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Time-reversal of coalescing diffusive flows and weak
convergence of localized disturbance flows
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Abstract

We generalize the coalescing Brownian flow, also known as the Brownian web, consid-
ered as a weak flow to allow varying drift and diffusivity in the constituent diffusion
processes and call these flows coalescing diffusive flows. We then identify the time-
reversal of each coalescing diffusive flow and provide two distinct proofs of this
identification. One of which is direct and the other proceeds by generalizing the con-
cept of a localized disturbance flow to allow varying size and shape of disturbances, we
show these new flows converge weakly under appropriate conditions to a coalescing
diffusive flow and identify their time-reversals.
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1 Introduction

This paper is a contribution to the theory of stochastic flows in one dimension,
specifically the study of inhomogeneous flows and their time-reversals.

We provide two proofs of our main result which is Theorem 4.1 which says that the
time-reversal of a coalescing diffusive flow with drift b and diffusivity a is (provided the
spatial derivative a′ of a is Lipschitz) given by a coalescing diffusive flow of drift −b+ a′

2

and diffusivity a. Theorem 5.4 which establishes convergence of certain families of inho-
mogeneous disturbance flows to coalescing diffusive flows may also be of independent
interest.

Coalescing Brownian motions were introduced by Arratia in 1979 [1]. The object of
study there consisted of a collection of coalescing Brownian motions starting from every
point on the real line at the same time. Tóth and Werner [17] extended this to allow a
Brownian motion to start from every point on the line at every time t ∈ R. Formally, this
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Time-reversal of coalescing diffusive flows

object is a family of random measurable functions (φts : s ≤ t ∈ R) satisfying the flow
property

φts ◦ φsr = φtr, r ≤ s ≤ t (1.1)

and such that every finite collection of trajectories (φts(x) : t ≥ s) performs coalescing
Brownian motion. This is the approach taken in Arratia [1], Tóth and Werner [17], Le Jan
and Raimond [10] and Tsirelson [18]. A problem, however, with this approach is that the
φts cannot be chosen to be right-continuous, as the composition of two right-continuous
functions is not necessarily right-continuous.

An alternative approach that avoids this problem is given by Fontes et al. [6] based
on completing the set of trajectories to form a compact set of continuous paths, this
completion can be done in multiple ways leading to multiple objects known as Brownian
webs. Another way around the problem was introduced by Norris and Turner in [11],
based on the idea of considering pairs {φ−, φ+} of left and right continuous modifications
of the Arratia flow. This setup does not store the information of the value of φts at a jump,
and as a result the flow property must be relaxed to a weak flow property (definition
in Section 3). The space of weak flows with the metric appearing in [11] provides a
useful space for studying weak convergence, as it contains flows without continuous
trajectories such as disturbance flows. This is the approach that this work builds on.
Whilst Norris and Turner only deal with the case on the compact circle, this was extended
to a Brownian web on R in the PhD thesis of Ellis [5]. A later paper by Berestycki et al.
[2] provides another state-space and topology for the Brownian web, which was based
on the quad crossings of Schramm and Smirnov and another topology is given in Greven
et al [7] based on marked metric measure spaces [4]. A good overview of this work is
given in Schertzer et al [15].

Recently Riabov [13] has shown that coalescing stochastic flows can be realised
as random dynamical systems. This approach avoids the need for relaxing to a weak
flow property and constructs the time reversed (dual) flow explicitly as a part of the
dynamical system.

The coalescing diffusive flow, φ, consists of diffusion processes starting from each
point in space-time, each with drift and diffusivity given by functions, b and a respectively,
of space and time. They evolve independently until they collide, at which point they
coalesce. We denote the distribution of this coalescing disturbance flow by µA. The time
reversal φ̂ of a flow φ is given by the inverse maps according to the following expression,
where technicalities are being suppressed for brevity,

φ̂I = φ−1
−I . (1.2)

Our main result in this paper is the following theorem, identifying the distribution of
the time reversal of a coalescing stochastic disturbance flow. The distribution νA is of a
coalescing stochastic flow with drift bν and diffusivity aν .

Theorem 4.1. If a has spatial derivative a′, and a, b and a′, are uniformly bounded on
compacts in time and L-Lipschitz in space then

µ̂A = νA := µa
ν ,bν

A (1.3)

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the time reversal
of µA.

To intuitively understand the presence of the a′(−t, x)/2 term consider the case b ≡ 0.
If a′(−t, x) and δx are positive then the diffusivity at x+ δx is greater than at x− δx. This
results in the flow from x+ δx over a small time increment from t being more likely to
drop below x than the flow from x− δx rising above x. This is equivalent to saying the
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Time-reversal of coalescing diffusive flows

time reversed flow is more likely to rise by δx than fall by δx over a short period of time.
This manifests itself as a positive drift. Our direct proof will proceed partially along the
lines of making this explanation exact.

A similar correction to the drift term can be found in work on smooth Brownian flows.
For example a treatment in terms of infinitesimal generators can be found in [9]. This
differs from our situation as the maps φI are required to be homeomorphisms and thus
the paths can’t be independent up to coalescence.

Since the original submission of this paper, Riabov has published a new paper [12].
There Riabov proves a version of the above result, for fixed diffusivity and with drift
dependent on space but not time, within his random dynamical system framework. The
paper provides a good framework for the consideration of stochastic flows. His existence
proof in the previous paper [13] could straightforwardly be extended to this case. The
calculations of the second method of proof in this paper could then be translated into
that framework to show that the above theorem holds within that framework as well.

Konarovskyi [8] also studies a generalization of coalescing Brownian motions with
varying diffusivity. In that work, the diffusions only start from time t = 0 and the
diffusivity of each is taken to be inversely proportional to the fraction of the diffusions
that have coalesced to form it, rather than as a function of position and time, as in this
work.

A disturbance flow, introduced in [11], is a composition of independent random maps
of the circle to itself. Unlike [11], we do not require that our maps are identically
distributed or that their distributions are invariant under conjugation by a rotation of the
circle. For a pair of suitably smooth a, b, we consider limits where the maps F are close
to the identity, well localized and have mean of F (x)− x close to hb(x) and variance of
F (x)− x close to ha(x) as h→ 0. We prove convergence of individual paths to diffusion
processes and of the flow as a whole to the coalescing diffusive flow with diffusivity and
drift given by a and b. We also describe the time-reversal of the disturbance flows and
use this to describe the time-reversal of a coalescing diffusive flow.

This paper is structured as follows. Section 2 proves existence and uniqueness of a
simplified version of the coalescing diffusive flows, which consists of only countably many
paths. Section 3 defines the metric spaces that our flows take values in, and proves exis-
tence and uniqueness of the coalescing diffusive flows (Theorem 3.1). Section 4 defines
the time-reversal of a flow and provides the statement of our main result (Theorem 4.1),
which identifies the time-reversal of a coalescing diffusive flow. At this point the reader
has the option of skipping straight to Section 7 which will not require Sections 5 or 6.
Section 5 defines the notion of a disturbance flow, and shows convergence of paths from
the flow to diffusions and of countable collections of paths to the simplified flow from
Section 2. Section 6 shows convergence of the disturbance flows to coalescing diffusive
flows, identifies their time-reversals and uses this to provide a proof of Theorem 4.1.
Section 7 provides an alternative proof of Theorem 4.1 that does not require the use of
disturbance flows. It also contains as an intermediate weaker version (requiring more
smoothness of a and b) Theorem 7.1.

The disturbance flow based proof of our main result generalizes the main proof
in [11]; much of the notation is taken from there and some of the proofs are very
similar. However, there are multiple places where new ideas are required to handle the
generalization. While [11] allows the distribution of disturbances to be random only
in that the location of the disturbance is chosen uniformly at random from around the
circle, we allow the disturbances to vary in size and shape both randomly and with
location in space and time, the shape and size is also allowed to vary a lot more as
we take the limit to small disturbances than is allowed in [11]. The new ideas in the
proofs are first evident in the proof of Theorem 5.1, showing that individual trajectories
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of suitable disturbance flows converge weakly, where the proof of tightness requires
bounds that hold despite the possibly varying drift and diffusivity. The time reversal
results in Section 6 are generalizations of those in [11]. However, the statement of our
main result Theorem 4.1 is not something that you would obviously expect, and the proof
had to be modified substantially to deal with the more general disturbance flows.

The proof in Section 7 is original in idea as well as in detail. While it is about the
same length as the disturbance flow based proof, the weaker version of our main result
Theorem 7.1 (which is identical except it assumes that a and b are Lipschitz in time as
well as space) is proved with a substantially smaller amount of work (about 5 pages after
the statement has been made rigorous rather than eighteen) and might suffice for future
applications. In particular, it provides a short proof, without the use of disturbance flows,
of the Brownian case which is Corollary 7.2 of [11].

2 Countable collections of coalescing diffusions

In this section, we recall uniqueness in law for weak solutions of SDEs, then define
a metric space, DE , whose elements consist of countable collections of cadlag paths.
Finally, using a martingale problem in the style of [16], specifically those corresponding to
a countable family of coalescing diffusion processes that are independent until collision;
we identify certain elements of DE .

Given functions a : R2 → R and b : R2 → R measurable, bounded uniformly on
compacts in the first variable and L-Lipschitz in the second, with a positive and bounded
away from zero. Let σ(t, x) =

√
a(t, x). Then the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (2.1)

has uniqueness in law for weak solutions [14], i.e. given e = (s, x) and a triple (X,W )t≥s,
(Ω,F ,P), (Ft)t≥s, such that

a) (Ω,F ,P) is a probability space with (Ft)t≥s as a complete, right-continuous filtra-
tion;

b) X is adapted to (Ft), X is continuous and W is an (Ft)-Brownian motion;

c) Xs = x;

d) almost surely, both X and the quadratic variation of X are bounded on each
compact time interval;

e) almost surely

Xt = Xs +

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr ∀t ≥ s, (2.2)

then the law of X is determined by a, b and e. Furthermore such solutions exist.

We will write this law as µa,be , and say that X is a diffusion process with drift b and
diffusivity a. Throughout we will assume that a and b have period 1 in the second variable
(as well as the properties above), and X will be considered as a diffusion process on the
circle R/Z.

We will in several proofs use the notation

b∗ := sup
x∈[0,1],r∈I

|b(r, x)|, (2.3)

a∗ := sup
x∈[0,1],r∈I

a(r, x), (2.4)

a∗ := inf
x∈[0,1],r∈I

a(r, x), (2.5)
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where I is an compact interval of time that contains all the times relevant to the given
context. It will only be important that in any given context these numbers are finite and
a∗ > 0.

Let De = Dx([s,∞),R) be the space of cadlag paths starting from x at time s. Write
de for the Skorokhod metric on De.

Given a sequence E = (ek : k ∈ N) in R2, set

DE =

∞∏
k=1

Dek (2.6)

and define a metric dE on DE by

dE(z, z′) =

∞∑
k=1

2−k
(
dek(zk, z′k) ∧ 1

)
. (2.7)

Then (DE , dE) is a complete separable metric space.
Write ek = (sk, xk) and denote by (Zkt )t≥sk the kth coordinate process on DE , given by

Zkt (z) = zkt . Consider the filtration (Zt)t∈R on DE , where Zt is the σ-algebra generated
by (Zks : sk < s ≤ t ∨ sk, k ∈ N). Write CE for the (measurable) subset of DE , where each
coordinate path is continuous. Define on CE

T jk = inf{t ≥ sj ∨ sk : Zjt − Zkt ∈ Z}. (2.8)

The T jk are the collision times of the paths considered in R/Z. The following is a
generalization of a reformulation in [11] of a result of Arratia in [1].

Proposition 2.1. Given a, b measurable and bounded uniformly on compacts in time
and L-Lipschitz in space as in (2.1), there exists a unique Borel probability measure µa,bE
on DE under which, for all j, k ∈ N, the processes(

Zkt −
∫ t

sk

b(s, Zks )ds

)
t≥sk

(2.9)

and (
Zkt Z

j
t −

∫ t

sj∨sk

(
Zks b(s, Z

j
s) + Zjsb(s, Z

k
s )
)
ds−

∫ t

T jk∧t
a(s, Zjs)ds

)
t≥sj∨sk

(2.10)

are both continuous local martingales.

We give the following proof sketch. For existence, one can take independent diffusion
processes, with coefficients a and b, from each of the given time-space starting points and
then impose a rule of coalescence on collision, deleting the path of larger index. The law
of the resulting process has the desired properties. On the other hand, given a probability
measure such as described in the proposition, on some larger probability space, one can
use a supply of independent Brownian motions to build diffusions continuing each of
the paths deleted at each collision. Then, the martingale problem characterization of
diffusion processes given in [16], can be used to see that one has recovered the set-up
used for existence. This gives uniqueness.

