β)−σ
=
∑
z∼j

ĜV \{j}(i, z)Wz,j .

(iii) For U ⊂ V and i, j ∈ U c,

∑
σ∈PVi,U,j

Wσ

(2β)−σ
=

∑
z1,z2∈U

 ∑
σ∈PU

c

i,z1

Wσ

(2β)−σ

G(z1, z2)

 ∑
σ∈PU

c

j,z2

Wσ

(2β)−σ

 .

In particular, if U = {z}, this becomes∑
σ∈PV

i,{z},j

Wσ

(2β)σ
= F (i, z)G(z, z)F (j, z) = F (i, z)G(z, j).

Remark 3.5. If G = (V,E) is now an infinite graph, let (Vn)n∈N be an increasing se-
quence of finite connected subsets of V such that V = ∪n∈NVn. For β ∈ DWV and n ≥ 0,
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we define Ĝ(n) = ĜVn = ((Hβ)Vn,Vn)−1 as in Definition 2.5. Then from Proposition 3.4 (i),
we get

Ĝ(n)(i, j) =
∑

σ∈PVni,j

Wσ

(2β)σ

for n ≥ 0 and i, j ∈ Vn. From Theorem 2.6 (i), under νWV (dβ) the increasing sequence
(Ĝ(n)(i, j))n∈N converges almost surely to Ĝ(i, j). Hence, we get

Ĝ(i, j) =
∑
σ∈PVi,j

Wσ

(2β)σ

for i, j ∈ V .

Let us also define F̂ (n)(i, j) = Ĝ(n)(i,j)

Ĝ(n)(j,j)
and F̂ (i, j) = Ĝ(i,j)

Ĝ(j,j)
, for all i, j ∈ V and

n ≥ max(|i|, |j|). Then, from Proposition 3.4 (ii) we have

F̂ (n)(i, j) =
∑

σ∈PVn\{j}i,j

Wσ

(2β)−σ
−−−−→
n→∞

F̂ (i, j) =
∑

σ∈PV \{j}i,j

Wσ

(2β)−σ
,

where the convergence is true νWV -almost surely.

3.3 Martin boundary and harmonic functions

Let us give more details about the theory of Martin boundaries. The following results
can be found in Chapter IV of [24].

Let G = (V,E) be an infinite graph, we consider an irreducible random walk (Xn)n∈N
on G, whose transition matrix is P , where Pi,j = 0 if {i, j} /∈ E (i.e. we assume that (Xn)

is a nearest-neighbor random walk). Moreover, we assume that (Xn) is transient.
Let us denote by Px the distribution of the random walk started at x ∈ V , and by g

the associated Green function, i.e.

g(x, y) =
∑
n∈N

Px[Xn = y].

We also denote

f(x, y) = Px[∃n ∈ N, Xn = y] =
g(x, y)

g(y, y)
.

For all y ∈ V , g(·, y) is harmonic at any x ∈ V \{y}, i.e. for all x 6= y, we have g(x, y) =∑
z∼x Px,zg(z, y). This is still true for f(·, y). The Martin Kernel, defined below using f ,

as well as the Martin boundary, will allow us to represent all positive harmonic functions
for the random walk.

Definition 3.6. Let us fix a reference point φ ∈ V .

(i) The Martin kernel is the function K : V 2 → R+ defined by

K(x, y) =
f(x, y)

f(φ, y)
=
g(x, y)

g(φ, y)
.

(ii) The Martin compactification is the smallest compactification V̂ of V , with respect
to the discrete topology, so that K(·, ·) extends continuously to V × V̂ . It is unique
up to a homeomorphism. The Martin boundary is defined asM = V̂ \V .

For the proof that this compactification exists, see Chapter IV in [24].
In the following, we still denote by K(·, ·) the extension of the Martin kernel to V × V̂ .

For all α ∈ M, the function K(·, α) : V → R+ is harmonic with respect to the random
walk. Conversely, the following representation theorem states that all positive harmonic
functions can be expressed using the Martin kernel.
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Theorem 3.7. Let us denote by H+ the set of positive harmonic functions on V . Then
for all h ∈ H+, there is a Borel measure µh onM such that for all x ∈ V ,

h(x) =

∫
M
K(x, α)µh(dα).

Remark 3.8. If, for all x ∈ V and for all sequences (yn)n≥1 going to infinity, we have
K(x, yn)→ 1, then the Martin boundary is trivial, i.e. reduced to a single point. Accord-
ing to Theorem 3.7, in this case, all positive harmonic functions are constant.

Since (Xn) is transient, we almost surely have Xn →∞, in the following sense: for
all finite subset U ⊂ V , {n ∈ N, Xn ∈ U} is almost surely finite. Thanks to the Martin
boundary, we can now describe this convergence more precisely.

Theorem 3.9. For all x ∈ V , (Xn) converges Px-a.s. to a M-valued random variable
X∞. The distribution of X∞ under Px, denoted by µx, verifies

µx(B) =

∫
B

K(x, α)µφ(dα)

for all B ⊂M and x ∈ V .

The space (M,B(M), (µx)x∈V ) is called Poisson boundary. Moreover, we call har-
monic measures, or exiting measures, the family (µx)x∈V .

In the case where T = (T,E) is an infinite tree, the Martin compactification will
coincide with another, which does not depend on the random walk defined by P , but
simply on the geometry of the tree T .

Definition 3.10. Let us fix an arbitrary root φ for T .

(i) We call infinite ray in T an infinite self-avoiding path starting at φ, i.e. a sequence
ω = (ωk)k∈N of distinct vertices in T , such that ωk ∼ ωk+1 for k ∈ N and ω0 = φ.
The set of infinite rays, also called the set of ends of T , is denoted by Ω.

(ii) If ω, ξ ∈ Ω, we denote Nω,ξ = max{k ∈ N, ωk = ξk}. We can also define, if x ∈ T ,
Nω,x = max{k ≤ |x|, ωk = [φ, x]k}. We then set Okω = {ξ ∈ Ω, Nω,ξ ≥ k} ∪ {x ∈
T,Nω,x ≥ k}.

(iii) We define the end topology on T ∪Ω, which is discrete on T , and such that (Okω)k∈N
is a basis of neighborhoods at ω ∈ Ω.

Recall also that for x, y ∈ T , we define Nx,y in a similar way to Definition 3.10(ii), as
the depth of the closest common ancestor to x and y: Nx,y = max{k ≥ 0, [φ, x]k = [φ, y]k}.

The following proposition introduces the end compactification, which will coincide
with the Martin compactification on the tree, as stated in Theorem 3.12.

Proposition 3.11. The end topology on T ∪ Ω does not depend on the choice of φ, and
is induced by the following metric:

d(x, y) =

{
0 if x = y

e−Nx,y otherwise,

for x, y ∈ T ∪ Ω. Moreover T ∪ Ω is compact, and called the end compactification.

Theorem 3.12.

(i) Let (Xn) be a nearest-neighbor random walk on T , that we assume to be transient.
Then the Martin compactification coincides with the end compactification, and we
can identifyM to Ω, and set T̂ = T ∪ Ω.
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(ii) The Martin kernel on T × T̂ is locally constant, with

K(x, ω) = K(x, x ∧ ω), where x ∧ ω = ωNω,x

for x ∈ T, ω ∈ Ω.

We also have an expression of harmonic measures µx on the tree. For x ∈ T , we
denote by Ωx the set of ends for the subtree Tx, i.e. Ωx = {ω ∈ Ω,∃k ∈ N, ωk = x}.
Moreover, we denote by Ux = Tx\{x}. Then:

Proposition 3.13. For x 6= φ and i ∈ T ,

µi(Ωx) = 1{i∈Ux}(1− f(i, x))) + f(i, x)
1− f(x, ~x)

1− f( ~x, x)f(x, ~x)
.

Remark 3.14. From Carathéodory’s extension theorem, this entirely describes the
expression of µφ. From Theorem 3.9, we can then describe all harmonic measures using
f .

4 Distributions of arbitrary representations

This section contains the proofs of the results from Section 2.2, stating that any
representation of the time-changed VRJP can be expressed in a similar way to the
standard representation.

4.1 A common expression for jump rates: proof of Theorem 2.9

Let G = (V,E) be a locally finite connected graph, endowed with conductances
(Wi,j)i,j∈V such that Wi,j = Wj,i > 0 if {i, j} ∈ E, and Wi,j = 0 otherwise. We still denote
by PV RJP (i0) the law of the VRJP on (G,W ), in the exchangeable time scale, started at
i0 ∈ V .

Let us first show that the distribution of the β̃ field (see Proposition 2.7) appears in all
representations of the VRJP. Recall that for all r ∈ J EV and i ∈ V , we define ri =

∑
j∼i ri,j .

Proposition 4.1. Let i0 ∈ V be fixed, and let R(dr) be the distribution of a random
environment representing PV RJP (i0), in the sense of Definition 2.8.

Then under R(dr), (ri)i∈V has the same distribution as the field β̃ rooted at i0, i.e. its
Laplace transform is∫

e−〈λ,r〉R(dr) = e−
∑
i∼jWi,j(

√
1+λi
√

1+λj−1)
∏
i 6=i0

1√
1 + λi

,

for λ ∈ RV+ with finite support.

Proof. Let i0 ∈ V be fixed, let R(dr) be the distribution of a random environment
representing PV RJP (i0), i.e.

PV RJP (i0)[·] =

∫
Pri0 [·]R(dr),

where Pr is the distribution of the Markov jump process with jump rate from i to j given
by ri,j .

Let us prove that under R(dr), (ri)i∈V has the same distribution as the β̃ field from
the standard representation.

Lemma 4.2. There exists a random field (ui)i∈V ∈ RV such that R-almost surely, ri,j =
Wi,j

2 euj−ui for i ∼ j.
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Remark 4.3. Since the random field (ui)i∈V is defined up to an additive constant, we
can set ui0 = 0 a.s. without loss of generality.

Proof of Lemma 4.2. For r ∈ J EV , let us define ti,j = 2
Wi,j

ri,j for all i ∼ j. Then to

prove this lemma, it is enough to show that for any cycle σ = (σ0, ..., σn), we have R-a.s.
tσ :=

∏n−1
k=0 tσk,σk+1

= 1. Since G is connected, we only need to prove this for cycles σ
such that σ0 = i0.

Recall that we denote by (Zt)t≥0 the canonical process on Cr(R+, V ). Let PMJP be
the distribution of the Markov jump process with jump rates 1

2Wi,j . Then, according
to Theorem 3 from [22], for all T ≥ 0 the law of (Zt)t≤T under PV RJP (i0) is absolutely
continuous with respect to its law under PMJP

i0
, and its Radon-Nikodym derivative is

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)

e−
∑
i∈V

1
2Wili

∏
i 6=i0

1√
1 + li

,

where Wi =
∑
j∼iWi,j , and li =

∫ T
0
1{Zt=i}dt is the local time at i.

Let σ be a cycle such that σ0 = σ|σ| = i0, and let us denote by σn the nth concatenation

of σ. Moreover, for T ≥ 0, we define (Z̃)T as the discrete path taken by the trajectory
(Zt)t≤T . Then we have, for n ≥ 1 and T ≥ 0,

PV RJP (i0)
[
(Z̃)T = σn

]
=

∫
1{(z̃)T=σn}

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)

e−
∑
i∈V

1
2Wili

∏
i 6=i0

1√
1 + li

PMJP
i0 (dz).

However, since the random environment (ri,j)i∼j gives a representation of the VRJP as a
mixture of Markov processes, we also have

PV RJP (i0)
[
(Z̃)T = σn

]
=

∫
Pri0

[
(Z̃)T = σn

]
R(dr)

=

∫ ∫ 1{(z̃)T=σn}

e−
∑
i∈V rili

(∏|σ|−1
k=0 rσk,σk+1

)n
e−
∑
i∈V

1
2Wili

(∏|σ|−1
k=0

1
2Wσk,σk+1

)nPMJP
i0 (dz)

R(dr)

=

∫
1{(z̃)T=σn}

∫
e−
∑
i∈V rili

e−
∑
i∈V

1
2Wili

(tσ)nR(dr)PMJP
i0 (dz)

Let us fix ε > 0, and define the event Aσ,ε = {tσ ≥ 1 + ε}. Then we get

PV RJP (i0)
[
(Z̃)T = σn

]
≥
∫
1{(z̃)T=σn}

∫
1Aσ,εe

−
∑
i∈V rili(1 + ε)nR(dr)PMJP

i0 (dz).

Let M > 0 be such that under R(dr), P[Aσ,ε ∩BM ] ≥ P[Aσ,ε]/2, where BM = {∀i ∈
V, ri ≤M}. Note that T =

∑
i∈V li, so that

PV RJP (i0)
[
(Z̃)T = σn

]
≥
∫
1{(z̃)T=σn}

∫
1Aσ,ε∩BM e

−MT (1 + ε)nR(dr)PMJP
i0 (dz)

≥ e−MT

2
(1 + ε)nP[Aσ,ε]P

MJP
i0

[
(Z̃)T = σn

]
.

