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Abstract

We study the pairing between zeros and critical points of the polynomial pn(z) =∏n
j=1(z −Xj), whose roots X1, . . . , Xn are complex-valued random variables. Under

a regularity assumption, we show that if the roots are independent and identically
distributed, the Wasserstein distance between the empirical distributions of roots
and critical points of pn is on the order of 1/n, up to logarithmic corrections. The
proof relies on a careful construction of disjoint random Jordan curves in the complex
plane, which allow us to naturally pair roots and nearby critical points. In addition, we
establish asymptotic expansions to order 1/n2 for the locations of the nearest critical
points to several fixed roots. This allows us to describe the joint limiting fluctuations
of the critical points as n tends to infinity, extending a recent result of Kabluchko and
Seidel. Finally, we present a local law that describes the behavior of the critical points
when the roots are neither independent nor identically distributed.
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1 Introduction

This paper concerns the nature of the pairing between the critical points and roots of
random polynomials in a single complex variable. In particular, we consider polynomials
of the form

pn(z) :=

n∏
j=1

(z −Xj), (1.1)

where X1, . . . , Xn are complex-valued random variables (not necessarily independent
or identically distributed). While much is known about the locations of the critical

*S. O’Rourke has been supported in part by NSF grants ECCS-1610003 and DMS-1810500.
†University of Colorado Boulder, United States of America. E-mail: sean.d.orourke@colorado.edu
‡Appalachian State University, United States of America. E-mail: williamsnn@appstate.edu

http://www.imstat.org/ejp/
https://doi.org/10.1214/20-EJP499
https://ams.org/mathscinet/msc/msc2020.html
http://arXiv.org/abs/1810.06781v3
mailto:sean.d.orourke@colorado.edu
mailto:williamsnn@appstate.edu


Local behavior of critical points and roots of random polynomials

points of pn when the roots are deterministic (see for example Marden’s book [21] which
contains the Gauss–Lucas theorem and Walsh’s two circle theorem among other results),
Pemantle and Rivin [25], Hanin [12, 13, 14], and Kabluchko [17] first demonstrated that
the random version of this problem admits greater precision, especially when the degree
n is large.

In particular, Pemantle and Rivin conjectured that when X1, . . . , Xn are chosen to
be independent and identically distributed (iid) with distribution µ, then the empirical
distribution constructed from the critical points of pn converges weakly in probability to µ.
They proved their conjecture in [25] for measures satisfying some technical assumptions,
and Subramanian [30] refined their work for {Xj}nj=1 on the unit circle. Kabluchko first
proved the conjecture in full generality in [17] to obtain the following result.

Theorem 1.1 (Kabluchko [17]). Let X1, X2, . . . be iid complex-valued random variables
with distribution µ. Then for any bounded and continuous function ϕ : C→ C,

1

n− 1

n−1∑
j=1

ϕ(w
(n)
j ) −→

∫
ϕ(z)dµ(z)

in probability as n→∞, where w(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) =
∏n
j=1(z −Xj).

Inspired by such results, the first author established several versions of Theorem 1.1
for random polynomials with dependent roots that satisfy some technical conditions
[22]. For example, the conclusion of Theorem 1.1 holds for characteristic polynomials of
certain classes of matrices from the classical compact matrix groups. Additionally, in
[23], the authors adapted Kabluchko’s strategy to the situation where pn is perturbed
to have o(n) deterministic roots. Two other relevant works include Reddy’s thesis [28]
and the recent paper of Byun, Lee, and Reddy [3], who showed that under some mild
assumptions, Kabluchko’s result holds when pn has mostly deterministic roots and
several (potentially dependent) random ones. Byun, Lee, and Reddy proved several
additional results including that the sequence of empirical measures constructed from
the zeros of p(k)

n converges weakly in probability to the distribution µ, for any fixed
choice of k, as well as a version of Theorem 1.1 when the roots X1, . . . , Xn are given by
a 2D Coulomb gas density.

Theorem 1.1 and most of the cited works above focus on the macroscopic, or global,
behavior of the critical points of pn. For example, by combining Theorem 1.1 with the
Law of Large Numbers, one obtains that, for any bounded and continuous function
ϕ : C→ C,

n∑
j=1

ϕ(Xj) =

n−1∑
j=1

ϕ(w
(n)
j ) + o(n) (1.2)

with high probability1. In contrast to Theorem 1.1, this paper focuses on describing the
local behavior of the critical points.

One important aspect of the local critical point behavior is that the critical points
and roots of pn appear to pair with one another. Theorem 1.1 and (1.2) describe this
phenomenon at the macroscopic level by comparing the global behaviors of the critical
points and roots. However, a glance at Figures 1 and 2 suggests that a stronger pairing
phenomenon exists. In particular, one sees that nearly every critical point is paired
closely with a root of pn, an indication that the local behavior of the critical points should
be extremely similar to the local behavior of the roots.

Hanin investigated the pairing phenomenon between roots and critical points for
several classes of random functions [12, 13, 14], including random polynomials with

1See Section 1.1 for a complete description of the asymptotic notation used here and in the sequel.
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Local behavior of critical points and roots of random polynomials
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Figure 1: The roots (red dots) and critical points (blue crosses) of a random, degree 150

polynomial, where all 150 roots are chosen independently and uniformly on two disks.
See Example 2.7.
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Figure 2: The roots (red dots) and critical points (blue crosses) of a random, degree
150 polynomial, where all 150 roots are chosen independently according to a standard
complex normal distribution. See Example 2.6.

independent roots. He proved that the distance between a fixed, deterministic root
and its nearest critical point is roughly 1/n in the case where µ has a bounded density
supported on the Riemann sphere [14]. The root-and-critical point pairing for random
polynomials was also explored in [23, 24], and Dennis and Hannay gave an electrostatic
explanation of the phenomenon in [7]. Most recently, Steinerberger showed that the
pairing phenomenon also holds for some classes of deterministic polynomials [29], and
Kabluchko and Seidel determined the asymptotic fluctuations of the critical point of pn
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Local behavior of critical points and roots of random polynomials

that is nearest a given root [18]. Kabluchko and Seidel’s results are similar to some of
our conclusions below and appear to have been concurrently derived using different
methods. We present a detailed comparison between [18] and our work in the next
section.

In this paper, we refine the results mentioned above to obtain a more complete picture
of the pairing that occurs between zeros and critical points of pn. We begin by exhibiting
a bound on the Wasserstein, or “transport,” distance between the collections of roots
and critical points of pn. While this result explains the nearly 1-1 pairing between roots
and critical points in Figures 1 and 2, it does not allow one to describe the behavior near
any particular root. We accomplish this feat in the next section of the paper, where we
discuss the joint fluctuations for a fixed number of critical points of pn. We conclude
our analysis by establishing a local law that describes the mesoscopic behavior of the
critical points of pn. Many of our results focus on the cases where the roots X1, . . . , Xn

of pn are iid, but for some of our results, we do not even require that the roots be
independent.

1.1 Notation

Throughout the paper, we use asymptotic notation, such as O and o, under the
assumption that n → ∞. We write Xn = O(Yn), Yn = Ω(Xn), Xn � Yn, or Yn � Xn to
denote the bound |Xn| ≤ CYn for some constant C > 0 and for all n > C. If the implicit
constant depends on a parameter k, e.g., C = Ck, we denote this with subscripts, e.g.,
Xn = Ok(Yn) or Xn �k Yn. By Xn = ok(Yn), we mean that for any ε > 0, there is a
natural number Nε,k depending on k and ε for which n ≥ Nε,k implies |Xn| ≤ εYn. In
general, C, c,K are constants which may change from one occurrence to the next. We
often use subscripts, such as CP1,P2,..., to denote that the constant depends on some
parameters P1, P2, . . ..

We use the following set-theoretic conventions. For z0 ∈ C and r ≥ 0, we define

B(z0, r) := {z ∈ C : |z − z0| < r}

to be the open ball of radius r centered at z0, and B(z0, r) to be its closure. The notations
#S and |S| denote the cardinality of the finite set S. The natural numbers, N, do not
include zero.

For a probability measure µ, we use X ∼ µ to mean that the random variable X

has distribution µ and supp(µ) to denote its support. We say that a probability measure
µ on C has density f if µ is absolutely continuous with respect to Lebesgue measure
on C and the Radon–Nikodym derivative of µ with respect to Lebesgue measure is f .
The random variable 1E is the indicator supported on the event E, and we say an
event E (which depends on n) holds with overwhelming probability if for every α > 0,
P(E) ≥ 1−Oα(n−α).

Finally, we use d2z to denote integration with respect to the Lebesgue measure on C
to avoid confusion with complex line integrals, where we integrate against dz. We use√
−1 to denote the imaginary unit and reserve i as an index.

2 Main results

We begin by introducing the Wasserstein metric in order to discuss the pairing
between the roots and critical points of pn that one sees in Figures 1 and 2.
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2.1 Wasserstein distance

For probability measures µ and ν on C, let W1(µ, ν) denote the L1-Wasserstein
distance between µ and ν defined by

W1(µ, ν) := inf
π

∫
|x− y|dπ(x, y),

where the infimum is over all probability measures π on C× C with marginals µ and ν
(see e.g. [37], Chapter 6). Theorem 2.3 below gives a bound on the Wasserstein distance
between the empirical measures constructed from the roots X1, . . . , Xn and the critical
points w(n)

1 , . . . , w
(n)
n−1 of the polynomial pn defined in (1.1). We denote these empirical

measures by

µn :=
1

n

n∑
j=1

δXj and µ′n :=
1

n− 1

n−1∑
j=1

δ
w

(n)
j
, (2.1)

respectively. Before we state Theorem 2.3, we motivate some regularity assumptions µ
must satisfy in the hypothesis.

Consider that

1

n
p′n(z) =

n∏
j=2

(z −Xj)

(z −X1)
1

n

n∑
j=2

1

z −Xj
+

1

n

 , (2.2)

where the sum on the right-hand side is an empirical mean of iid random variables.
Provided µ is sufficiently nice, the Law of Large Numbers implies 1

n

∑n
j=2

1
z−Xj converges

in distribution to the Cauchy–Stieltjes transform of µ, which is given by

mµ(z) :=

∫
C

dµ(x)

z − x
, (2.3)

and defined for those values of z ∈ C for which the integral exists. Heuristically speaking,
if mµ(z) is finite and bounded away from zero near z = X1, then p′n(z) ≈ 0 for some z
satisfying |z −X1| = O(1/n). If, on the other hand, |mµ(z)| is close to 0 for z near X1, we
have p′n(z) ≈

∏n
j=2(z −Xj), so p′n(z) need not have any zeros near X1. Similar heuristic

intuition applies if we replace X1 in turn with X2, . . . , Xn.
In light of the discussion above, conditions on the Cauchy–Stieltjes transform of µ

feature prominently in this paper, particularly in the hypothesis of Theorem 2.3, which
requires at least one of the assumptions below.

Assumption 2.1. Suppose there are positive constants, C1, C2, so that the following
conditions hold when X1, . . . , Xn are iid complex-valued random variables with common
distribution µ:

(i) for any ε > 0, P(|mµ(X1)| < ε) ≤ C1ε
2;

(ii) the random variable ηn := max1≤j≤n |Xj | satisfies P
(
ηn ≥ nC2

)
= o(1).

Assumption 2.2 (Alternative to Assumption 2.1 for radially symmetric distributions).
Suppose µ has two finite absolute moments and a continuous density, f , that is radially
symmetric about z = z0 and that satisfies f(z0) > 0.

We can now state the main result of this subsection.

Theorem 2.3. Let X1, . . . , Xn be iid, complex random variables whose distribution, µ,
has a bounded density and satisfies either Assumption 2.1 or Assumption 2.2. Then,
there is a positive constant C, depending on µ, so that with probability 1− o(1),

W1(µn, µ
′
n) ≤ Cηn(log n)9

n
, (2.4)
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where ηn := max1≤j≤n |Xj |, and µn, µ
′
n (defined in (2.1)) are the empirical measures

constructed from the roots and critical points of pn(z) =
∏n
j=1(z −Xj).

In the case where µ has sub-exponential tails, one can show that with probability
tending to 1, ηn = O(log n). Consequently, Theorem 2.3 immediately implies the following
corollary.

Corollary 2.4. Let X1, . . . , Xn be iid, complex random variables whose distribution, µ,
has a bounded density and satisfies Assumption 2.1 part (i) in addition to the following
condition:

(ii’) there exist C, c > 0 such that if X ∼ µ, then, P(|X| > t) ≤ Ce−ct for every t > 0.

Then, there is a positive constant Cµ, depending only on µ, so that with probability
1− o(1),

W1(µn, µ
′
n) ≤ Cµ(log n)10

n
,

where µn, µ′n (defined in (2.1)) are the empirical measures constructed from the roots
and critical points of pn(z) =

∏n
j=1(z −Xj).

Theorem 2.3 and Corollary 2.4 show that the roots and critical points can be paired in
such a way that the typical spacing between a critical point and its paired root is O(n−1),
up to logarithmic corrections. This precisely describes the phenomenon observed in
Figures 1 and 2, and the authors believe that these bounds are optimal (up to logarithmic
factors) based on the theorems of Section 2.3 below and the results in [18].

A couple of remarks concerning Theorem 2.3 and its corollary are in order. Due to the
heuristic that motivates our proof of Theorem 2.3 (see Figure 5), the authors conjecture
that Assumption 2.1 part (i) can be weakened to require that for some fixed δ > 0,
P(|mµ(X1)| < ε) ≤ C1ε

1+δ. At present, we require δ = 1 to obtain some technical bounds
in the proof. An examination of the proof reveals exactly where this condition is needed.
The second remark concerns the appearance of ηn on the right-hand side of (2.4). The
authors believe this term is at least partially necessary. Indeed, based on numerical
experiments, the Wasserstein distance W1(µn, µ

′
n) appears larger for distributions µ

with extremely heavy tails. The precise dependence of ηn on the Wasserstein distance
remains an open question.

2.2 Examples of Theorem 2.3 and Corollary 2.4

The assumptions of Theorem 2.3 and Corollary 2.4 are rather technical, so this
subsection is devoted to several specific examples worked out in detail.

Example 2.5 (µ is uniform on a disk). If µ has a uniform distribution on the disk of
radius R centered at z0, then, µ has density f(z) = 1

πR21|z−z0|≤R and Cauchy–Stieltjes
transform

mµ(z) =

{
1
R2 (z − z0) if |z − z0| ≤ R,

1
z−z0 if |z − z0| ≥ R.

(Lemma A.1 facilitates the computation of mµ(z) when µ is radially symmetric. For this
example, apply Lemma A.1 when z = 0, R = 1, and apply a linear transformation.) It
follows that if X ∼ µ, then for any ε < 1,

P (|mµ(X)| < ε) ≤ P
(
|X − z0| < R2ε

)
= R2ε2,

so µ satisfies Assumption 2.1, and by Theorem 2.3, with probability 1−o(1), W1(µn, µ
′
n) =

O((log n)9/n). (Note that almost surely, ηn ≤ |z0|+R).
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Example 2.6 (µ is supported on all of C). Assumption 2.2 is easy to verify for a large
class of measures that do not necessarily have compact support. For example, suppose
µ has a standard complex normal distribution with density f(z) = 1

π e
−|z|2 . Clearly, µ

is radially symmetric about the origin, and f(z) is continuous with f(0) = π−1 > 0.
Furthermore, µ has sub-exponential tails, so by Corollary 2.4, with probability tending to
1, W1(µn, µ

′
n) ≤ O((log n)10/n). Figure 2 illustrates this example.

Example 2.7 (µ is not radially symmetric). In this last example, we consider a situation
where µ does not exhibit radial symmetry. Suppose µ is uniform on the two disks B(−2, 1)

and B(2, 1) with density

f(z) =
1

2π

(
1|z+2|<1(z) + 1|z−2|<1(z)

)
,

which is depicted in Figure 1. By separately considering the cases |z + 2| < 1, |z − 2| < 1,
and |z ± 2| ≥ 1, we can use the calculations from Example 2.5 to obtain the Cauchy–
Stieltjes transform:

mµ(z) =


1
2

(
z + 2 + 1

z−2

)
if |z + 2| < 1,

z
z2−4 if |z ± 2| ≥ 1,
1
2

(
z − 2 + 1

z+2

)
if |z − 2| < 1.

(2.5)

Since µ has compact support, Assumption 2.1 part (ii) holds trivially. In Appendix A, we
establish part (i), so by Theorem 2.3, with probability 1−o(1), W1(µn, µ

′
n) = O((log n)9/n).

2.3 Fluctuations of the critical points

While Theorem 2.3 describes the typical distance between a root and its paired
critical point, it does not allow one to study any particular root or critical point. Toward
this end, we now fix several of the roots and treat them as deterministic: consider the
polynomial

pn(z) :=

s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj),

where X1, . . . , Xn+1−s are iid complex-valued random variables with distribution µ, and
~ξ = (ξ1, . . . , ξs) is a deterministic vector in Cs. Our goal is to simultaneously study the
behavior of the critical points closest to ξl, 1 ≤ l ≤ s.

Our first result, Theorem 2.8, covers the situation where some of the values ξ1, . . . , ξs
are allowed to be inside the support of µ. In particular, for each 1 ≤ l ≤ s, equation (2.7)
locates the critical point, w(n)

l , that is near ξl to within O(n−2) (up to logarithmic

corrections). This bound indicates that each w(n)
l is centered at

ŵ
(n)
l := ξl −

1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

, (2.6)

rather than ξl. This observation allows us to express the fluctuations of each critical
point as a sum of independent random variables (up to some lower order error terms),
and we use this to show that the fluctuations of the vector (w

(n)
1 , . . . , w

(n)
s ) converge in

distribution to a multivariate normal distribution. See Figure 3.
In order to state Theorem 2.8 we need the following definitions. Let

Mµ := {z ∈ C : mµ(z) = 0}

denote the set of zeros of mµ. We say that a measure µ has a density in a neighborhood of
z0 if there exists a ρ > 0 so that the restriction of µ to the open ball B(z0, ρ) is absolutely
continuous with respect to the Lebesgue measure on B(z0, ρ).
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Figure 3: Simulation to illustrate Theorem 2.8. The roots (red dots) and critical points
(blue crosses) of pn(z) = (z− ξ1)

∏n
j=1(z−Xj) for increasing values of n, where the roots,

X1, . . . , X100, are chosen independently and uniformly on the outlined region. The green

circle centered at ξ1 is of radius 2n
n+1

(∑n
j=1

1
ξ1−Xj

)−1

and the gray circle has radius 20
n2

and center ŵ(n)
1 (see (2.6)).