3 Existence and uniqueness of coalescing diffusive flows

We now introduce the space of continuous weak flows C◦(R,D) and the space of
cadlag weak flows D◦(R,D), both introduced in [11]. We will then identify certain
elements of C◦(R,D) as coalescing diffusive flows, again using a martingale problem.

EJP 25 (2020), paper 103.
Page 5/38

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP500
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Time-reversal of coalescing diffusive flows

The space C◦(R,D) is sufficient for stating our main result and understanding the proof
that doesn’t use disturbance flows. However, we will need D◦(R,D) to deal with the
fact that the disturbance flows are not continuous in time. The following explanation of
notation follows [11] very closely, and all the claims made in italics are proved in [11].

We consider non-decreasing, right-continuous functions f+ : R→ R with the degree
1 property

f+(x+ n) = f+(x) + n, x ∈ R, n ∈ Z. (3.1)

Let us denote the set of such functions by R and the set of analogous left-continuous
functions by L. Each f+ ∈ R has a left-continuous modification given by f−(x) =

limy↑x f
+(y). Let D denote the set of corresponding pairs f = {f−, f+}. We will write f

in place of f± when the choice is irrelevant for the purpose at hand, especially in the
case when f+ = f−, i.e. f+ is continuous.

Firstly, we define a metric on D. Associate to each function f a function f× given by
f×(t) = t− x, where x ∈ R is the unique value such that

x+ f−(x)

2
≤ t ≤ x+ f+(x)

2
(3.2)

as shown in Figure 1. We can define a complete locally compact metric (D, dD) by

dD(f, g) = sup
t∈[0,1)

|f×(t)− g×(t)|. (3.3)

Consider φ = (φI : I ⊆ R), with φI ∈ D and I ranging over all non-empty bounded
intervals. We say that φ is a weak flow if given I a disjoint union of intervals I1 and I2,
with sup I1 = inf I2,

φ−I2 ◦ φ
−
I1
≤ φ−I ≤ φ

+
I ≤ φ

+
I2
◦ φ+

I1
. (3.4)

φ is said to be cadlag if for all t ∈ R,

φ(s,t) → id as s ↑ t, φ(t,u) → id as u ↓ t. (3.5)

Here, the convergence of functions is with respect to the metric of D (also note that this
definition is left-right symmetric, we call it cadlag to match previous work).

D◦(R,D) is the set of cadlag weak flows. We set φ∅ = id. Given {In : n ∈ N} and I

bounded intervals, write In → I if

I =
⋃
n

⋂
m≥n

Im =
⋂
n

⋃
m≥n

Im. (3.6)

For every φ ∈ D◦(R,D), we have

φIn → φI whenever In → I. (3.7)

If φ ∈ D◦(R,D) satisfies φ{t} = id for all t ∈ R then we have that φ(s,t) = φ(s,t] =

φ[s,t) = φ[s,t] for all s < t. Denoting these all by φts we define C◦(R,D) to be the set of all
such (φts : s, t ∈ R, s < t). For φ, ψ ∈ C◦(R,D) and n ≥ 1, define

d
(n)
C (φ, ψ) = sup

s,t∈(−n,n),s<t

dD(φts, ψts) (3.8)

and then let

dC(φ, ψ) =

∞∑
n=1

2−n
(
d

(n)
C (φ, ψ) ∧ 1

)
. (3.9)

Under this metric C◦(R,D) is complete and separable.
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f(x)

x

f×(t)
t

Figure 1: The graph of f× can be formed from the graph of f by rotating the axes by
π
4 and scaling both axes up by

√
2. Note that where a jump in f occurs we must add a

straight line between the upper and lower limits in order to give the graph of f× there.

In the interests of defining a metric on D◦(R,D), for λ an increasing homeomorphism
of R we define

γ(λ) = sup
t∈R
|λ(t)− t| ∨ sup

s,t∈R,s<t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ , (3.10)

and let χn be the cut-off function given by

χn(I) = 0 ∨ (n+ 1−R) ∧ 1, R = sup I ∨ (− inf I). (3.11)

We can now define for φ, ψ ∈ D◦(R,D) and n ≥ 1,

d
(n)
D (φ, ψ) = inf

λ

{
γ(λ) ∨ sup

I⊆R
‖χn(I)φ×I − χn(λ(I))ψ×λ(I)‖∞

}
(3.12)

where the infimum is taken over the set of increasing homeomorphisms λ of R. Then
define

dD(φ, ψ) =

∞∑
n=1

2−n
(
d

(n)
D (φ, ψ) ∧ 1

)
. (3.13)

Then (D◦(R,D), dD) is a complete and separable metric space. Moreover dC and dD
generate the same topology on C◦(R,D). For the metric dD, all bounded intervals I and
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all x ∈ R, the evaluation map

φ 7→ φ+
I (x) : D◦(R,D)→ R (3.14)

is Borel measurable. Moreover the Borel σ − algebra on D◦(R,D) is generated by the
set of all such evaluation maps with I = (s, t] and s, t and x rational.

For e = (s, x) ∈ R and φ ∈ D◦(R,D), the maps

t 7→ φ±(s,t](x) : [s,∞)→ R (3.15)

are cadlag. Hence we can define Ze = Ze,+ and Ze,−, as maps from D◦(R,D) to De, by
setting

Ze,±(φ) = (φ±(s,t](x) : t ≥ s). (3.16)

The maps, t→ Ze,±t (φ) are continuous when φ ∈ C◦(R,D).
Finally, define a σ-algebra F and a filtration (Ft)t∈R on C◦(R,D) by

F = σ(Z
(s,x)
t : (s, x) ∈ R2, t ≥ s) (3.17)

and
Ft = σ(Z(s,x)

r : (s, x) ∈ R2, r ∈ (−∞, t] ∩ [s,∞)). (3.18)

Then Ft is generated by the random variables Z(s,x)
r with (s, x) ∈ Q2 and r ∈ (−∞, t] ∩

[s,∞), and F is the Borel σ-algebra of the metric dC .
The following theorem states the existence of coalescing diffusive flows. The proof

is identical to that of the less general result Theorem 3.1 in [11] and so is omitted.
Generalizing the argument requires generalized versions of results from [11], which we
give as Proposition 2.1 and Proposition A.1.

Analogously to T jk, if e = (s, x) and e′ = (s′, x′) we define

T ee
′

= inf{t ≥ s ∨ s′ : Zet − Ze
′

t ∈ Z}. (3.19)

Theorem 3.1. Given a, b as before, there exists a unique Borel probability measure µa,bA
on C◦(R,D) under which, for all e = (s, x), e′ = (s′, x′) ∈ R2, the processes(

Zet −
∫ t

s

b(r, Zer )dr

)
t≥s

(3.20)

and (
ZetZ

e′

t −
∫ t

s∨s′

(
Zer b(r, Z

e′

r ) + Ze
′

r b(r, Z
e
r )
)
dr −

∫ t

T ee′∧t
a(r, Ze

′

r )dr

)
t≥s∨s′

(3.21)

are continuous local martingales with respect to (Ft)t∈R. Moreover, for all e ∈ R2 we
have µa,bA -almost surely Ze,+ = Ze,−.

We will often write µA instead of µa,bA in order to simplify notation.

4 Time reversal

In this section we quote some definitions and observations from [11] and then state
our main theorem. For f+ ∈ R and f− ∈ L, define the left-continuous inverse from R to
L and the inverse operation right-continuous inverse respectively as follows

(f+)−1(y) = sup{x ∈ R : f+(x) < y}, (4.1)

(f−)−1(y) = inf{x ∈ R : f−(x) > y}. (4.2)
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Note that these operations are distributive over concatenation. The inverse of f ∈ D is
given by

f−1 = {(f+)−1, (f−)−1} ∈ D. (4.3)

The time-reversal φ̂ of a flow φ is given by

φ̂I = φ−1
−I . (4.4)

The time-reversal map is a well defined isometry of both D◦(R,D) and C◦(R,D).
As before, let a and b be the diffusivity and drift of a diffusive flow with law µA. We

require that a and b satisfy the smoothness requirements of Section 2 and further require
that a is differentiable with respect to x with derivative a′(t, x), which is L-Lipschitz in
x and measurable and bounded uniformly on compacts in t. Let aν(t, x) = a(−t, x) and
bν(t, x) = −b(t,−x) + a′(−t, x)/2, let νA = µa

ν ,bν

A , i.e. let it be the law of a disturbance
flow with drift and diffusivity given by bν and aν . Finally, write µ̂A for the image measure
of µA under time-reversal.

Theorem 4.1. The time-reversal of the diffusive flow µA is a diffusive flow with the new
parameters given in the previous paragraph, i.e.

µ̂A = νA. (4.5)

We will provide two proofs of this theorem: one in Section 6 which depends on
Section, 5 and one in Section 7 which does not depend on Sections 5 or 6.

5 Disturbance flows from countably many points on a circle

This section lays the ground work for Section 6. The reader may skip to Section 7 at
this point if they only wish to read the direct proof.

We start this section by defining the notion of a disturbance flow on the circle. This is
based on a notion of disturbance flow which was given in [11], but is more general, so
as to allow for our disturbance flows to have drift and varying diffusivity. We will then
proceed to state and prove two propositions and deduce a theorem. The propositions
are as follows: firstly, under appropriate conditions a sequence of single paths from
disturbance flows can converge to a diffusion process; and secondly, a sequence of
countable families of paths from disturbance flows can converge to a countable family of
coalescing diffusions. Combining these propositions with a result from [11], we conclude
that disturbance flows can converge to coalescing diffusive flows.

We specify a disturbance flow by a family of probability distributions on D written

η = {ηh,t : h > 0, t ∈ R}. (5.1)

The parameters of the family are h > 0, which corresponds to the size of the disturbance
(the limit for our convergence later will be taking h to 0 while making disturbances more
frequent) and time t, which allows our flow to be inhomogeneous in time. We require
that η be measurable as a function of t.

Given f1, f2 ∈ D, define f2 ◦f1 := {f−2 ◦f
−
1 , f

+
2 ◦f

+
1 }. This is not in general an element

of D, however, so long as f1 sends no interval of positive length to a point of discontinuity
of f2, we will have f2 ◦ f1 ∈ D. To avoid this issue, we will only consider families of
probability distributions on D such that, if Fh,t ∼ ηh,t, then

F+
h,t(x) = F−h,t(x) a.s. ∀x, t ∈ R and h ∈ R+. (5.2)

Where R+ = {h ∈ R : h > 0}. We denote the set of such families by D∗, and assume from
here on that η = {ηh,t : h > 0, t ∈ R} ∈ D∗. Let N be a Poisson random measure on R of
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Time-reversal of coalescing diffusive flows

intensity h−1 and set

Nt =

{
N(0, t], t ≥ 0

−N(t, 0], t < 0.
(5.3)

Let
tn = inf{t : Nt ≥ n} (5.4)

and {Fh,tn : h > 0, n ∈ N} be independent random variables with Fh,tn ∼ ηh,tn . We will
sometimes write Fn for Fh,tn .

We extend the inverse functions of Section 4 to families of probability distributions
F ∈ D∗ by setting

(F−1)h,t(y) = (Fh,t)
−1(y) (5.5)

where the inverse on the right hand side is being taken with respect to the x argument
(as opposed to the implicit ω argument). Also let F̃h,t(x) = Fh,t(x)− x.

Then, for any interval I, define

ΦI(x) = x+

∫
I

F̃h,r(φI∩(−∞,r))N(dr). (5.6)

Write Φ for the family of maps ΦI where I ranges over all bounded intervals in R. We
call Φ the Poisson disturbance flow or just the disturbance flow and write µηA for the
distribution of Φ in D◦(R,D).

Fixing e = (s, x) ∈ R2 we define 2 processes Xe,±
t by setting Xe,±

t = Φ±(s,t](x) for t ≥ s.
Because Φ ∈ D a.s. we have a.s. that for all t ∈ Q≥s

Xe,−
t = Xe,+

t (5.7)

and thus by right continuity of Xe,± we have a.s. that for all t ≥ s,

Xe,−
t = Xe,+

t . (5.8)

Thus, we drop the ± and write simply Xe. Write µηe for the distribution of Xe on the
Skorokhod space De. Similarly, for E = (ek ∈ R2 : k ∈ N), (Xek : k ∈ N) is a random
variable in DE , and we write µηE for its distribution on DE .