On the other hand, we also have

PV RJP (i0)
[
(Z̃)T = σn

]
=

∫
1{(z̃)T=σn}

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)

e−
∑
i∈V

1
2Wili

∏
i6=i0

1√
1 + li

PMJP
i0 (dz)

≤ eM
′TPMJP

i0

[
(Z̃)T = σn

]
,

EJP 25 (2020), paper 108.
Page 19/45

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP510
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representations of the VRJP as a mixture of Markov processes

where M ′ = max{ 1
2Wσk , 0 ≤ k < |σ|}. Since PMJP

i0

[
(Z̃)T = σn

]
> 0 for all T > 0 and

n ∈ N, we get
e−MT

2
(1 + ε)nP[Aσ,ε] ≤ eM

′T .

Taking n→∞ for fixed T > 0 shows that P[Aσ,ε] = 0. As a result, we have almost surely
tσ ≤ 1.

For ε > 0, we now set A′σ,ε = {tσ ≤ 1− ε}. Using the same notations as before, and
the fact that a.s. tσ ≤ 1, we get

PV RJP (i0)
[
(Z̃)T = σn

]
≤
∫
1{(z̃)T=σn}

∫
eM
′T
(
1A′σ,εc + 1A′σ,ε(1− ε)

n
)
R(dr)PMJP

i0 (dz)

≤ eM
′T
(
P[A′σ,ε

c
] + P[A′σ,ε](1− ε)n

)
PMJP
i0

[
(Z̃)T = σn

]
.

On the other hand, on the event {(Z̃)T = σn}, we have li ≤ T for all i ∈ {σk, 0 ≤ k < |σ|}
and li = 0 for all other i ∈ V . As a result, for such trajectories,

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)

e−
∑
i∈V

1
2Wili

∏
i 6=i0

1√
1 + li

≥ e−M
′′T

(1 + T )
|σ|−1

2

,

where M ′′ =
∑
i,j∈{σk}Wi,j , so that,

PV RJP (i0)
[
(Z̃)T = σn

]
≥ e−M

′′T

(1 + T )
|σ|−1

2

PMJP
i0

[
(Z̃)T = σn

]
.

As before, this yields

eM
′T
(
P[A′σ,ε

c
] + P[A′σ,ε](1− ε)n

)
≥ e−M

′′T

(1 + T )
|σ|−1

2

for all T > 0 and n ∈ N. Taking first n → ∞, then T → 0, we get that under R(dr),
P[A′σ,ε

c
] = 1. Therefore, we can conclude that R-almost surely, tσ = 1.

In order to identify the distribution of (ri)i∈V under R(dr), we obtain their Laplace
transform as the density of cyclic trajectories of (Zt)t≥0 under PV RJP (i0) with respect to
PMJP
i0

. Indeed, given a cyclic trajectory (zt)t≥0 in G, started at i0, we denote by σ the
associated cyclic path in G, and (li)i∈V the local times, so that T =

∑
i∈V li, and li > 0

if and only if i ∈ {σk, 0 ≤ k < |σ|}. Then the Radon-Nikodym derivative at (zt)t≥0 of
PV RJP (i0) with respect to PMJP

i0
is almost surely

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)

e−
∑
i∈V

1
2Wili

∏
i 6=i0

1√
1 + li

,

but also ∫
e−
∑
i∈V rili

e−
∑
i∈V

1
2Wili

R(dr)

since tσ = 1 R-almost surely. Therefore, for all finite connected subset U of V , and
almost all (li)i∈V ∈ (R∗+)U × {0}V \U , we have

e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)
∏
i 6=i0

1√
1 + li

=

∫
e−
∑
i∈V riliR(dr) = E[e−

∑
i∈V rili ].

Since these are continuous functions of (li)i∈V , this equality is true for all (li)i∈V ∈ RV+
with finite support. As a result, under R(dr), (ri)i∈V has the same Laplace transform as
the field β̃, associated with the standard representation of the VRJP started at i0 (see
Proposition 2.7), and therefore the same distribution.
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Theorem 2.9 results easily from Proposition 4.1, since adding an independent Gamma
variable to the previous β̃ field yields a potential with distribution νWV . This provides the
expression of the jump rates using the associated Green function Ĝ and a Hβ-harmonic
function.

Proof of Theorem 2.9. Let i0 ∈ V be fixed, and R(dr) be the distribution of a random
environment representing PV RJP (i0). Thanks to Proposition 4.1, we know the distribu-
tion of (ri)i∈V under R(dr). Note that the distribution of a Gamma(1/2, 1) variable is
1{γ>0}√

πγ e−γdγ, and that its Laplace transform is given by∫
e−tγ

1{γ>0}√
πγ

e−γdγ =
1√

1 + t

for t ≥ 0. From now on, we denote R(dr, dγ) = R(dr)⊗ 1{γ>0}√
πγ e−γdγ, which is a distribu-

tion on J EV ×R.
For r ∈ J EV and γ > 0, we now define (βi)i∈V by βi = ri + 1{i=i0}γ for i ∈ V . Then

under R(dr, dγ), the Laplace transform of β is, for λ ∈ RV+ with finite support,∫
e−〈λ,β〉R(dr)

1{γ>0}√
πγ

e−γdγ =

∫
e−
∑
i∈V λiriR(dr)

∫
e−λi0γ

1{γ>0}√
πγ

e−γdγ

=
1√

1 + λi0
e−
∑
i∼jWi,j(

√
1+li
√

1+lj−1)
∏
i6=i0

1√
1 + li

,

i.e. β is distributed according to νWV (see Proposition 2.4). We can then define R(dr, dγ)-
a.s. Ĝ : V × V → R+ and ψ : V → R+ thanks to Theorem 2.6. Moreover, by analogy with
the standard representation, let G(i0, ·) : V → R+ be defined by:

G(i0, i) =
1

2γ
eui ,

where (ui)i∈V was introduced in Lemma 4.2. This way, under R(dr, dγ), for all i 6= j ∈ V
the jump rate ri,j can be written as

ri,j =
Wi,j

2

G(i0, j)

G(i0, i)
.

Let us set h(i) = G(i0, i)− Ĝ(i0, i) for all i ∈ V . Then Hβh = 0. Indeed, for i 6= i0, we
have

2βiG(i0, i)−
∑
j∼i

Wi,jG(i0, j) = 2riG(i0, i)−
∑
j∼i

2ri,jG(i0, i) = 0,

and for i = i0,

2βi0G(i0, i0)−
∑
j∼i0

Wi0,jG(i0, j) =
ri0 + γ

γ
−
∑
j∼i0

ri0,j
γ

= 1,

therefore for i ∈ V , HβG(i0, i) = 1{i=i0} = HβĜ(i0, i).

Let us finally show that h(i) ≥ 0 for all i ∈ V . We define τ+
i0

= inf{k ≥ 1, Z̃k = i0},
where (Z̃k)k∈N is the discrete version of (Zt)t≥0. Then for all i 6= i0,

Pri [τ
+
i0
<∞] =

∑
σ∈PV \{i0}i,i0

Pri [(Z̃0, ..., Z̃|σ|) = (σ0, ..., σ|σ|)]

=
∑

σ∈PV \{i0}i,i0

|σ|−1∏
k=0

rσk,σk+1

rσk
=

∑
σ∈PV \{i0}i,i0

|σ|−1∏
k=0

Wσk,σk+1

2βσk

G(i0, σk+1)

G(i0, σk)

=
G(i0, i0)

G(i0, i)

∑
σ∈PV \{i0}i,i0

Wσ

(2β)−σ
=
G(i0, i0)

G(i0, i)

Ĝ(i0, i)

Ĝ(i0, i0)
,

EJP 25 (2020), paper 108.
Page 21/45

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP510
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representations of the VRJP as a mixture of Markov processes

from Proposition 3.4. Therefore, we have G(i0, i) ≤ G(i0,i0)

Ĝ(i0,i0)
Ĝ(i0, i). Moreover, thanks to

the Markov property we have

Pri0 [τ+
i0
<∞] =

∑
j∼i0

Pri0 [Z̃1 = j]Prj [τ
+
i0
<∞] =

∑
j∼i0

ri0,j
ri0

G(i0, i0)

G(i0, j)

Ĝ(i0, j)

Ĝ(i0, i0)

=
∑
j∼i0

Wi0,j

2(βi0 − γ)

Ĝ(i0, j)

Ĝ(i0, i0)
=

1

2βi0 − 1
G(i0,i0)

∑
j∼i0

Wi0,j
Ĝ(i0, j)

Ĝ(i0, i0)

=
2βi0 − 1

Ĝ(i0,i0)

2βi0 − 1
G(i0,i0)

,

therefore we have G(i0, i0) ≥ Ĝ(i0, i0), as well as G(i0, i) ≥ Ĝ(i0, i) for all i ∈ V .
As a result, G(i0, ·) can be written, for all i ∈ V , as

G(i0, i) = Ĝ(i0, i) + h(i),

where h : V → R+ is a non-negative Hβ-harmonic function.

4.2 The recurrent and transient cases: proofs of Propositions 2.10 and 2.11

We now consider two particular cases for the weighted graph (G,W ). The first one is
when the VRJP on (G,W ) is a.s. transient, in which case the representation is unique, as
proved below.

Proof of Proposition 2.10. We assume that (G,W ) is such that the VRJP is almost surely
recurrent.

Let (ri,j)i∼j be fixed jump rates on V , such that the associated Markov chain is
recurrent. We denote by Pri0 its distribution when started at i0. Note that under Pri0 , the
time spent at a vertex i before jumping is an exponential variable with parameter ri, and
the probability to then jump to a specific neighbor j is ri,j

ri
.

Let us then define the following functions of the trajectory (Zt): for i ∈ V and n ≥ 1,

we define δt(n)
i as the time spent by (Zt) at the vertex i during its nth visit to i, and v(n)

i

the neighbor of i towards which the process jumps after its nth visit to i. Under Pri0 ,
since the process is recurrent, these random variables are well-defined for all i ∈ V and
n ≥ 1. Moreover, the sequences (δt

(n)
i )n≥1 and (v

(n)
i )n≥1 are independent, so thanks to

the law of large numbers, we have almost surely

δti := lim
n→∞

∑n
k=1 δt

(k)
i

n
=

1

ri
and pi,j := lim

n→∞

∑n
k=1 1{v(k)

i =j}

n
=
ri,j
ri
,

for all i, j ∈ V .
Let now R(dr) be the distribution of a random environment representing the VRJP

on (G,W ), i.e. PV RJP (i0)[·] =
∫
Pri0 [·]R(dr). Since the VRJP is a.s. recurrent, then

under R(dr), Pri0 is a.s. the distribution of a recurrent Markov chain. Moreover, under

PV RJP (i0), δti and pi,j are a.s. well-defined for all i, j ∈ V , and
(
pi,j
δti

)
i∼j

is distributed

according to R. Since these functions of the trajectory do not depend on the chosen
representation, the distribution R is uniquely determined.

The second interesting case is when the VRJP is a.s. transient. In this case we
introduce a random conductance model associated with ψ, which defines a transient
random walk. We can then relate Hβ-harmonic functions to harmonic functions for this
walk. This will be useful to study the Hβ-harmonic function appearing in the expression
of any representation, according to Theorem 2.9.
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Proof of Proposition 2.11. Let (G,W ) be such that the VRJP is almost surely transient.
Since, according to Theorem 2.6 (iii), we have PV RJP (i0)[·] =

∫
P
β,γ,i0
i0

[·]νWV (dβ, dγ), then

under νWV (dβ, dγ), the Markov process with distribution Pβ,γ,i0i0
is a.s. transient. From

Theorem 2.6 (iv), this means that under νWV (dβ), we have a.s. ψ(i) > 0 for all i ∈ V ,
which proves (i).

Let us now consider the random conductance model with conductances cψi,j =

Wi,jψ(i)ψ(j). We denote by πψi =
∑
j∼i c

ψ
i,j the corresponding invariant measure, where

πψi = ψ(i)
∑
j∼iWi,jψ(j) = 2βiψ(i)2 since ψ is Hβ-harmonic. Let Pψ be the distribution

of the associated random walk, whose transition probability from i to j is

pψi,j =
cψi,j

πψi
=
Wi,jψ(j)

2βiψ(i)

for i, j ∈ V . Moreover, let us denote by gψ the Green kernel associated with Pψ, defined
for i, j ∈ V as gψ(i, j) =

∑
k∈NP

ψ
i [Xk = j], where (Xk)k∈N denotes the canonical process

on V N. Then we have

gψ(i, j) =
∑
k∈N

∑
σ∈PVi,j ,|σ|=k

P
ψ
i [(X0, ..., Xk) = σ] =

∑
σ∈PVi,j

|σ|−1∏
k=0

Wσk,σk+1
ψ(σk+1)

2βσkψ(σk)

=
ψ(j)

ψ(i)

∑
σ∈PVi,j

Wσ

(2β)−σ
=
ψ(j)

ψ(i)
2βjĜ(i, j),

where under νWV (dβ), Ĝ(i, j) is a.s. finite for all i, j ∈ V , from Theorem 2.6 (i). As a result,
we have almost surely gψ(i, j) <∞, therefore the random walk Pψ is transient almost
surely, proving (ii).