Theorem 2.8 (Locations and fluctuations of critical points when pn has several deter-
ministic roots). Let X1, X2, . . . be iid complex-valued random variables with distribution
µ, fix s and the distinct, deterministic values ξ1, . . . , ξs /∈ Mµ, and suppose that in a
neighborhood of each ξl, 1 ≤ l ≤ s, µ has a bounded density, f . Then, with probability
1− o(1), the polynomial

pn(z) =

s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj)

has s critical points, w(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w(n)

l is the unique critical
point of pn that is within a distance of 3

|mµ(ξl)|n of ξl, and

∣∣∣∣∣w(n)
l − ξl +

1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ = Oµ,~ξ

((
log n

n

)2
)
. (2.7)
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In addition, if f is continuous at ξ1, . . . , ξs, then we have(
n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))s
l=1

−→ (N1, . . . , Ns) (2.8)

in distribution as n → ∞, where (N1, . . . , Ns) is a vector of complex random variables
whose real and imaginary components (Re(N1), Im(N1), . . . ,Re(Ns), Im(Ns)) have a mul-
tivariate normal distribution with mean zero and covariance structure characterized
by

Cov(Re(Nj),Re(Nl)) =

{
πf(ξj)

2 if l = j,

0 else

Cov(Im(Nj), Im(Nl)) =

{
πf(ξj)

2 if l = j,

0 else

Cov(Re(Nj), Im(Nl)) = 0.

(2.9)

Remark 2.9. Theorem 2.8 can also be extended to the case where ξ1, . . . , ξs are in-
dependent random variables (rather than deterministic values). This can be seen by
conditioning on ξ1, . . . , ξs and applying Theorem 2.8; a similar argument was used in
[18].

Compare Theorem 2.8 to Theorem 2.2 of [18], which describes the same phenomenon
when s = 1. Both theorems identify the same fluctuations of w(n)

1 about ξ1, however, the

two results locate the critical point w(n)
1 on different scales. While Theorem 2.2 from

[18] shows that w(n)
1 is the unique critical point of pn within a distance of order o(1/

√
n)

of ξ1, Theorem 2.8 refines the location of w(n)
1 to within order O(n−2) up to logarithmic

corrections. In fact, since 1
n

∑n
j=1

1
ξ1−Xj converges almost surely to mµ(ξ1), the results

of the two theorems can be combined to give a stronger picture of the local behavior
of w(n)

1 . Note that in contrast to the method of proof used by Kabluchko and Seidel in
[18], our approach is based on a deterministic argument (see Theorem 3.1).

For values of ξ1, . . . , ξs outside the support of µ, (2.8) and (2.9) demonstrate that the
scaling factor n3/2/

√
log n is too small to achieve a meaningful result. (Indeed, f may be

chosen to be identically zero outside supp(µ), so the random vector (N1, . . . Ns) is almost
surely the zero vector.) The following result refines the analysis in this situation and is
depicted in Figure 4.

Theorem 2.10 (Locations and fluctuations of critical points when pn has several roots
outside supp(µ)). Let X1, X2, . . . be iid complex-valued random variables with common
distribution µ, fix s ∈ N, and suppose ξ1, . . . , ξs /∈ supp(µ) ∪ Mµ are distinct, fixed
deterministic values. Then, there exist constants C, cµ,~ξ, Cµ,~ξ > 0, so that with probability
at least 1− C exp(−cµ,~ξ n), the polynomial

pn(z) =

s∏
l=1

(z − ξl)
n+1−s∏
j=1

(z −Xj)

has s critical points, w(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w(n)

l is the unique critical
point of pn that is within a distance of 3

|mµ(ξl)|n of ξl, and∣∣∣∣∣w(n)
l − ξl +

1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ < Cµ,~ξ
n2

. (2.10)

In addition, we have(
n3/2 ·mµ(ξl)

2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))s
l=1

−→ (N1, . . . , Ns) (2.11)
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n=5

ξ1

ξ2

n=6

ξ1
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ξ2
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ξ2

n=10
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ξ1

ξ2
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ξ1

ξ2
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ξ1

ξ2

Figure 4: Simulation to illustrate Theorem 2.10. The roots (red circles) and critical
points (blue crosses) of pn(z) =

∏2
l=1(z − ξl)

∏n−1
j=1 (z − Xj) for increasing values of n,

where the roots, X1, . . . , X49, are chosen independently and uniformly on the unit circle.
The gray circles are of radius 10

n2 and are centered at ŵ(n)
1 , ŵ(n)

2 defined in (2.6).

in distribution as n → ∞, where (N1, . . . , Ns) is a vector of complex random variables
whose real and imaginary components (Re(N1), Im(N1), . . . ,Re(Ns), Im(Ns)) have a mul-
tivariate normal distribution with mean zero and covariance structure

Cov(Re(Nj),Re(Nl)) = Cov

(
Re

(
1

ξj −X1

)
,Re

(
1

ξl −X1

))
Cov(Im(Nj), Im(Nl)) = Cov

(
Im

(
1

ξj −X1

)
, Im

(
1

ξl −X1

))
Cov(Re(Nj), Im(Nl)) = Cov

(
Re

(
1

ξj −X1

)
, Im

(
1

ξl −X1

))
.

(2.12)

Remark 2.11. After an application of the Borel–Cantelli lemma, Theorem 2.10 can be
combined with Theorem 2.9 of [23] to establish the following: when µ has compact
support, almost surely, for n sufficiently large, w(n)

1 , . . . , w
(n)
s , characterized by (2.10),

are the only critical points of pn outside an ε-neighborhood of supp(µ) ∪Mµ.

In Section 3, we provide a generalization of Theorem 2.10 to a situation where pn
has a number of deterministic roots that may depend on n (see Theorem 3.4 below). The
proofs of Theorems 2.8 and 2.10 are based on a technical, deterministic argument that
applies to cases where X1, . . . , Xn are random variables that are not independent (see
Theorem 3.1). To illustrate this point, we conclude the subsection with a result that
demonstrates pairing between individual roots and critical points of pn when pn is the
characteristic polynomial of a random matrix.
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Local behavior of critical points and roots of random polynomials

Theorem 2.12. Fix ε > 0 and λ ∈ C with |λ| ≥ 1 + 3ε. Let M be an n × n random
matrix whose entries are iid copies of a random variable with mean zero, unit variance,
and finite fourth moment. Let A be an n× n deterministic matrix with operator norm
‖A‖ = O(1), rank(A) = O(1)2, and whose only nonzero eigenvalue is λ. Then almost
surely, for n sufficiently large, the characteristic polynomial3

pn(z) := det

(
zI − 1√

n
M −A

)
of 1√

n
M +A has a factorization pn(z) = (z − ξ)

∏n−1
i=1 (z −Xi), where

(i) The roots X1, . . . , Xn−1 lie inside the disk B(0, 1 + 2ε).

(ii) The root ξ lies outside the disk B(0, 1 + 2ε) and satisfies ξ = λ+ o(1).

(iii) pn contains a unique critical point, w(n−1)
ξ , which satisfies∣∣∣∣∣w(n−1)

ξ − ξ +
1

n
· 1

1
n−1

∑n−1
i=1

1
ξ−Xi

∣∣∣∣∣ = Oλ,ε

(
1

n2

)
, (2.13)

and hence
w

(n−1)
ξ = λ+ o(1) (2.14)

Remark 2.13. The conclusion in (2.14) can be deduced from properties (i) and (ii)
and Walsh’s two circle theorem (see, for example, [27, Theorem 4.1.1]). However, the
conclusion in (2.13) cannot be deduced from Walsh’s two circle theorem and instead
follows from Theorem 3.1. We prove Theorem 2.12 in Section 3.5.

2.4 A local law for the critical points

In this subsection, we consider a local law that describes the behavior of the critical
points of

pn(z) :=

n∏
i=1

(z −Xi).

We begin with the case where X1, . . . , Xn are arbitrary random variables (not assumed
to be independent nor identically distributed) and then specialize our main result to
several applications and examples.

Theorem 2.14 (Local law). Fix C > 0, and let X1, . . . , Xn be complex-valued random
variables (not necessarily independent nor identically distributed) which satisfy the
following axioms.

(i) (Upper bound) With overwhelming probability, max1≤i≤n |Xi| ≤ en
C

,

(ii) (Anti-concentration) For every a > 0, there exists b > 0 such that∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≥ n−b (2.15)

with probability 1 − Oa(n−a), where Z is uniformly distributed on B(0, nC), inde-
pendent of X1, . . . , Xn.

2We continue to use asymptotic notation, such as O and o, under the assumption that n → ∞. In this
theorem, n represents the dimension of the matrices M and A.

3Here, I denotes the identity matrix.
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Local behavior of critical points and roots of random polynomials

Let ϕ : C→ R be a twice continuously differentiable function (possibly depending on n)
which is supported on B(0, nC) and which satisfies the pointwise bound

|∆ϕ(z)| ≤ nC (2.16)

for all z ∈ C. Then, for every fixed c > 0 and every α > 0,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +Oα(‖∆ϕ‖1 log n) +Oα(n−c)

with probability 1−Oα(n−α), where w(n)
1 , . . . , w

(n)
n−1 are the critical points of the polyno-

mial

pn(z) :=

n∏
i=1

(z −Xi)

and ‖∆ϕ‖1 is the L1-norm of ∆ϕ. Here, the implicit constants in our asymptotic notation
depend on C, c, and α.

Remark 2.15. Condition (ii) on the random variables X1, . . . , Xn from Theorem 2.14 is
implied by the following:

(ii’) for every a > 0, there exists b > 0 such that, for almost every z ∈ B(0, nC),∣∣∣∣∣
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ n−b
with probability 1−Oa(n−a).

Indeed, the implication follows by simply conditioning on the random variable Z (which
avoids a set of Lebesgue measure zero with probability 1).

The assumptions of Theorem 2.14 are fairly technical, and we derive some simpler
conditions that guarantee when the hypotheses of Theorem 2.14 are met in Section 2.5.
We now specialize Theorem 2.14 to the case where X1, . . . , Xn are independent random
variables.

Theorem 2.16 (Local law for independent roots). Fix C > 0, and let X1, . . . , Xn be
independent complex-valued random variables which satisfy max1≤i≤nE|Xi| ≤ nC . In
addition, assume X1 is absolutely continuous (with respect to Lebesgue measure on C)
and has density bounded by nC . Let ϕ : C → R be a twice continuously differentiable
function (possibly depending on n) which is supported on B(0, nC) and which satisfies
the pointwise bound given in (2.16) for all z ∈ C. Then, for every fixed c > 0 and every
α > 0,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +Oα(‖∆ϕ‖1 log n) +Oα(n−c)

with probability 1−Oα(n−α), where w(n)
1 , . . . , w

(n)
n−1 are the critical points of the polyno-

mial pn(z) :=
∏n
i=1(z−Xi) and ‖∆ϕ‖1 is the L1-norm of ∆ϕ. Here, the implicit constants

in our asymptotic notation depend on C, c, and α.

Theorem 2.16 can be viewed as a local version of Theorem 1.1 and (1.2). Indeed,
since the functions in the theorem above can depend on n, one can approximate an
indicator function of Borel sets which changes with n. In addition, the error bound in
Theorem 2.16 is significantly better then the error term from (1.2).

Interestingly, Theorem 2.16 only requires a single root (X1) to actually be random;
the rest may be deterministic. In particular, since the density of X1 is bounded by
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nC , X1 can itself be quite close to deterministic. Obviously, though, the result fails for
deterministic polynomials. For example, consider qn(z) := zn − 1. The conclusion of
Theorem 2.16 fails for this polynomial since all of the critical points are located at the
origin while the roots are the n-th roots of unity, located on the unit circle. However,
Theorem 2.16 does apply to pn(z) := qn(z)(z −X), where X is uniformly distributed on
B(z0, n

−C/2) for any fixed z0 ∈ C. Theorem 2.16 strengthens Theorem 1.6 of [3] for the
empirical distribution associated with the zeros of p′n by providing a rate of convergence.
As a consequence of Theorem 2.16, we have the following central limit theorem (CLT).

Theorem 2.17 (Central limit theorem for linear statistics). Let X1, X2, . . . be iid random
variables which are absolutely continuous (with respect to Lebesgue measure on C) and
have a bounded density. In addition, assume E|X1| < ∞. Let ϕ : C → R be a twice
continuously differentiable function with compact support which does not depend on n.
Then,

1√
n

n−1∑
j=1

ϕ(w
(n)
j )− E

n−1∑
j=1

ϕ(w
(n)
j )

 −→ N(0, v2)

in distribution as n→∞, where w(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial

pn(z) :=
∏n
i=1(z −Xi) and v2 is the variance of ϕ(X1).

We now state a version of Theorem 2.16 that applies when the function ϕ is analytic.
While analyticity is a much more rigid assumption, the next result does not contain the
extra factor of log n present in the error term from Theorem 2.16.

Theorem 2.18 (Local law for analytic test functions). Fix C, c, ε > 0. Let µ be a probability
measure on C supported on B(0, C), and assume

|mµ(z)| ≥ c (2.17)

for all z ∈ Γ, where Γ is the boundary of B(0, C + ε). Then for any function ϕ (possibly
depending on n), analytic in a neighborhood containing the closure of B(0, C + ε), one
has

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +O

(∮
Γ

|ϕ(z)||dz|
)
,

where w(n)
1 , . . . , w

(n)
n−1 are the critical points of the polynomial pn(z) :=

∏n
i=1(z −Xi) and

X1, . . . , Xn are iid random variables with distribution µ. Here, the implicit constants in
our asymptotic notation depend on C, c, and ε.

2.5 Guaranteeing the assumptions in the local law

In this section, we provide some criteria for assuring the assumptions in Theorem 2.14
are met.

Lemma 2.19 (Simple criterion for an upper bound). Fix C, ε > 0, and suppose X1, . . . , Xn

are complex-valued random variables (not necessarily independent nor identically dis-
tributed). If max1≤i≤nE|Xi|ε ≤ nC , then max1≤i≤n |Xi| ≤ en

C

with overwhelming proba-
bility.

Proof. As P
(

max1≤i≤n |Xi| > en
C
)
≤
∑n
i=1P(|Xi| > en

C

), the claim follows from a

simple application of Markov’s inequality.

Lemma 2.20 (Criterion for anti-concentration). Fix C > 0, and let X1, . . . , Xn be complex-
valued random variables such that X1 is independent of X2, . . . , Xn. In addition, assume
X1 is absolutely continuous (with respect to Lebesgue measure on C) with density
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bounded by nC , and suppose that E|X1| ≤ nC . Then for every a > 0, there exists b > 0

such that ∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≥ n−b
with probability 1−Oa(n−a), where Z is uniformly distributed on B(0, nC) and indepen-
dent of X1, . . . , Xn.

We prove Lemma 2.20 in Appendix A.

2.6 Overview and outline

The remainder of the paper is devoted to proving our main results. In Section 3, we
establish Theorems 2.8, 2.10, and 2.12 of Subsection 2.3 by way of Theorem 3.1 for
deterministic polynomials, which we also use to prove a generalization to Theorem 2.10.
Section 4 contains the proofs of the local laws from Subsection 2.4 including those for
Theorems 2.14, 2.16, 2.17, and 2.18. We conclude the paper with a proof of Theorem 2.3
in Section 5.

There are two appendices that contain minor lemmata and supporting calculations.
In Appendix A, we provide Lemma A.1 to simplify the computation of mµ for radially
symmetric distributions, we include calculations related to Example 2.7, and we justify
Lemma 2.20. Appendix B contains some classical arguments that establish a Lindeberg
CLT that we use to prove part of Theorem 2.8.

3 Proof of results in Section 2.3

The proofs of Theorems 2.8, 2.10, and 2.12 rely on the following theorem for deter-
ministic polynomials.

Theorem 3.1. Suppose ξ is a complex number, ~X = (X1, X2, . . . , Xn) is a vector of
complex numbers, and C1, C2, kLip are positive values for which the following three
conditions hold:

(i) C1 ≤
∣∣∣ 1
n

∑n
j=1

1
ξ−Xj

∣∣∣ ≤ C2;

(ii) The function z 7→ 1
n

∑n
j=1

1
z−Xj is Lipschitz continuous with constant kLip on the set{

z ∈ C : |z − ξ| ≤ 2
C1n

}
;

(iii) min
1≤j≤n

|ξ −Xj | >
3

C1n
.

Then, if C > 0 and n ∈ N satisfy

C >
8(1 + 2C2

2 )

C3
1

and n > 4C2 max

{
1

C1
, C(kLip + 1)

}
, (3.1)

the polynomial pn(z) := (z − ξ)
∏n
j=1(z −Xj) has exactly one critical point, w(n)

ξ , that is

within a distance of 3
2C1n

of ξ, and∣∣∣∣∣w(n)
ξ − ξ +

1

n+ 1

1
1
n

∑n
j=1

1
ξ−Xj

∣∣∣∣∣ < C(kLip + 1)

n2
. (3.2)

We remark that criteria (i) and (ii) appear relevant in view of (2.2) and its accompa-
nying heuristic. Assumption (iii) helps to guarantee that pn(z) has only one critical point
that is within order O(1/n) of ξ, but with respect to establishing equation (3.2), (iii) is
likely an artificial constraint related to the use of Rouché’s theorem in the proof. We
prove Theorem 3.1 in the next subsection.
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3.1 Proof of Theorem 3.1

Our strategy is to compare pn(z) to the simpler polynomial

p̃(z) = (z − ξ)(z − Yn)n,

where

Yn := ξ − 1
1
n

∑n
j=1

1
ξ−Xj

is chosen so that near ξ, the logarithmic derivatives

Ln(z) :=
1

z − ξ
+

n∑
j=1

1

z −Xj
and L̃n(z) :=

1

z − ξ
+

n

z − Yn

of pn and p̃n, respectively, are close to each other. In particular, we will use Rouché’s
theorem to show that Ln and L̃n both have exactly one zero in each of the nested open
balls

Dsm
n := B

(
cn,

C(kLip + 1)

n2

)
and Dlg

n := B

(
ξ,

3

2C1n

)
,

where

cn := ξ − 1

n+ 1

1
1
n

∑n
j=1

1
ξ−Xj

can be easily verified to be a root of L̃n. By “clearing the denominators” we will
conclude that pn has exactly one critical point in each of the two balls. The lemma below
establishes a few key facts that we frequently reference throughout the proof.