Given a family η ∈ D∗, and coefficients a and b as in Section 2, we define the functions

bh(t, x) =
1

h
E(F̃h,t(x)) (5.9)

ah(t, x) =
1

h
E(F̃h,t(x)2) (5.10)

Mh = sup
x∈[0,1],|t|≤T,ω∈Ω

|F̃h,t(x)| (5.11)

Bh = sup
x∈[0,1],|t|≤T

|bh − b| (5.12)

Ah = sup
x∈[0,1],|t|≤T

|ah − a|. (5.13)

The following three conditions will be important for the next proposition and conse-
quently for the rest of the results:

lim
h↘0

Bh = 0 ∀T ∈ R+ (5.14)

lim
h↘0

Ah = 0 ∀T ∈ R+ (5.15)

lim
h↘0

Mh = 0 ∀T ∈ R+. (5.16)
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Proposition 5.1. Suppose a and b are functions as specified for Equation (2.1), and that
η is such that conditions (5.14), (5.15) and (5.16) hold. Then we have µηe → µa,be weakly
on De, as h→ 0.

Proof. Let (Xn)n∈N be a sequence of processes distributed according to µηe with h→ 0

as n → ∞. By the definition of the Skorokhod metric, it suffices to show that for any
T > s, the restrictions of Xn to [s, T ] converge weakly to a solution of the SDE on [s, T ].
For the remainder of this proof we consider Xn to be restricted to [s, T ]. We then take
e = (s, x) = (0, 0) and T = 1, without loss of generality.

Firstly, we shall calculate (up to an error that is small for small |t− s|) two expected
values (defined in terms of s, t ∈ R). We shall then prove a characterization of tightness of
the sequence. This will require us to use these calculations to show that the process can’t
vary too much on a given interval, then deduce the existence of a subsequential limit
of each subsequence by Prokhorov’s theorem. Finally we will identify the distribution
of every subsequential limit as a weak solution of Equation (2.1), using again the 2
expectation calculations. Then we will conclude the proof using the uniqueness in law
for such solutions.

Let Fnt be the completion of the filtration generated by Xn. For 1 ≥ t ≥ s ≥ 0 we
have

E(Xn
t −Xn

s |Fns ) (5.17)

=e−
t−s
h
t− s
h
E(F̃Ns+1(Xn

s )|tNs+1 ≤ t < tNs+2,Fns ) + E1 (5.18)

=

∫ t

s

bh(r,Xn
s )dr + E1 + E2 (5.19)

=E

(∫ t

s

bh(r,Xn
r )dr

)
+ E1 + E2 + E3. (5.20)

Where the approximation errors Ei can be bounded as follows. Note that in the above
calculation h is held constant so can be thought of as such for these bounds. Let
Gs,k = F̃Ns+k ◦ ... ◦ F̃Ns+1

|E1| =

∣∣∣∣∣∣
∑
k≥2

exp

(
− t− s

h

)
(t− s)k

k!hk
E(Gs,k(Xn

s )|tNs+k ≤ t < tNs+k+1)

∣∣∣∣∣∣ (5.21)

≤ exp

(
− t− s

h

)∑
k≥2

(t− s)k

k!hk
kMh (5.22)

= exp

(
− t− s

h

)
t− s
h

Mh

∑
k≥1

(t− s)k

k!hk
(5.23)

=Mh
t− s
h

exp

(
− t− s

h

)(
exp

(
t− s
h

)
− 1

)
(5.24)

=O
(
(t− s)2

)
. (5.25)

Note that
∫ t
s
bh(r,Xn

s )dr = t−s
h E(F̃Ns+1(Xn

s )|tNs+1 ≤ t < tNs+2) to understand E2, which
can be bounded as follows,

|E2| =
(

1− exp

(
− t− s

h

))
t− s
h
|E(F̃Ns+1(Xn

s )|tNs+1 ≤ t < tNs+2,Fns )| (5.26)

≤
(

1− exp

(
− t− s

h

))
t− s
h

Mh (5.27)

= O
(
(t− s)2

)
. (5.28)
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Then finally,

|E3| = E

(∣∣∣∣∫ t

s

(bh(r,Xn
s )− bh(r,Xn

r )) dr

∣∣∣∣∣∣∣∣Fns ) (5.29)

≤ (t− s)(2b∗ + 2Bh)P(tNs+1 ≤ t) (5.30)

= O
(
(t− s)2

)
. (5.31)

Breaking the interval (s, t] into a large number of small intervals and taking the limit
as the interval sizes go to 0, we have that,

E(Xn
t −Xn

s | Fns ) = E

(∫ t

s

bh(r,Xn
r )dr

∣∣∣∣Fns ) . (5.32)

Similarly

E((Xn
t −Xn

s )2 | Fns ) = E

(∫ t

s

ah(r,Xn
r )dr

∣∣∣∣Fns ) . (5.33)

The characterization of tightness that we shall use is given in Billingsley 1968 [3]
Theorem 15.3, it says that tightness is equivalent to the following two conditions holding.

1. For all ε > 0 there exists a K such that

P

(
sup
t
|Xn

t | ≥ K
)
≤ ε, ∀n ≥ 1. (5.34)

2. Taking
w′′Xn(δ) = sup

t1≤t≤t2
t2−t1≤δ

min{|Xn(t)−Xn(t1)|, |Xn(t)−Xn(t2)|} (5.35)

and
wXn(I) = sup

s,t∈I
|Xn

s −Xn
t | (5.36)

for all ε > 0 there exists δ ∈ (0, 1) and N ∈ N such that

P(w′′Xn(δ) ≥ ε) ≤ ε, ∀n ≥ N (5.37)

and
P(wXn [0, δ) ≥ ε) ≤ ε, ∀n ≥ N (5.38)

and
P(wXn(1− δ, 1] ≥ ε) ≤ ε, ∀n ≥ N. (5.39)

Note that Bh and Ah going to 0 as n → ∞ means that |bh| and |ah| are bounded
uniformly in n, x and t ∈ [0, 1]. We call the bounds B and A respectively.

The first condition can be shown as follows, where TK is the first time t such that
Xn
t ≥ K.

P

(
sup
t≤1

Xn
t ≥ K

)
(5.40)

=P (TK ≤ 1) (5.41)

≤P
(
Xn

1 ≥
K

2

)
+ P

(
TK ≤ 1, Xn

1 ≤
K

2

)
(5.42)

≤P
(
Xn

1 ≥
K

2

)
+ E

(
P

(
Xn

1 −Xn
Tk∧1 ≤ −

K

2

∣∣∣∣FTK∧1

))
(5.43)

≤ 2A

(K2 −B)2
(5.44)
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where in the final inequality we have used Chebyshev’s inequality. This bound goes to 0

as K →∞ uniformly in h. Combining with a corresponding bound for inf Xn
t gives the

first condition.
Note that for the second condition, it suffices to show the following stronger state-

ment, where Iδ is the set of subintervals of [0, 1] of length δ.
For all ε > 0 there exists δ ∈ (0, 1) and N ∈ N such that

P(∃I ∈ Iδ such that wXn(I) ≥ ε) ≤ ε ∀n > N (5.45)

which in turn is implied by the following, where I′δ is the set of intervals of length δ with
endpoints that are multiples of δ/2.

For all ε > 0 there exists δ with 2 ≤ 1
δ ∈ N and N ∈ N such that

P(∃I ∈ I′δ such that wXn(I) ≥ ε) ≤ ε ∀n > N. (5.46)

There are only 2
δ elements in I′δ, so using a union bound it suffices to show that for

sufficiently small h and some δ we have

sup
I∈I′δ

P(wXn(I) ≥ 4ε) ≤ δε

2
(5.47)

where a factor of 4 has been included purely for convenience later.
We present the proof for I = [0, δ] but the same argument and bound will hold for all

I ∈ I′δ. We have that

P(wXn(I) ≥ 4ε) ≤ P
(

sup
t≤δ

Xn
t ≥ 2ε

)
+ P

(
inf
t≤δ

Xn
t ≤ −2ε

)
. (5.48)

We will bound the first term on the right with a bound that will also apply to the second
term by symmetry.

Unfortunately, Chebyshev’s inequality is not strong enough to bound the first term
sufficiently tightly. We will apply the Azuma-Hoeffding inequality which requires the
following set-up. Let X ′nt = Xn

t − tB and note that this is a super-martingale. Fix
0 < α < 1

2 , let R0 = 0 and for i ≥ 1 let Ri be the first time t > Ri−1 such that
|X ′nt −X ′nRi−1

| ≥Mα
h .

Firstly, we show that only about δM−2α
h of the Ri are less than δ. Consider the

distribution of Ri −Ri−1 conditional on FnRi−1
, by the same argument used in the first

condition we have the following for l < Mα
h

4B

P(Ri −Ri−1 ≤ l) ≤
2lA

(Mα
h − 2lB)2

(5.49)

≤ l 8A

M2α
h

. (5.50)

From which we deduce that Ri −Ri−1 stochastically dominates the uniform distribution

on [0,
M2α
h

8A ] for sufficiently small h. An application of the Azuma-Hoeffding Inequality to
uniform random variables gives

P(Rd 32Aδ
M2α
h

e ≤ δ) ≤ exp

(
− Aδ

M2α
h

)
. (5.51)

Thus letting J = d 32Aδ
M2α
h
e and R be the minimum of RJ and the first time Ri such that

X ′Ri > ε− Mh

2 ,

P

(
sup
t≤δ

X ′nt ≥ 2ε

)
≤ exp

(
− Aδ

M2α
h

)
+ P

(
sup
i≤J

X ′nRi ≥ 2ε−Mh

)
(5.52)
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and

P

(
sup
i≤J

X ′nRi ≥ 2ε−Mh

)
≤

P

(
X ′nRJ ≥ ε−

Mh

2

)
+ E

(
P

(
X ′nRJ −X

′n
R ≤ −ε+

Mh

2

∣∣∣∣FnR)) . (5.53)

We will bound the first term on the right of the last inequality, and note the second
term can be bounded similarly. Let X ′′ni = X ′nRi − iMh. Note that this is a discrete
super-martingale with step size bounded by Mα

h +Mh.

P

(
X ′nRJ ≥ ε−

Mh

2

)
≤ P (X ′′nJ ≥ ε− (J + 1)Mh) (5.54)

≤ exp

(
− (ε− (J + 1)Mh)2

2J(Mα
h +Mh)2

)
(5.55)

≤ exp

(
− ε2

65Aδ

)
for sufficiently small h (5.56)

where we have used the Azuma-Hoeffding inequality again. Bringing these bounds
together gives that for a given δ we have for sufficiently small h that

sup
I∈I′δ

P(wXn(I) ≥ 4ε) ≤ 2 exp

(
− Aδ

M2α
h

)
+ 4 exp

(
− ε2

65Aδ

)
. (5.57)

Thus, by choosing δ so that the second term is less than δε
4 , and then choosing N such

that, for all n ≥ N we have, h is sufficiently small that the bound (5.56) holds and the first
term is less than δε

4 , we can conclude that the second condition holds and the sequence
µηe is tight.

By Prokhorov’s theorem, we now know that every subsequence has a weakly conver-
gent subsequence, and by standard arguments it suffices to show that the limit of every
such sequence is µa,be (restricted to [0, 1]). Let µ be the limit of such a subsequence and
X be distributed according to µ.

We now show that X is a solution of the SDE (2.1). Let (Ft)t≥s be the completion of
the filtration generated by X, and let W be given by

Wt =

∫ t

0

1

σ(s,Xs)
dXs −

∫ t

0

b(s,Xs)

σ(s,Xs)
ds. (5.58)

Note continuity of X follows from the bound (5.45), and so F is right-continuous and
thus satisfies the usual conditions. It is immediate that Xs = x and Equation (2.2) holds
by the definition of W .

The identities (5.32) and (5.33) show in the limit n→∞ that bothX and the quadratic
variation of X are a.s. bounded on each compact interval. The same argument used to
get these identities can also be used to find that

E(Wt −Ws|Fs) = 0 (5.59)

and
E((Wt −Ws)

2|Fs) = t− s. (5.60)

From the definition of W and the continuity of X, we can deduce W is continuous
a.s., putting this together with the above expectations we can conclude by Lévy-
Characterization that W is a (Ft)-Brownian motion.

Thus X solves (2.1) and has the required law.
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Define λh to be the infimum of λ such that,

λ ≤ |x− y| ≤ 1− λ =⇒ 1

h
E(|F̃h,t(x)F̃h,t(y)|) < λ ∀t. (5.61)

Proposition 5.2. Under the conditions of Proposition 5.1 and that λh → 0, we have
µηE → µa,bE weakly on DE .