Let ∆ψ = (pψi,j − 1{i=j})i,j∈V be the discrete Laplacian associated with Pψ. We will

say that a function ϕ : V → R is ∆ψ-harmonic if (∆ψϕ)(i) =
(∑

j∼i p
ψ
i,jϕ(j)

)
− ϕ(i) = 0

for all i ∈ V . Therefore, a function ϕ is ∆ψ-harmonic if and only if for any i ∈ V ,

2βiψ(i)ϕ(i)−
∑
j∼i

Wi,jψ(j)ϕ(j) = 0,

i.e. if and only if ψϕ is Hβ-harmonic, which concludes the proof of (iii).

5 Representations of the VRJP on Zd: proof of Theorem 2.13

Let us now consider the case where G = (V,E) is the Zd lattice, endowed with
constant edge weights, i.e. Wi,j = W > 0 for all i ∼ j. For x ∈ Rd, we will denote by |x|
its Euclidean norm. We fix i0 = 0.

The aim of this section is to prove Theorem 2.13, concerning the uniqueness of the
representation on (Zd,W ). Let us first distinguish two regimes for the weighted graph:
when the VRJP is a.s. recurrent and when it is a.s. transient.

5.1 Recurrence and transience of the VRJP on Zd

For d = 2, the VRJP on (G,W ) is a.s. recurrent for all W > 0, according to Theorem 2
in [19]. Therefore, the representation of PV RJP (0) as a mixture of Markov jump processes
is unique (see Proposition 2.10). If d ≥ 3, Corollary 1 in [21] tells us that for small enough
W , the VRJP is a.s. recurrent, in which case the representation of PV RJP (0) is once again
unique. Let us now show that for large enough W , even though the VRJP is almost surely
transient, the representation is still unique.
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From Corollary 3 in [21], we know that for W large enough, the VRJP is a.s. transient.
From now on, we consider such W . Then thanks to Proposition 2.11, under νWV (dβ) we
have a.s. ψ(i) > 0 for all i ∈ V . Moreover, we can define the Markov operator ∆ψ and, for
h : V → R+, h is Hβ-harmonic if and only if h/ψ is ∆ψ-harmonic. In light of Remark 2.12,
in order to show that the representation of the VRJP is unique, we need to show that the
only positive ∆ψ-harmonic functions are constants, i.e. that the Martin boundaryMψ

associated with ∆ψ is almost surely trivial. To do this, we will need a local limit theorem
in random environment, found in [1].

5.2 Local limit theorem for random walk in random conductances

Let us consider a random conductances model on G = (Zd, Ed), with d ≥ 2. Let P
be a distribution on the set of conductances (R∗+)Ed , such that under P(dω), we have
a.s. 0 < ωi,j < ∞ for all i ∼ j. For ω ∈ (R∗+)Ed , let Pω be the distribution of the
continuous-time constant speed random walk associated with ω. This is the Markov jump
process with jump rate from i to j given by ωi,j

πωi
, where πωi =

∑
j∼i ωi,j . This way under

Pω, the holding time of (Zt)t≥0 at each point is an exponential variable of parameter 1,
which justifies the term “constant speed”. Finally, we denote by qω the heat kernel, i.e.
the transition density of the walk with respect to πω: for x, y ∈ Zd and t ≥ 0,

qω(t, x, y) =
Pωx [Zt = y]

πωy
.

The following theorem from [1] is a local limit theorem for qω, under ergodicity and
integrability assumptions.

Theorem 5.1 (Theorem 1.11 in [1]). Let us assume that P(dω) is stationary and ergodic
with respect to translations of Zd, and that there exist p, q ∈ (1,∞] satisfying 1/p+ 1/q <

2/d such that E[ωpi,j ] <∞ and E[ω−qi,j ] <∞ for all i ∼ j.
Then for 0 < T1 < T2 and K > 0, we have P-a.s.

lim
n→∞

sup
|x|≤K

sup
t∈[T1,T2]

∣∣ndqω(n2t, 0, bnxc)− akt(x)
∣∣ = 0,

where bnxc = (bnx1c, ..., bnxdc), a = 1/E[πω0 ] and kt is the Gaussian heat kernel with
some deterministic covariance matrix Σ2, i.e.

kt(x) =
1√

(2πt)d det(Σ2)
e−

xt(Σ2)−1x
2t .

Remark 5.2. If the distribution P(dω) is also invariant with respect to all permutations
of coordinates in Zd, then the law of the limiting Brownian motion must be as well.
Therefore its deterministic covariance matrix has the form Σ2 = σ2Id, where σ2 > 0.

This also provides a local limit theorem for the Green kernel gω, defined for ω ∈
(R∗+)Ed and x, y ∈ Zd by

gω(x, y) =

∫ ∞
0

qω(t, x, y)dt.

This result was also mentioned in [1], we give here the details for the proof of a slightly
stronger result1, that insures the uniform convergence for x in an annulus.

Theorem 5.3 (Variant of Theorem 1.14 in [1]). For d ≥ 3, under the assumptions of
Theorem 5.1, we have P-a.s.

lim
n→∞

sup
1≤|x|≤2

|nd−2gω(0, bnxc)− agBM (0, x)| = 0,

1I would like to thank Sebastian Andres for his help regarding the details of this proof.
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where gBM is the Green kernel associated with the Brownian motion with covariance
matrix Σ2, i.e.

gBM (0, x) =

∫ ∞
0

kt(x)dt =
Γ(d/2− 1)

2πd/2 det(Σ2)1/2
(xt(Σ2)−1x)1−d/2.

Proof. This result is obtained by integrating in Theorem 5.1. Moreover, we will need the
following bounds on qω, which are true almost surely.

Firstly, Theorem 1.6 in [2] gives a short-range bound, which also applies to kt: P-a.s.
there are constants C, c1, c2 > 0 such that for t ≥ Cn|x|,

qω(t, 0, bnxc) ≤ c1t−d/2e−
c2(n|x|)2

t ,

and for all t ≥ 0,

kt(x) ≤ c1t−d/2e−
c2|x|

2

t .

Now, for a long-range bound: according to the proof of Theorem 10 from [7], for any
λ > 0, and any t ≥ 0, x ∈ Zd and n ∈ N, we have

qω(t, 0, bnxc) ≤ 1√
πω0 π

ω
bnxc

exp

(
dG(0, bnxc)

(
−λ+ (cosh(λ)− 1)

t

dG(0, bnxc)

))
,

where dG denotes the graph distance on Zd. Therefore, for |x| ≥ 1 and t ≤ 2Cn, and for
n large enough so that dG(0, bnxc) ≥ n/2, we have

t

dG(0, bnxc)
≤ 2Cn

n/2
= 4C.

As a result, there exists λ0 > 0 small enough so that for such x, n and t,

−λ0 + (cosh(λ0)− 1)
t

dG(0, bnxc)
≤ −λ0 + 4C(cosh(λ0)− 1) < 0.

Hence there are constants c3 > 0 and N0 ∈ N such that for |x| ≥ 1, n ≥ N0 and t ≤ 2Cn,
we have

qω(t, 0, bnxc) ≤ 1√
πω0 π

ω
bnxc

e−c3n|x|.

Note that the integrability assumption implies that E[ρω0 ] < ∞, where ρωi =
∑
l∼i

1
ωi,l

.

Therefore, for |x| ≤ 2,

1

πωbnxc
≤ ρωbnxc ≤

∑
|y|≤2n

ρωy , as well as
1

πω0
≤
∑
|y|≤2n

ρωy ,

and thanks to the ergodic theorem, there exist P-a.s. constants c4 > 0 and N1 ≥ N0,
such that for n ≥ N1, ∑

|y|≤2n

ρωy ≤ c4(2n)dE[ρω0 ].

This finally yields the following bound: for 1 ≤ |x| ≤ 2, n ≥ N1 and t ≥ 2Cn, we have
P-a.s.

qω(t, 0, bnxc) ≤ c5nde−c3n|x|.
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Using these bounds, we can now show that for n ≥ N1 and 1 ≤ |x| ≤ 2, we have P-a.s.

|nd−2gω(0, bnxc)− agBM (0, x)| =
∣∣∣∣nd ∫ ∞

0

qω(n2t, 0, bnxc)dt− a
∫ ∞

0

kt(x)dt

∣∣∣∣
≤ nd

∫ 2C/n

0

qω(n2t, 0, bnxc)dt+ nd
∫ T1

2C/n

qω(n2t, 0, bnxc)dt+ a

∫ T1

0

kt(x)dt

+

∫ T2

T1

|ndqω(n2t, 0, bnxc)− akt(x)|dt+ nd
∫ ∞
T2

qω(n2t, 0, bnxc)dt+ a

∫ ∞
T2

kt(x)dt

≤ C ′n2d−1e−c3n + (1 + a)

∫ T1

0

c1t
−d/2e−c2/tdt+ (1 + a)

∫ ∞
T2

c1t
−d/2e−c2/tdt

+ (T2 − T1) sup
|x|≤2

sup
t∈[T1,T2]

|ndqω(n2t, 0, bnxc)− akt(x)|.

Let ε > 0. Since t 7→ c1t
−d/2e−c2/t is integrable on (0,∞), we can fix T1, T2 > 0 indepen-

dently of x such that∫ T1

0

c1t
−d/2e−c2/tdt+

∫ ∞
T2

c1t
−d/2e−c2/tdt <

ε

2(1 + a)
.

Then

sup
1≤|x|≤2

|nd−2gω(0, bnxc)− agBM (0, x)|

≤ (T2 − T1) sup
|x|≤2

sup
t∈[T1,T2]

|ndqω(n2t, 0, bnxc)− akt(x)|+ C ′n2d−1e−c3n +
ε

2
,

so that from Theorem 5.1, there exists N ≥ N1 independent of x such that for n ≥ N ,

sup
1≤|x|≤2

|nd−2gω(0, bnxc)− agBM (0, x)| ≤ ε,

which is true P-almost surely.

Remark 5.4. Let us fix conductances ω ∈ (R∗+)Ed . We denote by (Z̃n)n∈N the discrete
version of (Zt)t≥0. Then, for x, y ∈ Zd,

gω(x, y) =

∫ ∞
0

Pωx [Zt = y]

πωy
dt =

1

πωy
Eωx

[∫ ∞
0

1{Zt=y}dt

]
=

1

πωy
Eωx

[ ∞∑
n=0

1{Z̃n=y}

]
=

1

πωy

∞∑
n=0

Pωx [Z̃n = y],

where
∑∞
n=0 P

ω
x [Z̃n = ·] is the Green kernel associated with (Z̃n)n∈N under Pωx . Indeed,

since under Pωx the holding time of Z at each point is an exponential variable of parameter
1, the expected time spent by (Zt)t≥0 at y is exactly the expected number of visits of y by
(Z̃n)n∈N.

5.3 Martin boundary associated with ∆ψ

We return to the VRJP on Zd, d ≥ 3, with constant initial conductances W large
enough so that the VRJP is almost surely transient. From Proposition 2.11, under
νWV (dβ), we then have a.s. ψ(i) > 0 for all i ∈ V . Moreover, the random conductance
model associated with conductances cψi,j = Wi,jψ(i)ψ(j) defines almost surely a transient
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random walk. We still denote by ∆ψ the discrete Laplacian, and define πψi =
∑
j∼i c

ψ
i,j =

2βiψ(i)2, as well as gψ the corresponding Green kernel:

gψ(x, y) =

∞∑
k=0

Pψx [Xk = y] =
ψ(j)

ψ(i)
2βjĜ(i, j).

We want to identify the Martin boundary Mψ associated with ∆ψ, by studying the
behavior at infinity of the Martin kernel Kψ, defined by

Kψ(x, y) =
gψ(x, y)

gψ(0, y)

for all x, y ∈ Zd. In order to do this, we will use Theorem 5.3.

Proposition 5.5. There exists W > 0 such that for W > W , under νWV (dβ), the Martin
boundaryMψ is almost surely trivial.

Proof. Note that under νWV (dβ), the distribution of the random conductances cψi,j is

stationary and ergodic with respect to all isometries of Zd, thanks to Proposition 3 of
[23]. Moreover, for W large enough, the integrability assumption of Theorem 5.3 will be
verified.

Lemma 5.6. Consider the graph G = (V = Zd, E = Ed), with d ≥ 3, with constant initial
conductances W . Then for all p ≥ 1, there exists Wp > 0 such that for W > Wp, the VRJP
on (G,W ) is transient a.s., and for all i ∼ j, under νWV (dβ) we have

E[(ψ(i)ψ(j))p] <∞ and E[(ψ(i)ψ(j))−p] <∞.

Proof. The proof is the same as for Lemma 7(i) in [23], which states the above result
in the case p = 1. It uses a delocalization theorem for the supersymmetric hyperbolic
sigma model, from [12]. Let us give an outline of the proof.

For n ∈ N, define Vn = J−n, nKd, and let G(n) be the restriction of V to Vn with wired
boundary conditions, i.e. G(n) = (Vn∪{δn}, Ẽ(n)) (see section 2.1 for more details). Recall

that for i ∈ Vn, ψ(i) was defined in Theorem 2.6 as the limit of ψ(n)(i) = G(n)(δn,i)
G(n)(δn,δn)

, where

G(n) is the Green function associated with a β(n) potential on the graph (G(n), W̃ (n)).