Lemma 3.2. Under the assumptions of Theorem 3.1:

(i) For |z − cn| ≤ C(kLip+1)
n2 :

C(kLip + 1)

n2
< |z − ξ| < 5

4C1n
, so Dsm

n ⊂ Dlg
n ;

C(kLip + 1)

n2
< |z − Yn| <

2

C1
;

C(kLip + 1)

n2
<

1

C1n
< |z −Xj | for 1 ≤ j ≤ n.

(ii) For |z − ξ| ≤ 3
2nC1

:

3

2C1n
< |z − Yn| <

5

2C1
;

3

2C1n
< |z −Xj | for 1 ≤ j ≤ n;

1

2C1n
< |z − cn| if |z − ξ| = 3

2nC1
.

Proof. To prove (i), suppose |z − cn| ≤ C(kLip+1)
n2 . By the triangle inequality, we have

|z − ξ| ≥ |cn − ξ| − |z − cn| ≥
1

(n+ 1)C2
− C(kLip + 1)

n2
≥ 1

2nC2
− C(kLip + 1)

n2
,

and by the hypothesis that n > 4C2C(kLip + 1), it follows that

|z − ξ| > 1

2nC2
− 1

4nC2
=

1

4nC2
>
C(kLip + 1)

n2
.

EJP 25 (2020), paper 100.
Page 15/68

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP499
http://www.imstat.org/ejp/


Local behavior of critical points and roots of random polynomials

On the other hand, we have

|z − ξ| ≤ |z − cn|+ |cn − ξ| ≤
C(kLip + 1)

n2
+

1

(n+ 1)C1
,

and the assumption n > 4C2C(kLip + 1) guarantees that

|z − ξ| < 1

4nC1
+

1

(n+ 1)C1
<

5

4C1n

(note: C1 ≤ C2). This establishes the first inequality. The second follows from nearly
identical reasoning; we omit the details. To achieve the inequalities 1

C1n
< |z −Xj |, we

use |z − ξ| < 5
4C1n

, which we just proved, and the assumption that min1≤j≤n |ξ −Xj | >
3

C1n
. Indeed, for 1 ≤ j ≤ n, the triangle inequality yields

|z −Xj | ≥ |ξ −Xj | − |z − ξ| >
3

C1n
− 5

4C1n
>

1

C2n
>
C(kLip + 1)

n2
.

This completes the proof of part (i). Part (ii) follows from nearly identical reasoning.
Note that the assumption n > 4C2/C1 is useful for achieving the lower bound on |z − Yn|.
We omit the remaining details.

The lower bounds in Lemma 3.2 imply that under the assumptions of Theorem 3.1,
Ln(z) and L̃n(z) are holomorphic on the domain Dsm

n and that (z−ξ)Ln(z) and (z−ξ)L̃n(z)

are holomorphic on the domain Dlg
n . We will show that under the same assumptions,∣∣∣Ln(z)− L̃n(z)

∣∣∣ < ∣∣∣L̃n(z)
∣∣∣ for z in the boundaries of Dsm

n and Dlg
n in order to justify

Rouché’s theorem. To that end, assume the hypotheses of Theorem 3.1 and let z ∈
∂Dsm

n ∪ ∂Dlg
n . Then, the triangle inequality implies

∣∣∣Ln(z)− L̃n(z)
∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
− n

z − Yn

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
−

n∑
j=1

1

ξ −Xj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

1

ξ −Xj
− 1

1
nz −

1
nYn

∣∣∣∣∣∣
≤ nkLip |z − ξ|+

∣∣∣∣∣∣
n∑
j=1

1

ξ −Xj
− 1

1
n (z − ξ) + 1∑n

j=1
1

ξ−Xj

∣∣∣∣∣∣ ,
where we have used hypothesis (ii) of Theorem 3.1 to bound the first term on the left. By

factoring
∣∣∣∑n

j=1
1

ξ−Xj

∣∣∣ from both terms in the right summand, we obtain

∣∣∣Ln(z)− L̃n(z)
∣∣∣ ≤ nkLip |z − ξ|+ n ·

∣∣∣∣∣∣ 1n
n∑
j=1

1

ξ −Xj

∣∣∣∣∣∣ ·
∣∣∣∣∣1− 1

(z − ξ) 1
n

∑n
j=1

1
ξ−Xj + 1

∣∣∣∣∣ ,
and then, combining the fractions, factoring out another

∣∣∣∑n
j=1

1
ξ−Xj

∣∣∣, and applying

hypothesis (i) of Theorem 3.1 twice yields∣∣∣Ln(z)− L̃n(z)
∣∣∣ ≤ nkLip |z − ξ|+ nC2 ·

∣∣∣∣∣ (z − ξ) 1
n

∑n
j=1

1
ξ−Xj

(z − ξ) 1
n

∑n
j=1

1
ξ−Xj + 1

∣∣∣∣∣
≤ nkLip |z − ξ|+ nC2

2 ·
|z − ξ|∣∣∣(z − ξ) 1

n

∑n
j=1

1
ξ−Xj + 1

∣∣∣ .
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Finally, we can use the reverse triangle inequality and hypothesis (i) of Theorem 3.1 to
show ∣∣∣Ln(z)− L̃n(z)

∣∣∣ ≤ nkLip |z − ξ|+ nC2
2 |z − ξ| ·

1

1−
∣∣∣(z − ξ) 1

n

∑n
j=1

1
ξ−Xj

∣∣∣
≤ n |z − ξ|

(
kLip +

C2
2

1− |z − ξ|C2

)
.

(3.3)

At this point, we split the argument into two cases: |z − cn| = C(kLip+1)
n2 and |z − ξ| = 3

2nC1
.

In the first case, Lemma 3.2 guarantees that |z − ξ| < 2
nC1

, and the hypotheses of

Theorem 3.1 require that 1
2 >

2C2

nC1
, so we obtain

∣∣∣Ln(z)− L̃n(z)
∣∣∣ < 2

C1

(
kLip + 2C2

2

)
≤ 2

C1
(kLip + 1)(1 + 2C2

2 ). (3.4)

On the other hand,

∣∣∣L̃n(z)
∣∣∣ =

∣∣∣∣ 1

z − ξ
+

n

z − Yn

∣∣∣∣
=

∣∣∣∣z − Yn + n(z − ξ)
(z − ξ)(z − Yn)

∣∣∣∣
= (n+ 1) · |z − ξ|−1 · |z − Yn|−1 · |z − cn|

> n · nC1

2
· C1

2
· C(kLip + 1)

n2
,

where the last inequality follows from Lemma 3.2. One of the assumptions in Theorem 3.1

is that C >
8(1+2C2

2 )

C3
1

, so

∣∣∣L̃n(z)
∣∣∣ > C2

1

4
(kLip + 1)

8(1 + 2C2
2 )

C3
1

=
2

C1
(kLip + 1)(1 + 2C2

2 ). (3.5)

Combining (3.4) and (3.5) yields
∣∣∣Ln(z)− L̃n(z)

∣∣∣ < ∣∣∣L̃n(z)
∣∣∣ for z in the boundary of

Dsm
n . In addition, recall (Lemma 3.2 part (ii)) that Ln(z) and L̃(z) are holomorphic on

the domain Dsm
n , so Rouché’s theorem guarantees that Ln(z) and L̃n(z) have the same

number of zeros inside Dsm
n . Since cn is the unique zero of L̃n(z) in Dsm

n , we conclude

that Ln(z) has exactly one zero, w(n)
ξ , in Dsm

n . Furthermore, Ln(z) =
p′n(z)
pn(z) (which is

analytic for z ∈ Dsm
n by (i) of Lemma 3.2), so the zeros of Ln(z) in Dsm

n are the same as
the critical points of pn(z) in Dsm

n . We conclude that pn(z) has exactly one critical point
in Dsm

n .

Lemma 3.2 shows that Dsm
n ⊂ Dlg

n , so it remains to establish that pn(z) also has
exactly one critical point in Dlg

n , for then, the critical point in both domains must be the
same one. Continuing from (3.3), in the case where |z − ξ| = 3

2C1n
, we obtain

∣∣∣Ln(z)− L̃n(z)
∣∣∣ < 3

2C1
(kLip + 2C2

2 ) ≤ 3

2C1
(kLip + 1)(1 + 2C2

2 ), (3.6)

where we have once again used the assumption that 1
2 ≥

2C2

nC1
. Similarly to above, we
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Local behavior of critical points and roots of random polynomials

also have ∣∣∣L̃n(z)
∣∣∣ =

∣∣∣∣ 1

z − ξ
+

n

z − Yn

∣∣∣∣
=

∣∣∣∣z − Yn + n(z − ξ)
(z − ξ)(z − Yn)

∣∣∣∣
= (n+ 1) · |z − ξ|−1 · |z − Yn|−1 · |z − cn|

> n · 2C1n

3
· 2C1

5
· 1

2C1n

=
2C1n

15

where the inequality follows from Lemma 3.2, (ii). From the assumptions on n and C in
Theorem 3.1, it follows that

n > 4C2C(kLip + 1) >
32(1 + 2C2

2 )(kLip + 1)

C2
1

· C2

C1
≥ 32(1 + 2C2

2 )(kLip + 1)

C2
1

(recall C1 ≤ C2), so in the case when |z − ξ| = 3
2C1n

,∣∣∣L̃n(z)
∣∣∣ > 64

15C1
(kLip + 1)(1 + 2C2

2 ). (3.7)

Combining (3.6) and (3.7) yields
∣∣∣Ln(z)− L̃n(z)

∣∣∣ < ∣∣∣L̃n(z)
∣∣∣ for z in the boundary of Dlg

n .

Consequently, for z ∈ ∂Dlg
n ,∣∣∣(z − ξ)Ln(z)− (z − ξ)L̃n(z)

∣∣∣ < ∣∣∣(z − ξ)L̃n(z)
∣∣∣ ,

and since (z − ξ)Ln(z), (z − ξ)L̃n(z) are holomorphic in Dlg
n by Lemma 3.2, (ii), Rouché’s

theorem guarantees that (z − ξ)Ln(z), (z − ξ)L̃n(z) have the same number of zeros in
Dlg
n . In fact, (z − ξ)L̃n(z) has exactly one zero in Dlg

n , namely cn, so

(z − ξ)Ln(z) =
p′n(z)∏n

j=1(z −Xj)

has exactly one zero in Dlg
n , too. (Note: by Lemma 3.2, (i), Dsm

n ⊂ Dlg
n .) Hence, p′n(z)

has exactly one root in Dlg
n , and as we showed above, this root lies in Dsm

n . The proof of
Theorem 3.1 is complete.

In the remainder of this section, we use Theorem 3.1 to prove Theorems 2.8, 2.10
and 2.12. We also include a subsection where we sketch how the arguments could be
modified to prove Theorem 3.4, which generalizes part of Theorem 2.10 to situations
where pn has many deterministic roots. When ξ ∈ supp(µ), it is difficult to control
1
n

∑n
j=1

1
ξ−Xj , so we start with the proof of Theorem 2.10, which is more straightforward

than the justification of Theorem 2.8.

3.2 Proof of Theorem 2.10

We begin by establishing equation (2.10) via Theorem 3.1. To that end, we consider
{ξl}sl=1, one at a time, letting each in turn play the role of ξ in the statement of Theo-
rem 3.1. Fix ξl, 1 ≤ l ≤ s. We will show that for large n, on the complement of the “bad”
event

Eln :=


∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ ≥ |mµ(ξl)|
3

 ,
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Local behavior of critical points and roots of random polynomials

the hypotheses of Theorem 3.1 are satisfied with ξ = ξl,

~X = (ξ1, . . . , ξl−1, ξl+1, . . . , ξs, X1, . . . , Xn+1−s),

and the positive constants

C1,l :=
|mµ(ξl)|

2
, C2,l :=

3 |mµ(ξl)|
2

, kLip,l :=
9

dist(ξl, supp(µ) ∪ {ξj : j 6= l})2
. (3.8)

(Here, dist(z,D) := infw∈D |z − w| is the distance from z ∈ C to a set D ⊂ C.)
For large n, on the complement of Eln,∣∣∣∣∣∣∣∣

1

n

 s∑
j=1
j 6=l

1

ξl − ξj
+

n+1−s∑
j=1

1

ξl −Xj


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
1

n

s∑
j=1
j 6=l

1

ξl − ξj

∣∣∣∣∣∣∣∣+
n+ 1− s

n

∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj

∣∣∣∣∣∣
≤ ol(1) +

∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣+ |mµ(ξl)| ≤ C2,l

(3.9)

(The last inequality holds for large n.) Similarly, for large n, on the event
(
Eln
)c

,∣∣∣∣∣∣∣∣
1

n

 s∑
j=1
j 6=l

1

ξl − ξj
+

n+1−s∑
j=1

1

ξl −Xj


∣∣∣∣∣∣∣∣ ≥ C1,l, (3.10)

and condition (i) of Theorem 3.1 follows from equations (3.9) and (3.10). If n is chosen
large enough that

εl := dist(ξl, supp(µ) ∪ {ξj : j 6= l}) > 3

C1,ln
,

then condition (iii) of Theorem 3.1 holds, and for |z − ξl| ≤ 2
C1,ln

,

min
1≤j≤n+1−s

|z −Xj | ≥ min
1≤j≤n+1−s

|ξl −Xj | − |z − ξl| ≥ εl −
2

C1,ln
>
εl
3
,

min
j 6=l
|z − ξj | ≥ min

j 6=l
|ξl − ξj | − |z − ξl| ≥ εl −

2

C1,ln
>
εl
3
.

In particular, this shows that for positive integers n > 3(C1εl)
−1 and complex numbers

z, w ∈
{
z : |z − ξ| ≤ 2

C1,ln

}
,∣∣∣∣∣∣∣∣

1

n

 s∑
j=1
j 6=l

1

z − ξj
+

n+1−s∑
j=1

1

z −Xj

− 1

n

 s∑
j=1
j 6=l

1

w − ξj
+

n+1−s∑
j=1

1

w −Xj


∣∣∣∣∣∣∣∣

=
1

n

∣∣∣∣∣∣∣∣
s∑
j=1
j 6=l

w − z
(z − ξj)(w − ξj)

+

n+1−s∑
j=1

w − z
(z −Xj)(w −Xj)

∣∣∣∣∣∣∣∣
≤ |w − z| · 9

ε2
l

= kLip,l · |w − z| ,

which implies condition (ii) of Theorem 3.1.
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Local behavior of critical points and roots of random polynomials

Now, fix any C > max1≤l≤s
8(1+2C2

2,l)

C3
1,l

. If n is a natural number large enough to

guarantee inequalities (3.9) and (3.10) for 1 ≤ l ≤ s and that satisfies

n > max

{
4C2,l

C1,l
, 4C2,lC(kLip,l + 1),

3

C1,lεl
: 1 ≤ l ≤ s

}
, (3.11)

Theorem 3.1 guarantees that on the complement of ∪sl=1E
l
n, the polynomial pn has s

critical points, w(n)
1 , . . . , w

(n)
s , such that for 1 ≤ l ≤ s, w(n)

l is the unique critical point of
pn that is within a distance of 3

|mµ(ξl)|n of ξl, and∣∣∣∣∣w(n)
l − ξl +

1

n+ 1

n∑
j 6=l

1
ξl−ξj +

∑n+1−s
j=1

1
ξl−Xj

∣∣∣∣∣ < C(kLip,l + 1)

n2
. (3.12)

(Note that for large n, w(n)
1 , . . . , w

(n)
s are distinct because ξ1, . . . , ξs are distinct and (3.12)

implies w(n)
l → ξl for 1 ≤ l ≤ s.) We complete our justification of (2.10) from The-

orem 2.10 by choosing Cµ,~ξ larger than maxl C(kLip,l + 1) and applying Hoeffding’s

inequality to the bounded random variables (ξl −Xj)
−1 to achieve the desired control

over P(∪lEln). More specifically, since ξl /∈ supp(µ) for 1 ≤ l ≤ s, the random variables
Y lj := (ξl −Xj)

−1 are almost surely uniformly bounded by Kl := dist(ξl, supp(µ))−1, and

the following version of Hoeffding’s inequality applies with tl :=
|mµ(ξl)|

3 .

Lemma 3.3 (Hoeffding’s inequality for complex-valued random variable; Lemma 3.1 from
[23])). Let Y1, . . . , Yn be iid complex-valued random variables which satisfy |Yj | ≤ K

almost surely for some K > 0. Then there exist absolute constants C, c > 0 such that

P

∣∣∣∣∣∣ 1n
n∑
j=1

Yj −
1

n
E

 n∑
j=1

Yj

∣∣∣∣∣∣ ≥ t
 ≤ C exp

(
−cnt2/K2

)
,

for every t > 0.

By Lemma 3.3, we can find C, cµ,~ξ > 0 such that ∪lEln occurs with probability at least
1− C exp(−cµ,~ξ n) as is desired.

We have established with overwhelming probability the existence of the critical
points w(n)

1 , . . . , w
(n)
s characterized by (2.10). It remains to show that they satisfy the

convergence in (2.11). To that end, apply the Borel–Cantelli Lemma to the events ∪lEln
to see that almost surely, for large enough n, w(n)

l satisfies (2.10) for 1 ≤ l ≤ n. It follows
that with probability 1, for sufficiently large n and any l, 1 ≤ l ≤ s,

√
n(n+ 1) ·mµ(ξl)

2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)
= mµ(ξl)

2 ·
√
n

(
1

mµ(ξl)
− n∑

j 6=l
1

ξl−ξj +
∑n+1−s
j=1

1
ξl−Xj

)
+Oµ,~ξ(n

−1/2)

= mµ(ξl)
2 ·
√
n

(
1

mµ(ξl)
− 1

1
n

∑n
j=1

1
ξl−Xj +Oµ,~ξ(1/n)

)
+Oµ,~ξ(n

−1/2)

=
mµ(ξl)

1
n

∑n
j=1

1
ξl−Xj +Oµ,~ξ(1/n)

·
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+Oµ,~ξ(n
−1/2).