Proof. We write Xk for Xek . The family of laws on DE is tight as each family of marginal
laws onDek is tight. Let µ be a weak limit law for µηE , then for all j, k and all t > s ≥ sj∨sk,
letting E∗(·) = E(· | tNs+1 ≤ t < tNs+2,Fs) we have,

E(Xj
tX

k
t −Xj

sX
k
s | Fs) (5.62)

=
t− s
h
E∗(FNs+1(Xj

s )FNs+1(Xk
s )−Xj

sX
k
s ) +O

(
(t− s)2

h2

)
(5.63)

=
t− s
h
E∗(F̃Ns+1(Xj

s )Xk
s + F̃Ns+1(Xk

s )Xj
s + F̃Ns+1(Xk

s )F̃Ns+1(Xj
s ))

+O

(
(t− s)2

h2

) (5.64)

=

∫ t

s

bh(r,Xj
s )drXk

s +

∫ t

s

bh(r,Xk
s )drXj

s

+
(t− s)
h

E∗(F̃Ns+1(Xk
s )F̃Ns+1(Xj

s )) +O

(
(t− s)2

h2

) (5.65)

=E

(∫ t

s

b(r,Xj
r )Xk

r + b(r,Xk
r )Xj

rdr | Fs
)

+ E1

+
(t− s)
h

E∗(F̃Ns+1(Xk
s )F̃Ns+1(Xj

s )) +O

(
(t− s)2

h2

)
.

(5.66)

Where we have (by the same method used to bound E3 in Proposition 5.1) that

|E1| = O
(
(t− s)2

)
(5.67)

and provided |Xj
s −Xk

s | ≥ λh (distance considered modulo one) we have∣∣∣∣ (t− s)h
E∗(F̃Ns+1(Xk

s )F̃Ns+1(Xj
s ))

∣∣∣∣ ≤ (t− s)λh. (5.68)

So for (t− s) 1
2 � h� 1 we have

E
(
Xj
tX

k
t −Xj

sX
k
s

∣∣Fs, |Xj
s −Xk

s | ≥ λh
)

(5.69)

=E

(∫ t

s

b(r,Xj
r )Xk

r + b(r,Xk
r )Xj

rdr

)
+ o(t− s). (5.70)

Hence, breaking [sj ∨ sk,∞) into intervals of length t− s and taking the limit as t− s
and h go to 0, gives that the process

Xj
tX

k
t −

∫ t

sj∨sk
Xk
s b(s,X

j
s ) +Xj

sb(s,X
k
s )ds, (5.71)

stopped at time T jk is a martingale. Further, this process must be continuous because
Proposition 5.1 tells us that Xj

t and Xk
t are continuous. We know from Proposition 5.1

that, under µ, both (Xk
t −

∫ t
sk
b(Xk

s )ds)t≥sk and
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(
(Xk

t )2 − 2

∫ t

sk

Xk
s b(s,X

k
s )ds−

∫ t

sk

a(s,Xk
s )ds

)
t≥sk

(5.72)

are continuous local martingales.
It remains to show that Xj

t − Xk
t is constant for t ≥ T jk after which the result

follows from Proposition 2.1. Let Yt = Xj
t −Xk

t and assume w.l.o.g that Y0 > 0 and
YT jk = 0. The process Y inherits the property of not changing sign as our disturbances
are order preserving. Given R ∈ R and ε > 0 localize Y using the stopping time
S = inf{t : Yt > 1 or t > R} and note that

E|Y ST jk+t| ≤
∫ T jk+t

T jk
EL|Y Ss |ds = L

∫ T jk+t

T jk
E|Y Ss |ds. (5.73)

Recall L is the Lipschitz constant of b. So, by Gronwall’s inequality, E|Y ST jk+t| is identically

0, up to time t = R. So Yt = 0 for all t > T jk a.s. and we are done.

Let E = (ek : k ∈ N) be an enumeration of Q2. Write ZE,± for the maps D◦(R,D)→
DE given by ZE,± = (Zek,± : k ∈ N). Write ZE = ZE,+. The following result is a criterion
for weak convergence on D◦(R,D), and is Theorem 5.1 of [11].

Theorem 5.3. Let (µn : n ∈ N) be a sequence of Borel probability measures on D◦(R,D),
and let µ be a Borel probability measure on C◦(R,D). Assume that ZE,− = ZE,+ holds µn-
almost surely for all n and µ-almost surely. Assume further that µn ◦ (ZE)−1 → µ◦ (ZE)−1

weakly on DE . Then µn → µ weakly on D◦(R,D).

The following result generalizes Theorem 6.1 of [11] to the case of varying drift and
diffusivity. It is immediate from Proposition 5.2 and Theorem 5.3.

Theorem 5.4. Given a family of distributions F along with a, b, Lipschitz in space mea-
surable in time, obeying Equations (5.14)-(5.16) and with λh → 0 then the convergence

µFA → µa,bA weakly on D◦(R,D) as h→ 0 (5.74)

holds.

6 Proof of Theorem 4.1 using disturbance flows

In this section, we identify the time-reversal of a generic disturbance flow. We then
apply this identification to an explicit sequence of flows and, as the limit of the reversals
must be the reversal of the limit, we can deduce Theorem 4.1.

The following proposition is a generalization of the first half of Proposition 7.1 of [11],
which can be recovered by assuming that bh ≡ 0 and ah ≡ 1.

Proposition 6.1. Set Gh,t = F−1
h,−t. The time-reversal of a disturbance flow with dis-

turbance Fh is a disturbance flow with disturbance Gh, for all h. Thus µ̂FhA = µGhA , for
all h.

Proof. The proof is very close to the second half of the proof of proposition 7.1 of [11].
Set m and n to be the minimal and maximal values taken by Nt at jumps in I. Also,

take −n̂ and −m̂ to be the minimal and maximal values taken by Nt at jumps in −I. Then,
we can define a disturbance flow Φ with disturbance Fh, by

Φ±I = F±h,tn ◦ · · · ◦ F
±
h,tm

. (6.1)

Then
Φ̂±I = G±h,−t−n̂ ◦ · · · ◦G

±
h,−t−m̂ . (6.2)

By the properties of the Poisson process (−t−m̂, . . . ,−t−n̂) is equal in distribution to
(tm, . . . , tn), so Φ̂ is a disturbance flow with disturbance Gh.
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In [11], it is then shown for a ≡ 1 and b ≡ 0 that µA is invariant under time-reversal.
We generalize this result to Theorem 4.1.

Theorem 4.1. If a has spatial derivative a′ and a, b and a′ are uniformly bounded on
compacts in time and L-Lipschitz in space then

µ̂A = νA := µa
ν ,bν

A (6.3)

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the time reversal
of µA.

Proof. The proof is based on the fact that given a family (Fh)h>0 (satisfying the conditions

of Proposition 5.1) we have that: µ
F−1
h,−t
A = µ̂FhA → µ̂A. It thus suffices to show for some

specific family (Fh)h>0 that µ
F−1
h,−t
A → νA. This is true by Theorem 5.4 if (F−1

h,−t)h>0

satisfies the conditions that we put on F , but with a(t, x) and b(t, x) replaced by aν(−t, x)

and bν(−t, x). Let âh, â, b̂h and b̂ be defined from F−1 as ah and bh are defined from F .

For every fixed h, consider the sequence tn, and let θh,tn be i.i.d. uniform random
variables on [0, 1]. We will write θ as shorthand for θh,tn , and for the remainder of this
proof t will refer to an element of {tn : n ∈ N}. Let

rθ,t =
h

2
3

2

(
b

(
t, θ − 1

2

)
− a′

(
t, θ − 1

2

))
(6.4)

and

w =

(
3a(t, θ)h

2

) 1
3

. (6.5)

Then, for sufficiently small h, we consider the family of disturbances given by setting,

Fh,t(x) =



x+ rθ,t (x− θ) ∈ ( 1
2 − h

1
3 , 1

2 + h
1
3 )

1
2 + h

1
3 + rθ,t + θ (x− θ) ∈ ( 1

2 + h
1
3 , 1

2 + h
1
3 + rθ,t)

1
2 − h

1
3 + rθ,t + θ (x− θ) ∈ ( 1

2 − h
1
3 + rθ,t,

1
2 − h

1
3 )

θ (x− θ) ∈ (−w,w)

x otherwise.

(6.6)

Note that at least one of the intervals specified is empty, depending on the sign of rθ,t.
An example from this family is graphed in Figure 2.

Note that λh → 0 both for F , as originally defined, and with F−1 substituted for F .
Note that, the disturbance of size rθ,t is negligible in computing λh as it is O(h

2
3 ) in

magnitude O(h
1
3 ) in width and always multiplied by something of size O(h

1
3 ) in the

definition of λh. The first three cases in the above definition also contribute nothing to
either limh→0 ah or limh→0 âh, and their contribution to limh→0 bh is exactly the negative
of their contribution to limh→0 b̂h. So it suffices to prove that the proposition holds for
the case b = a′, i.e. the case where rθ,t ≡ 0.

We write w± for the largest offsets from x a disturbance can have whilst not mapping
x to itself. For sufficiently small h they are given by the implicit equation

w± =

(
3a(t, x± w±)h

2

) 1
3

. (6.7)
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Time-reversal of coalescing diffusive flows

Fh,t(x)

x

1

1

θ

θ − w θ + w

θ + 1
2 − h

1
3 + rθ,t

θ + 1
2 − h

1
3

θ + 1
2 + h

1
3

Figure 2: An example from the specific family of disturbances used in this proof.

We expanding this by Taylor’s theorem and by substituting the right hand side in for w±
on the right hand side. Letting

c = ch(x) =

(
3a(t, x)h

2

) 1
3

(6.8)

this expansion gives

w± = c± a′(t, x)c2

3a(t, x)
+ o(h

2
3 ). (6.9)

For the rest of this proof unless otherwise specified a, a′ and b are assumed to be
evaluated at (t, x). Note that the o(h

2
3 ) term is small uniformly in t, this will allow use to

conclude uniform convergence. All following uses of little o notation in this proof have
implied constants independent of t, in all cases this follows from the fact that b and a are
bounded uniformly.

We can now calculate

ah =
1

h
E
(
F̃h,t(x)2

)
(6.10)

=
1

h

∫ w+

−w−
α2dα (6.11)

=
1

3h

(
w3

+ + w3
−
)

(6.12)

=
2c3

3h
+ o(1) (6.13)

= a+ o(1) (6.14)

→ a (6.15)
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and

bh =
1

h
E
(
F̃h,t(x)

)
(6.16)

=
1

h

∫ w+

−w−
αdα (6.17)

=
1

2h

(
w2

+ − w2
−
)

(6.18)

=
1

2h

((
c2 +

2a′c3

3a
+ o(h)

)
−
(
c2 − 2a′c3

3a
+ o(h)

))
(6.19)

=
2a′c3

3ha
+ o(1) (6.20)

= a′ + o(1) (6.21)

→ a′. (6.22)

By Taylor and binomial expansion we also get

ch(x+ α) = ch(x)

(
1 +

a′α

3a

)
+ o(h

1
3α). (6.23)

Which allows us to calculate,

âh(−t, x) =
1

h

∫ 0

−w−
(α+ ch(x+ α))2dα+

1

h

∫ w+

0

(α− ch(x+ α))2dα (6.24)

=
1

h

∫ 0

−c

(
α2 + 2αc+ c2

)
dα+

1

h

∫ c

0

(
α2 − 2αc+ c2

)
dα+ o(1) (6.25)

=
2

h

∫ c

0

(
α2 − 2αc+ c2

)
dα+ o(1) (6.26)

=
2

h

(
c3

3
− c3 + c3

)
+ o(1) (6.27)

= a+ o(1) (6.28)

→ a (6.29)

and

b̂h(−t, x) =
1

h

∫ 0

−w−
(α+ ch(x+ α)) dα+

1

h

∫ w+

0

(α− ch(x+ α)) dα (6.30)

= bh +
c

h

∫ 0

−w−

(
1 +

a′α

3a
+ o(α)

)
dα− c

h

∫ w+

0

(
1 +

a′α

3a
+ o(α)

)
dα (6.31)

= bh +
c

h

(
w− − w+ −

a′

6a
(w2
− + w2

+) + o(h
2
3 )

)
(6.32)

= bh +
c

h

(
−2a′c2

3a
− a′c2

3a

)
+ o(1) (6.33)

= bh − a′ −
a′

2
+ o(1) (6.34)

= −a
′

2
+ o(1) (6.35)

→ −a
′

2
. (6.36)

So the result holds.
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The following corollary is similar to Corollary 7.3 of [11] (and with an almost identical
proof) in that it gives weak convergence for paths running both forward and backward
from a given sequence of points. First we define the notation for this result.

Given e = (s, x) ∈ R2, define D̄e = {ξ ∈ D(R,R) : ξs = x} and for E = (ek : k ∈ N) set
D̄E =

∏∞
k=1 D̄ek . For φ ∈ D◦(R,D), define

Z̄e,±t (φ) =

{
φ±(s,t](x), t ≥ s,
(φ−1)±(t,s](x), t < s.