Then ψ(n)(i) = eu
(n)
δn

(i), where u(n)
δn

has the same distribution as in the supersymmetric

hyperbolic sigma model on (G(n), W̃ (n)), rooted at δn.
This model was studied in [11] and [12] by Disertori, Spencer and Zirnbauer. In

particular, Theorem 1 of [12] is a delocalization result for the model, and states that
the fluctuations of u(n)

0 (rooted at 0) are uniformly bounded in n: for any m > 0, for all
W ≥ m8, for all n ∈ N and x, y ∈ Vn,

E
[
coshm

(
u

(n)
0 (x)− u(n)

0 (y)
)]
≤ 2.

In the proof of Lemma 7 (i) in [23], Sabot and Zeng showed that this is still true when
rooting the model at δn, and that this implies the existence of W1 > 0 such that for
W ≥W1, we have

E[ψ(i)ψ(j)] <∞ and E[(ψ(i)ψ(j))−1] <∞.

Since the delocalization result is true for arbitrarily large m, the same proof can be
adapted to show Lemma 5.6.

We define W = Wd+1. From now on, we assume that W > W , so that thanks to
Lemma 5.6, under νWV (dβ), for all i ∼ j we have

E[(cψi,j)
d+1] <∞ and E[(cψi,j)

−(d+1)] <∞.
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Therefore, according to Theorem 5.3 and Remarks 5.2 and 5.4, there exists σ2 > 0 such
that νWV -almost surely,

sup
1≤|z|≤2

|nd−2(πψbnzc)
−1gψ(0, bnzc)− agBM (0, z)| −−−−→

n→∞
0,

where a = 1/E[πψ0 ] and gBM is the Green kernel associated with a Brownian motion with
covariance matrix σ2Id, i.e.

gBM (0, z) =
Γ(d/2− 1)

2πd/2σ2
|z|2−d.

Using this result, we have νWV -almost surely: gψ(0, yn) ∼n→∞ aπψyngBM (0, yn), for any
sequence (yn)n≥1 such that |yn| → ∞. Indeed, for such a sequence (yn), let us define
mn = b|yn|c and zn = yn/mn. Then, since 1 ≤ |zn| ≤ 2 for all n ≥ 1, we have∣∣∣∣∣ gψ(0, yn)

aπψyngBM (0, yn)
− 1

∣∣∣∣∣ =

∣∣∣∣∣ (π
ψ
bmnznc)

−1gψ(0,mnzn)

m2−d
n agBM (0, zn)

− 1

∣∣∣∣∣
=

∣∣∣∣∣m
d−2
n (πψbmnznc)

−1gψ(0, bmnznc)− agBM (0, zn)

agBM (0, zn)

∣∣∣∣∣
≤

sup1≤|z|≤2 |md−2
n (πψbmnzc)

−1gψ(0, bmnzc)− agBM (0, z)|
a inf1≤|z|≤2 gBM (0, z)

−−−−→
n→∞

0

νWV -almost surely.
Moreover, for x ∈ Zd fixed, let ψx be the translated function defined by ψx(y) =

ψ(y − x). Then ψx and ψ have the same distribution under νWV (dβ), therefore we have
νWV -a.s., for all (yn)n≥1 such that |yn| → ∞,

gψ(x, yn) = gψ
x

(0, yn − x) ∼n→∞ aπψyngBM (0, yn − x),

since |yn − x| → ∞ and πψ
x

yn−x = πψyn . Let us denote by Ax the νWV -almost sure event
where this is true. Since Zd is denumerable,

⋂
x∈Zd Ax is still νWV -almost sure. Therefore,

we have νWV -a.s. that for all x ∈ Zd, for all (yn)n≥1 such that |yn| → ∞,

Kψ(x, yn) ∼n→∞
aπψyngBM (0, yn − x)

aπψyngBM (0, yn)
=
|yn − x|2−d

|yn|2−d
−−−−→
n→∞

1.

As a result, from Remark 3.8, the Martin boundary associated with ∆ψ is νWV -a.s. trivial.

Let R(dr) be the distribution of an environment representing PV RJP (0) on Zd en-
dowed with constant initial conductances W > W .

For r ∈ J EV and γ > 0, we define β by βi = ri + 1{i=0}γ. According to Theorem 2.9,

under R(dr, dγ) we then have β ∼ νWV . We define Ĝ and ψ as functions of β, as in
Theorem 2.6, and we can write

ri,j =
Wi,j

2

G(0, j)

G(0, i)
,

where G(0, i) = Ĝ(0, i) + h(i) for all i ∈ Zd, with h a Hβ-harmonic function. Since W is
large enough so that under νWV (dβ), ψ(i) > 0 for all i ∈ Zd almost surely, the operator
∆ψ is well-defined, and h/ψ is ∆ψ-harmonic. However, according to Proposition 5.5 the
Martin boundary associated with ∆ψ is νWV -a.s. trivial, therefore positive ∆ψ-harmonic
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functions are almost surely constant. As a result, there is a nonnegative random variable
g such that for all i ∈ Zd, we have R-a.s.

G(0, i) = Ĝ(0, i) + gψ(i).

In particular, g = (G(0, 0) − Ĝ(0, 0))/ψ(0), so g can be written as a function of
(β, 1

2G(0,0) ), and therefore has a function of ((ri)i∈Zd , γ). Since according to Proposi-

tion 4.1, under R(dr, dγ) the distribution of ((ri)i∈Zd , γ) does not depend on the chosen

representation R, this shows that the distribution of the jump rates ri,j =
Wi,j

2
G(0,j)
G(0,i) is

uniquely determined, i.e. that the representation is unique.

Remark 5.7. Note that we can identify the distribution of g using the standard rep-
resentation. This shows that under R(dr), dγ, we have g = ψ(0)/2γ′, where γ′ is a
Gamma(1/2, 1) random variable independent from (βi)i∈Zd .

6 Construction of new representations on trees

Let now T = (T,E) be an infinite tree, that is locally finite. We fix an arbitrary
root φ, and endow the edges of T with positive weights (We)e∈E . The aim of this
section is to prove points (i) and (ii) of Theorem 2.18, which introduces a family of new
representations for the VRJP on infinite trees.

We will proceed as in the construction of the standard representation, by considering
the VRJP and the associated β potential on finite restrictions of the tree, with the new
boundary conditions introduced in Section 2.3.2. Theorem 2.2 provides an expression
for the representation on these finite graphs G(n)

m , and we will show that the associated
jump rates converge to a representation on the infinite graph.

6.1 Representation of the VRJP on G(n)
m

Fix m ∈ N, and recall the definition of G(n)
m : to each vertex x ∈ D(m), we associate a

boundary point δx, and define the boundary Bm = {δx, x ∈ D(m)}; then for all n ≥ m, we
define

G(n)
m =

(
T̃ (n)
m , Ẽ(n)

m

)
, where T̃ (n)

m = T (n) ∪Bm

and Ẽ(n)
m = E(n) ∪

⋃
x∈D(m)

{
{y, δx}, y ∈ Tx ∩D(n)

}
.

We endow this graph with edge weights W̃ (n)
m , where(

W̃ (n)
m

)
e

=

{
W

(n)
e = We for e ∈ E(n)∑
j∈S(i)Wi,j for e = {i, δx}, where i ∈ Tx ∩D(n).

According to Theorem 2.2, the mixing measure for the VRJP on (G(n)
m , W̃

(n)
m ) can

be expressed using a potential β(n)
m , with distribution ν

W̃ (n)
m

T̃
(n)
m

. As with the standard

representation, we will construct a coupling of such potentials for all n ∈ N, using the
potential defined on the whole infinite tree with distribution νWV .

For β ∈ DWT , we still define Hβ = 2β − W . For n ∈ N, let us take Vn = T (n) in

Definition 2.5, so that we get Ĝ(n) = ĜT
(n)

= ((Hβ)T (n),T (n))−1 and ψ(n) = Ĝ(n)η(n).

Lemma 6.1. Fix n ≥ m. For β ∈ DWT , and β′ ∈ (R∗+)Bm , we define the |Bm|× |Bm| matrix

W̌ (n)
m = (W̃ (n)

m )Bm,T (n) Ĝ(n) (W̃ (n)
m )T (n),Bm ,

as well as the potential β(n)
m ∈ (R∗+)T̃

(n)
m by (β

(n)
m )T (n) = βT (n) , and (β

(n)
m )Bm = β′.

Then under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), the potential β(n)

m is distributed according to ν
W̃ (n)
m

T̃
(n)
m

.
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Proof. According to Proposition 3.2, we have β
(n)
m ∼ ν

W̃ (n)
m

T̃
(n)
m

if and only if: the restric-

tion (β
(n)
m )T (n) is distributed according to ν

Ŵ (n)
m ,η̂(n)

m

T (n) , and conditionally on (β
(n)
m )T (n) , the

restriction (β
(n)
m )Bm is distributed according to ν

W̌ (n)
m

Bm
, with the following notations:

Ŵ (n)
m = (W̃ (n)

m )T (n),T (n) , η̂(n)
m = (W̃ (n)

m )T (n),Bm1Bm

and W̌ (n)
m = (W̃ (n)

m )Bm,Bm + (W̃ (n)
m )Bm,T (n)((H

(n)
β )T (n),T (n))−1(W̃ (n)

m )T (n),Bm ,

where we define H(n)
β = 2β

(n)
m − W̃ (n)

m as the Schrödinger operator associated with β(n)
m .

Let us first simplify the expressions of these parameters. Given the definition of W̃ (n)
m ,

note that we have Ŵ (n)
m = (W̃

(n)
m )T (n),T (n) = W (n). Moreover, for i ∈ T (n),

(η̂(n)
m )i =

∑
b∈B

(W̃ (n)
m )i,b = 1i∈D(n)

∑
j∈S(i)

Wi,j = W{i},D(n+1)1D(n+1) = η
(n)
i .

Finally, W̌ (n)
m has the same expression as in the statement of the lemma: indeed,

(W̃
(n)
m )Bm,Bm = 0 and

(H
(n)
β )T (n),T (n) = 2(β(n)

m )T (n) − (W̃ (n)
m )T (n),T (n) = 2βT (n) −W (n) = (Hβ)T (n),T (n) ,

therefore we have

W̌ (n)
m = (W̃ (n)

m )Bm,Bm + (W̃ (n)
m )Bm,T (n)((H

(n)
β )T (n),T (n))−1(W̃ (n)

m )T (n),Bm

= (W̃ (n)
m )Bm,T (n)Ĝ(n)(W̃ (n)

m )T (n),Bm .

Let us now show that under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), β(n)

m has the right distribution. From

Proposition 2.4, under νWT (dβ), we have βT (n) ∼ νW
(n),η(n)

T (n) , i.e. (β
(n)
m )T (n) ∼ ν

Ŵ (n)
m ,η̂(n)

m

T (n) .

Moreover, conditionally on (β
(n)
m )T (n) , we have β′ ∼ νW̌

(n)
m

Bm
, i.e. (β

(n)
m )Bm ∼ ν

W̌ (n)
m

Bm
, which

concludes the proof.

From now on, we consider β ∈ DWT and β′ ∈ (R∗+)Bm , as well as the potential β(n)
m

defined as in Lemma 6.1 for n ≥ m. Let us denote by G(n)
m = (H

(n)
β )−1 = (2β

(n)
m − W̃ (n)

m )−1

the Green function associated with β
(n)
m on G(n)

m . Then, from Theorem 2.2, we know
that the law of the time-changed VRJP on (G(n)

m , W̃
(n)
m ), started at i0 ∈ T (n), is a mixture

of Markov jump processes under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), where the jump rate from i to j is

1
2 (W̃

(n)
m )i,j

G(n)
m (i0,j)

G
(n)
m (i0,i)

.

In order to obtain a representation on the infinite tree T , we will need to show that
the Green function (G

(n)
m (i, j))i,j∈T converges in distribution when n→∞. To show this

convergence, we give another expression of G(n)
m , involving Ĝ(n) and the function χ(n)

m

introduced in Definition 2.16.

Lemma 6.2. For i, j ∈ T , let n0 ≥ m be such that i, j ∈ T (n0). Then for n ≥ n0,

G(n)
m (i, j) = Ĝ(n)(i, j) +

∑
b,b′∈Bm

χ(n)
m (i, b)G(n)

m (b, b′)χ(n)
m (j, b′).