(3.13)

In the case s > 1, we have used that

max
1≤l≤s

∣∣∣∣∣∣
∑
j 6=l

1

ξl − ξk
−

n∑
j=n+2−s

1

ξl −Xj

∣∣∣∣∣∣ = Oµ,~ξ(1).
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Local behavior of critical points and roots of random polynomials

Now, we will use the Cramér–Wold device (see e.g. Theorem 29.4 in [2]) to show the
convergence (2.11). To start, let t1, . . . , ts, r1, . . . , rs be arbitrary real numbers and define
the random variables

Yn,l := n3/2 ·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)
,

Zl,j := Re

(
1

ξl −Xj

)
,

Wl,j := Im

(
1

ξl −Xj

)
,

for 1 ≤ l ≤ s. By (3.13), we have, with probability tending to 1,

Yn,l =
n

n+ 1

mµ(ξl)
1
n

∑n
j=1

1
ξl−Xj + o(1)

·
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+O

(
1√
n

)

= (1 + o(1))
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+O

(
1√
n

)

=
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+ o(1),

(3.14)

where all of the implied constants depend on ξ1, . . . , ξs and µ, and we have made ample
use of Slutsky’s theorem (see e.g. Theorem 11.4 from [11]). To obtain the last line, we
also used the classical CLT (see e.g. Theorem 29.5 from [2]) in conjunction with Slutsky’s
theorem. If we take linear combinations of the real and imaginary parts of Yn,l, we obtain
that with probability at least 1− o(1),

s∑
l=1

tl Re(Yn,l) +

s∑
l=1

rl Im(Yn,l)

=
√
n

 1

n

n∑
j=1

s∑
l=1

[tlZl,j + rlWl,j − tl Re (mµ(ξl))− tl Im (mµ(ξl))]

+ o(1),

which converges by the classical CLT (and Slutsky’s theorem) in distribution to a normally
distributed random variable with mean 0 and variance Var (

∑s
l=1 [tlZl,1 + rlWl,1]). This

limiting distribution is the same as the distribution of
∑s
l=1 [tl Re(Nl) + rl Im(Nl)] with

covariance structure given by (2.12), so by the Cramér–Wold strategy, the proof of
Theorem 2.10 is complete.

The next subsection illustrates how to modify the argument above to prove a general-
ization of Theorem 3.4 to the case where pn has a number of deterministic roots that
may grow with n.

3.3 Generalization of Theorem 2.10

The following result shows how Theorem 3.1 could be used to locate the critical
points near a number of outlying deterministic roots that is allowed to depend on n.
Compare the following theorem to Theorem 2 in [14]. Both theorems discuss the pairing
between sn roots and critical points of pn, where sn = o(n) is allowed to depend on n.
Theorem 3.4 describes the locations of the critical points with higher precision than
Theorem 2 of [14], however our theorem requires that the deterministic roots ξ1, . . . , ξsn
be outside the support of µ, while Theorem 2 in [14] doesn’t make this restriction.
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Theorem 3.4 (Locations of critical points when pn has many deterministic roots). Suppose
X1, X2, . . . are iid complex-valued random variables with distribution µ, let ξ1, ξ2, . . . be
fixed deterministic values, let sn, ln, an be positive integers less than n, and fix ε, L > 0,
so that all of these together satisfy:

(i) 1 ≤ sn ≤ ln = o(n), anln = o(n), an = o(
√
n);

(ii) min {|mµ(ξl)| : 1 ≤ l ≤ sn} ≥ ε and max {|mµ(ξl)| : 1 ≤ l ≤ sn} ≤ L;

(iii) min
{
|ξl − x| : 1 ≤ l ≤ sn, x ∈ supp(µ) ∪ {ξj}lnj=1,j 6=l

}
> 6

ε·an .

Then, there exist constants C, cµ,ε,L, Cµ,ε,L > 0 so that with probability at least 1− C ·
sn exp(−cµ,ε,L · n/a2

n), the polynomial

pn(z) =

ln∏
l=1

(z − ξl)
n+1−ln∏
j=1

(z −Xj)

has sn critical points, w(n)
1 , . . . , w

(n)
sn , such that for 1 ≤ l ≤ sn, w(n)

l is the unique critical
point of pn within 3

2εn of ξl and

max
1≤l≤sn

∣∣∣∣∣∣w(n)
l − ξl +

1

n+ 1

n∑ln
k=1,k 6=l

1
ξl−ξk +

∑n+1−ln
j=1

1
ξl−Xj

∣∣∣∣∣∣ < Cµ,ε,L · a2
n

n2
. (3.15)

Theorem 3.4 follows from an argument quite similar to the one provided in the
previous subsection. We outline the main differences in the following proof sketch.

Argue as in Subsection 3.2 for each l, 1 ≤ l ≤ sn, separately but in place of the
definitions in equation (3.8) choose

C1 :=
ε

2
, C2 :=

3L

2
, and kLip :=

ε2a2
n

4
.

Also, modify the events Eln into the events

Eln :=


∣∣∣∣∣∣ 1

n+ 1− ln

n+1−ln∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ ≥ |mµ(ξl)|
3

 , 1 ≤ l ≤ sn.

Notice that condition (i) from Theorem 3.1 now holds for n sufficiently large (depending
on the rate of convergence of anln/n→ 0) on the complement of Eln because∣∣∣∣∣∣ 1n

ln∑
k=1,k 6=l

1

ξl − ξk

∣∣∣∣∣∣ ≤ εanln
6n

= o(1),

and this limit is uniform with respect to 1 ≤ l ≤ sn. The requirements (3.11) on n now
become

n > max

{
4C2

C1
, 4C2C

(
ε2a2

n

4
+ 1

)
, an

}
,

which hold uniformly for 1 ≤ l ≤ sn by assumption (i) in the statement of Theorem 3.4. By
Hoeffding’s inequality (Lemma 3.3), with Y lj := 1

ξl−Xj , Kl := εan
6 , and tl :=

|mµ(ξl)|
3 ≥ ε

3 ,
there are constants C, cµ,ε > 0, independent of l, ξl, and sn, so that for large n

P
(
Eln
)
≤ C exp

(
−cµ,ε(n+ 1− ln)/a2

n

)
.

Taking a union over l, 1 ≤ l ≤ sn establishes the desired result.
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3.4 Proof of Theorem 2.8

We now proceed to prove Theorem 2.8. In order to control 1
n

∑n
j=1

1
ξ−Xj , we will rely

on the Law of Large Numbers. Lemma 3.5 below justifies this approach by establishing
some regularity properties for E(ξ −X1)−1 = mµ(ξ) that we continue to use throughout
the remainder of the paper. We note that Lemma 3.5 is similar to Lemma 5.7 in [18].

Lemma 3.5 (Regularity properties of the Cauchy–Stieltjes transform). Suppose that on
B(ξ, ρ) ⊂ C, µ has a density with respect to the Lebesgue measure that is bounded by
Cµ,ξ,ρ. Then,

(i) for any z ∈ B(ξ, ρ/2),

|mµ(z)| ≤
∫
C

1

|z − w|
dµ(w) ≤ 2πCµ,ξ,ρ min {ρ/2, 1}+ max {2/ρ, 1} ;

(ii) if ρ =∞ so that µ has a density bounded by Cµ on all of C, then there exist constants
κµ, εµ > 0, depending on µ, so that the following holds. If x, y ∈ C with |x− y| < εµ,
then

|mµ(x)−mµ(y)| ≤ κµ |x− y| log
(
|x− y|−1

)
.

Proof. To prove the first inequality, observe that for any z ∈ B(ξ, ρ/2),

|mµ(z)| ≤
∫
C

1

|z − w|
1|z−w|<min{ρ/2,1} dµ(w) +

∫
C

1

|z − w|
1|z−w|≥min{ρ/2,1} dµ(w)

≤ 2πCµ,ξ,ρ

∫ min{ρ/2,1}

0

1

r
· r dr + max {2/ρ, 1}

≤ 2πCµ,ξ,ρ min {ρ/2, 1}+ max {2/ρ, 1} ,

where we have used polar coordinates in the integral. To prove (ii), let Z ∼ µ and fix
x, y ∈ C with |x− y| ≤ 1. We will compute the difference

|mµ(x)−mµ(y)| =
∣∣∣∣E [ 1

x− Z

]
− E

[
1

y − Z

]∣∣∣∣ ≤ |x− y|E [ 1

|x− Z| |y − Z|

]
(3.16)

by splitting the expectations over each of the events

A := {|x− Z| ≥ |x− y| and |y − Z| ≥ |x− y|} ,
B := {|x− Z| ≥ |x− y| and |y − Z| < |x− y|} ,
C := {|x− Z| < |x− y| and |y − Z| ≥ |x− y|} ,
D := {|x− Z| < |x− y| and |y − Z| < |x− y|} ,

whose union occurs almost surely. The Cauchy–Schwarz inequality implies

E

[
1A

|x− Z| |y − Z|

]
≤

√√√√E[1|x−Z|≥|x−y|
|x− Z|2

]
E

[
1|y−Z|≥|x−y|

|y − Z|2

]

≤ 2πCµ

∫ 1

|x−y|

1

r2
r dr + E[1] = 2πCµ log

∣∣∣∣ 1

x− y

∣∣∣∣+ 1.

If B occurs, then |x− Z| ≥ |x− y|, so the expectation on the right of (3.16) is bounded by

E

[
1B

|x− Z| |y − Z|

]
≤ 1

|x− y|
E

[
1|y−Z|<|x−y|

|y − Z|

]
≤ 4πCµ
|x− y|

∫ |x−y|
0

1

r
r dr = 4πCµ.
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We can bound E[1C(|x− Z| |x− Y |)−1] in similar fashion. For the expectations over the
event D, we have the following bound on the middle expression of (3.16):

E

[
1D

|x− Z|

]
+ E

[
1D

|y − Z|

]
≤ 8πCµ

∫ |x−y|
0

1

r
r dr ≤ 8πCµ |x− y| .

In view of (3.16), these last few inequalities establish (ii).

We proceed to prove Theorem 2.8, starting with a justification of (2.7) in the case
s = 1 and ξ1 = ξ. Choose ρξ > 0 so that in the disk B(ξ, 3ρξ), µ has a density f that is
bounded by Cf . Our plan of attack will be to show that the hypotheses of Theorem 3.1
are satisfied on the complement of a “bad” event whose probability tends to 0 as n grows.
To optimize our control over this event, we allow it to depend on the parameter εn = o(1)

that we will choose appropriately to achieve the asymptotic bound in (2.7).
To that end, suppose εn ∈ (0, 1), let dn := dlog(

√
n)e, and for each n ≥ 1 define the

annuli

A0
n :=

{
z ∈ C : |z − ξ| < ρξ√

n

}
,

Akn :=

{
z ∈ C :

ρξe
k−1

√
n
≤ |z − ξ| < ρξe

k

√
n

}
, 1 ≤ k ≤ dn,

and the binomial random variables

Nk
n := #

{
1 ≤ j ≤ n : Xj ∈ Akn

}
, 0 ≤ k ≤ dn.

Consider the “bad” events

En =


∣∣∣∣∣∣ 1n

n∑
j=1

1

ξ −Xj
−mµ(ξ)

∣∣∣∣∣∣ ≥ |mµ(ξ)|
2

 ,

F kn =

{
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

}
, 0 ≤ k ≤ dn,

Gn =

{
min

1≤j≤n
|Xj − ξ| <

√
εn
n

}
.

We will demonstrate that if

C1 :=
|mµ(ξ)|

2
, C2 :=

3 |mµ(ξ)|
2

, and kLip :=
Cµ,ξ log n

ε
3/2
n

, (3.17)

for εn := (log n)−2/3 and Cµ,ξ defined in Lemma 3.6 below, then the conditions in
Theorem 3.1 hold on the complement of En∪Gn∪

⋃
k F

k
n for large enough n. Furthermore,

we will show that the union of these events occurs with probability tending to 0. Notice
that events En, F kn , and Gn are related to conditions (i), (ii), and (iii) of Theorem 3.1,
respectively.

It is clear that condition (i) holds on the complement of En because mµ(ξ) 6= 0. For
n > 9

C2
1εn

, (iii) is true, on the complement of Gn, because in this case,
√

εn
n > 3

C1n
. The

following lemma establishes condition (ii).

Lemma 3.6. There exists a constant Cµ,ξ > 0, depending only on µ and ξ, so that if
εn ∈ (0, 1), and

n > max

{(
8ρξ
C1εn

)2

,

(
8e2

C1ρξ

)2

,
8

C1ρξ

}
,
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then, on the complement of
⋃dn
k=0 F

k
n ∪Gn, any complex numbers z, w ∈ B

(
ξ, 2
C1n

)
satisfy∣∣∣∣∣∣

n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣ ≤ Cµ,ξ · n log n

ε
3/2
n

.

Proof. Fix z, w ∈ B
(
ξ, 2
C1n

)
and 1 ≤ j ≤ n. By applying the triangle inequality several

times, we obtain

|z −Xj | |w −Xj | ≥
∣∣∣( |ξ −Xj | − |z − ξ|

)(
|ξ −Xj | − |w − ξ|

)∣∣∣
≥ |ξ −Xj |2 − |ξ −Xj | (|z − ξ|+ |w − ξ|)

≥ |ξ −Xj |2 − |ξ −Xj |
4

C1n
.

Consequently, on the complement of
⋃dn
k=0 F

k
n ∪Gn,∣∣∣∣∣∣

n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣ ≤
n∑
j=1

1

|z −Xj | · |w −Xj |

≤
n∑
j=1

1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

≤
∑

1≤j≤n s.t.
√
εn√
n
≤|Xj−ξ|<

ρξ√
n

1
εn
n −

ρξ√
n

4
C1n

+

dn∑
k=1

∑
1≤j≤n s.t.
Xj∈Akn

1
ρ2
ξe

2k−2

n − ρξek√
n

4
C1n

+
∑

1≤j≤n s.t.
|Xj−ξ|≥ρξ

1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

.

We have split the sum over 1 ≤ j ≤ n into dn + 2 pieces. Notice that for n >
(

8ρξ
C1εn

)2

,

0 <
1

εn
n −

ρξ√
n

4
C1n

≤ 2n

εn

and for n >
(

8e2

C1ρξ

)2

,

0 <
1

ρ2
ξe

2k−2

n − ρξek√
n

4
C1n

≤ 2n

ρ2
ξe

2k−2
, for 1 ≤ k ≤ dn.

Additionally, if n > 8
C1ρξ

and |Xj − ξ| ≥ ρξ, then,

0 <
1

|ξ −Xj |2 − |ξ −Xj | 4
C1n

≤ 1

|ξ −Xj |
(
ρξ − 4

C1n

) ≤ 2

ρ2
ξ

.

It follows that if
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n > max

{(
8ρξ
C1εn

)2

,

(
8e2

C1ρξ

)2

,
8

C1ρξ

}
,

on the complement of
⋃dn
k=0 F

k
n ∪Gn, for all z, w ∈ B

(
ξ, 2
C1n

)
,

∣∣∣∣∣∣
n∑
j=1

1

(z −Xj)(w −Xj)

∣∣∣∣∣∣
≤ N0

n ·
2n

εn
+

dn∑
k=1

Nk
n ·

2n

ρ2
ξe

2k−2
+

2n

ρ2
ξ

≤
(πCfρ

2
ξ + 1)

√
εn

· 2n

εn
+

dn∑
k=1

(
πCfρ

2
ξe

2k +
ek
√
εn

)
2n

ρ2
ξe

2k−2
+

2n

ρ2
ξ

= Oµ,ξ

(
n

ε
3/2
n

)
+

dn∑
k=1

Oµ,ξ

(
n
√
εn

)
= Oµ,ξ

(
n log n

ε
3/2
n

)
,

which completes the proof.

It remains to find an upper bound on the probability of En ∪
⋃dn
k=0 F

k
n ∪Gn, which we

accomplish in the next lemma.

Lemma 3.7.

P

(
En ∪

dn⋃
k=0

F kn ∪Gn

)
= oµ,ξ(1) +Oµ,ξ

(
log n · ε2

n + εn
)

= oµ,ξ(1)

Proof. To control P(En), apply the Weak Law of Large Numbers to the random variables
1

ξ−Xj , which have finite expectation by Lemma 3.5. Next, consider that for large n,

P(Gn) ≤ n · P
(
|X1 − ξ| ≤

√
εn
n

)
≤ n · πCf ·

εn
n

= πCfεn,

which establishes P(Gn) = Oµ,ξ(εn).

We now turn our attention to the events F kn . For 0 ≤ k ≤ dn and 1 ≤ j ≤ n, define the
random variables

χj,k := 1{Xj∈Akn},

which, for a fixed k, are independent and identically distributed according to a Bernoulli
distribution with parameter pk ≤ πCfρ2

ξe
2k/n. Since Nk

n =
∑n
j=1 χj,k has expectation at

most πCfρ2
ξe

2k, Markov’s inequality yields

P

(
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

)
≤
ε2
nE
[(
Nk
n − E[Nk

n ]
)4]

e4k
. (3.18)

In order to control the fourth central moment of Nk
n , recall that for two independent,

real-valued random variables X and Y ,

E
[
(X + Y − E[X]− E[Y ])

4
]

= E
[
(X − E[X])

4
]

+ E
[
(Y − E[Y ])

4
]

+ 6 Var(X) Var(Y ).
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Since χj,k are iid, it follows by inductively applying the previous identity that

E
[(
Nk
n − E[Nk

n ]
)4]

= nE
[
(χ1,k − E[χ1,k])

4
]

+ 6
n(n− 1)

2
Var(χ1,k)2

≤ n
(
E[χ4

1,k] + 6 Var(χ1,k) (E[χ1,k])
2
)

+ 3n2 Var(χ1,k)2

≤ n
(
E[χ1,k] + 6 (E[χ1,k])

2
)

+ 3n2 (E[χ1,k])
2

≤ n

(
πCfρ

2
ξe

2k

n
+ 6

π2C2
fρ

4
ξe

4k

n2

)
+ 3n2

π2C2
fρ

4
ξe

4k

n2

= Oµ,ξ
(
e4k
)
.

Consequently, (3.18) becomes

P

(
Nk
n ≥ πCfρ2

ξe
2k +

ek
√
εn

)
= Oµ,ξ(ε

2
n),

and by the union bound

P

(
dn⋃
k=0

F kn

)
= Oµ,ξ

(
log n · ε2

n

)
.

The proof of Lemma 3.7 is complete.

We have established that C1, C2, and kLip defined in (3.17) satisfy conditions (i), (ii),

and (iii) of Theorem 3.1 for large n, on the complement of En ∪
⋃dn
k=0 F

k
n ∪Gn, a “bad”

event whose probability tends to zero. Consequently, the conclusion of Theorem 3.1
guarantees that with probability at least 1 − oµ,ξ(1), the polynomial pn has a unique

critical point w(n)
ξ that fulfills (2.7).