(6.37)

Then Z̄e,±(φ) ∈ D̄e and extends Ze,±(φ), from [s,∞) to the whole of R. Let ηh denote
the law of Fh. For all e ∈ R2, we have Z̄e,− = Z̄e,+ almost everywhere on D◦(R,D) wth
respect to both µa,bA and µηhA , for all h. So we drop the ±. Denote by µ̄ηhE the law of

(Z̄ek : k ∈ N) on D̄E under µηhA and by µ̄a,bE the corresponding law under µa,bA .

Corollary 6.2. µ̄ηhE → µ̄a,bE weakly on D̄E ,

Proof. Given φ with law µa,bA , we have that almost surely

Z̄(s,x±δ),+(φ)→ Z̄(s,x),+(φ) (6.38)

uniformly on R as δ → 0. We also have φ ∈ C◦(R,D) almost surely and it follows that
Z̄(s,x),+ is continuous at φ almost surely. Thus, the result holds as we already know the
convergence holds component wise.

7 Proof of Theorem 4.1 without disturbance flows

In this section we first prove a version of Theorem 4.1 with the extra hypothesis
that a and b are Lipschitz in time. Then we use an approximation argument to show
Theorem 4.1 in the general case.

Theorem 7.1. If a has spatial derivative a′ and a, b and a′ are Lipschitz in both time and
space then

µ̂A = νA := µa
ν ,bν

A (7.1)

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the time reversal
of µA.

Proof. Let φ ∼ µA. It suffices to show that the restriction of φ̂ to E given by ZE,+(φ̂),
which we shall call φ̂E , has distribution νE , for each countable set E ⊂ R × R. The
distribution νE is characterised by its restriction to two point motions by Theorem 3.1.

Coalescence of two motions follows immediately from the definition of time-reversal.
As does the continuity of a single motion.

As φts and φsu are independent for s ∈ (u, t), we have the Markov property. Thus, by
Donsker’s Invariance Principle, we can identify the two point motion from just the mean
and covariance matrix of small increments.

First, we consider each one point motion separately. We will proceed by relating the
backward and forward flows, then, noting that increments of the forward process are
small, we approximate a and b on an interval that the forward process almost surely
won’t leave in such a way as to make exact calculations possible. Then we check that
the incurred error is small using that a and b are Lipschitz in time, and that the exact
calculations give the required answer. Finally, we will show that the increments of
each process are independent, conditional on an event of large probability, and so the
covariances are small.
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We have the relation,

P
(
φ̂t+h,t(y) < x

)
= P(φ−t,−t−h(x) > y) (7.2)

which we can use to determine the distribution of φ̂t+h,t(y) if we first understand the
distributions of the variables φ−t,−t−h(x).

To study these variables, we first show that the forward paths are localised. Start by
noting

P

(
sup

0<δt<h
|φt+δt,t(x)− x| > h

1
2−ε
)
≤P

(
sup

0<δt<h
φt+δt,t(x)− x > h

1
2−ε
)

(7.3)

+ P

(
inf

0<δt<h
φt+δt,t(x)− x < −h 1

2−ε
)
. (7.4)

Each of these terms can be bounded in the same way. To bound the first term, consider
the process φt+δt,t(x)− b∗δt parametrised by δt. This is a supermartingale with diffusivity
bounded by a∗, and thus by the reflection principle

P

(
sup

0<δt<h
φt+δt,t(x)− x > h

1
2−ε
)
≤ 2Φ

(
−h

1
2−ε − b∗h
2(a∗h)

1
2

)
. (7.5)

Thus we can derive that,

P

(
sup

0<δt<h
|φt+δt,t(x)− x| > h

1
2−ε
)

(7.6)

≤4Φ

(
−h

1
2−ε − b∗h
2(a∗h)

1
2

)
(7.7)

≤ exp
(
−C(a∗, b∗)h−2ε

)
for sufficiently small h (7.8)

where C is positive and independent of h and t.
Now we approximate a and b by ã and b̃ which, on the interval [y − 2h

1
2−ε, y + 2h

1
2−ε],

are given by,

ã(s, x) =
1

4a
((x− y)a′ + 2a)

2
(7.9)

and

b̃(s, x) =
b

2a
((x− y)a′ + 2a) . (7.10)

Where we have written a for a(t, y), a′ for a′(t, y) and b for b′(t, y). We then extend ã

and b̃ to functions on the circle which are both L̃-Lipschitz continuous and L̃-Lipschitz
differentiable, for some L̃. For sufficiently small values of h, this extension can and will
be chosen so that a∗/2 ≤ ã ≤ 2a∗. Note that for all s, a(t, y) = ã(s, y), a′(t, y) = ã′(s, y)

and b(t, y) = b̃(s, y), this will turn out to make them sufficiently good approximations.
We now approximate the diffusion process φt+δt,t(x) for each x ∈ [y − h 1

2−ε, y + h
1
2−ε]

by a diffusion process Xδt started from x, with drift b̃ and diffusivity ã, but driven by the
same Brownian motion Bδt as φt+δt,t(x). Note that ã and b̃ are constant with respect to
time. Let G be the event,{

sup
0<δt<h

|φt+δt,t(x)− x| < h
1
2−ε
}
∩
{

sup
0<δt<h

|Xδt − x| < h
1
2−ε
}

(7.11)

and note the second event in this union has probability bounded like the first, so

P(G) = 1− O
(
e−Ch

−2ε
)

. Note also that on this event, X and φt+δt,t(x) stay within the

interval we explicitly defined ã and b̃ on.
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On this event the error in the approximation is given by,

∆δt := Xδt − φt+δt,t(x) (7.12)

=

∫ δt

0

(
b̃(t,Xu)− b(t+ u, φt+u,t(x))

)
du (7.13)

+

∫ δt

0

(√
ã(t,Xu)−

√
a(t+ u, φt+u,t(x))

)
dBu. (7.14)

We have that if Eh := supδt<h |∆δt| then,

Eh ≤ sup
δt<h

∫ δt

0

(
|b̃(t,Xu)− b̃(t, φt+u,t(x))|+ |b̃(t, φt+u,t(x))− b(t, y)| (7.15)

+ |b(t, y)− b(t, φt+u,t(x))| (7.16)

+ |b(t, φt+u,t(x))− b(t+ u, φt+u,t(x))|
)
du (7.17)

+

∣∣∣∣∫ δt

0

(√
ã(t,Xu)−

√
ã(t, φt+u,t(x)) +

√
ã(t, φt+u,t(x))−

√
a(t, y) (7.18)

+
√
a(t, y)−

√
a(t, φt+u,t(x)) (7.19)

+
√
a(t, φt+u,t(x))−

√
a(t+ u, φt+u,t(x))

)
dBu

∣∣∣∣. (7.20)

The first integrand is bounded, on G, by 2L̃h
1
2−ε+ 2Lh

1
2−ε+ 2L̃h

1
2−ε+Lh ≤ 4(L+ L̃)h

1
2−ε.

The first integral is therefore bounded by 4δt(L+ L̃)h
1
2−ε. To bound the second integrand

we first observe that the square root function is Lipschitz with some constant Ls on the
interval [a∗/2, 2a

∗]. Secondly, note that we can achieve a stronger bound than for the
first integrand as a′ is Lipschitz in x. The second integrand is thus bounded, on G, by
d1 := 2L̃Lsh

1
2−ε + 2LLsh

1−2ε + 2L̃Lsh
1−2ε + LLsh. The second integral is therefore a

continuous martingale with diffusivity bounded by d1. It can therefore be written as a
time change of a standard Brownian motion, such that h can correspond to a time no
later than hd1. Equivalently, there exists a Brownian motion B′ such that, on the event
G, Eh ≤ ∆′h where

∆′h = 4h(L+ L̃)h
1
2−ε + sup

δt<h

∣∣∣∣∣
∫ δt

0

d1dB
′
u

∣∣∣∣∣ . (7.21)

Consider the event G′ = {∆′h < h1−2ε}. The probability of this event is 1− O(e−Ch
−2ε

).
This isn’t quite a strong enough bound due to the h

1
2−ε term in d1. However, as that term

is proportional to the bound we have on Xu−φt+u,t(x) and this result provides a stronger
bound, we can bootstrap this argument. To that effect note that, on G ∩G′, the second
integrand is bounded by 2L̃Lsh

1−2ε + 2(L+ L̃)Lsh
1−2ε + LLsh ≤ 4(L+ L̃)Lsh

1−2ε. Thus,
as before, there exists a Brownian motion B′′ such that, on the event G ∩G′, Eh ≤ ∆′′h
where

∆′′h = 4h(L+ L̃)h
1
2−ε + sup

δt<h

∣∣∣∣∣
∫ δt

0

4(L+ L̃)Lsh
1−2εdB′′u

∣∣∣∣∣ . (7.22)

Finally consider G′′ = {∆′′h < h
3
2−3ε} and note that the probability of this event, condi-

tioned on G ∩G′ is 1−O(e−Ch
−2ε

). Thus we can conclude that

P(|∆h| > h
3
2−3ε) ≤ P(Eh > ∆′′h or ∆′′h ≥ h

3
2−3ε) (7.23)

≤ 1− P(G ∩G′ ∩G′′) (7.24)

= O
(
e−Ch

−2ε
)
. (7.25)

This result suffices to control the error of the approximation.
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Next, we calculate the distribution of Xh. Note that on the event G, we have, for
some Brownian motion W , that

dXt =
ba′

2a

(
Xt − y +

2a

a′

)
dt+

a′

2
√
a

(
Xt − y +

2a

a′

)
dWt. (7.26)

Where we are again writing a for a(t, y), a′ for a′(t, y) and b for b′(t, y).

We consider three separate possibilties here; a′ > 0, a′ = 0, or a′ < 0. The a′ < 0 case
we omit as it follows from the a′ > 0 case by symmetry. If a′ = 0 then define f(x) = x/

√
a

otherwise define f(x) = 2
√
a

a′ log(x− y+ 2a
a′ ). Note that as a′ ≤ L and a > a∗ the logarithm

is well defined, so long as h is sufficiently small. Either way an application of Itō’s lemma
gives that

df(Xt) =
1√
a

(
b− a′

4

)
dt+ dWt. (7.27)

The choices for ã, b̃ and f were made so that this equation has constant coefficients.

Thus f(Xh) is normally distributed with mean f(x) + h√
a

(
b− a′

4

)
and variance h. So we

can calculate that P(Xh > y) = P(f(Xh) > f(y)) = Fy(x) +O(e−Ch
−2ε

), where

Fy(x) := Φ

(
f(x)− f(y)√

h
+

√
h

a

(
b− a′

4

))
(7.28)

= Φ

(
2
√
a

a′
√
h

log

(
1 +

a′

2a
(x− y)

)
+

√
h

a

(
b− a′

4

))
. (7.29)

This implies that

P(|Xh − x| > h
1
2−ε) = O(e−Ch

−2ε

). (7.30)

We can then calculate for y = 0 and |x| < h
1
2−ε that

F ′0(x) =

(
1√

2ahπ

1

1 + a′x
2a

)
(7.31)

× exp

−1

2

(
2
√
a

a′
√
h

log

(
1 +

a′x

2a

)
+

√
h

a

(
b− a′

4

))2
 (7.32)

=
1√

2ahπ

(
1− a′x

2a
+O

(
h1−2ε

))
e−

x2

2ah (7.33)

× exp

(
− x√

ah

(
− a′x2

4
√
a3h

+

√
h

a

(
b− a′

4

))
+O

(
h1−4ε

))
(7.34)

=
1√

2ahπ

(
1− a′x

2a
+O

(
h1−2ε

))
e−

x2

2ah (7.35)

×

(
1− x√

ah

(
− a′x2

4
√
a3h

+

√
h

a

(
b− a′

4

))
+O

(
h1−6ε

))
(7.36)

=
e−

x2

2ah

√
2ahπ

(
1− x

a

(
b− a′

4
+
a′

2

)
+
a′x3

4a2h
+O(h1−6ε)

)
. (7.37)
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This is related to φ̂ by

P
(
φ̂t+h,t(y) < x

)
= P(φ−t,−t−h(x) > y) (7.38)

= F
y+O

(
h

3
2
−3ε

)(x) +O
(
e−Ch

−2ε
)

(7.39)

= Fy(x) +O

(
h

3
2−3ε sup

y∈R

dFy(x)

dy

)
+O

(
e−Ch

−2ε
)

(7.40)

and on
[
y − h 1

2−ε, y + h
1
2−ε
]

this is equal to

Fy(x) +O(h1−3ε). (7.41)

We use this to compute,

E(φ̂t+h,t(y)) (7.42)