Proof. We show this result by expressing G
(n)
m as a sum over paths in T . We will use

notations and results presented in Section 3.2.
For n ≥ n0, by applying Proposition 3.4 (i) to β(n)

m in the graph G(n)
m , we get

G(n)
m (i, j) =

∑
σ∈PT̃

(n)
m

i,j

(W̃
(n)
m )σ

(2β
(n)
m )σ

.
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This sum over paths can be decomposed as follows: a path σ ∈ P T̃
(n)
m

i,j can either hit some

vertex in Bm, in which case σ ∈ P T̃
(n)
m

i,Bm,j
, or never hit any vertex in Bm, in which case

σ ∈ PT (n)

i,j . As a result, we have P T̃
(n)
m

i,j = PT (n)

i,j ∪ P T̃
(n)
m

i,Bm,j
, where PT (n)

i,j ∩ P T̃ (n)

i,B,j = ∅, so

G(n)
m (i, j) =

∑
σ∈PT (n)

i,j

(W̃
(n)
m )σ

(2β
(n)
m )σ

+
∑

σ∈PT̃
(n)
m

i,Bm,j

(W̃
(n)
m )σ

(2β
(n)
m )σ

=
∑

σ∈PT (n)

i,j

(W̃
(n)
m )σ

(2β
(n)
m )σ

+
∑

b,b′∈Bm

 ∑
σ∈PT

(n)

i,b

(W̃
(n)
m )σ

(2β
(n)
m )−σ

G(n)
m (b, b′)

 ∑
σ∈PT

(n)

j,b′

(W̃
(n)
m )σ

(2β
(n)
m )−σ

 ,

from Proposition 3.4. Note that for any σ ∈ PT (n)

i,j , (W̃ (n)
m )σ

(2β
(n)
m )σ

= Wσ

(2β)σ
, since (W̃

(n)
m )T (n),T (n) =

WT (n),T (n) and (β
(n)
m )T (n) = βT (n) . As a result,

∑
σ∈PT (n)

i,j

(W̃
(n)
m )σ

(2β
(n)
m )σ

=
∑

σ∈PT (n)

i,j

Wσ

(2β)σ
= Ĝ(n)(i, j).

Moreover, note that for x ∈ D(m) and y ∈ T (n),

∑
σ∈PT

(n)

y,δx

(W̃
(n)
m )σ

(2β
(n)
m )−σ

=
∑
z∼δx

 ∑
σ1∈PT

(n)
y,z

(W̃
(n)
m )σ1

(2β
(n)
m )σ1

 (W̃ (n)
m )z,δx

=
∑

z∈Tx∩D(n)

Ĝ(n)(y, z)
∑

z′∈S(z)

Wz,z′

= Ĝ(n)(y, ·)WT (n),(T (n))c1Tx\T (n)
x

= χ(n)
m (y, δx),

from Definition 2.16. As a result, we have

G(n)
m (i, j) = Ĝ(n)(i, j) +

∑
b,b′∈Bm

χ(n)
m (i, b)G(n)

m (b, b′)χ(n)
m (j, b′).

We will show that the distribution of G(n)
m under νWT (dβ)ν

W̌ (n)
m

Bm
(dβ′) converges when

n→∞. From Theorem 2.6 (i), we already know that Ĝ(n)(i, j) converges a.s. to Ĝ(i, j),

let us now study the respective limits of χ(n)
m and (G

(n)
m )Bm,Bm .

6.2 Convergence of χ(n)
m : proof of Theorem 2.18 (i)

Let us still consider a fixed generation m ∈ N. We will show that χ(n)
m (i, δx) converges

a.s. for all x ∈ D(m) and i ∈ T . Moreover, the limit has a simple expression in terms of
the harmonic measures associated with the random Markov operator ∆ψ. We will first
describe the Martin boundary associated with ∆ψ, and the harmonic measures (µψi )i∈T .

First, let us fix β ∈ DWT , and consider the function ψ defined in Theorem 2.6. We either
have ψ(i) > 0 for all i ∈ T , or ψ ≡ 0. In the first case, we can define the conductances
(cψi,j)i∼j as in Proposition 2.11, as well as the corresponding Markov operator ∆ψ. Recall

that a function h is ∆ψ-harmonic if and only if ψh is Hβ-harmonic. The associated random
walk is transient, since the associated Green function g = gψ is given by

gψ(i, j) =
ψ(j)

ψ(i)
2βjĜ(i, j),

for i, j ∈ T . This allows us to apply results regarding the Martin boundary of a tree.
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From Theorem 3.12, the Martin boundary Mψ associated with ∆ψ is the set Ω of
ends of T . Note that it does not depend on β. We also get the Martin kernel K = Kψ:
for x ∈ T and ω ∈ Ω,

K(x, ω) = K(x, x ∧ ω) =
f(x, x ∧ ω)

f(φ, x ∧ ω)
=
ψ(φ)F̂ (x, x ∧ ω)

ψ(x)F̂ (φ, x ∧ ω)
,

where f(i, j) = g(i,j)
g(j,j) = ψ(j)

ψ(i) F̂ (i, j) for i, j ∈ T . Moreover, we denote by (µψi )i∈T the
associated family of harmonic measures on Ω. From Proposition 3.13, we have, for
i, x ∈ T ,

µψi (Ωx) = 1{i∈Ux}(1− f(i, x)) + f(i, x)
1− f(x, ~x)

1− f(x, ~x)f( ~x, x)
.

Note that we have only defined (µψy )y∈T for β ∈ DWT such that ψ > 0. In the other
case, we adopt the convention that µψy is the null measure on Ω for all y ∈ T .

Let us now show that almost surely, for all x ∈ D(m) and i ∈ T , χ(n)
m (i, δx) converges

to ψ(i)µψi (Ωx).

Proof of Theorem 2.18 (i). From Theorem 2.6, we know that νWT (dβ)-almost surely, for
all i, j ∈ T , Ĝ(n)(i, j) converges to Ĝ(i, j) and ψ(n)(i) converges to ψ(i). Let β ∈ DWT be
such that these convergences hold. Let us show that for such β, and for all x ∈ D(m) and
i ∈ T , χ(n)

m (i, δx) converges to ψ(i)µψi (Ωx), and we will have shown that this convergence
holds νWT -almost surely.

If β is such that ψ ≡ 0, we know that for all i ∈ T , x ∈ D(m), 0 ≤ χ
(n)
m (i, δx) ≤ ψ(n)(i)

from Remark 2.17, so χ(n)
m (i, δx) −−−−→

n→∞
0 = ψ(i)µψi (Ωx). We now assume that β is such

that ψ(i) > 0 for all i ∈ T .
Let us fix i ∈ T and x ∈ D(m). Recall that for n ≥ max(|i|,m),

χ(n)
m (i, δx) =

∑
y∈Tx∩D(n)

Ĝ(n)(i, y)η(n)
y =

∑
y∈Tx∩D(n)

 ∑
σ∈PT (n)

i,y

Wσ

(2β)σ

 η(n)
y .

Let us decompose the paths σ ∈ PT (n)

i,y , in order to write χ(n)
m (i, δx) as a function of F̂ (n)

and ψ(n). We will distinguish two cases.
The first case is when i /∈ Ux = Tx\{x}. Then for all y ∈ Tx ∩D(n), any path from i to

y in T (n) necessarily visits x, i.e. PT (n)

i,y = PT (n)

i,{x},y. Therefore, from Proposition 3.4 (iii),

Ĝ(n)(i, y) = F̂ (n)(i, x)Ĝ(n)(x, y), and

χ(n)
m (i, δx) = F̂ (n)(i, x)

∑
y∈Tx∩D(n)

Ĝ(n)(x, y)η(n)
y .

Let us express Ĝ(n)(x, y) in a more convenient way.

Lemma 6.3. For y ∈ Tx ∩D(n), we have

Ĝ(n)(x, y) =
1

1− F̂ (n)(x, ~x)F̂ (n)( ~x, x)

∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ

Proof. In order to decompose Ĝ(n)(x, y), let us introduce cx(σ), defined as the number of
times the path σ crosses the directed edge (x, ~x), i.e.

cx(σ) = #{k ∈ J0, |σ| − 1K, (σk, σk+1) = (x, ~x)}.
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Then we have

Ĝ(n)(x, y) =
∑
C∈N

∑
σ∈PT

(n)

x,y

cx(σ)=C

Wσ

(2β)σ
.

If σ ∈ PT (n)

x,y is such that cx(σ) = C ≥ 1, then it has to visit ~x at least once. As a result, σ

can be written as the concatenation of a path σ1 ∈ P
T (n)\{ ~x}
x, ~x with a path σ′1 ∈ PT

(n)

~x,y such
that cx(σ′1) = C − 1. Since ~x /∈ Ux, the path σ′1 has to visit x, so it can be written as the

concatenation of a path σ2 ∈ P
T (n)\{x}
~x,x with a path σ3 ∈ PT

(n)

x,y such that cx(σ3) = C − 1.
Therefore, for all C ≥ 1,

∑
σ∈PT

(n)

x,y

cx(σ)=C

Wσ

(2β)σ
=

 ∑
σ1∈P

T (n)\{ ~x}
x, ~x

Wσ1

(2β)σ1


 ∑
σ2∈P

T (n)\{x}
~x,x

Wσ2

(2β)σ2




∑
σ3∈PT

(n)

x,y

cx(σ3)=C−1

Wσ3

(2β)σ3


= F̂ (n)(x, ~x)F̂ (n)( ~x, x)

∑
σ∈PT

(n)

x,y

cx(σ)=C−1

Wσ

(2β)σ
.

Moreover, note that the paths σ ∈ PT (n)

x,y such that cx(σ) = 0 are those that stay in the

subtree T (n)
x , i.e. the set PT

(n)
x

x,y . By induction, we get:

Ĝ(n)(x, y) =
∑
C∈N

(
F̂ (n)(x, ~x)F̂ (n)( ~x, x)

)C ∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ
.

Since Ĝ(n)(x, y) <∞, we have F̂ (n)(x, ~x)F̂ (n)( ~x, x) < 1, which gives the expected result.

From Lemma 6.3, we get

χ(n)
m (i, δx) = F̂ (n)(i, x)

1

1− F̂ (n)(x, ~x)F̂ (n)( ~x, x)

∑
y∈Tx∩D(n)

 ∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ

 η(n)
y .

In order to express this last sum, recall that

ψ(n)(x) =
∑

y∈D(n)

Ĝ(n)(x, y)η(n)
y

=
∑

y∈D(n)

 ∑
σ∈PT (n)

x,{ ~x},y

Wσ

(2β)σ
+

∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ

 η(n)
y ,

where we have separated the paths that go from x to y by visiting ~x, and those that stay

in T (n)
x , since PT (n)

x,y = PT (n)

x,{ ~x},y ∪ P
T (n)
x

x,y . From Proposition 3.4 (iii), we have

∑
σ∈PT (n)

x,{ ~x},y

Wσ

(2β)σ
= F̂ (n)(x, ~x)Ĝ(n)( ~x, y).
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Moreover, if y ∈ D(n)\Tx, then PT
(n)
x

x,y is empty. As a result, we get

∑
y∈Tx∩D(n)

 ∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ

 η(n)
y = ψ(n)(x)− F̂ (n)(x, ~x)ψ(n)( ~x),

which finally gives

χ(n)
m (i, δx) = F̂ (n)(i, x)

ψ(n)(x)− F̂ (n)(x, ~x)ψ(n)( ~x)

1− F̂ (n)(x, ~x)F̂ (n)( ~x, x)
.

In the second case, i.e. if i ∈ Ux, then for y ∈ Tx ∩ D(n), there are paths from
i to y in T (n) that do not visit x. More precisely, we have the following partition:

PT (n)

i,y = PT (n)

i,{x},y ∪ P
U(n)
x

i,y , where U (n)
x = Ux ∩ T (n). As a result, we have

χ(n)
m (i, δx) = F̂ (n)(i, x)

ψ(n)(x)− F̂ (n)(x, ~x)ψ(n)( ~x)

1− F̂ (n)(x, ~x)F̂ (n)( ~x, x)
+

∑
y∈Tx∩D(n)

 ∑
σ∈∪PU

(n)
x

i,y

Wσ

(2β)σ

 η(n)
y .

In the same way we did above, we can show that

∑
y∈Tx∩D(n)

 ∑
σ∈∪PU

(n)
x

i,y

Wσ

(2β)σ

 η(n)
y = ψ(n)(i)− F̂ (n)(i, x)ψ(n)(x).

In conclusion, we have established the following:

χ(n)
m (i, δx) = 1{i∈Ux}(ψ

(n)(i)− F̂ (n)(i, x)ψ(n)(x)) + F̂ (n)(i, x)
ψ(n)(x)− F̂ (n)(x, ~x)ψ(n)( ~x)

1− F̂ (n)(x, ~x)F̂ (n)( ~x, x)

= ψ(n)(i)

(
1{i∈Ux}(1− f

(n)(i, x)) + f (n)(i, x)
1− f (n)(x, ~x)

1− f (n)(x, ~x)f (n)( ~x, x)

)
,

where

f (n)(i, j) =
ψ(n)(j)

ψ(n)(i)
F̂ (n)(i, j) −−−−→

n→∞

ψ(j)

ψ(i)
F̂ (i, j) = f(i, j)

for all i, j ∈ T . As a result, we finally have

χ(n)
m (i, δx) −−−−→

n→∞
ψ(i)

(
1{i∈Ux}(1− f(i, x)) + f(i, x)

1− f(x, ~x)

1− f(x, ~x)f( ~x, x)

)
= ψ(i)µψi (Ωx).