We now consider the case s > 1. The argument in this more general situation is much
the same as the one just presented for s = 1, so we sketch the proof and point out the
major differences. Consider each of the roots ξl, 1 ≤ l ≤ s separately and modify the
argument above in the obvious ways. In particular, we replace the annuli Akn with

A0
l,n :=

{
z ∈ C : |z − ξl| <

δ√
n

}
, 1 ≤ l ≤ s;

Akl,n :=

{
z ∈ C :

δek−1

√
n
≤ |z − ξl| <

δek√
n

}
, 1 ≤ k ≤ dn, 1 ≤ l ≤ s;

where δ > 0 is any real number such that f is a density for µ in the balls B(ξl, δ) and so
that 2δ < min1≤j<l≤s |ξj − ξl|. Define the random variables Nk

l,n accordingly, in addition
to the modified “bad” events

El,n =


∣∣∣∣∣∣ 1

n+ 1− s

n+1−s∑
j=1

1

ξl −Xj
−mµ(ξl)

∣∣∣∣∣∣ ≥ |mµ(ξl)|
3

 , 1 ≤ l ≤ s;

F kl,n =

{
Nk
l,n ≥ πCfδ2e2k +

δek
√
εn

}
, 0 ≤ k ≤ dn, 1 ≤ l ≤ s;

Gl,n =

{
min

1≤j≤n
|Xj − ξl| <

√
εn
n

}
, 1 ≤ l ≤ s;

and the modified constants

Cl1 :=
|mµ(ξl)|

2
, Cl2 :=

3 |mµ(ξl)|
2

, and klLip := Cl
µ,~ξ
· log n

ε
3/2
n

, 1 ≤ l ≤ s.
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(Note that Cl
µ,~ξ

, 1 ≤ l ≤ s, will be defined via lemmata similar to Lemma 3.6.) On

the complement of the union of the modified “bad” events, for each l, 1 ≤ l ≤ s,
conditions (i), (ii), and (iii) of Theorem 3.1 hold for reasons similar to those given in the
argument for s = 1 above. (Notice that for 1 ≤ l ≤ s,∣∣∣∣∣∣ 1n

s∑
k=1,k 6=l

1

ξl − ξk

∣∣∣∣∣∣ = o(1),

so computations similar to (3.9) and (3.10) establish condition (i) of Theorem 3.1.) The
fact that the union of the modified “bad” events occurs with probability at most o(1)

follows by an updated version of Lemma 3.7 and the union bound (recall s is fixed and
finite).

We now turn our attention to (2.8) which describes the joint fluctuations of w(n)
l ,

1 ≤ l ≤ s. This is considerably more difficult than our consideration of (2.11) because in
the current situation, (ξl −Xj)

−1, are heavy-tailed random variables. In Appendix B, we
appeal to the Lindeberg exchange method with an appropriate truncation to establish
Theorem B.1, a CLT that we use to prove (2.8) in a similar manner to our justification
of (2.11).

To start, consider that with probability 1− o(1), w(n)
l , 1 ≤ l ≤ s satisfy (2.7), so with

inspiration from (3.13) and (3.14), we obtain with probability at least 1 − o(1) that for
1 ≤ l ≤ s,

n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

)

=
√
n

 1

n

n∑
j=1

1

ξl −Xj
−mµ(ξl)

+ o(1),

where all of the implied constants depend on ξ1, . . . , ξs and µ, and we have used Slutsky’s
theorem several times. (We also used the heavy-tailed CLT, Theorem B.1 once.) For the
arbitrary constants t1, . . . , ts ∈ C, we have with probability at least 1− o(1),

Re

(
s∑
l=1

tl
n3/2

√
log n

·mµ(ξl)
2 ·
(
w

(n)
l − ξl +

1

n+ 1

1

mµ(ξl)

))

= Re

√ n

log n

 1

n

n∑
j=1

s∑
l=1

tl

[
1

ξl −Xj
−mµ(ξl)

]+ o(1),

which converges in distribution by Slutsky’s theorem and Theorem B.1 to a normal

distribution with with mean zero and variance
∑s
l=1

π|tl|2f(ξl)
2 . This is exactly the same

distribution as the sum Re (
∑s
l=1 tlNl), where Nl are defined as in (2.8) with covariance

structure (2.9). By the Cramér–Wold technique, this completes the proof of Theorem 2.8.

3.5 Proof of Theorem 2.12

We conclude this section by using Theorem 3.1 to prove Theorem 2.12.

Proof. Conclusions (i) and (ii) follow from [32, Theorem 1.7]. We now use Theorem 3.1
to establish (2.13). In particular, we will verify the three conditions of Theorem 3.1 hold
for some constants C1, C2, kLip > 0 which depend only on ε and λ. In view of parts (i)
and (ii), it suffices to work on the event where

max
1≤i≤n−1

|Xi| ≤ 1 + 2ε, min
1≤i≤n−1

|ξ −Xi| ≥
ε

2
, 1 +

11

4
ε ≤ |ξ| ≤ |λ|+ 1. (3.19)
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In fact, this event automatically guarantees the third condition from Theorem 3.1 for
all values of n sufficiently large. The second condition also follows for large n since, for
z, w ∈ C with |z|, |w| > 1 + 5/2ε, we have∣∣∣∣∣ 1n

n−1∑
i=1

1

z −Xi
− 1

n

n−1∑
i=1

1

w −Xi

∣∣∣∣∣ ≤ |z − w|n

n−1∑
i=1

1

|z −Xi||w −Xi|
�ε |z − w|

on the same event. The upper bound in the first condition of Theorem 3.1 follows from a
similar argument. The lower bound, however, is slightly more involved. Indeed, for any
θ ∈ R, we have∣∣∣∣∣ 1n

n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
i=1

1

ξe
√
−1θ −Xie

√
−1θ

∣∣∣∣∣ ≥ 1

n

n−1∑
i=1

Re(ξe
√
−1θ)− Re(Xie

√
−1θ)

|ξ −Xi|2
.

Choose θ ∈ R so that ξe
√
−1θ is real-valued and positive. This gives∣∣∣∣∣ 1n

n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣ ≥ 1

n

n−1∑
i=1

ξe
√
−1θ − Re(Xie

√
−1θ)

|ξ −Xi|2
≥ 1

n

n−1∑
i=1

|ξ| − |Xi|
(|ξ|+ |Xi|)2

.

Thus, on the event (3.19), we conclude that∣∣∣∣∣ 1n
n−1∑
i=1

1

ξ −Xi

∣∣∣∣∣�ε,λ 1, (3.20)

which completes the proof of the lower bound. Hence, the three conditions of Theo-
rem 3.1 are satisfied. Applying Theorem 3.1, we obtain (2.13). Lastly, (2.14) follows
from (2.13) after applying conclusion (ii) and (3.20).

4 Proof of results in Section 2.4

4.1 Proof of Theorem 2.14

This section is devoted to the proof of Theorem 2.14. We will need the following
lemmata.

Lemma 4.1 (Monte Carlo sampling; Lemma 36 from [35]). Let (X,µ) be a probability
space, and let F : X → C be a square-integrable function. Let m ≥ 1, let x1, . . . , xm be
drawn independently at random from X with distribution µ, and let S be the empirical
average

S :=
1

m
(F (x1) + · · ·+ F (xm)).

Then S has mean
∫
X
Fdµ and variance 1

m

∫
X
|F −

∫
X
Fdµ|2dµ. In particular, by Cheby-

shev’s inequality, one has

P

(∣∣∣∣S − ∫
X

Fdµ

∣∣∣∣ ≥ t) ≤ 1

mt2

∫
X

∣∣∣∣F − ∫
X

Fdµ

∣∣∣∣2 dµ
for any t > 0, or equivalently, for any δ > 0 one has with probability at least 1− δ that∣∣∣∣S − ∫

X

Fdµ

∣∣∣∣ ≤ 1√
mδ

(∫
X

∣∣∣∣F − ∫
X

Fdµ

∣∣∣∣2 dµ
)1/2

.

Lemma 4.2. Fix C > 0, and let X1, . . . , Xn be complex-valued random variables (not
necessarily independent nor identically distributed) such that, with overwhelming prob-
ability,

max
1≤i≤n

|Xi| ≤ en
C

. (4.1)
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Let ϕ : C→ R be a twice continuously differentiable function (possibly depending on n)
which satisfies the pointwise bound in (2.16) for all z ∈ C. Then, with overwhelming
probability, ∫

B(0,nC)

|∆ϕ(z)|2 log2 |pn(z)|d2z � n2CnO(1), (4.2)∫
B(0,nC)

|∆ϕ(z)|2 log2 |p′n(z)|d2z � n2CnO(1), (4.3)

and ∫
B(0,nC)

|∆ϕ(z)|2d2z � n4C . (4.4)

Proof. The bound in (4.4) follows immediately from the pointwise bound in (2.16). In
order to prove (4.2) it suffices, by the pointwise bound in (2.16), to prove that with
overwhelming probability ∫

B(0,nC)

log2 |pn(z)|d2z � nO(1).

By supposition, we now work on the event where X1, . . . , Xn ∈ B(0, en
C

). As

log2 |pn(z)| � n

n∑
i=1

log2 |z −Xi|,

it suffices to prove that

max
1≤i≤n

∫
B

log2 |z −Xi|d2z � nO(1),

where B := B(0, nC). Since X1, . . . , Xn ∈ B(0, en
C

), it follows that

max
1≤i≤n

∫
B\B(Xi,1)

log2 |z −Xi|d2z � n2C |B| � nO(1),

where |B| is the Lebesgue measure of B, and |B| = O(n2C). Near each root, we have

max
1≤i≤n

∫
B∩B(Xi,1)

log2 |z −Xi|d2z ≤ max
1≤i≤n

∫
B(Xi,1)

log2 |z −Xi|d2z � 1

since log | · | is locally square-integrable. This completes the proof of (4.2).
For (4.3), we observe that on the event where (4.1) holds, the Gauss–Lucas theorem

implies that
max

1≤j≤n−1
|wj | ≤ en

C

,

where w
(n)
1 , . . . , w

(n)
n−1 are the critical points of pn. Working on this event, the proof

follows from the same procedure as we used to prove (4.2); we omit the details.

Lemma 4.3 (Crude upper bound). Fix C > 0, and let X1, . . . , Xn be complex-valued
random variables (not necessarily independent nor identically distributed). Assume Z
is uniformly distributed on B(0, nC), independent of X1, . . . , Xn. Then for every a > 0,
there exits b > 0 such that ∣∣∣∣∣

n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≤ nb
with probability 1−Oa(n−a).
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Proof. Conditioning on X1, . . . , Xn, we find that

P

(
min

1≤i≤n
|Z −Xi| ≤ ε

)
≤

n∑
i=1

P(Z ∈ B(Xi, ε))� n
ε2

n2C

for all ε > 0. In addition, on the event where min1≤i≤n |Z −Xi| > ε, we have∣∣∣∣∣
n∑
i=1

1

Z −Xi

∣∣∣∣∣ ≤ n

ε
.

In order to prove the claim, it suffices to assume a > 2C. In this case, by taking

ε :=
√

n2C

na+1 , the result follows from the estimates above.

We now prove Theorem 2.14.

Proof of Theorem 2.14. Let B := B(0, nC), and let |B| denote its Lebesgue measure. Fix
α > 0, and let β ∈ N be a large constant (depending on C, c, α) to be chosen later.

Using the log-transform of the empirical measures constructed from the roots and
critical points of p, we obtain

n∑
i=1

ϕ(Xi) =
1

2π

∫
B

∆ϕ(z) log |pn(z)|d2z,

n−1∑
j=1

ϕ(wj) =
1

2π

∫
B

∆ϕ(z) log |p′n(z))|d2z.

(These identities can also be found in a more general form in [16, Section 2.4.1].) Instead
of working with the integrals on the right-hand sides, we will work with large empirical
averages by applying Lemma 4.1. Indeed, let m := nβ , and let Z1, . . . , Zm be iid random
variables uniformly distributed on B, independent of X1, . . . , Xn. Taking β sufficiently
large and applying Lemmas 4.1 and 4.2, we conclude that

2π

|B|

n∑
i=1

ϕ(Xi) =
1

m

m∑
l=1

∆ϕ(Zl) log |pn(Zl)|+O(n−c−2C), (4.5)

2π

|B|

n−1∑
j=1

ϕ(wj) =
1

m

m∑
l=1

∆ϕ(Zl) log |p′n(Zl)|+O(n−c−2C), (4.6)

1

|B|

∫
B

|∆ϕ(z)|d2z =
1

m

m∑
l=1

|∆ϕ(Zl)|+O(n−c−2C−1) (4.7)

with probability 1−O(n−α). In addition, by (2.15), Lemma 4.3, and the union bound it
follows that there exists b > 0 such that

n−b ≤ min
1≤l≤m

∣∣∣∣∣
n∑
i=1

1

Zl −Xi

∣∣∣∣∣ ≤ max
1≤l≤m

∣∣∣∣∣
n∑
i=1

1

Zl −Xi

∣∣∣∣∣ ≤ nb
with probability 1−O(n−α). Thus, since p′n(z)

pn(z) =
∑n
i=1

1
z−Xi , we obtain

sup
1≤l≤m

|log |pn(Zl)| − log |p′n(Zl)|| = O(log n) (4.8)

with probability 1−O(n−α).
From (4.5) and (4.6), we find∣∣∣∣∣∣ 2π

|B|

n∑
i=1

ϕ(Xi)−
2π

|B|

n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣
≤ 1

m

m∑
l=1

|∆ϕ(Zl)| |log |pn(Zl)| − log |p′n(Zl)||+O(n−c−2C)
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with probability 1−O(n−α). Applying (4.7) and (4.8) yields∣∣∣∣∣∣ 2π

|B|

n∑
i=1

ϕ(Xi)−
2π

|B|

n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣
� (log n)

1

m

m∑
l=1

|∆ϕ(Zl)|+ n−c−2C

� (log n)
1

|B|

∫
B

|∆ϕ(z)|d2z + n−c−2C

with probability 1−O(n−α). Since |B| = Θ(n2C), we rearrange to obtain∣∣∣∣∣∣
n∑
i=1

ϕ(Xi)−
n−1∑
j=1

ϕ(wj)

∣∣∣∣∣∣� (log n)‖∆ϕ‖1 + n−c (4.9)

with probability 1−O(n−α). The proof of the theorem is complete.

4.2 Proof of Theorems 2.16 and 2.17

In order to prove Theorem 2.16, it suffices to show that X1, . . . , Xn satisfy the two
axioms of Theorem 2.14. This follows from Lemmas 2.19 and 2.20.

We now turn to the proof of Theorem 2.17. By Theorem 2.16,

n−1∑
j=1

ϕ(w
(n)
j ) =

n∑
i=1

ϕ(Xi) +O(log n)

with probability 1−O(n−100). Since ϕ is bounded, we obtain

E

n−1∑
j=1

ϕ(w
(n)
j )

 =

n∑
i=1

Eϕ(Xi) +O(log n).

Therefore, we conclude that

1√
n

n−1∑
j=1

ϕ(w
(n)
j )− E

n−1∑
j=1

ϕ(w
(n)
j )

 =
1√
n

n∑
i=1

(ϕ(Xi)− Eϕ(Xi)) + o(1)

with probability 1−O(n−100). The claim now follows by applying the classical CLT to the
right-hand side.

4.3 Proof of Theorem 2.18

We will need the following companion matrix result, which describes a matrix whose
eigenvalues are the critical points of a given polynomial. This result appears to have
originally been developed in [19] (see [19, Lemma 5.7]). However, the same result was
later rediscovered and significantly generalized by Cheung and Ng [6, 5].

Theorem 4.4 (Lemma 5.7 from [19]; Theorem 1.2 from [5]). Let p(z) :=
∏n
j=1(z − zj) for

some complex numbers z1, . . . , zn, and let D be the diagonal matrix D := diag(z1, . . . , zn).
Then

1

n
zp′(z) = det

(
zI −D

(
I − 1

n
J

))
,

where I is the n× n identity matrix and J is the n× n all-one matrix.
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We will also need the Sherman–Morrison formula for computing the inverse of a rank
one update to a matrix.

Lemma 4.5 (Sherman–Morrison formula). Suppose A is an invertible matrix and u, v are
column vectors. If 1 + vTA−1u 6= 0, then

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Lemma 4.5 can be found in [1]; see also [15, Section 0.7.4] for a more general version
of this identity known as the Sherman–Morrison–Woodbury formula. We also require the
following consequence of [23, Lemma 4.1].

Lemma 4.6. Under the assumptions of Theorem 2.18, there exists a constant c′ > 0

(depending only on C, c, and ε) such that

inf
z∈Γ

∣∣∣∣∣ zn
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′
with overwhelming probability.

Proof. Clearly |z| = C + ε for all z ∈ Γ. Thus, it suffices to prove that

inf
z∈Γ

∣∣∣∣∣ 1n
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′
with overwhelming probability. The claim now follows from the uniform bound in [23,
Lemma 4.1] and the assumption on mµ given in (2.17).

With Lemma 4.6 in hand, we are now prepared to present the proof of Theorem 2.18.

Proof of Theorem 2.18. Let D be the diagonal matrix D := diag(X1, . . . , Xn). Using the
notation from Theorem 4.4, we observe that zI − D is invertible for all z ∈ Γ since
X1, . . . , Xn ∈ B(0, C) by supposition. In addition, by the Gauss–Lucas theorem and
Theorem 4.4, it must be the case that the eigenvalues of D

(
I − 1

nJ
)

are also contained
in B(0, C). This implies that zI −D

(
I − 1

nJ
)

is also invertible for every z ∈ Γ. In view of
these observations, we define the resolvents

G(z) := (zI −D)−1, R(z) :=

(
zI −D

(
I − 1

n
J

))−1

for z ∈ Γ.
Thus, by Cauchy’s integral formula

n∑
i=1

ϕ(Xi) =
1

2π
√
−1

∮
Γ

ϕ(z) trG(z)dz

and
n−1∑
j=1

ϕ(wj) + ϕ(0) =
1

2π
√
−1

∮
Γ

ϕ(z) trR(z)dz.