=y +

∫ ∞
y

(
1− P

(
φ̂t+h,t(y) < x

))
dx−

∫ y

−∞
P
(
φ̂t+h,t(y) < x

)
dx (7.43)

=y +

∫ y+h
1
2
−ε

y

(
1− P

(
φ̂t+h,t(y) < x

))
dx (7.44)

−
∫ y

y−h
1
2
−ε
P
(
φ̂t+h,t(y) < x

)
dx+O

(
e−Ch

−2ε
)

(7.45)

=y +

∫ y+h
1
2
−ε

y

(1− Fy(x)) dx−
∫ y

y−h
1
2
−ε
Fy(x)dx+O

(
h

3
2−4ε

)
(7.46)

=y + h
1
2−ε −

∫ y+h
1
2
−ε

y−h
1
2
−ε

Fy(x)dx+O
(
h

3
2−4ε

)
(7.47)

=y + h
1
2−ε −

∫ h
1
2
−ε

−h
1
2
−ε
F0(x)dx+O

(
h

3
2−4ε

)
. (7.48)

Integrating by parts we can get an expression in terms of F ′0 rather than F0. That is

E(φ̂t+h,t(y)) (7.49)

=y + h
1
2−ε − h 1

2−ε
(
F0(h

1
2−ε)− F0(−h 1

2−ε)
)

+

∫ h
1
2
−ε

−h
1
2
−ε
xF ′0(x)dx+O

(
h

3
2−4ε

)
(7.50)

=y +

∫ h
1
2
−ε

−h
1
2
−ε
xF ′0(x)dx+O

(
h

3
2−4ε

)
. (7.51)

Substituting the approximation of F ′0(x) into that integral and integrating gives

E(φ̂t+h,t(y)) (7.52)

=y +

∫ h
1
2
−ε

−h
1
2
−ε

(
x− x2

a

(
b+

a′

4

)
+
a′x4

4a2h

)
e−

x2

2ah

√
2ahπ

dx+O
(
h

3
2−7ε

)
(7.53)

=y +

∫ ∞
−∞

(
x− x2

a

(
b+

a′

4

)
+
a′x4

4a2h

)
e−

x2

2ah

√
2ahπ

dx+O
(
h

3
2−7ε

)
(7.54)

=y − h
(
b+

a′

4

)
+

3ha′

4
+O

(
h

3
2−7ε

)
(7.55)

=y + h

(
−b+

a′

2

)
+O(h

3
2−7ε). (7.56)
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Time-reversal of coalescing diffusive flows

Similarly, we find that

Var
(
φ̂t+h,t(y)

)
= ah+O(h2−8ε). (7.57)

Thus, the single point motions are diffusion processes with the required drift and
diffusivity.

Next, we will show that the motions started from y1 and y2 have zero covariation until
they coalesce, and thus, are independent until they coalesce. This follows immediately
from the fact that for y1 6= y2

Cov
(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)
= o(h). (7.58)

To establish this fact consider the events

Ai =

{
sup

0<δt<h

∣∣∣φ̂t+δt,t(yi)− yi∣∣∣ < |y2 − y1|
2

}
for i = 1, 2. (7.59)

On the intersection of these events, we know that the φ̂t+h,t(yi) are independent as

the forward flows on [−t − h, t] ×
[
yi − |y2−y1|2 , yi + |y2−y1|

2

]
are independent, and each

determines the corresponding Ai and φ̂t+h,t(yi). Thus, writing B for the complement of
A1 ∩ A2,∣∣∣Cov

(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)∣∣∣ =
∣∣∣Cov

(
1Bφ̂t+h,t(y1),1Bφ̂t+h,t(y2)

)∣∣∣ (7.60)

≤
√

Var
(
1Bφ̂t+h,t(y2)

)
Var

(
1Bφ̂t+h,t(y1)

)
. (7.61)

As a geometric mean of positive values can’t be larger than the largest value this is
bounded by

max
i=1,2

{
Var

(
1Bφ̂t+h,t(yi)

)}
(7.62)

≤max
i=1,2

{
E

(
1B

(
φ̂t+h,t(yi)− yi

)2
)}

(7.63)

but, as we know that

P
(∣∣∣φ̂t+h,t(yi)− yi∣∣∣ > x

)
≤ 2

(
1− Φ

(
x− b∗h√
a∗h

))
(7.64)

we can deduce that∣∣∣Cov
(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)∣∣∣ ≤ ∫ ∞
|y2−y1|

2

x2 2√
a∗h

Φ′
(
x− b∗h√
a∗h

)
dx (7.65)

=

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

x22Φ′(u)du (7.66)

=

√
2

a∗hπ

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

a∗h(u+ b∗h)2e−
u2

2 du (7.67)

=

√
2a∗h

π
(1 +O(h))

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

u2e−
u2

2 du. (7.68)

EJP 25 (2020), paper 103.
Page 25/38

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP500
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Time-reversal of coalescing diffusive flows

For sufficiently small h this is bounded by√
3a∗h

π

∫ ∞
|y2−y1|
3
√
a∗h

u2e−
u2

2 du (7.69)

=

√
3a∗h

π

(
|y2 − y1|
3
√
a∗h

e−
|y2−y1|

2

18a∗h +

∫ ∞
|y2−y1|
3
√
a∗h

e−
u2

2 du

)
(7.70)

=O

(
e−
|y2−y1|

2

18a∗h

)
. (7.71)

This establishes the result.

Finally, we relax the restriction that a and b are Lipschitz in time.

Theorem 4.1. If a has spatial derivative a′ and a, b and a′ are uniformly bounded on
compacts in time and L-Lipschitz in space then

µ̂A = νA := µa
ν ,bν

A (7.72)

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the time reversal
of µA.

Proof. Define approximations an and bn by

an = a ∗Kn and bn = b ∗Kn (7.73)

where ∗ denotes convolution in time,

Kn(t) = nK(tn) (7.74)

and K is a smooth, non-negative function supported on [−1, 1] with supremum and
integral equal to one. The resulting an and bn are smooth. Thus, we will be able to apply
Theorem 7.1 to a flow with these parameters.

Let φn ∈ C◦(R,D) be the coalescing diffusive flow driven by an and bn and let

b∗k = sup
[−k−1,k+1]×[0,1]

|b(t, x)| (7.75)

and
a∗k = sup

[−k−1,k+1]×[0,1]

a(t, x). (7.76)

We define AN to be the subset of φ ∈ C◦(R,D) such that for all k both

|φts(x)− x| ≤ 4b∗kk + kN
√

8a∗k + 1 ∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with s < t (7.77)

and

|φts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ] (7.78)

where

δk,N = min

{
1

18k3Na∗k(1 + a∗k + b∗k)
,
a∗k

2b∗k
2

}
. (7.79)

In Proposition A.2, we prove that AN is compact; and in Proposition A.3, we prove
that φn ∈ AN with high probability in N uniformly in n. Thus, we can deduce that the φn

are tight. Let φ be a weak sub-sequential limit of φn. We will show that φ ∼ µA and that
φ̂ ∼ νA, which establishes the theorem.
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We present here only the proof that φ ∼ µA. The proof that limn→∞ φ̂n ∼ νA is
identical, but considering φ̂n and −b+ a′

2 instead of φn and b, it then follows that φ̂ ∼ νA
as time reversal is an isometry. By Theorem 3.1 it suffices to show that

E

(
φts(x)−

∫ t

s

b(r, φrs(x))dr

∣∣∣∣Fs) = x ∀x ∈ [0, 1] ∀s < t (7.80)

and
E (Mst(x1, x2, b, a, φ) | Fs) = x1x2 ∀x1, x2 ∈ [0, 1] ∀s < t (7.81)

where

Mst(x1, x2, b, a, φ) =φts(x1)φts(x2)−
∫ t

s

(
φrs(x1)b(r, φrs(x2)) (7.82)

+ φrs(x2)b(r, φrs(x1))
)
dr −

∫ t

T (s,x1)(s,x2)∧t
a(r, φrs(x1))dr. (7.83)

The proof of these two statements are very similar, so we will only provide the more
complicated second one here. Furthermore as Mst(x1, x2, b, a, φ) is independent of Fs it
suffices to show that

E (Mst(x1, x2, b, a, φ)) = x1x2 ∀x1, x2 ∈ [0, 1] ∀s < t. (7.84)

Proposition A.4 says that E (Mst(x1, x2, b, a, φ)) is a continuous function of x1 and x2.
Thus, it suffices to show that for any pair of intervals I1 and I2,

ExEφ (Mst(x1, x2, b, a, φ)) = Ex(x1x2) (7.85)

where Ex averages over values of x1 and x2 in I1 and I2 respectively, and Eφ is the same
as E on previous lines. Proposition A.6 says

EφEx(Mst(x1, x2, b, a, φ)) = lim
n
EφnEx (Mst(x1, x2, b, a, φ

n)) (7.86)

which is used in the calculation below. Writing Dn for Mst(x1, x2, b, a, φ
n) −

Mst(x1, x2, bn, an, φ
n) we can calculate, using Proposition 7.1 in the fourth equality,

that

ExEφ(Mst(x1, x2, b, a, φ)) (7.87)

=EφEx(Mst(x1, x2, b, a, φ)) (7.88)

= lim
n
EφnEx (Mst(x1, x2, b, a, φ

n)) (7.89)

= lim
n
EφnEx (Mst(x1, x2, bn, an, φ

n)) + lim
n
EφnEx (Dn) (7.90)

=Ex (x1x2) + lim
n
ExEφn (Dn) . (7.91)

It remains only to show that Eφn(Dn) goes to 0 uniformly in x as n→∞.

Dn =

∫ t

s

φnrs(x1)(bn(r, φnrs(x2))− b(r, φnrs(x2)))dr (7.92)

+

∫ t

s

φnrs(x2)(bn(r, φnrs(x1))− b(r, φnrs(x1)))dr (7.93)

+

∫ t

T (s,x1)(s,x2)

(an(r, φnrs(x1))− a(r, φnrs(x1))) dr (7.94)

Each of these terms has expectation tending to 0. We will prove this for the first
term (the second term is very similar and the third term is even simpler, so the same
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argument works). We firstly rearrange each half of the first term separately. We assume
here for simplicity that t− s > 2/n, obviously this is fine for all sufficiently large n.∫ t

s

φnrs(x1)bn(r, φnrs(x2))dr (7.95)

=

∫ t

s

∫ 1
n

− 1
n

φnrs(x1)b(r + u, φnrs(x2))Kn(u)dudr (7.96)

=

∫ t+ 1
n

s− 1
n

∫ (v−s)∧ 1
n

(v−t)∨− 1
n

φnv−u,s(x1)b(v, φnv−u,s(x2))Kn(u)dudv (7.97)

=

∫ s+ 1
n

s− 1
n

∫ (v−s)

− 1
n

I1dudv +

∫ t+ 1
n

t− 1
n

∫ 1
n

v−t
I1dudv +

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I1dudv (7.98)

where v = r+u and I1 = φnv−u,s(x1)b(v, φnv−u,s(x2))Kn(u). The first two of these integrals
are over an area that is O(n−2) and the integrand I1 = O(n), so only the final integral
will contribute to the limit.∫ t

s

φnrs(x1)b(r, φnrs(x2))dr (7.99)

=

∫ t

s

∫ 1
n

− 1
n

φnrs(x1)b(r, φnrs(x2))Kn(u)dudr (7.100)

=

∫ s+ 1
n

s− 1
n

∫ 1
n

− 1
n

I2dudr +

∫ t+ 1
n

t− 1
n

∫ 1
n

− 1
n

I2dudr +

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I2dudr (7.101)

where I2 = φnrs(x1)b(r, φnrs(x2))Kn(u). Again, the first two terms are O(n−1), so only the
last term will contribute to the limit. Combining these 2 rearrangements together and
discarding small terms we find that

lim
n
Eφn(Dn) (7.102)

= lim
n
Eφn

(∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I1dudv −
∫ t− 1

n

s+ 1
n

∫ 1
n

− 1
n

I2dudr

)
(7.103)

= lim
n
Eφn

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I3Kn(u)dudr (7.104)

≤ lim
n

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

Kn(u)dudr sup
u∈[− 1

n ,
1
n ]

r∈[s+ 1
n ,t−

1
n ]

EφnI3 (7.105)

≤(t− s) lim
n

sup
u∈[− 1

n ,
1
n ]

r∈[s+ 1
n ,t−

1
n ]

EφnI3 (7.106)

where
I3 =

(
φnr−u,s(x1)b(r, φnr−u,s(x2))− φnrs(x1)b(r, φnrs(x2))

)
. (7.107)

As b is Lipschitz in space and the φn have bounded diffusivity, this final supremum
convereges to zero.