Let us also define, for all i ∈ T , the measure χ(i, ·) = ψ(i)µψi . Note that χ(i, ·)
is absolutely continuous with respect to χ(φ, ·), and its Radon-Nikodym derivative is

ω 7→ F̂ (i,i∧ω)

F̂ (φ,i∧ω)
. Moreover, for all A ∈ B(Ω), i 7→ µψi (A) is ∆ψ-harmonic, so χ(·, A) : i 7→

ψ(i)µψi (A) is Hβ-harmonic.

6.3 Convergence to a representation on T : proof of Theorem 2.18 (ii)

To show that the distribution of jump rates 1
2 (W̃

(n)
m )i,j

G(n)
m (i0,j)

G
(n)
m (i0,i)

converges when n→

∞, it remains to be shown that (G
(n)
m )Bm,Bm converges in distribution. We show this

convergence conditionally on β, thanks to the fact that the parameters of the distribution
are functions of χ(n)

m and Ĝ(n), and therefore converge almost surely.
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Lemma 6.4. For β ∈ DWT , let us define the |Bm| × |Bm| matrix Čm such that for x, x′ ∈
D(m):

(Čm)δx,δx′ =

{
χ(x∧y,Ωx)χ(x∧y,Ωx′ )

Ĝ(x∧y,x∧y)
if x 6= x′

0 if x = x′.

Moreover, for ρm ∈ DČmBm , we define Ǧm = (2ρm − Čm)−1.

Then the distribution of (G
(n)
m )Bm,Bm under νWT (dβ)ν

W̌ (n)
m

Bm
(dβ′) converges weakly, when

n→∞, to the distribution of Ǧm under νWT (dβ)νČmBm (dρm), which we will also denote as
νWT,Bm(dβ, dρm).

Proof. We can write (G
(n)
m )Bm,Bm as the inverse of a Schur complement. Indeed,

(G(n)
m )Bm,Bm = (H

(n)
β )−1

Bm,Bm

=
(

(H
(n)
β )Bm,Bm − (W̃ (n)

m )Bm,T (n)((H
(n)
β )T (n),T (n))−1(W̃ (n)

m )T (n),Bm

)−1

=
(

(2β(n)
m )Bm − W̌ (n)

m

)−1

= (Ȟ
(n)
β )−1,

where Ȟ(n)
β = 2(β

(n)
m )Bm − W̌

(n)
m . We apply the following change of variables: for β′ ∈

DW̌
(n)
m

Bm
and b ∈ Bm, let us define (ρ

(n)
m )b = (β

(n)
m )b − 1

2 (W̌
(n)
m )b,b. Then Ȟ(n)

β = 2ρ
(n)
m − Č(n)

m ,
where if b, b′ ∈ Bm,

(Č(n)
m )b,b′ =

{
(W̌

(n)
m )b,b′ if b 6= b′

0 if b = b′.

Under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), the vector ρ(n)

m is then distributed according to ν
Č(n)
m

Bm
condition-

ally on β. Let us show that the matrix Č(n)
m converges νWT -almost surely, to prove that

ρ
(n)
m converges in distribution.

Let us fix β ∈ DWT , as well as x 6= y ∈ D(m), and i ∼ δx, j ∼ δy. A path from i to j in

T (n) necessarily crosses x ∧ y, since i ∈ Tx and j ∈ Ty. Therefore, PT (n)

i,j = PT (n)

i,{x∧y},j , so

(Č(n)
m )δx,δy =

∑
i∼δx,j∼δy

(W̃ (n)
m )δx,iĜ

(n)(i, j)(W̃ (n)
m )j,δy

=
∑

i∼δx,j∼δy

(W̃ (n)
m )δx,i

 ∑
σ∈PT (n)

i,{x∧y},j

Wσ

(2β)σ

 (W̃ (n)
m )j,δy

=
∑

i∼δx,j∼δy

(W̃ (n)
m )δx,iF̂

(n)(i, x ∧ y)(W̃ (n)
m )δy,jF̂

(n)(j, x ∧ y)Ĝ(n)(x ∧ y, x ∧ y)

=
1

Ĝ(n)(x ∧ y, x ∧ y)

(∑
i∼δx

(W̃ (n)
m )δx,iĜ

(n)(i, x ∧ y)

)∑
j∼δy

(W̃ (n)
m )δy,jĜ

(n)(j, x ∧ y)


=
χ

(n)
m (x ∧ y, δx)χ

(n)
m (x ∧ y, δy)

Ĝ(n)(x ∧ y, x ∧ y)
,

and (Č
(n)
m )δx,δx = 0. Since χ(n)

m converges to χm νWT -almost surely, the matrix Č(n)
m also

converges to Čm.

Under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), and conditionally on β, ρ(n)

m is distributed according to

ν
Č(n)
m

Bm
, which νWT -almost surely converges weakly to νČmBm by Lévy’s theorem. Therefore,
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the distribution of (G
(n)
m )Bm,Bm = (2ρ

(n)
m − Č(n)

m )−1 under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′) converges

weakly to the distribution of Ǧm := (2ρm − Čm)−1 under νWT (dβ)νČmBm (dρm).

We now have all the ingredients needed to show that the representations on restric-
tions G(n)

m converge, when n→∞, to a new representation on the infinite graph.

Proof of Theorem 2.18 (ii). Thanks to Lemma 6.2, for 0 ≤ m ≤ n and i, j ∈ T (n) we have

G(n)
m (i, j) = Ĝ(n)(i, j) +

∑
b,b′∈Bm

χ(n)
m (i, b)G(n)

m (b, b′)χ(n)
m (j, b′),

where under νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′), G(n)

m = (2β
(n)
m − W̃ (n)

m )−1 provides a representation on

the VRJP on G(n)
m , from Theorem 2.2 and Lemma 6.1. We have shown that when n→∞,

χ
(n)
m converges almost surely, and (Ǧ

(n)
m )Bm,Bm converges in distribution. As a result for

all i, j ∈ T , the distribution of G(n)
m (i, j) converges weakly to the distribution of Gm(i, j)

under νWT,Bm(dβ, dρm), where

Gm(i, j) = Ĝ(i, j) +
∑

x,x′∈D(m)

χ(i,Ωx)χ(j,Ωy)Ǧm(δx, δy).

The second term in Gm(i, j) can be rewritten as an integral on Ω2. Indeed, let us
define ǧm : Ω2 → R in the following way: for ω, τ ∈ Ω, if x, y ∈ D(m) are such that ω ∈ Ωx
and τ ∈ Ωy, we set ǧm(ω, τ) = Ǧm(δx, δy). With these new notations, we can now write,
for i, j ∈ T ,

Gm(i, j) = Ĝ(i, j) + χm(i, ·)Ǧmt (χm(j, ·))

= Ĝ(i, j) +

∫
Ω2

χ(i, dω)χ(j, dτ)ǧm(ω, τ).

For β ∈ DWT , ρm ∈ DČmBm , and all i0, i, j ∈ T , we denote rβ,ρm,i0i,j =
Wi,j

2
Gm(i0,j)
Gm(i0,i)

. To

prove Theorem 2.18 (ii), we have to see that the process with distribution PV RJP (i0) is
a mixture of Markov processes Pβ,ρm,i0i0

under νWT,Bm(dβ, dρm). The proof is the same
than that of Theorem 2.6 (iii) (see [23]). It consists in studying trajectories of the time-
changed VRJP, stopped when they leave a finite subgraph included in T (n). They can
be considered as trajectories of the time-changed VRJP on G(n)

m , and represented using
G

(n)
m thanks to Theorem 2.2. Taking the limit in distribution when n→∞ then gives the

result. Note that the proof needs an argument of uniform integrability on the family(
G(n)
m (i0,j)

G
(n)
m (i0,i)

)
n≥m

for all i, j ∈ T , which is given by Proposition 7 and Corollary 2 from

[23].

7 The family of representations of the VRJP on infinite trees

In this last section, we show some properties of the family of representations on
infinite trees, constructed in the previous section. The first one is Theorem 2.18 (iii),
and states that this family converges with the one described in Theorem 2.14. Then we
show that all these representations are distinct for a regular tree on which the VRJP is
transient.

7.1 Convergence to another representation: proof of Theorem 2.18 (iii)

Let us show that the representations of the VRJP built with Gm converge in distribu-
tion when m→∞ to the representation described in Theorem 2.14, with independent
jump rates. To show this, we use a tightness argument, based on the following lemma
regarding the distribution νWV .
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Lemma 7.1. Let G = (V,E) be a finite graph, endowed with conductances W . We
denote G = (Hβ)−1 for β ∈ DWV . Then for all η ∈ RV+, under νWV (dβ), 〈η,Gη〉 has the same

distribution as 〈η,1〉
2

2γ , where γ is a Gamma random variable with parameter (1/2, 1).

Proof. Let η ∈ RV+ be fixed. We will compute the Laplace transform of 〈η,Gη〉: for
λ ∈ R+,

E
[
e−λ〈η,Gη〉

]
=

∫
e−λ〈η,(Hβ)−1η〉νWV (dβ)

= e−
√

2λ〈η,1〉
∫
e−

1
2 〈
√

2λη,(Hβ)−1
√

2λη〉e〈
√

2λη,1〉νWV (dβ)

= e−
√

2λ〈η,1〉
∫
νW,
√

2λη
V (dβ) = e−

√
2λ〈η,1〉,

since νW,
√

2λη
V is a probability measure. Let us now compute, for γ ∼ Gamma(1/2, 1), the

Laplace transform of 1
2γ : for λ ∈ R+,

E
[
e−

λ
2γ

]
=

∫
1u>0

e−u√
πu
e−

λ
2u du =

∫
v>0

1√
2πv3

e−
1
2 ( 1
v+2λv)dv

= e−
√

2λ

∫
v>0

1√
2πv3

e
− 2λ

2v (v− 1√
2λ

)2

dv,

by taking v = 1/2u. Since 1v>0
1√

2πv3
e
− 2λ

2v (v− 1√
2λ

)2

dv is the density of an Inverse Gaussian

distribution with parameter (1, 1/
√

2λ), we finally get E[e−
λ
2γ ] = e−

√
2λ. Therefore, for

all λ ≥ 0,

E
[
e−λ〈η,Gη〉

]
= e−

√
2λ〈η,1〉2 = E

[
e−

λ〈η,1〉2
2γ

]
,

which proves the result.

Proof of Theorem 2.18 (iii). We will use Lemma 7.1 to prove that the sequence of random
jump rates (r(m),φ)m∈N is tight, then identify the only possible limit distribution for
each converging subsequence, which will provide both the weak convergence and the
expression of the limit distribution.

For m ≥ 0 and β ∈ DWT , let us define, for i ∈ T and m ≥ 0, the vector µ̄(m)
i ∈ RBm by

(µ̄
(m)
i )(δx) = µψi (Ωx) for all x ∈ D(m). Then, for ρm ∈ DČmBm and i, j ∈ T ,∫

Ω2

χ(i, dω)χ(j, dτ)ǧm(ω, τ) = ψ(i)ψ(j)
∑

x,x′∈D(m)

∫
Ωx×Ωx′

µi(dω)µj(dτ)Ǧm(δx, δx′)

= ψ(i)ψ(j)〈µ̄(m)
i , Ǧmµ̄

(m)
j 〉.

We denote, for m ≥ 0 and i, j ∈ T ,

a
(m)
i,j =

1

4
〈µ̄(m)
i + µ̄

(m)
j , Ǧm(µ̄

(m)
i + µ̄

(m)
j )〉,

so that we have

Gm(i, j) = Ĝ(i, j) + ψ(i)ψ(j)〈µ̄(m)
i , Ǧmµ̄

(m)
j 〉

= Ĝ(i, j) +
ψ(i)ψ(j)

2

(
4a

(m)
i,j − a

(m)
i − a(m)

j

)
.

Therefore, we can write (Gm(i, j))i,j∈T = Φ
(

(Ĝ(i, j))i,j∈T , (ψ(i))i∈T , (a
(m)
i,j )i,j∈T

)
, where

Φ is a continuous function.
We will denote by νWT (dβ, dρ) the distribution of a coupling of νWT,Bm(dβ, dρm) for all

m ≥ 0.
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Lemma 7.2. Let us set Zm =
(

(Ĝ(i, j))i,j∈T , (ψ(i))i∈T , (a
(m)
i,j )i,j∈T

)
for m ≥ 0, which

takes its values in RT
2 ×RT ×RT 2

. Then under νWT (dβ, dρ), (Zm)m≥0 is tight.

Proof. For ε > 0, let Kε be a compact subset of R such that 0 ∈ Kε and

P

[
1

2γ
∈ Kε

]
> 1− ε

when γ ∼ Gamma(1/2, 1). Let us now fix m ≥ 0. Recall that Ǧm = (2ρm − Čm)−1, where
Čm is a β-measurable matrix of conductances on Bm, and conditionally on β, ρm is

distributed according to νČmBm . Therefore from Lemma 7.1, for i, j ∈ T , conditionally

on β the random variable 〈µ̄(m)
i + µ̄

(m)
j , Ǧm

(
µ

(m)
i + µ̄

(m)
j

)
〉 has the same distribution as

(µψi (Ω)+µψj (Ω))2

2γ , where γ ∼ Gamma(1, 1/2). This implies that conditionally on {ψ 6≡ 0},
a

(m)
i,j has the same distribution as 1

2γ , and conditionally on {ψ ≡ 0}, a(m)
i,j = 0. As a result,

for all ε > 0,

P
[
a

(m)
x,x′ ∈ Kε

]
= P [ψ ≡ 0] + P [ψ 6≡ 0]P

[
1

2γ
∈ Kε

]
> 1− ε.