We now take the difference of these two equalities. Since |ϕ(0)| �
∫

Γ
|ϕ(z)||dz|, it suffices

by the triangle inequality to show

sup
z∈Γ
|trG(z)− trR(z)| = O(1) (4.10)

with overwhelming probability.
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Since J = 11T, where 1 is the all-ones vector, the Sherman–Morrison formula
(Lemma 4.5) implies that

R(z) = G(z)−
1
nG(z)DJG(z)

1 + 1
n1

TG(z)D1
(4.11)

provided 1 + 1
n1

TG(z)D1 6= 0. In view of Lemma 4.6, there exists a constant c′ > 0

(depending only on C, c, and ε) such that

inf
z∈Γ

∣∣∣∣1 +
1

n
1TG(z)D1

∣∣∣∣ = inf
z∈Γ

∣∣∣∣∣ zn
n∑
i=1

1

z −Xi

∣∣∣∣∣ ≥ c′ (4.12)

with overwhelming probability. Here, we have exploited the fact that D and G(z) are
diagonal matrices, which implies that 1TG(z)D1 =

∑n
i=1

Xi
z−Xi . Using (4.11) and (4.12),

we conclude that with overwhelming probability

sup
z∈Γ
|trG(z)− trR(z)| ≤ 1

nc′
sup
z∈Γ
|tr[G(z)DJG(z)]| .

To bound this last remaining term, we again exploit the fact that J = 11T. Indeed, from
the cyclic property of the trace, we have the deterministic bound

|tr[G(z)DJG(z)]| =
∣∣1TG2(z)D1

∣∣ =

∣∣∣∣∣
n∑
i=1

Xi

(z −Xi)2

∣∣∣∣∣ ≤
n∑
i=1

|Xi|
|z −Xi|2

≤ nC
ε2

for all z ∈ Γ. Combining the bounds above, we obtain (4.10), and the proof is complete.

5 Proof of Theorem 2.3

This section is devoted to proving Theorem 2.3. Our first lemma shows that Assump-
tion 2.2 implies Assumption 2.1.

Lemma 5.1 (Sufficiency of Assumption 2.2). If µ satisfies Assumption 2.2, then µ also
satisfies Assumption 2.1.

Proof. Without loss of generality, suppose µ is radially symmetric about z = 0, and let
X ∼ µ. By Lemma A.1, we can write

|mµ(z)| = P(|X| < |z|)
|z|

,

so the hypotheses guarantee that |mµ(z)| is continuous on C \ {0}. (Indeed, P(|X| < r)

is the cumulative distribution function associated to the radial part of µ, which has a
continuous density.) Since f(0) > 0, there are δ, c > 0 so that |z| ≤ δ implies |f(z)| ≥ c > 0.
In particular, for |z| ≤ δ,

|mµ(z)| = 1

|z|

∫ |z|
0

rf(r) dr ≥ c

|z|

∫ |z|
0

r dr =
c |z|

2
. (5.1)

Let r1/2 be any value for which P(|X| < r1/2) = 1/2. By the extreme value theorem,
|mµ(z)| achieves its minimum, mmin, on the closed, bounded annulus

A :=
{
z ∈ C : δ ≤ |z| ≤ r1/2

}
.
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We know that mmin is non-zero by (5.1) and the fact that P(|X| < r) is non-decreasing
in r. This second fact additionally implies that for |z| ≥ r1/2,

|mµ(z)| = P(|X| < |z|)
|z|

≥ 1

2 |z|
.

We conclude that for any ε ∈ (0,mmin),

P(|mµ(X)| < ε) ≤ P
(
c |X|

2
< ε

)
+ P(mmin < ε) + P

(
1

2 |X|
< ε

)
≤ Cε2, (5.2)

for some C > 0. (We have used the fact that µ has two finite absolute moments to bound
the last probability.) It follows that µ satisfies Assumption 2.1 part (i).

To see that µ satisfies Assumption 2.1 part (ii), let X1, . . . , Xn be iid complex-valued
random variables with distribution µ, and observe that

P

(
max
j
|Xj | >

√
n log n

)
= 1− P

(
|X1| ≤

√
n log n

)n
.

By Markov’s inequality,

P
(
|X1| ≤

√
n log n

)n
≥

(
1− E |X1|2

n log n

)n
n→∞−−−−→ 1,

which completes the argument.

5.1 Introduction to and motivation for the proof of Theorem 2.3.

The following proof of Theorem 2.3 is motivated by the illustration in Figure 5 that
depicts the roots (red dots) and critical points (blue crosses) of pn(z) when the roots,
X1, . . . , X150 are chosen independently and uniformly in the unit disk centered at the
origin. The observer will notice two things:

1) since the Xj are chosen uniformly at random, they tend to “clump together,” and

2) the roots further from the origin tend to “pair” more closely with nearby critical
points than the roots near the origin.

The first of these makes it difficult to use our strategy from Theorems 2.8, 2.10
and 3.1, where it was a simple matter to “zoom in” on a fixed root and ensure that no
other roots were nearby. We address this concern by grouping the critical points that lie
near each “clump” of roots and simultaneously considering all of the critical points that
lie in the same group. We will show that each “clump” of roots (and its corresponding
group of critical points) is far away from other “clumps,” for large n.

The second observation can be explained by Theorem 2.8, which suggests that the
closest critical point, w(n)

j , to a given root Xj is at a distance 1
n|mµ(Xj)| from Xj . For

example, in the case where µ is uniform on the unit disk, |mµ(z)| = |z| for |z| ≤ 1, so
near the origin, it makes sense that the “pairing” phenomenon gets worse. We tackle
this problem by counting the “clumps” of roots and critical points in exponentially
widening, nested regions that avoid the zeros of mµ. (In Figure 5, these are the annuli
delimited by concentric dashed circles.) Using this method, we can take advantage
of the fact that the number of “clumps” that are a given distance from the zero set
of mµ is roughly proportional to the strength of the “pairing” within those “clumps.”
The “pairing” phenomenon is quite unreliable near the zeros of mµ, so for any “clumps”
that are sufficiently close to the zeros of mµ, we bound the distances between the
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Figure 5: An illustration motivating the strategy we use to prove Theorem 2.3. The
red circles and blue crosses represent the locations of the roots and critical points,
respectively, of p150(z), where µ is the uniform distribution on the unit disk. Roughly
speaking, the gray disks around the Xj are of radius max {1/(n |mµ(Xj)|), 1/

√
n}. The

dashed concentric circles are meant to divide the unit disk into exponentially widening
annuli.

roots and critical points using the Gauss–Lucas theorem. (In fact, this is where we
expect to find the “extra,” un-paired root that results because pn has a higher degree
than p′n.)

In order to synthesize these two ideas, we will form random, disjoint, simple closed
curves to encircle each “clump” of roots and critical points. We will build the curves
from the arcs of circles centered at the roots of pn and will use smaller circles for roots
that are farther away from the zeros of mµ. See, for example, the boundaries of the gray
domains depicted in Figure 5. We will conclude with an argument involving Rouché’s
theorem to count the number of critical points interior to each curve by comparing p′n
to a simpler polynomial whose critical points can be located with Walsh’s two circle
theorem. Near the zeros of mµ, our method breaks down, and we use the Gauss–Lucas
theorem for a bound on the distances between the critical points and roots of pn. Luckily,
there are few critical points near the zeros of mµ, a fact which follows in part from
Assumptions 2.1 and 2.2.

5.2 Definitions

In view of Lemma 5.1, we prove Theorem 2.3 under Assumption 2.1. Let Cµ > 0

be larger than each of the constants in Assumption 2.1 and larger than the constant
bounding the density associated to µ. For each n ∈ N, define the following sets which
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partition C into regions based on the size of |mµ(z)|:

Akn :=

{
z ∈ C : |mµ(z)| < ek√

n

}
, k = b4 log(log n)c,

Akn :=

{
z ∈ C :

ek−1

√
n
≤ |mµ(z)| < ek√

n

}
, b4 log(log n)c+ 1 ≤ k ≤

⌊
log
(√
n
)⌋
,

An :=

{
z ∈ C : |mµ(z)| ≥ eblog(

√
n)c

√
n

}
.

Additionally, define the random variables

Nk
n := #

{
1 ≤ j ≤ n : Xj ∈ Akn

}
, b4 log(log n)c ≤ k ≤

⌊
log
(√
n
)⌋
,

ζ
(n)
i,j :=


1

Xi −Xj
1|Xi−Xj |≥ (logn)2

n|mµ(Xi)|
, |mµ(Xi)| 6= 0

0, otherwise
, 1 ≤ i, j ≤ n, j 6= i,

and let Nn be a n−1/2-net of the closed disk B(0, nCµ) that satisfies:

(i) B(0, nCµ) ⊆
⋃
x∈Nn B(x, n−1/2),

(ii) if x, y ∈ Nn, and x 6= y, then |x− y| ≥ 1
2
√
n

,

(iii) #Nn = Oµ(n1+2Cµ).

Such a collection of points exists by e.g. Lemma 3.3 in [23]. Let δ > 0 be a fixed real
parameter to be chosen later. We will show that the conclusion of Theorem 2.3 holds on
the complement of the union of the following “bad” events:

Ekn :=
{
Nk
n ≥ 2Cµe

2k log(log n)
}
, b4 log(logn)c ≤ k ≤

⌊
log
(√
n
)⌋

;

F in :=

|mµ(Xi)| ≥
(log n)4

√
n

,

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j |Xi]

)∣∣∣∣∣∣∣∣ ≥
|mµ(Xi)|

2

 , 1 ≤ i ≤ n;

Gδn :=

{
∃x ∈ Nn ∪ {Xi}ni=1 s.t. #

{
1 ≤ j ≤ n : |Xj − x| <

1√
n

}
≥ 2 + δ log n

}
;

Hn :=
{
ηn ≥ nCµ

}
.

For convenience, we use Ebad
n to denote the union of all of the “bad” events:

Ebad
n :=

blog(cµ
√
n)c⋃

k=b4 log(logn)c

Ekn ∪
n⋃
i=1

F in ∪Gδn ∪Hn.

5.3 The “bad” events are unlikely

In this subsection, we establish that

P
(
Ebad
n

)
= o(1). (5.3)

By assumption, P(Hn) = o(1), so it remains to bound the probabilities of the remaining
events.

Lemma 5.2.

P

 blog(
√
n)c⋃

k=b4 log(logn)c

Ekn

 ≤ 1

Cµ[log(log n)]2
= o(1).
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Proof. Observe that for a fixed n and k, b4 log(log n)c ≤ k ≤ blog (
√
n)c, Nk

n is a binomial
random variable with parameters n and pk ≤ Cµe2k/n. By Markov’s inequality, we have,

P
(
Nk
n ≥ 2Cµe

2k log(log n)
)
≤ P

(∣∣Nk
n − E

[
Nk
n

]∣∣ ≥ Cµe2k log(log n)
)

≤
Var

(
Nk
n

)
C2
µe

4k[log(log n)]2

=
npk(1− pk)

C2
µe

4k[log(log n)]2

≤ 1

Cµe2k[log(log n)]2
.

If we take the union over k, we obtain

P

 blog(
√
n)c⋃

k=b4 log(logn)c

Ekn

 ≤ ∞∑
k=1

1

Cµe2k[log(log n)]2
=

1

Cµ(e2 − 1)[log(log n)]2
,

which implies the desired result.

Lemma 5.3. P
(⋃n

i=1 F
i
n

)
= o(1).

Proof. We will use the method of moments to control the probability of each F in, 1 ≤ i ≤ n.
Since F in ⊂

{
|mµ(Xi)| ≥ n−1/2

}
, we will often assume that |mµ(Xi)| ≥ n−1/2 in our

calculations. Recall from Lemma 3.5, part (i) that |mµ(Xi)| is almost surely bounded
above by an absolute constant (that depends only on µ).

First, consider that for complex-valued random variables X and Y , where Y has a
finite fourth absolute moment,

E
[
|Y − E [Y | X]|4

∣∣∣ X]
≤ E

[
|Y |4

∣∣∣ X]+ 6
(
E
[
|Y |2

∣∣∣ X])2

+ 4E
[
|Y |3

∣∣∣ X] · E [|Y | | X] .
(5.4)

(This inequality could be derived by writing

|Y − E [Y | X]|4 =
(
Y − E[Y | X]

)2 (
Y − E[Y | X]

)2

,

expanding the expression at right, and bounding each of the resulting terms with an
appropriate term from the right side of (5.4).)

Now, for X = Xi and Y = ζ
(n)
i,j , where 1 ≤ i, j ≤ n with j 6= i,

E
[
|Y |4

∣∣∣ Xi

]
≤ E

[
1

|Xi −Xj |4
1 (logn)2

n|mµ(Xi)|
≤|Xi−Xj |≤1

∣∣∣∣∣ Xi

]

+ E

[
1

|Xi −Xj |4
1|Xi−Xj |>1

∣∣∣∣∣ Xi

]

≤ 2πCµ

∫ 1

(logn)2

n|mµ(Xi)|

r

r4
dr + 1

=
πCµn

2 |mµ(Xi)|2

(log n)4
− πCµ + 1,
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and similarly,

E
[
|Y |3

∣∣∣ Xi

]
≤ 2πCµn |mµ(Xi)|

(log n)2
− 2πCµ + 1,

E
[
|Y |2

∣∣∣ Xi

]
≤ 2πCµ log

(
n |mµ(Xi)|

(log n)2

)
+ 1,

E [|Y | | Xi] ≤ 2πCµ + 1.

Consequently, via (5.4), there are positive constants C ′µ, Kµ that depend only on µ so

that if n ≥ Kµ, on the event |mµ(Xi)| ≥ n−1/2,

E

[∣∣∣ζ(n)
i,j − E

[
ζ

(n)
i,j

∣∣∣ Xi

]∣∣∣4 ∣∣∣∣ Xi

]
≤
C ′µ |mµ(Xi)|2 n2

(log n)4
. (5.5)

Next, we show that there are constants C ′′µ ,K
′
µ > 0 that depend only on µ, so that for

n ≥ K ′µ and any fixed i, 1 ≤ i ≤ n,

1|mµ(Xi)|≥ 1√
n
· E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi

 ≤ C ′′µ |mµ(Xi)|2 n3

(log n)4
. (5.6)

Write

E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi



= E


 n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])
2 n∑

j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j |Xi

])
2 ∣∣∣∣∣∣∣∣ Xi

 ,
and observe that if we distribute the factors inside the expectation, the independence
of {Xj}nj=1 implies that the only terms which contribute to a nonzero expectation are
bounded by expectations of the form

E

[∣∣∣ζ(n)
i,j − E

[
ζ

(n)
i,j

∣∣∣ Xi

]∣∣∣2 · ∣∣∣ζ(n)
i,k − E

[
ζ

(n)
i,k

∣∣∣ Xi

]∣∣∣2 ∣∣∣∣ Xi

]
,

where 1 ≤ j, k ≤ n and j, k 6= i. By a routine counting argument and the fact that ζ(n)
i,j ,

j 6= i are identically distributed, it follows that

E


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

(
ζ

(n)
i,j − E

[
ζ

(n)
i,j

∣∣∣ Xi

])∣∣∣∣∣∣∣∣
4 ∣∣∣∣∣∣∣∣ Xi


≤ (n− 1)E

[∣∣∣ζ(n)
i,l − E

[
ζ

(n)
i,l

∣∣∣ Xi

]∣∣∣4 ∣∣∣∣ Xi

]
+

(
n− 1

2

)(
4

2

)(
E

[∣∣∣ζ(n)
i,l − E

[
ζ

(n)
i,l

∣∣∣ Xi

]∣∣∣2 ∣∣∣∣ Xi

])2

,

where l 6= i is any fixed index. From (5.5) and the bounds on E[
∣∣Y 2

∣∣ | Xi] and E [|Y | | Xi]

above, we can find C ′′µ ,K
′
µ > 0 large enough so that n ≥ K ′µ implies (5.6). (For the
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asymptotics, we are using that n−1/2 ≤ |mµ(Xi)| = Oµ(1), where the implied constant
depends only on µ.) Via Markov’s inequality, it follows that for n ≥ K ′µ and a fixed i,

1 ≤ i ≤ n, on the event |mµ(Xi)| ≥ n−1/2,

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j |Xi]

)∣∣∣∣∣∣∣∣ ≥
|mµ(Xi)|

2

∣∣∣∣∣∣∣∣ Xi

 ≤ C ′′µ

n |mµ(Xi)|2 (log n)4
. (5.7)

We conclude the proof by demonstrating that P(∪ni=1F
i
n) = o(1). Indeed, for n ≥ K ′µ,

P

(
n⋃
i=1

F in

)
≤ nP

(
F 1
n

)

= nP(∅) + n

blog(
√
n)c∑

k=b4 log(logn)c+1

P
({
X1 ∈ Akn

}
∩ F 1

n

)
+ n · P

(
{X1 ∈ An} ∩ F 1

n

)

= n

blog(
√
n)c∑

k=b4 log(logn)c+1

E
(
1{X1∈Akn} · P(F 1

n | X1)
)

+ n · E
(
1{X1∈An} · P(F 1

n | X1)
)

≤ n
blog(

√
n)c∑

k=b4 log(logn)c+1

E

(
C ′′µ · 1{X1∈Akn}

n |mµ(X1)|2 (log n)4

)
+ n · E

(
C ′′µ · 1{X1∈An}

n |mµ(X1)|2 (log n)4

)

≤
blog(

√
n)c∑

k=b4 log(logn)c+1

C ′′µ · n2 · P(X1 ∈ Akn)

n(log n)4e2k−2
+
C ′′µ · n2 · P(X1 ∈ An)

n(log n)4e2blog(
√
n)c ,

where we used (5.7) to bound P(F 1
n | X1). Assumption 2.1 guarantees that

P(X1 ∈ Akn) ≤ Cµ ·
e2k

n
, b4 log(log n)c ≤ k ≤

⌊
log
(√
n
)⌋
.

We also have
e2blog(

√
n)c ≥ e2 log(

√
n)−2 = ne−2.

Hence, for large n, our calculation from above yields

P

(
n⋃
i=1

F in

)
≤
blog(

√
n)c∑

k=1

C ′′µCµe
2

(log n)4
+

C ′′µe
2

(log n)4
· 1 = o(1).

Lemma 5.4. For a fixed δ ∈
(

0, 1
2πCµ

)
,

P(Gδn) = Oµ

(
n2+2Cµ

(1 + δ log n)
(2+δ logn)

)
= oδ(1).