A Appendix

The following result is required to prove the existence of the coalescing diffusive
flows, as stated in Theorem 3.1. It is a generalization of Proposition A.10 of [11] and has
a similar proof.
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Proposition A.1. Let E be a countable subset of R2 containing Q2, and let a, b be
measurable and uniformly bounded on compacts in time and L-Lipschitz in space. Then,
taking C◦E = C◦,+E ∩ C◦,−E , we have µa,bE (C◦E) = 1.

Proof. Following the proof of Proposition 8.10 in [11] we will verify that each of five
conditions hold a.s., and as they characterize C◦E inside CE [11], the result follows. Let z
be drawn from the distribution µa,bE and, for e ∈ E let ze denote the path starting from e.
The first condition is that

z
(s,x+n)
t = z

(s,x)
t + n, s, t, x ∈ Q, s < t, n ∈ Z. (A.1)

Taking e = (s, x) and e′ = (s, x + n), we have that T ee
′

= s. So by the proof of
Proposition 2.1, this condition is satisfied.

Next we consider the 3 conditions

z
(s,x)
t = inf

y∈Q,y>x
z

(s,y)
t , (s, x) ∈ E, t ∈ Q, t > s, (A.2)

z
(s,x)
t = sup

y∈Q,y<x
z

(s,y)
t , (s, x) ∈ E, t ∈ Q, t > s (A.3)

and

Φ−(t,u] ◦ Φ−(s,t] ≤ Φ−(s,u] ≤ Φ+
(s,u] ≤ Φ+

(t,u] ◦ Φ+
(s,t], s, t, u ∈ Q, s < t < u. (A.4)

Where we define

Φ−(s,t](x) = sup
y∈Q,y<x

z
(s,y)
t , Φ+

(s,t](x) = inf
y∈Q,y>x

z
(s,y)
t . (A.5)

Let (s, x) ∈ E and t, u ∈ Q, with s ≤ t < u. Consider the event

A =

{
sup

y∈Q,y<Z(s,x)
t

Z(t,y)
u = Z(s,x)

u = inf
y′∈Q,y′>Z(s,x)

t

Z(t,y′)
u

}
. (A.6)

Note that on the countable intersection, over s, x, t, u, of the events A, the above 3
conditions hold. So to show they hold a.s., it suffices to show P(A) = 1. Fix n ∈ N and

set Y = n−1bnZ(s,x)
t c and Y ′ = Y + 1/n. Then Y and Y ′ are Q valued, Ft-measurable

random variables. Now note that P(Y < Z
(s,x)
t < Y ′) = 1 and

{Y < Z
(s,x)
t < Y ′} ∩ {T (t,Y )(t,Y ′) ≤ u} ⊆ A. (A.7)

Consider the process
Z(t,Y ′)
r − Z(t,Y )

r − 2(r − t)b∗ (A.8)

as a function of τ where

τ =

∫ r

t

(
a(ρ, Z(t,Y ′)

ρ ) + a(ρ, Z(t,Y )
ρ )

)
dρ (A.9)

is defined to make the diffusivity of this process 1.
This can be bounded above by a Brownian motion Bτ started at 1/n. For n sufficiently

large that u− t > 1/n and

P(T (t,Y )(t,Y ′) ≤ u) ≥ P

(
inf
τ≤ 1

n

Bτ < −
b∗

na∗

)
(A.10)

= 2Φ

(
1 + b∗/a∗√

n

)
→ 1. (A.11)

So P(A) = 1 and the conditions hold.
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The final condition is that for all ε > 0 and all n ∈ N, there exists δ > 0 such that

‖Φ(s,t] − id‖∞ < ε (A.12)

for all s, t ∈ Q ∩ (−n, n) with 0 < t− s < δ.
Define for δ > 0 and e = (s, x) ∈ E,

V e(δ) = sup
s≤t≤s+δ2

|Zet − x|. (A.13)

Then, letting B be a standard Brownian motion, for sufficiently small δ and large n

P(V e(δ) > nδ) ≤ 2P

(
sup

s≤t≤s+δ2
Bt −Bs >

nδ − b∗δ2

a∗

)
(A.14)

≤ e−
(n−1)2

2a∗2 . (A.15)

Consider, for each n ∈ N the set

En =

{
(j2−2n, k2−n) : j ∈ 1

2
Z ∩ [−n 1

3 22n, n
1
3 22n), k = 0, 1, . . . , 2n − 1

}
(A.16)

and the event
An =

⋃
e∈En

{V e(2−n) > n2−n}. (A.17)

Then, P(An) ≤ |En| supe∈En P (V e(2−n) > n2−n) and

P
(
V e(2−n) > n2−n

)
≤P

(
sup

s≤t≤s+2−2n

Zet − x > n2−n

)
(A.18)

+ P

(
inf

s≤t≤s+2−2n
Zet − x < n2−n

)
. (A.19)

For n sufficiently large that 2n > b∗, both of these terms areO
(
e−

(n−1)2

2

)
by the reflection

principle. As |En| = eO(n), we can conclude that
∑
nP(An) < ∞, so by Borel-Cantelli,

almost surely there exists some N <∞ such that V e(2−n) ≤ n2−n for all e ∈ En, for all
n ≥ N .

Given ε > 0, choose n ≥ N such that (4n + 2)2−n ≤ ε and set δ = 2−2n−1. Then,
for all rationals s, t ∈ (−n, n) with 0 < t − s < δ and all rationals x ∈ [0, 1], there exist
e± = (r, y±) ∈ En such that

r ≤ s < t ≤ r + 2−2n, (A.20)

x+ n2−n < y+ ≤ x+ (n+ 1)2−n, (A.21)

x− (n+ 1)2−n ≤ y− < x− n2−n, (A.22)

then, Ze
−

s < x < Ze
+

s , so

x− ε ≤ Ze
−

t ≤ Z
(s,x)
t ≤ Ze

+

t ≤ x+ ε. (A.23)

Hence, the final condition holds almost surely and thus the proposition holds.

The rest of the propositions in this appendix are used in the direct proof of Theo-
rem 4.1 in Section 7. The definition of AN can be found in that proof.

Proposition A.2. AN is compact
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Proof. AN is a closed subset of C◦(R,D), and so is complete. Therefore, by a diagonal
argument, it suffices to show that for all ε > 0 and for all sequences S in AN , there exists
a subsequence S ′ that is contained in a ball of radius ε.

To this end take M such that
∞∑

m=M+1

2−m <
ε

2
(A.24)

then we have that

dC(φ, ψ) <

M∑
m=1

2−md
(m)
C (φ, ψ) +

ε

2
∀φ, ψ ∈ C◦(R,D). (A.25)

Thus, it suffices to find a subsequence S ′ where, for m = 1 to M , we have

d
(m)
C (φ, ψ) <

ε

2
∀φ, ψ ∈ S ′. (A.26)

As d(m)
C is increasing in m, it suffices for this to hold for m = M . Note that d(M)

C only
depends on the flows between times in [−M,M ]. By the definition of AN , the set of paths
from a given point, for each of the flows in S, is uniformly bounded and equicontinuous
when restricted to the interval [−M,M ]. This interval is also compact, so by the Arzelà-
Ascoli Theorem, the set of such restricted paths is compact in the uniform norm. Using
this compactness we can, for a finite set Eε,M,N ⊂ [−M,M ]× [0, 1], find a subsequence
S ′ of S such that

‖φ·s(x)− ψ·s(x)‖L∞([s,M ]) <
ε

2
∀φ, ψ ∈ S ′ ∀(s, x) ∈ Eε,M,N . (A.27)

Let [i] = {1, . . . , i}. We will take the S ′ corresponding to

Eε,M,N =

{(
−M +mδK,N ,

lε

6

)
: m ∈

[⌈
2M

δK,N

⌉]
, l ∈

[⌈
6

ε

⌉]}
(A.28)

where K = max
{
d 6
ε e,M

}
. It remains to show from (A.27) that (A.26) holds for m = M ,

i.e.
dD(φts, ψts) <

ε

2
∀s, t ∈ [−M,M ], s < t ∀φ, ψ ∈ S ′. (A.29)

By the definition of dD this is the same as saying that for all s, t, φ, ψ and all x

ψts

(
x− ε

2

)
< φts(x) +

ε

2
(A.30)

and
φts

(
x− ε

2

)
< ψts(x) +

ε

2
. (A.31)

We will show the first of these the other follows by symmetry.
Given s, t, φ, ψ as in (A.29), there exists

(u, y) ∈ [s, s+ δK,N ]×
(
x− ε

3
, x− ε

6

)
∩ Eε,M,N (A.32)

and by the equicontinuity condition in the definition of AN

ψus

(
x− ε

2

)
< y (A.33)

φus(x) > y. (A.34)

Putting these together with (A.27) we get

ψts(x−
ε

2
) ≤ ψtu(y) < φtu(y) +

ε

2
≤ φts(x) +

ε

2
. (A.35)

This is Equation (A.30) and so we are done.
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Proposition A.3. As N →∞
P(φn ∈ AN )→ 1 (A.36)

uniformly in n.

Proof. Throughout Wt is a standard Brownian motion. We start by showing that w.h.p.
the condition that gives uniform boundedness on compact intervals holds.

P
(
|φnts(x)− x| < 4b∗kk + kN

√
8a∗k + 1 ∀x ∈ [0, 1] ∀s < t ∈ [−k, k]

)
(A.37)

≥P

(
sup

t∈[−k,k]

|φnt,−k(0)| < 2b∗kk + kN
√

2a∗k

)
(A.38)

≥1− 4P
(√

a∗kW2k > kN
√

2a∗k

)
(A.39)

=1− 4Φ
(
−N
√
k
)

(A.40)

and thus

P
(
|φnts(x)− x| < 4b∗kk + kN

√
8a∗k + 1 ∀s < t ∈ [−k, k] ∀x ∈ [0, 1] ∀k

)
(A.41)

≥1− 4

∞∑
k=1

Φ(−N
√
k)→ 1. (A.42)

Now we will show that w.h.p. the equicontinuity requirement on compact intervals holds.
Let

Ek,N =

{(
k −mδk,N ,

l

3k

)
: m ∈

{
1, . . . ,

⌈
2k

δk,N

⌉}
, l ∈ {1, . . . , 3k}

}
. (A.43)

The below calculation says that with high probability for all k paths from each of these
points will not move more than 1

3k from their stating point within time 2δk,N and the
non-crossing property then implies the required equicontinuity. It proceeds as follows,

P

(
|φnts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ]

)
(A.44)

≥P

(
sup

t∈[s,s+2δk,N ]

|φnts(x)− x| < 1

3k
∀(s, x) ∈ Ek,N

)
(A.45)

≥1− 4|Ek,N |P
(√

a∗kW2δk,N + 2δk,Nb
∗
k >

1

3k

)
(A.46)

=1− 12k

⌈
2k

δk,N

⌉
Φ

(
− 1√

2δk,Na∗k

(
1

3k
− 2δk,Nb

∗
k

))
(A.47)

≥1− 36k2

δk,N
Φ

− 1√
18k2a∗kδk,N

+

√
2b∗K

2δk,N
a∗k

 (A.48)

≥1−max

{
72k2b∗k

2

a∗k
, 648k5Na∗k(1 + a∗k + b∗k)

}
Φ

(
−
√
kN(1 + a∗k + b∗k) + 1

)
. (A.49)

As the maximum can be bounded by a polynomial in k,N, a∗k and b∗k, and Φ(. . . ) is
decreasing exponentially in all of those variables, we can conclude by use of a union
bound that

P

(
|φnts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ] ∀k

)
(A.50)

→ 1 as N →∞.
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Proposition A.4. E (Mst(x1, x2, b, a, φ)) is a continuous function of x1 and x2.

Proof. We will show that

|Eφ (Mst(x1, x2, b, a, φ))− Eφ (Mst(x
′
1, x
′
2, b, a, φ))| → 0 (A.51)

uniformly for deucl((x1, x2), (x′1, x
′
2)) < δ as δ → 0. We start by decomposing

Mst(x1, x2, b, a, φ) into the integrals up to time s + δ and the rest. The integrals up
until time s+ δ are

−
∫ s+δ

s

(φrs(x1)b(r, φrs(x2)) + φrs(x2)b(r, φrs(x1))) dr (A.52)

and

−
∫ (T (s,x1)(s,x2)∧t)∨(s+δ)

T (s,x1)(s,x2)∧t
a(r, φrs(x1))dr. (A.53)

Taking expected value w.r.t. φ and exchanging order of integration leaves two integrals
with length at most δ and integrands bounded by

b∗ sup
r∈[s,s+δ]

Eφ(|φrs(x1)|+ |φrs(x2)|) and a∗ (A.54)

respectively. As φrs(xi) is uniformly integrable for r ≤ t these integrals contribute only
O(δ) to M . Thus they can be neglected.