Let now
(
ã

(m)
k

)
k∈N

be an enumeration of
(
a

(m)
i,j

)
i,j∈T

. Then for ε > 0,

P
[
∀k ∈ N, ã(m)

k ∈ K2−n−1ε

]
≥ 1−

∑
k∈N

2−n−1ε = 1− ε,

where K̃ε =
∏
k∈NK2−n−1ε is a compact subset of RN. Moreover, the β-measurable

random variable
(

(Ĝ(i, j))i,j∈T , (ψ(i))i∈T

)
takes its values in RT

2 × RT , where T is

countable. As a result, for all ε > 0, there is a compact subset K ′ε ⊂ RT
2 ×RT such that

P
[(

(Ĝ(i, j))i,j∈T , (ψ(i))i∈T

)
∈ K ′ε

]
> 1− ε.

We can now conclude that for all ε > 0,

P
[(

(Ĝ(i, j))i,j∈T , (ψ(i))i∈T , (a
(m)
i,j )i,j∈T

)
∈ K̃ε/2 ×K ′ε/2

]
> 1− ε,

where K̃ε/2 ×K ′ε/2 is compact, and does not depend on m.

As a result, there is an extraction (mk)k∈N such that (Zmk)k∈N converges in distri-
bution under νWT (dβ, dρ). Since Gmk = Φ(Zmk) where Φ is continuous, (Gmk(i, j))i,j∈T
also converges in distribution under under νWT (dβ, dρ), as do the random jump rates

(r
(mk),φ
i,j )i,j∈T . Let us show that the limit distribution of the environment does not depend

on the extraction, which will mean that ((r
(m),φ
i,j )i,j∈T )m∈N converges in distribution,

since it is tight.

Lemma 7.3. For m ≥ 1 and for all n ≥ m, under the distribution νWT (dβ)ν
W̌ (n)
m

Bm
(dβ′),

the random variables
(
G(n)
m (φ,i)

G
(n)
m (φ, ~i)

)
i∈T (m)\{φ}

are independent inverse Gaussian variables,

where G(n)
m (φ,i)

G
(n)
m (φ, ~i)

has parameter (W ~i,i, 1) for i ∈ T (m)\{φ}.

Proof. Let us fix 1 ≤ m ≤ n. For i ∈ T (m)\{φ}, we denote gi =
G(n)
m (φ,i)

G
(n)
m (φ, ~i)

. Since |i| ≤ m,

any path in G(n)
m from φ to i crosses ~i, so from Proposition 3.4 (ii) and (iii),

gi =
G

(n)
m ( ~i, i)

G
(n)
m ( ~i, ~i)

=
∑
j∼ ~i

W ~i,j

∑
σ∈PT̃

(n)
m \{ ~i}

j,i

(W̃
(n)
m )σ

(2β
(n)
m )σ

.
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For i ∈ T (m)\{φ}, let us denote by T̃i the connected component of i in T̃
(n)
m \{ ~i}, i.e.

T̃i = T
(n)
m ∪ {δx, x ∈ D(m) ∩ Ti}, endowed with the restriction of W̃ (n)

m . This way, we get

gi = W ~i,i

∑
σ∈PT̃ii,i

(W̃
(n)
m )σ

(2β
(n)
m )σ

= W ~i,i

(
(H

(n)
β )T̃i,T̃i

)−1

(i, i),

so gi is (β
(n)
m )T̃i -measurable.

To prove that (gi)i∈T (m)\{φ} are independent, it will be enough to see that for i ∈
T (m)\{φ}, gi is independent of g

U
(m)
i

, and that for x ∈ T (m−1), the restrictions (gT̃i)i∈S(x)

are independent.

Writing
(

(H
(n)
β )T̃i,T̃i

)−1

(i, i) as a Schur complement, we see that, if we set Ũi =

T̃i\{i},

gi =
W ~i,i

2(β
(n)
m )i −

∑
j,j′∈S(i)Wi,jWi,j′

(
(H

(n)
β )Ũi,Ũi

)−1

(j, j′)
=

W ~i,i

Ȟ
{i}
β

.

From Proposition 3.2, conditionally on (β
(n)
m )Ũi , the distribution of (β

(n)
m )i is given by√

2

π

1
Ȟ
{i}
β >0√

det(Ȟ
{i}
β )

e
− 1

2

(
Ȟ
{i}
β +W 2

~i,i
(Ȟ
{i}
β )−1

)
eW ~i,id(β(n)

m )i,

so by a change of variables, the distribution of gi conditionally on (β
(n)
m )Ũi is

1gi>0

√
W ~i,i

2πg3
i

e
−
W ~i,i
2gi

(gi−1)2

dgi,

i.e. gi ∼ IG(W ~i,i, 1). Since this distribution does not depend on (β
(n)
m )Ũi , gi is independent

of (β
(n)
m )Ũi . For all j ∈ U

(m)
i , T̃j ⊂ Ũi, so gj is (β

(n)
m )Ũi -measurable. Therefore, gi is

independent of g
U

(m)
i

.

Moreover, for x ∈ T (m−1), the sets (T̃i)i∈S(x) are all at distance 2 from one another

in G(n)
m . Since β(n) is 1-dependent, the restrictions (β

(n)

T̃i
)i∈S(x) are independent. For

j ∈ T̃i, we have T̃j ⊂ T̃i, so gj is β(n)

T̃i
-measurable. Therefore the restrictions (gT̃i)i∈S(x)

are independent, which concludes the proof.

We can now use Lemma 7.3, to show that any converging subsequence of (Gm)m∈N
has the same limit in distribution, which corresponds to the representation from Theo-
rem 2.14.

For m ≥ 1, the distribution of G(n)
m under νWT (dβ)ν

W̌ (n)
m

Bm
(dβ′) converges weakly to the

distribution of Gm under νWT,Bm(dβ, dρm). If we denote g(m)
i = Gm(φ,i)

Gm(φ, ~i)
for i ∈ T (m)\{φ},

and take the limit in Lemma 7.3, we get that under νWT,Bm(dβ, dρm), (g
(m)
i )i∈T (m)\{φ} are in-

dependent, and g(m)
i ∼ IG(W ~i,i, 1) for i ∈ T (m)\{φ}. Recall that the random environment

associated with Gm is given by the following jump rates:

rβ,ρm,φ~i,i
=
W ~i,i

2

Gm(φ, i)

Gm(φ, ~i)
and rβ,ρm,φ

i, ~i
=
W ~i,i

2

Gm(φ, ~i)

Gm(φ, i)
,

for all i ∈ T\{φ}, and rβ,ρm,φi,j = 0 if i 6∼ j.
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Let now (mk)k∈N be an extraction such that under νWT (dβ, dρ), (r
β,ρmk ,φ

i,j )i,j∈T con-

verges in distribution to a limit environment (r
(∞),φ
i,j )i,j∈T . Then, we have r(∞),φ

i,j = 0 for

i 6∼ j. Moreover, let us set g(∞)
i = 2

W ~i,i
r

(∞),φ
~i,i

for i ∈ T\{φ}. Note that for all m ∈ N, if k

is such that mk ≥ m, we have T (m) ⊂ T (mk) so for all i ∈ T (m)\{φ},

r
β,ρmk ,φ

~i,i
=
W ~i,i

2
g

(mk)
i and r

β,ρmk ,φ

i, ~i
=

W ~i,i

2g
(mk)
i

.

Taking k →∞, we get that (g
(mk)
i )i∈T (m)\{φ} converges in distribution to (g

(∞)
i )i∈T (m)\{φ},

which implies that (g
(∞)
i )i∈T (m)\{φ} are independent. Since this is true for all m ≥ 0,

(g
(∞)
i )i∈T\{φ} are independent. Moreover, for all i ∈ T\{φ}, g(∞)

i ∼ IG(W ~i,i, 1) and

r
(∞),φ
~i,i

=
W ~i,i

2
g

(∞)
i and r(∞),φ

i, ~i
=

W ~i,i

2g
(∞)
i

.

The random environment given by these jump rates is in fact the one described in
Theorem 2.14, hence its distribution does not depend on the extraction (mk)k∈N. Since
the sequence of jump rates ((rβ,ρm,φi,j )i,j∈T )m≥1 is tight, this implies that under νWT (dβ, dρ),
it converges in distribution to the random environment given in Theorem 2.14.

7.2 Distinct representations on a regular tree: proofs of Propositions 2.15 and
2.19

Let us start by proving that on regular trees where the VRJP is transient, the standard
representation and the one given in Theorem 2.14 are different.

Proof of Proposition 2.15. Let T = (T,E) be a d-regular tree, where d ≥ 3. It was shown
in [9] that there exists a W > 0 such that for W > W , the VRJP on T endowed with
constant conductances W is almost surely transient. Note that the VRJP is defined in a
slightly different manner in [9], but it can be related to the definition used here, thanks
to a time rescaling described in Appendix B of [20]. From now on, we take W > W .

We consider jump rates (ri,j)i∼j on the tree T . Let φ be an arbitrary root for T , and
let (ik)k≥0 be an infinite self-avoiding path (or ray) in T , such that for k ≥ 0, |ik| = k.
Let us define Sn =

∏n
k=1

2
W rik−1,ik . We will compare the distribution of Sn under two

distribution of jump rates.
Let Rind(dr) be the distribution of jump rates in the representation described in

Theorem 2.14. Under Rind(dr), we know that Sn has the distribution of
∏n
i=1Aik ,

where Aik are independent inverse Gaussian variables with parameter (W, 1). Note that
E[A1] = 1, so by Jensen’s inequality, E[log(A1)] < 0. By the law of large numbers, we
then have a.s. that

∑n
k=1 log(Ai) −−−−→

n→∞
−∞, so that Sn

a.s.−−−−→
n→∞

0.

Let now Rst(dr) be the distribution of jump rates in the standard representation of
the VRJP started at φ = i0. Under Rst(dr), Theorem 2.6 tells us that Sn has the same
distribution as

n∏
k=1

G(i0, ik)

G(i0, ik−1)
=
G(i0, in)

G(i0, i0)
=
Ĝ(i0, in) + 1

2γψ(i0)ψ(in)

G(i0, i0)

under νWV (dβ, dγ), where according to Proposition 2.11, ψ(i) > 0 a.s. for all i ∈ T .
Moreover, since the distribution of ψ under νWV (dβ) is stationary for the group of trans-
formations of T (see Proposition 3 in [23]), ψ(in) has the same distribution as ψ(i0) for
all n ∈ N, and cannot tend to 0 a.s. when n → ∞. Therefore, neither can Sn under
Rst(dr), which proves that Rst and Rind are different.
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We will now prove Proposition 2.19, i.e. that on a d-regular tree with d ≥ 3, for
constant W large enough so that the VRJP is transient, the representations in the
family given by Theorem 2.18 are all different. In order to do this, we will compare the
distribution of the random harmonic measures for each representation.

The following Proposition gives an expression for the harmonic measure of sets Ωx,
for x ∈ T . We will see how this expression behaves differently whether or not |x| > m.

Proposition 7.4. Let m ∈ N be fixed. We also fix β ∈ DWT and ρm ∈ DČmBm . We denote

by µβ,ρm,φφ the exiting measure of the transient Markov process Pβ,ρm,φφ defined in
Theorem 2.18. Then for x ∈ T ,

µβ,ρm,φφ (Ωx) =

∫
Ω×Ωx

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)∫
Ω2 χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)

.

Proof. We denote µ = µβ,ρm,φφ . Let g be the Green function associated with the discrete

Markov chain associated with Pβ,ρm,φ, i.e. with jump rates rβ,ρm,φi,j =
Wi,j

2
Gm(φ,j)
Gm(φ,i) . Let

us denote, for i, j ∈ T , f(i, j) = g(i,j)
g(j,j) . Then from Proposition 3.13, we get the following

expression for x 6= φ:

µ(Ωx) = f(φ, x)
1− f(x, ~x)

1− f(x, ~x)f( ~x, x)
.

For i, j ∈ T , we have

g(i, j) =
∑
k∈N

P
β,ρm,φ
i [Xk = j] =

∑
σ∈PTi,j

|σ|−1∏
k=0

rβ,ρm,φσk,σk+1

β̃σk
=
Gm(φ, j)

Gm(φ, i)

∑
σ∈PTi,j

Wσ

(2β̃)−σ
,

where β̃i =
∑
j∼i r

β,ρm,φ
i,j are the rates of the corresponding holding times. Note that

β̃i = βi − 1{i=φ} 1
2Gm(φ,φ) for i ∈ T . In particular, if a path σ never crosses φ, then

(2β̃)σ = (2β)σ.