Proof. This is a straight-forward application of the Chernoff bound for binomial random
variables. In particular, for each x ∈ Nn, define the random variable

Nx :=

n∑
j=1

1|Xj−x|≤ 1√
n
,

which has a binomial distribution with parameters n and p ≤ πCµ/n. The moment
generating function for Nx is

E[etNx ] = (1 + p(et − 1))n ≤ enp(e
t−1) ≤ eπCµ(et−1).
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Choosing t = log(1 + 1/(πCµ) log n) establishes

E
[
(1 + 1/(πCµ) log n)Nx

]
≤ n,

and by Markov’s inequality, we obtain

P (Nx ≥ 2 + δ log n) ≤
E
[
(1 + 1/(πCµ) log n)Nx

]
(1 + 1/(πCµ) log n)(2+δ logn)

≤ n

(1 + 1/(πCµ) log n)(2+δ logn)
.

Note that the bound is independent of x, and that the argument can be easily modified
(by conditioning on Xi) to show that for a fixed 1 ≤ i ≤ n,

P

∑
j=1
j 6=i

1|Xj−Xi|≤ 1√
n
≥ 2 + δ log n

 ≤ n

(1 + 1/(2πCµ) log n)(2+δ logn)
.

Hence, we can apply the the union bound over all x ∈ Nn and X1, . . . , Xn to obtain the
desired result.

Combining Lemmas 5.2, 5.3, and 5.4 from this subsection establishes (5.3), so for the
remainder of the proof, we work on the complements of the “bad” events.

5.4 Constructing disjoint domains that partition the roots

We will create disjoint domains which contain clusters of roots of pn(z) that are close
to one another and show that inside each domain, the numbers of roots and critical
points of pn(z) are the same. The domains will be disjoint to ensure that no roots or
critical points are counted more than once (see Figure 5 for reference). For technical
reasons involving Rouché’s theorem, we will require that the boundaries of the regions
be simple, closed curves.

Our strategy will be to make an open ball around each Xi, 1 ≤ i ≤ n, and to consider
the path-connected components of the union of these balls. Some of the resulting regions
may not be simply connected, so we need to “fill in the holes.” To start, define the
random collection of open balls

Cn :=

B
x, (log n)3

n ·max
{
|mµ(x)| , (logn)4

√
n

}
 : x ∈ {Xj}nj=1

 ,

and define on {1, 2, . . . , n} the equivalence relation given by the following rule: i ∼ j if
and only if there is a collection

{B0, B1, . . . , Bl} ⊂ Cn,

with

B0 = B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}
 ,

and

Bl = B

Xj ,
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
 ,
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such that Bk ∩ Bk+1 6= ∅ for 0 ≤ k ≤ l − 1. Let Pn be the set of equivalence classes
induced by ∼. The idea is that for a fixed P ∈ Pn,

Un,P :=
⋃
i∈P

B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}


forms a connected component of ∪B∈CnB. Each light gray region in Figure 5 is one
connected component, Un,P for some P ∈ Pn; a “zoomed-in” version is presented in
Figure 7. Notice that some of the Un,P , P ∈ Pn may not have simple, closed boundaries,
and some could be “nested” inside “holes” formed by others. We address these concerns
in the following discussion, where we demonstrate how to select a simple, closed
component of the boundary of each Un,P , P ∈ Pn, whose interior contains Un,P .

More specifically, for each equivalence class P ∈ Pn, we will create a simple closed
curve, γn,P ⊂ ∂Un,P , such that each Xj , j ∈ P is contained interior to the bounded
component of C \ γn,P . Furthermore, we will show that the interiors of the bounded
regions defined by the curves {γn,P }P∈Pn are partially ordered with respect to set
inclusion. This will allow us to combine “nested” regions.

To that end, fix an equivalence class P ∈ Pn, and recall the definition of the open
set Un,P from above. For simplicity, write Un,P =

⋃l
i=1Bi, where B1, . . . , Bl are distinct

open balls (in the definition of Un,P , some of the open balls could coincide if, for example
Xi = Xj for i, j ∈ P , i 6= j). We use Vn,P to denote the unique unbounded, path-
connected component of the complement of Un,P . (The complement of Un,P has a unique
unbounded, path-connected component because Un,P , a union of finitely many closed
disks, is compact.) By construction, the boundaries ∂Un,P ⊇ ∂Vn,P consist of arcs of the
finitely many circles ∂B1, . . . , ∂Bl.

Lemma 5.5. The curve γn,P := ∂Vn,P is a simple, closed curve (i.e. a Jordan curve), and
Un,P is contained in the bounded component of C \ γn,P .

Proof. There are several ways that one could proceed. One method is to construct a
simple path starting on the boundary ∂Vn,P that follows circle arcs until it returns to the
start. A second approach is to consider the genus of the region Un,P , find generators for
its fundamental group, and “close-off” any “holes.” We present, in detail, a third method
that relies on the following converse of the Jordan curve theorem due to Schönflies (see
[8, 36], and the discussion on pp. 13 and 67 of [38]). The theorem statement requires
two definitions.

A region of the closed set F ⊂ C is defined as a path-connected component of C \ F .
A point x in F is accessible from a region R if there is a point y ∈ R and a simple path
from y to x, whose intersection with F is {x}.
Theorem 5.6 (Theorem 1 in [36]; see also Theorem II 5.38 on p. 67 of [38]). If F is a
compact set in C with precisely two regions such that every point of F is accessible from
each of those regions, then F is a simple closed curve.

Our goal is to show that the compact set γn,P = ∂Vn,P has precisely two regions
from which γn,P is accessible at every point. Define U ′n,P := C \ Vn,P . Observe that
C \ γn,P = Vn,P ∪ U ′n,P , where the union is disjoint. It is clear that Vn,P is a region of
γn,P ; next, we argue that U ′n,P is also a region of γn,P .

Since U ′n,P ⊂ C is open, it suffices to show that U ′n,p is connected. Suppose, for
a contradiction, that this is not the case. Then, there are disjoint, non-empty open
sets S, T ⊂ C such that S ∪ T = U ′n,P . By construction, the open set Un,P ⊂ U ′n,P is
path-connected, and hence connected, so Un,P must be completely contained in either S
or T . Suppose, without loss of generality, that Un,P ⊂ S. Since T is non-empty, there is
some x ∈ T . We will demonstrate that a path whose image is contained entirely in U ′n,P
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yUn,P

Vn,P

(a) Case 1: y is on precisely one circle
among {∂Bi}li=1.

y

(b) Case 2: y is on more than one of the
circles {∂Bi}li=1.

Figure 6: The geometry near y ∈ γn,P .

connects x to a point of Un,P ⊂ S, which results in a contradiction. We may assume that
x /∈ ∂Un,P because otherwise x lies on one of the circles ∂Bi, 1 ≤ i ≤ l, and there is a
path in U ′n,P between x and a point of Un,P ⊂ S.

Since the (finitely many) circles ∂B1, . . . , ∂Bl are distinct, there are only finitely many
points of C that are contained in more than one circle. Consequently, we can choose
a point v ∈ Vn,P such that the line segment xv does not contain any points of C that
lie in the intersection of two or more distinct Bi, 1 ≤ i ≤ l. (Indeed, choose a circle
Cx ⊂ Vn,P , centered at x, whose interior contains the compact set U ′n,P . Then, the
collection {xz : z ∈ Cx} of line segments connecting x to points of Cx is infinite in number.
Also, x /∈ ∂Un,P by assumption.) Define the path ` : [0, 1] → C via t 7→ tx + (1 − t)v,
whose image is the line segment xv. Since xv is connected, it cannot be the case that
xv ∈ C \ γn,P (indeed, U ′n,P ∪ Vn,P = C \ γn,P is a disjoint union of non-empty open sets).
Consequently, xv contains a point of γn,P . Let t∗ := min {t : `(t) ∈ γn,P } and set y := `(t∗).
Note that t∗ > 0 since x /∈ Un,P .

By construction, y lies on precisely one of the circles {∂Bi}li=1; suppose, without loss
of generality, that y ∈ ∂B1. Hence, we can choose an open ball By 3 y small enough that
By \ ∂B1 consists of exactly two disjoint, path-connected open regions (See Figure 6a).
One of these regions must be a subset of B1 ⊂ Un,P , and the other must be a subset of
Vn,P . (The second region is connected and open, contains no points of ∂Vn,P , and must
contain a point of Vn,P because y ∈ ∂Vn,P .)

Choose η > 0 small enough so that t∗ − η > 0 and `(t∗ − η) ∈ By. It follows that the
line segment

L := {`(t) : 0 ≤ t ≤ t∗ − η}

is connected and disjoint from γn,P . We conclude that L is contained entirely in T , for it
contains x ∈ T . This means L does not contain any points of Vn,P , so `(t∗−η) ∈ By∩B1 ⊂
Un,P ⊂ S. We have reached a contradiction since S and T are disjoint, so U ′n,P must be
connected.

We have shown that γn,P has precisely two regions, Vn,P and U ′n,P . It remains to
show that every point of γn,P is accessible from both of these regions. Suppose y ∈ γn,P .
There are two cases: y is contained in precisely one of ∂Bi, 1 ≤ i ≤ l, or y is contained in
more than one of these circles. (See Figures 6a and 6b, respectively.)

If the first case is true, just as we did above, we can choose an open ball By 3 y small
enough that By \ ∂B1 consists of the two disjoint, path-connected open regions By ∩ Un,P
and By ∩ Vn,P . It is now clear that y is accessible from both Vn,P and U ′n,P ⊃ Un,P .

On the other hand, suppose, without loss of generality, that y is contained in the
circles ∂B1, ∂B2, . . . , ∂Bj . Then, we can choose an open ball By 3 y small enough that
By \

⋃j
i=1 ∂Bi consists of 2j disjoint path-connected, open regions that do not contain

points from γn,P (see Figure 6b). Consequently, each of these regions must be entirely
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contained in one of the disjoint open sets U ′n,P or Vn,P . Since y ∈ ∂U ′n,P = ∂Vn,P , at least
one of the 2j regions must be contained in U ′n,P and at least one must be contained in
Vn,P . It follows that y is accessible from both Vn,P and U ′n,P .

We conclude via Theorem 5.6 that γn,P is a simple closed curve whose interior
contains Un,P because U ′n,P is the bounded component of C \ γn,P , and Un,P ⊂ U ′n,P .

We have shown that there are simple, closed curves {γn,P }P∈Pn so that for each
P ∈ Pn, γn,P ⊆ ∂Un,P and Un,P is contained in the interior of the bounded region defined
by γn,P . Furthermore, the path-connected, open regions {Un,P }P∈Pn are disjoint by the
definition of the equivalence relation ∼. This means that no curve γn,P can pass through
the interior of any region Un,P , and as a result, we can identify “maximal” curves which
we will use in the remainder of the proof.

Definition 5.7. We say that a simple, closed curve γn,P∗ among {γn,P }P∈Pn is maximal
if whenever Un,P∗ is in the bounded component of C \ γn,P for some P ∈ Pn, we have
P = P ∗. We useMn to denote the collection of maximal curves. For each Γ ∈ Mn, let
OΓ denote the bounded component of C \ Γ, so that ∂OΓ = Γ.

Notice that the domains OΓ, Γ ∈ Mn are disjoint by construction and that each
Xj , 1 ≤ j ≤ n, is contained in precisely one OΓ. We conclude this subsection with
two important lemmas that restrict the sizes of the equivalence classes P , P ∈ Pn and
domains OΓ, Γ ∈Mn.

Lemma 5.8. Suppose 0 < δ < 1/3. There exists Cδ > 0 so that for n ≥ Cδ, the following
holds on the complement of Gδn: for each P ∈ Pn, |P | ≤ δ log n + 2, and if x, y ∈ Un,P ,
then, |x− y| < 3δ√

n
.

Proof. Assume, for a contradiction, that there is a P ∈ Pn for which |P | > δ log n + 2,
and suppose, without loss of generality, that 1 ∈ P . By the definition of Pn, for each
i ∈ P \ {1}, there are elements Bi0, B

i
1, . . . B

i
li
∈ Cn, where

Bi0 = B

X1,
(log n)3

n ·max
{
|mµ(X1)| , (logn)4

√
n

}
 ,

Bili = B

Xi,
(log n)3

n ·max
{
|mµ(Xi)| , (logn)4

√
n

}
 ,

Bik ∩ Bik+1 6= ∅ for 0 ≤ k ≤ li − 1, and Bi0, . . . , B
i
li

are balls with radius at most

(log n)−1n−1/2. Notice that the distance between X1 and any Xi, i ∈ P \ {1} is bounded
by 2 + 2(li − 1) times this maximum radius (recall that X1 and Xi, i ∈ P \ {1} are the
centers of Bi0 and Bili , respectively). We consider two cases:

(i) for every i ∈ P \ {1}, li < δ log n+ 2

(ii) there is an i∗ ∈ P \ {1} for which li∗ ≥ δ log n+ 2.

If case (i) is true, then, for n large enough to guarantee δ log n ≥ 3,

max
i∈P\{1}

|X1 −Xi| < max
i∈P\{1}

2 + 2(li − 1)

log n
√
n

<
2 + 2(δ log n+ 1)

log n
√
n

≤ 3δ√
n
<

1√
n
,

so every Xi, i ∈ P is in the ball of radius n−1/2 centered at X1, which is impossible on
the complement of Gδn. On the other hand, if case (ii) is true, then, for large n,

dδ logn+2e⋃
k=0

Bi
∗

k ⊂ B
(
X1,

1√
n

)
.
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Indeed,
{
Bi
∗

k

}dδ logn+2e
k=0

are overlapping balls with radius at most (log n)−1n−1/2, so if n

is large enough that δ log n ≥ 7 and y ∈
⋃dδ logn+2e
k=0 Bi

∗

k , then,

|y −X1| ≤
1 + 2dδ log n+ 2e

log n
√
n

<
2δ log n+ 7

log n
√
n
≤ 3δ√

n
<

1√
n
.

This is impossible on the complement of Gδn because it would imply too many roots
among {Xj}nj=1 in the ball of radius n−1/2 centered at X1.

Now, suppose x, y ∈ Un,P and n is large enough to guarantee that, on the complement
of Gδn, |P | ≤ δ log n+ 2 and δ log n > 4. Since the path-connected set Un,P consists of |P |
overlapping closed disks of radius at most (log n)−1n−1/2, we have

|x− y| ≤ |P | 2

log n
√
n
≤ 2(δ log n+ 2)

log n
√
n

<
3δ√
n
.

Corollary 5.9. Suppose 0 < δ < 1/3. There exists Cδ > 0 such that for n ≥ Cδ, on the
complement of Gδn, each Γ ∈Mn satisfies the following. There exist x∗, y∗ ∈ Γ so that if
x, y ∈ OΓ, then |x− y| ≤ |x∗ − y∗| < 3δ√

n
.

Proof. In view of Lemma 5.8, it suffices to show that there exist x∗, y∗ ∈ Γ so that

sup
x,y∈OΓ

|x− y| ≤ |x∗ − y∗| . (5.8)

(Recall that there exists P ∗ ∈ Pn so that Γ ⊂ ∂Un,P∗ .) Since OΓ is compact and
(x, y) 7→ |x− y| is continuous, the extreme value theorem guarantees the existence of
x∗, y∗ ∈ OΓ so that the supremum in (5.8) is achieved when x = x∗ and y = y∗. Suppose,
for a contradiction, that x∗ /∈ Γ. Then, x∗ is in the open set OΓ, and there is a ρ > 0 so
that x∗ ∈ B(x∗, ρ) ⊂ OΓ. Consequently, the line segment x∗y∗ can be extended along
the line connecting x∗ and y∗ by length ρ/2 without leaving OΓ. This contradicts the
assumption that the supremum in (5.8) is achieved for x = x∗, y = y∗. We conclude that
x∗ ∈ Γ. A similar argument shows that y∗ ∈ Γ.

5.5 Pairing of roots and critical points inside each domain

We now show that on the complement of the “bad” events, the roots and critical
points within most of the domains OΓ, Γ ∈Mn are “paired.” The only domains for which
this does not occur are those that contain roots of pn(z) that are “too close” to the zeros
of mµ. (See Figure 5 for reference; recall that mµ(z) = 0 precisely when z = 0 in the
case where µ is the uniform measure on the unit disk.) To make “too close” rigorous, we
define the random collection of roots

Rpair
n :=

{
Xj : 1 ≤ j ≤ n and Xj ∈ C \

(
Ab4 log(logn)c
n ∪Ab4 log(logn)c+1

n

)}
⊆
{
Xj : 1 ≤ j ≤ n and |mµ(Xj)| >

(log n)4

√
n

}
.

The following lemma is the main result of this subsection.

Lemma 5.10. For a fixed δ > 0 chosen sufficiently small, there is a constant Cδ > 0 so
that for n ≥ Cδ, on the complement of ∪ni=1F

i
n ∪Gδn ∪Hn, the following conclusion holds.

For each OΓ, Γ ∈ Mn, such that OΓ ∩ Rpair
n 6= ∅, the number of critical points of pn(z)

that lie inside OΓ is equal to the number of roots of pn(z) that lie inside OΓ (where both
counts include multiplicity). Furthermore, if X ∈ OΓ ∩Rpair

n and w ∈ OΓ is a critical point

of pn(z), then, |X − w| ≤ (logn)4

n|mµ(X)| .
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Local behavior of critical points and roots of random polynomials

Proof. The proof of this lemma is similar in flavor to the proofs of Theorems 2.8 and 3.1,
although the argument presented here is much more technical. Fix n ∈ N, suppose OΓ,
Γ ∈Mn is such that OΓ ∩Rpair

n 6= ∅, and choose an X ∈ OΓ ∩Rpair
n to be a distinguished

root that will be a reference point in our calculations. We classify the roots {Xj}nj=1 into
three groups based on their proximity to X (see Figure 7). To that end, define

Rnear :=

{
j : 1 ≤ j ≤ n, |Xj −X| <

(log n)2

n |mµ(X)|

}
Rmed :=

{
j : 1 ≤ j ≤ n, |Xj −X| <

1√
n

}
\Rnear

Rfar :=

{
j : 1 ≤ j ≤ n, |Xj −X| ≥

1√
n

}
,

and let
qX(z) :=

∏
j /∈Rnear

(z −Xj) and rX(z) :=
∏

j∈Rnear

(z −Xj),

so that pn(z) = qX(z)rX(z). Note that |Rmed| and |Rnear| are of size at most δ log n+ 2 on
the complement of Gδn. We will compare the zeros of p′n(z) inside OΓ to the zeros of the
function

fX(z) := qX(z)

(
r′X(z) + rX(z)

n− |Rnear|
z − YX

)
that are inside OΓ, where YX is defined by

YX := X − n− |Rnear|∑
j /∈Rnear

1
X−Xj

.