We will use M δ
st to mean Mst minus the integrals we have just shown are O(δ). Note

that

Eφ
(
Mδ
)

= Eφ
(
Eφ
(
M δ|Fs+δ

))
(A.55)

and by the strong Markov property

Eφ
(
Mδ
st(x1, x2, b, a, φ)|Fs+δ

)
(A.56)

is a function of φs+δ,s(x1) and φs+δ,s(x2). Proposition A.5 says that

dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2)))→ 0 (A.57)

so we can deduce that

dTV
(
Eφ
(
Mδ
st(x1, x2, b, a, φ)|Fs+δ

)
,Eφ

(
Mδ
st(x

′
1, x
′
2, b, a, φ)|Fs+δ

))
→ 0. (A.58)

Combining this with the fact that Eφ(Mδ
st(x1, x2, b, a, φ)|Fs+δ) is uniformly integrable for

(x1, x2) in each compact set, we are done.

Proposition A.5.

dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2)))→ 0 (A.59)

uniformly for deucl((x1, x2), (x′1, x
′
2)) < δ as δ → 0.

Proof. Let φ̃ have the same distribution as φ but be coupled with φ such that, for each
i = 1, 2, we have φt,s(xi) and φ̃t,s(x

′
i) evolve independently until they take the same

value at which point they coalesce. This is possible, as having fixed φ we can construct
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φ̃ by first constructing φ̃(x′1) independently until it hits φ(x1), then constructing φ̃(x′2)

independently until it hits φ̃(x′1) or φ(x2).

dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2))) (A.60)

≤1− P
(
φs+δ,s(xi) = φ̃s+δ,s(xi) for both i = 1, 2

)
(A.61)

≤P
(
φs+δ,s(x1) 6= φ̃s+δ,s(x1)

)
+ P

(
φs+δ,s(x2) 6= φ̃s+δ,s(x2)

)
(A.62)

≤2(1− 2P(a∗Wδ < −δ − δb∗)) (A.63)

=2

(
1− 2Φ

(
−
√
δ

1 + b∗

a∗

))
(A.64)

≤2

(
1− 2

(
0.5−

√
δ

2π

1 + b∗

a∗

))
(A.65)

=

√
8δ

π

1 + b∗

a∗
→ 0. (A.66)

Proposition A.6.

EφEx(Mst(x1, x2, b, a, φ)) = lim
n
EφnEx (Mst(x1, x2, b, a, φ

n)) (A.67)

Proof. We would like to be able to say that Ex(Mst) is a continuous function of φ, and
apply weak convergence. Unfortunately, even after averaging over x, this still isn’t true,
as T (s,x1)(s,x2) is not a continuous function of φ, so we now proceed to smooth Mst even
more. Define

Tη = inf {r ≥ s : d(φrs(x1),Z+ φrs(x2) )< η} (A.68)

and then define

M̃ ε
st(x1, x2, b, a, φ) =φts(x1)φts(x2)−

∫ t

s

(
φrs(x1)b(r, φrs(x2)) (A.69)

+ φrs(x2)b(r, φrs(x1))
)
dr − 1

ε

∫ ε

0

∫ t

Tη∧t
a(r, φrs(x1))drdη. (A.70)

By applying the triangle inequality the following three claims will now suffice to complete
the proof. Firstly

EφnExM̃
ε(φn)→ EφExM̃

ε(φ) as n→∞ (A.71)

secondly
EφExM̃

ε(φ)→ EφExM(φ) as ε→ 0 (A.72)

and thirdly
EφnExM̃

ε(φn)→ EφnExM(φn) as ε→ 0 uniformly in n. (A.73)

We first prove the second claim. Note that Tη monotonically increases to T0 as η → 0

and thus M̃ ε is monotonically increasing to M as ε→ 0. Thus the second claim holds by
the Monotone Convergence Theorem.

We next prove the third claim. We have that

|M̃ ε(φn)−M(φn)| =1

ε

∫ ε

0

∫ T0∧t

Tη∧t
a(r, φnrs(x1))drdη (A.74)

≤a∗ ((T0 − Tε) ∧ (t− s)) (A.75)
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and thus ∣∣∣Eφn (M̃ ε(φn)−M(φn)
)∣∣∣ ≤a∗ (ε+ (t− s)P(T0 − Tε > ε)) . (A.76)

Using the strong Markov property at time Tε we can see that

P(T0 − Tε > ε) ≤1− 2P(2a∗Wε < −ε(1 + 2b∗)) (A.77)

=1− 2Φ

(
−
√
ε(1 + 2b∗)

2a∗

)
(A.78)

=O(
√
ε). (A.79)

Putting this together and averaging over x, we get the third claim with the order of the
expectations swapped. Note that each term of M̃ ε(φn) and M(φn) have sub-exponential
tails. Thus, we can apply Fubini’s theorem to deduce the third claim.

Finally, we will show that ExM̃ ε(φ) is a continuous function of φ, from which our first
claim immediately follows due to weak convergence. Then we will be done.

Fix φ′ ∈ C◦(R,D). Let φ′′ be distance at most δ from φ′. Fix t > s. We have, for δ < 1,
that

φ′ts(x1)− 1− δ ≤ φ′ts(x1 − δ)− δ ≤ φ′′ts(x1) ≤ φ′ts(x1 + δ) + δ ≤ φ′ts(x1) + 1 + δ. (A.80)

Let [l1, u1] be the interval that x1 is being averaged over, then

Ex1
(φ′′ts(x1)) ≤ 1

u1 − l1

∫ u1

l1

φ′ts(x1 + δ) + δdx1 (A.81)

≤ 1

u1 − l1

∫ u1−δ

l1

φ′ts(x1 + δ)dx1 +
1

u1 − l1

∫ u1

u1−δ
φ′ts(x1) + 1dx1 + δ (A.82)

≤ Ex1
(φ′ts(x1))− 1

u1 − l1

∫ l1+δ

l1

φ′ts(x1)dx1 (A.83)

+
1

u1 − l1

∫ u1

u1−δ
φ′ts(x1)dx1 + δ

(
1

u1 − l1
+ 1

)
(A.84)

≤ Ex1 (φ′ts(x1)) + δ

(
1 +

1 + 2 supl1≤x1≤u1
|φ′ts(x1)|

u1 − l1

)
(A.85)

→ Ex1 (φ′ts(x1)) as δ → 0. (A.86)

The lower bound is similar. We can deduce that Ex1
(φts(x1)) is continuous in φ, and so

the first term of ExM̃ ε, i.e.
Ex1

(φts(x1))Ex2
(φts(x2)) (A.87)

is also continuous in φ. To show that the second term of ExM̃ ε is continuous in φ, as
φ′′rs(x1) is bounded uniformly over r ∈ [s, t] and φ′′ for fixed δ and φ′, it suffices to show
that

Ex1
b(t, φts(x1)) (A.88)

is continuous in φ.

b (t, φ′′ts(x1)) ≤ sup
|δx|≤δ

b (t, φ′ts(x1 + δx)) + Lδ (A.89)

≤ b (t, φ′ts(x1)) + L

(
δ + sup

|δx|≤δ
|φ′ts(x1 + δx)− φ′ts(x1)|

)
. (A.90)

Cut the interval [l1 − δ, u1 + δ] into pieces of length δ. Let C be the amount that φts
increases by over that interval. Call a piece bad if φts increases by more than

√
δ

2 on that
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piece or either of the neighbouring pieces. As φts is non-decreasing there can be at most
6C√
δ

bad pieces. If x1 is not in a bad piece then

sup
|δx|≤δ

|φ′ts(x1 + δx)− φ′ts(x1)| ≤
√
δ. (A.91)

So our bound on b (t, φ′′ts(x1)) gives

b (t, φ′′ts(x1)) ≤ b (t, φ′ts(x1)) + L
(
δ +
√
δ + C1{x1∈a bad piece}

)
. (A.92)

Combining this with the corresponding lower bound whose derivation is similar we find

|Ex1 (b (t, φ′′ts(x1)))− Ex1 (b (t, φ′ts(x1)))| (A.93)

≤L
(
δ +
√
δ + CPx1

(x1 ∈ a bad piece)
)

(A.94)

≤L

(
δ +
√
δ +

6C2
√
δ

u1 − l1

)
= O

(√
δ
)
. (A.95)

Thus, Ex1
b(t, φts(x1)) and the second term of ExM̃ ε are continuous in φ.

Similarly, we can conclude that Ex1
a(t, φts(x1)) is continuous with respect to φ, and

further, as the products of intervals generate the Borel σ-algebra on R2, that∫
a(t, φts(x1))dµ(x) (A.96)

is a continuous function of φ for each measure µ that is bounded, compactly supported
and absolutely continuous with respect to Lebesgue measure on R2. Note that the
integral here is over x1 and x2, the integrand is independent of the latter but we phrase
the above fact in this form as that is how it will be used later. This will be useful after we
rewrite the third term of ExM̃ ε as

Ex
1

ε

∫ ε

0

∫ t

Tη∧t
a(r, φrs(x1))drdη (A.97)

=Ex

∫ ε

0

∫ t

s

a(r, φrs(x1))
1{r>Tη}

ε
drdη (A.98)

=

∫ t

s

Ex

(
a(r, φrs(x1))

∫ ε

0

1{r>Tη}
ε

dη

)
dr. (A.99)

To show this is continuous it suffices to show that

Ex

(
a(t, φts(x1))

∫ ε

0

1{t>Tη}
ε

dη

)
(A.100)

is continuous and uniformly bounded for all t > s. The boundedness is immediate. The
continuity is not immediate from (A.96) being continuous, because Tη depends on φ.
However, it can be shown as follows. Let T 0

η be the Tη corresponding to φ′ and define T δη
similarly. Let µ′ be the measure on R2 with Radon-Nikodym derivative∫ ε

0

1{t>Tη}
ε

dη (A.101)
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with respect to the uniform probability measure on I1 × I2 and define µ′′ similarly. Then∣∣∣∣Ex(a (t, φ′′ts(x1))

∫ ε

0

1{t>T δη }
ε

dη

)
− Ex

(
a (t, φ′ts(x1))

∫ ε

0

1{t>T 0
η }

ε
dη

)∣∣∣∣ (A.102)

=

∣∣∣∣∫ a (t, φ′′ts(x1)) dµ′′(x1)−
∫
a (t, φ′ts(x1)) dµ′(x1)

∣∣∣∣ (A.103)

≤
∣∣∣∣∫ a (t, φ′′ts(x1)) dµ′′(x1)−

∫
a (t, φ′′ts(x1)) dµ′(x1)

∣∣∣∣ (A.104)

+

∣∣∣∣∫ a (t, φ′′ts(x1)) dµ′(x1)−
∫
a (t, φ′ts(x1)) dµ′(x1)

∣∣∣∣ . (A.105)

The second of these terms is small due to the continuity of (A.96), the first term is
bounded by

a∗

ε

∫ u1

l1

∫ u2

l2

∫ ε

0

∣∣∣1{t>T δη } − 1{t>T 0
η }

∣∣∣ dηdx2dx1. (A.106)

The contribution to this integral when |x1 − x2| < 2δ is clearly small. We will show that
the contribution when x1 ≥ x2 + 2δ is small and, as the case for x1 ≤ x2 − 2δ is similar,
we will then be done. Conditional on x1 ≥ x2 + 2δ we have

T 0
η+2δ(x1 − δ, x2 + δ) ≤ T δη (x1, x2) ≤ T 0

η−2δ(x1 + δ, x2 − δ) (A.107)

and thus our integrand is zero unless

t ∈
[
T 0
η+2δ(x1 − δ, x2 + δ), T 0

η−2δ(x1 + δ, x2 − δ)
]
. (A.108)

To see that the integral is small we will change the variables of the integral. We will
use an orthonormal substitution to change the variables to, α = (2η − x1 + x2)/

√
6,

β = (−η − x1 + x2)/
√

3, and γ = (x1 + x2)/
√

2. For some values of the endpoints, the
result is as follows

a∗

ε

∫ γ2

γ1

∫ β2

β1

∫ α2

α1

∣∣∣1{t>T δη } − 1{t>T 0
η }

∣∣∣ dαdβdγ. (A.109)

Note that the end points of the integral are independent of δ. Thus the whole expression
has at most the same order as the inner integral for small δ. For any fixed value of β and
γ, the interval of α for which Equation (A.108) can hold has length at most 2

√
6δ (as for

values of α differeing by more than that, the corresponding intervals on the right hand
side are disjoint). As the integrand is bounded by one, the inner integral is bounded by
2
√

6δ. Therefore, the total expression is O(δ).
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