Let us denote G̃(i, j) =
∑
σ∈PTi,j

Wσ

(2β̃)σ
and F̃ (i, j) = G̃(i,j)

G̃(j,j)
, then

g(i, j) =
Gm(φ, j)

Gm(φ, i)
G̃(i, j)2β̃j , and f(i, j) =

Gm(φ, j)

Gm(φ, i)

G̃(i, j)

G̃(j, j)
=
Gm(φ, j)

Gm(φ, i)
F̃ (i, j).

The expression for the measure becomes

µ(Ωx) =
Gm(φ, x)

Gm(φ, φ)

G̃(φ, x)

G̃(x, x)

1− Gm(φ, ~x)
Gm(φ,x) F̃ (x, ~x)

1− F̃ (x, ~x)F̃ ( ~x, x)


=

G̃(φ, x)

Gm(φ, φ)

(
Gm(φ, x)−Gm(φ, ~x)F̃ (x, ~x)

G̃(x, x)− F̃ (x, ~x)G̃( ~x, x)

)
.

Let us compute the following terms: firstly,

G̃(x, x)− F̃ (x, ~x)G̃( ~x, x) = G̃(x, x)− F̃ (x, ~x)G̃( ~x, ~x)F̃ (x, ~x)

=
∑

σ∈PTx,x

Wσ

(2β̃)σ
−

∑
σ∈PT

x,{ ~x},x

Wσ

(2β̃)σ
=

∑
σ∈PTxx,x

Wσ

(2β̃)σ
.

Indeed, paths from x to x that do not cross ~x have to stay in the connected component
of x in T\{ ~x}, which is Tx, i.e. PTx,x\PTx,{ ~x},x = PTxx,x. Moreover, φ /∈ Tx, so for σ ∈ PTxx,x,

(2β̃)σ = (2β)σ. As a result,

G̃(x, x)− F̃ (x, ~x)G̃( ~x, x) =
∑

σ∈PTxx,x

Wσ

(2β)σ
= ĜTx(x, x).

EJP 25 (2020), paper 108.
Page 41/45

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP510
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Representations of the VRJP as a mixture of Markov processes

Secondly,

Gm(φ, x)−Gm(φ, ~x)F̃ (x, ~x) = Ĝ(φ, x)− Ĝ(φ, ~x)F̃ (x, ~x)

+

∫
Ω2

χ(φ, dω)ǧm(ω, τ)
(
χ(x, dτ)− F̃ (x, ~x)χ( ~x, dτ)

)
.

Note that if σ ∈ PT\{ ~x}
x, ~x , then σk ∈ Tx for k ≤ |σ| − 1, so (2β̃)−σ = (2β)−σ . Therefore,

F̃ (x, ~x) = F̂ (x, ~x). Moreover, since PTφ,x = PTφ,{ ~x},x, we have

Ĝ(φ, x)− Ĝ(φ, ~x)F̂ (x, ~x) = 0.

Recall also that the density of χ(x, ·) with respect to χ(φ, ·) is τ 7→ F̂ (x,x∧τ)

F̂ (φ,x∧τ)
. As a result,

Gm(φ, x)−Gm(φ, ~x)F̃ (x, ~x) =

∫
Ω2

χ(φ, dω)ǧm(ω, τ)
(
χ(x, dτ)− F̂ (x, ~x)χ( ~x, dτ)

)
=

∫
Ω2

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)

(
F̂ (x, x ∧ τ)

F̂ (φ, x ∧ τ)
− F̂ (x, ~x)

F̂ ( ~x, ~x ∧ τ)

F̂ (φ, ~x ∧ τ)

)
.

For τ /∈ Ωx, x ∧ τ = ~x ∧ τ and paths from x to ~x ∧ τ cross ~x. Therefore,

F̂ (x, x ∧ τ)

F̂ (φ, x ∧ τ)
− F̂ (x, ~x)

F̂ ( ~x, ~x ∧ τ)

F̂ (φ, ~x ∧ τ)
=
F̂ (x, ~x ∧ τ)− F̂ (x, ~x)F̂ ( ~x, ~x ∧ τ)

F̂ (φ, ~x ∧ τ)
= 0.

For τ ∈ Ωx, x ∧ τ = x and ~x ∧ τ = ~x, so

F̂ (x, x ∧ τ)

F̂ (φ, x ∧ τ)
− F̂ (x, ~x)

F̂ ( ~x, ~x ∧ τ)

F̂ (φ, ~x ∧ τ)
=
Ĝ(x, x)

Ĝ(φ, x)
− F̂ (x, ~x)

Ĝ( ~x, ~x)

Ĝ(φ, ~x)

=
Ĝ(x, x)− F̂ (x, ~x)Ĝ( ~x, ~x)F̂ ( ~x, x)

Ĝ(φ, x)
=
ĜTx(x, x)

Ĝ(φ, x)
.

As a result, we have

Gm(φ, x)−Gm(φ, ~x)F̃ (x, ~x) =
ĜTx(x, x)

Ĝ(φ, x)

∫
Ω×Ωx

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ).

For x 6= φ, we finally get

µ(Ωx) =
G̃(φ, x)

Gm(φ, φ)Ĝ(φ, x)

∫
Ω×Ωx

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)

=
G̃(φ, φ)

Ĝ(φ, φ)

∫
Ω×Ωx

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)

since F̃ (x, φ) = F̂ (x, φ). Moreover, by summing over x ∈ S(φ), we have the same
expression for µ(Ωφ) = µ(Ω):

1 = µ(Ω) =
G̃(φ, φ)

Gm(φ, φ)Ĝ(φ, φ)

∫
Ω2

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ).

As a result, for all x ∈ T ,

µ(Ωx) =

∫
Ω×Ωx

χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)∫
Ω2 χ(φ, dω)ǧm(ω, τ)χ(φ, dτ)

.
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Proof of Proposition 2.19. Let T be a d-regular tree, with d ≥ 3, endowed with constant
conductances W such that P[∀i ∈ T, ψ(i) > 0] = 1. Note that (T ,W ) is vertex transitive,
so it is enough to show the proposition for i0 = φ. The following lemma is a consequence
of the symmetries of (T ,W ), and guarantees that almost surely, the exiting measure
gives weight to the whole boundary Ω.

Lemma 7.5. Almost surely under νWT (dβ), for all x 6= φ, χ(φ,Ωx) > 0.

Proof. For all x 6= φ, we define χ̂x = ψ(x) − F̂ (x, ~x)ψ( ~x). Then we have χ(φ,Ωx) =

F̂ (φ, x) χ̂x
1−F̂ (x, ~x)F̂ ( ~x,x)

, and P[χ(φ,Ωx) > 0] = P[χ̂x > 0].

Note that

ψ(n)(x)− F̂ (n)(x, ~x)ψ(n)( ~x) =
∑

y∈Tx∩D(n)

 ∑
σ∈PT

(n)
x

x,y

Wσ

(2β)σ

 η(n)
y

is βTx -measurable. Therefore, taking the limit when n → ∞ shows that χ̂x is also
βTx -measurable. As a result, given a fixed m ≤ 1, the random variables (χ̂x)x∈D(m) are
independent, since νWV is 1-dependent, and have the same distribution, since νWV is
invariant under the group of automorphisms of T .

Moreover, we have ψ(φ) =
∑
y∈D(m) F̂ (φ, y)

χ̂y

1−F̂ (y, ~y)F̂ ( ~y,y)
, so

P[ψ(φ) = 0] = P[∀y ∈ D(m), χ̂y = 0] = P[χ̂x = 0]|D
(m)|

for any x ∈ D(m). Since P[ψ(φ) = 0] = 0, we get P[χ̂x = 0] = 0 for all x ∈ D(m) and all
m ≥ 1, which implies that almost surely, for all x 6= φ, χ(φ,Ωx) > 0.

Let us fix m > m′, and denote µ(m) = µβ,ρm,φφ and µ(m′) = µ
β,ρm′ ,φ
φ . Let x ∈ D(m) be

fixed, note that x 6= φ. We define the following events:

A(m)
x =

{
µ(m)(Ωx)

µ(m)(Ω ~x)
=
χ(φ,Ωx)

χ(φ,Ω ~x)

}
and A(m′)

x =

{
µ(m′)(Ωx)

µ(m′)(Ω ~x)
=
χ(φ,Ωx)

χ(φ,Ω ~x)

}
.

Let us first show that the event A(m)
x is rβ,ρm,φ-measurable. Note that the exiting

measure µ(m) is measurable with respect to the corresponding environment rβ,ρm,φ.
Moreover, for i 6= φ, βi = β̃i =

∑
j∼i r

β,ρm,φ
i,j is rβ,ρm,φ-measurable. Therefore, we just

have to show that χ(φ,Ωx)
χ(φ,Ω ~x) is βT\{φ}-measurable. Since χ(φ,Ωx) = Ĝ(φ, x)

∑
y∈S(x)Wx,yχ̂y,

we have

χ(φ,Ωx)

χ(φ,Ω ~x)
=
Ĝ(φ, x)

∑
y∈S(x)Wx,yχ̂y

Ĝ(φ, ~x)
∑
z∈S( ~x)W ~x,zχ̂z

= F̂ (x, ~x)

∑
y∈S(x)Wx,yχ̂y∑
z∈S( ~x)W ~x,zχ̂z

,

which is βU ~x
-measurable and therefore βT\{φ}-measurable. We can conclude that A(m)

x is

rβ,ρm,φ-measurable, and in the same way, A(m′)
x is rβ,ρm′ ,φ-measurable. We are now going

to show that under νWT,Bm′ (dβ, dρm′) we have P[A
(m′)
x ] = 1, while under νWT,Bm(dβ, dρm) we

have P[A
(m)
x ] = 0. This will prove that the distributions of rβ,ρm,φ under νWT,Bm(dβ, dρm)

and rβ,ρm′ ,φ under νWT,Bm′ (dβ, dρm′) are different.

Since |x| = m > m′, we have | ~x| ≥ m′, so there exists z ∈ D(m′) such that ~x ∈ Tz,
i.e. Ω ~x ⊂ Ωz. Then for all τ ∈ Ω ~x,

∫
Ω
χ(φ, dω)ǧm′(ω, τ) =

∑
b∈Bm′

χm′(φ, b)Ǧm′(b, δz). As a
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result,

µ(m′)(Ωx)

µ(m′)(Ω ~x)
=

∫
Ωx

(∑
b∈Bm′

χm′(φ, b)Ǧm′(b, δz)
)
χ(φ, dτ)∫

Ω ~x

(∑
b∈Bm′

χm′(φ, b)Ǧm′(b, δz)
)
χ(φ, dτ)

=
χ(φ,Ωx)

χ(φ,Ω ~x)
,

so P[A
(m′)
x ] = 1 under νWT,Bm′ (dβ, dρm′).

We will finally show that νWT,Bm -almost surely, P[A
(m)
x |β] = 0. Since |x| = m, we have

µ(m)(Ωx) = χm(φ, δx)
∑
b∈Bm

Ǧm(δx, b)χm(φ, b),

and µ(m)(Ω ~x) =
∑

y∈S( ~x)

χm(φ, δy)
∑
b∈Bm

Ǧm(δy, b)χm(φ, b).

Let us denote, for y ∈ D(m), uy =
∑
b∈Bm Ǧm(δy, b)χm(φ, b). Then

A(m)
x =

{
µ(m)(Ωx)

µ(m)(Ω ~x)
=
χ(φ,Ωx)

χ(φ,Ω ~x)

}
=

 ∑
y∈S( ~x)

χ(φ,Ωy)

χ(φ,Ω ~x)
uy = ux

 = {u ∈ ker(fβ)},

where fβ : (vy)y∈D(m) 7→
∑
y∈S( ~x)

χ(φ,Ωy)
χ(φ,Ω ~x)vy − vx is a linear form conditionally on β, which

has almost surely rank 1 according to Lemma 7.5, so that ker(fβ) is a hyperplane of

R|D
(m)|. Let us show that conditionally on β, the distribution of (uy)y∈D(m) is absolutely

continuous with respect to the Lebesgue measure on R|D
(m)|, and therefore P[A

(m)
x |β] =

P[u ∈ ker(fβ)|β] = 0.
Recall that Ǧm = (2ρm− Čm)−1, where conditionally on β, ρm is distributed according

to νČmBm , which is absolutely continuous with respect to the Lebesgue measure on R|Bm| =

R|D
(m)|. Let us define

Φ :
R|D

(m)| −→ R|D
(m)|

ρm 7−→ (uy)y∈D(m) = Ǧmχm(φ, ·)
.

For all ρm such that 2ρm − Čm > 0, Φ is differentiable, and its differential is

dρmΦ(v) = −2Ǧmdiag(v)Ǧmχm(φ, ·) = −2Ǧmdiag(v)u,

which is invertible, with (dρmΦ)−1(w) =
(
− (Ǧ−1

m w)y
2uy

)
y∈D(m)

. Note that this is well-

defined since uy > 0 for all y ∈ D(m), thanks to Lemma 7.5. As a result, Φ is a local
diffeomorphism. Therefore, the distribution of u = Φ(ρm), conditionally on β, admits

a density with respect to the Lebesgue measure on R|D
(m)|. We deduce that almost

surely, P[A
(m)
x |β] = P[u ∈ ker(fβ)|β] = 0, and therefore P[A

(m)
x ] = 0, which concludes the

proof.
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