The idea is that
fX(z)

pn(z)
=
r′X(z)

rX(z)
+
n− |Rnear|
z − YX

is similar to the logarithmic derivative of pn(z) for z near X. Furthermore, the number
of roots of the equation

0 = r′X(z) + rX(z)
n− |Rnear|
z − YX

that are inside OΓ will be easy to calculate since these are the same as the critical points
of

p̃X(z) := rX(z) · (z − YX)n−|Rnear|

that lie inside OΓ (we will show that YX /∈ OΓ), and these can be located with Walsh’s
two circle theorem.

The following lemma contains a few facts that we will frequently reference for the
remainder of the proof of Lemma 5.10.

Lemma 5.11. Suppose δ < 1/3. There is a constant Kµ,δ ∈ N, depending only on µ and
δ (and not on X,P,Γ, etc...), so that n ≥ Kµ,δ implies the following. On the complement
of ∪ni=1F

i
n ∪Gδn, if X ∈ OΓ ∩Rpair

n and z ∈ OΓ, then

(i) |z −X| ≤ 4δ(log n)4

n |mµ(X)|
, and |z −X| ≥ (logn)3

n|mµ(X)| if z ∈ Γ;

(ii)
|mµ(X)|

4
≤

∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣ ≤ 2 |mµ(X)|;

(iii)
1

4 |mµ(X)|
≤ |z − YX | ≤

5

|mµ(X)|
, so in particular, fX(z) is analytic in OΓ.
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Proof. Much of this proof relies on the fact that mµ(·) is nearly Lipschitz (see Lemma 3.5
part (ii)). To establish (i), we first observe that for large n, on the complement of Gδn, if
ξ ∈ OΓ, then

|mµ(X)|
2

≤ |mµ(ξ)| ≤ 3 |mµ(X)|
2

. (5.9)

Indeed, via Corollary 5.9, |ξ −X| < 3δ√
n
< 1√

n
for large n, on the complement of Gδn, so

as long as we also have 1√
n
< min

{
εµ, e

−1
}

, Lemma 3.5 guarantees that

|mµ(ξ)−mµ(X)| ≤ κµ
3δ√
n

log

(√
n

3δ

)
.

(We have used the fact that on the interval [0, e−1], the function −x log x is increasing.)
It follows that for n ≥ 5 and larger than some constant depending on µ and δ, on the
complement of Gδn,

|mµ(ξ)−mµ(X)| ≤ (log n)2

√
n
≤ (log n)4

2
√
n
≤ |mµ(X)|

2
,

which implies equation (5.9). (The last inequality follows since X ∈ Rpair
n .) We will use

this inequality to compute |z −X|, for z ∈ OΓ, in a way that references the balls that we
started with when we constructed Γ.

Let n be large enough to establish (5.9) and the conclusion of Corollary 5.9 on the
complement of Gδn. Since, z,X ∈ OΓ, Corollary 5.9 guarantees the existence of w1, w2 ∈ Γ

for which |z −X| ≤ |w1 − w2|. Recall that Γ ⊆ ∂Un,P∗ for some P ∗ ∈ Pn, so there are
i1, i2 ∈ P ∗ for which, Xi1 , Xi2 ∈ OΓ, and

w1 ∈ ∂B

Xi1 ,
(log n)3

nmax
{
|mµ(Xi1)| , (logn)4

√
n

}


and

w2 ∈ ∂B

Xi2 ,
(log n)3

nmax
{
|mµ(Xi2)| , (logn)4

√
n

}
 .

Furthermore, since i1 and i2 are related by the equivalence that defines Pn, there are
open balls B0, B1, . . . Bl ∈ Cn, of the form

B

Xj ,
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
 , j ∈ P ∗, Xj ∈ OΓ,

where

B0 = B

Xi1 ,
(log n)3

n ·max
{
|mµ(Xi1)| , (logn)4

√
n

}
 ,

Bl = B

Xi2 ,
(log n)3

n ·max
{
|mµ(Xi2)| , (logn)4

√
n

}
 ,

and Bk ∩Bk+1 6= ∅ for 0 ≤ k ≤ l− 1. Notice that on the complement of Gδn, equation (5.9)

guarantees that the radii of these balls are bounded by 2(logn)3

n|mµ(X)| (recall that X ∈ Rpair
n ),
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and if n is large enough to guarantee the conclusion of Lemma 5.8, the number of balls,
l, is less than |P ∗| ≤ δ log n+ 2. It follows that for n larger than a constant depending on
δ, on the complement of Gδn,

|z −X| ≤ |w1 − w2| ≤ |P ∗| · 2
2(log n)3

n |mµ(X)|
≤ 4(δ log n+ 2)(log n)3

n |mµ(X)|
≤ 4δ(log n)4

n |mµ(X)|
.

We have established the first half of (i). To see the second inequality, simply recall that Γ

does not pass through Un,P for any P ∈ Pn, so if z ∈ Γ, then

|z −Xj | ≥
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

}
for any root Xj , 1 ≤ j ≤ n. In particular, this is true for X ∈ Rpair

n , which satisfies

|mµ(X)| ≥ (logn)4

√
n

, so we obtain the second part of (i).

Inequality (ii) holds for large n on the complement of ∪ni=1F
i
n ∪ Gδn after several

interpolations. For each i, 1 ≤ i ≤ n, the random variables E[ζ
(n)
i,j | Xi], 1 ≤ j ≤ n, j 6= i

are identically distributed, so∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣
+
∣∣∣E[ζ

(n)
i,l | Xi]−mµ(Xi)

∣∣∣+ |mµ(Xi)| ,

(5.10)

where l is any index different from i. Since the Xj are iid, we have∣∣∣E[ζ
(n)
i,l | Xi]−mµ(Xi)

∣∣∣ =

∣∣∣∣E [ 1

Xi −Xl
1|Xi−Xl|< (logn)2

n|mµ(Xi)|

∣∣∣∣ Xi

]∣∣∣∣
≤ 2πCµ

∫ (logn)2

n|mµ(Xi)|

0

1

r
· r dr

= 2πCµ
(log n)2

n |mµ(Xi)|
,

so equation (5.10) implies that for any i, 1 ≤ i ≤ n,∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣+
2πCµ(log n)2

n |mµ(Xi)|
+ |mµ(Xi)| .

Now, X = XiX for some iX , 1 ≤ iX ≤ n, and X ∈ Rpair
n , so on the complement of ∪ni=1F

i
n,

∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣ =
n− 1

n− |Rnear|

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=iX

ζ
(n)
iX ,j

∣∣∣∣∣∣∣∣
≤ n− 1

n− |Rnear|

(
3

2
|mµ(XiX )|+ 2πCµ(log n)2

n |mµ(XiX )|

)
≤ n− 1

n− |Rnear|

(
3

2
|mµ(X)|+ 2πCµ√

n(log n)2

)
.

(5.11)
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On the complement of Gδn, |Rnear| is at most δ log n+ 2, so for large n, on the complement
of ∪ni=1F

i
n ∪Gδn inequality (5.11) establishes the upper bound in (ii). (We have used that

X ∈ Rpair
n to bound 2πCµ√

n(logn)2 above by, say, 1/4 |mµ(X)| for large n.) The lower bound
in (ii) is achieved similarly by using the reverse triangle inequality to obtain∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

ζ
(n)
i,j

∣∣∣∣∣∣∣∣ ≥ |mµ(Xi)| −

∣∣∣∣∣∣∣∣
1

n− 1

n∑
j=1
j 6=i

(
ζ

(n)
i,j − E[ζ

(n)
i,j | Xi]

)∣∣∣∣∣∣∣∣
−
∣∣∣E[ζ

(n)
i,l | Xi]−mµ(Xi)

∣∣∣ ,
in place of (5.10).

We conclude by establishing (iii) as a consequence of (i) and (ii). Indeed, via the
triangle inequality, we have for large n, on the complement of ∪ni=1F

i
n ∪Gδn, that

|z − YX | ≤ |z −X|+

∣∣∣∣∣∣ n− |Rnear|∑
j /∈Rnear

1
X−Xj

∣∣∣∣∣∣ ≤ 4δ(log n)4

n |mµ(X)|
+

4

|mµ(X)|
≤ 5

|mµ(X)|
,

where the rightmost inequality holds for large n. The lower bound in (iii) follows for
similar reasons, and fX is analytic because |mµ(X)| is almost surely bounded above by an
constant that depends only on µ (apply Lemma 3.5, part (i) with ξ = 0 and ρ = +∞).

The next Lemma justifies our choice of fX(z) as an intermediate comparison between
pn(z) and p′n(z) because it establishes that under the right conditions, fX(z) and pn(z)

have the same number of roots in the domain OΓ. Consider Figure 7 which provides a
visual aid to the argument.

Lemma 5.12. Suppose δ < 1/3. For large n, on the complement of ∪ni=1F
i
n∪Gδn, the poly-

nomial p̃X(z) = rX(z)(z − YX)n−|Rnear| has |Rnear| critical points inside B
(
X, 5(logn)2

n|mµ(X)|

)
⊂

OΓ, and none of these is YX /∈ OΓ. In particular, under these conditions, fX(z) has the
same number of roots inside OΓ as pn(z) does.

Proof. This follows from Walsh’s two circle theorem (see e.g. Theorem 4.1.1 in [27].)
First, we will show that rX(z) and p̃′X(z) have the same number of roots, |Rnear|, inside
OΓ by using Walsh’s two circle theorem, and then, we will use this fact to compare the
roots of pn(z) and fX(z) inside OΓ.

To that end, choose n large enough so that the statements in Lemma 5.11 hold on the
complement of ∪ni=1F

i
n ∪Gδn, and define the circular domains

C1 := B

(
X,

(log n)2

n |mµ(X)|

)
and C2 := B

(
YX ,

(log n)2

n |mµ(X)|

)
.

Note that C1 and C2 are disjoint for large n on the complement of ∪ni=1F
i
n ∪ Gδn by

inequality (iii) of Lemma 5.11:

|X − YX | ≥
1

4 |mµ(X)|
>

(log n)2

n |mµ(X)|
.

In fact, for n large enough,

1

4 |mµ(X)|
>

4δ(log n)4

n |mµ(X)|
+

(log n)2

n |mµ(X)|
,

so on the complement of ∪ni=1F
i
n ∪Gδn, Lemma 5.11 part (i) guarantees that C2 is disjoint

from OΓ.
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X

YX

ℭℭ1

ℭ2

OΓ

Γ

Rmed

Rfar

Figure 7: A diagram to illustrate Lemma 5.12 and its proof. The red dots and blue
crosses are meant to represent roots and critical points, respectively, of pn that lie in a
region near X, which is denoted by a green star. The large dashed circle is intended
to be on the order of n−1/2. Note that indices 1 ≤ j ≤ n in Rnear correspond to roots Xj

that lie interior to C1. This figure is neither to scale nor the result of a simulation.

Next, observe that all of the roots of p̃X(z) lie in C1 ∪ C2, so by Walsh’s two circle
theorem, the critical points of p̃X lie in C1 ∪ C2 ∪ C, where C is the open ball

C := B

(
n− |Rnear|

n
X +

|Rnear|
n

YX ,
(log n)2

n |mµ(X)|

)
.

By Lemma 5.11, for large n, on the complement of ∪ni=1F
i
n ∪Gδn, x ∈ C implies

|x−X| ≤
∣∣∣∣n− |Rnear|

n
X +

|Rnear|
n

YX −X
∣∣∣∣+

(log n)2

n |mµ(X)|

=
|Rnear|
n

∣∣∣∣∣ n− |Rnear|∑
j /∈Rnear

1
X−Xj

∣∣∣∣∣+
(log n)2

n |mµ(X)|

≤ |Rnear|
n

4

|mµ(X)|
+

(log n)2

n |mµ(X)|

≤ 4(δ log n+ 2) + (log n)2

n |mµ(X)|

<
5(log n)2

n |mµ(X)|
,

where the last inequality holds for large n. It follows that for large n, on the complement
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of ∪ni=1F
i
n ∪Gδn,

C ⊆ B
(
X,

5(log n)2

n |mµ(X)|

)
⊆ B

X, (log n)3

n ·max
{
|mµ(X)| , (logn)4

√
n

}


(recall X ∈ Rpair
n ), so in particular, C ∪ C1 is contained in OΓ, and this union is disjoint

from C2. Consequently, by the Supplement Theorem 4.1.1 in [27], for large n, on the
complement of ∪ni=1F

i
n ∪ Gδn, p̃′X(z) has |Rnear| roots inside OΓ, just like rX(z) does.

Under these conditions, fX(z) has the same roots as qX(z)p̃′X(z) inside OΓ because
YX /∈ OΓ, so it follows that fX(z) and pn(z) = qX(z)rX(z) have the same number of roots
inside OΓ.

We conclude this subsection with two lemmas and an application of Rouché’s theorem
to establish that fX(z) and p′n(z) have the same numbers of zeros in OΓ. This will imply
via Lemma 5.12 that pn(z) and p′n(z) have the same numbers of zeros in OΓ.

Lemma 5.13. Suppose δ < 1/8. There exist positive constants C̃µ, dependent only on µ,
and Cµ,δ, dependent only on µ and δ (and not on X, Γ, etc...), so that for n ≥ Cµ,δ, on the
complement of ∪ni=1F

i
n ∪Gδn ∪Hn, if z ∈ Γ,

|p′n(z)− fX(z)| ≤ |pn(z)| C̃µδ2n |mµ(X)| (5.12)

(here, C̃µ is independent of δ).

Proof. Fix z ∈ Γ. By the definition of fX(z) and the triangle inequality, we have

|p′n(z)− fX(z)|

= |pn(z)| ·

∣∣∣∣∣∣
n∑
j=1

1

z −Xj
− r′X(z)

rX(z)
− n− |Rnear|

z − YX

∣∣∣∣∣∣
= |pn(z)| ·

∣∣∣∣∣∣
∑

j /∈Rnear

1

z −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣
≤ |pn(z)|

∣∣∣∣∣∣
∑

j /∈Rnear

1

z −Xj
−
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

j /∈Rnear

1

X −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣
 .

(5.13)

We find upper bounds for the two terms at right separately. First, factor
∣∣∣∑j /∈Rnear

1
X−Xj

∣∣∣
from the second term, and combine the resulting fractions to obtain∣∣∣∣∣∣

∑
j /∈Rnear

1

X −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣
∣∣∣∣∣ (z −X)

∑
j /∈Rnear

1
X−Xj

(z −X)
∑
j /∈Rnear

1
X−Xj + n− |Rnear|

∣∣∣∣∣
= |z −X|

∣∣∣∣∣∣ 1

n− |Rnear|
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣
2 ∣∣∣∣∣ n− |Rnear|

(z −X) 1
n−|Rnear|

∑
j /∈Rnear

1
X−Xj + 1

∣∣∣∣∣ .
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Lemma 5.11 and an application of the reverse triangle inequality to the denominator of
the rightmost factor yield for large n, on the complement of ∪ni=1F

i
n ∪Gδn,∣∣∣∣∣∣

∑
j /∈Rnear

1

X −Xj
− n− |Rnear|

z − YX

∣∣∣∣∣∣
≤ 4δ(log n)4

n |mµ(X)|
· 4 |mµ(X)|2 · n− |Rnear|

1− |z −X|
∣∣∣ 1
n−|Rnear|

∑
j /∈Rnear

1
X−Xj

∣∣∣
= Oδ

(
(log n)4 |mµ(X)|

)
.

(5.14)

We now find a bound on the first term in (5.13). Combining the summands gives∣∣∣∣∣∣
∑

j /∈Rnear

1

z −Xj
−
∑

j /∈Rnear

1

X −Xj

∣∣∣∣∣∣
= |z −X|

∣∣∣∣∣∣
∑

j /∈Rnear

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣
≤ |z −X|

∣∣∣∣∣∣
∑

j∈Rmed

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Rfar

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣
 ,

so in view of (5.14) and the upper bound Lemma 5.11 gives for |z −X|, we can estab-
lish (5.12) by showing there exist positive constants C̃ ′µ, C ′µ,δ satisfying the following: on

the complement of ∪ni=1F
i
n ∪Gδn, n ≥ C ′µ,δ implies∣∣∣∣∣∣

∑
j∈Rmed

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Rfar

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣ ≤ C̃ ′µδn
2 |mµ(X)|2

(log(n))4
. (5.15)

We will bound each term on the left separately. By construction of the sets {OΓ}Γ∈Mn
,

recall that the curves Γ ∈ Mn do not intersect the interiors of the open balls forming
Un,P , P ∈ Pn. Hence, for j ∈ Rmed,

|z −Xj | ≥
(log n)3

n ·max
{
|mµ(Xj)| , (logn)4

√
n

} .
By Lemma 3.5, it follows that for large n, |mµ(Xj)| ≤ 2 |mµ(X)| (Recall that for j ∈ Rmed,
|X −Xj | < 1√

n
and X ∈ Rpair

n ). Consequently, for large n, on the complement of

∪ni=1F
i
n ∪Gδn,

|z −Xj | ≥
(log n)3

n ·max
{

2 |mµ(X)| , (logn)4
√
n

} ≥ (log n)3

2n |mµ(X)|
.

In addition, for j ∈ Rmed, |X −Xj | ≥ (logn)2

n|mµ(X)| . Hence, for n large, on the complement of

∪ni=1F
i
n ∪Gδn,∣∣∣∣∣∣
∑

j∈Rmed

1

(z −Xj)(X −Xj)

∣∣∣∣∣∣ ≤ |Rmed|
2n2 |mµ(X)|2

(log n)5
≤ (δ log n+ 2)

2n2 |mµ(X)|2

(log n)5
. (5.16)

We now turn our attention to the second term on the left side of (5.15). Since µ

is absolutely continuous with respect to the Lebesgue measure on C, we expect that
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Local behavior of critical points and roots of random polynomials

the number of Xj , j ∈ Rfar within a given distance of X is roughly proportional to the
square of that distance, and hence, the sum over j ∈ Rfar in (5.15) should be roughly on
the order of n. To take advantage of this intuition, we will split the sum into pieces by
grouping terms [(z −Xj)(X −Xj)]

−1 according to the distance between Xj and X. To
that end, define for 1 ≤ k ≤

√
n− 1, the annuli

Dk,n :=

{
w ∈ C :

k√
n
≤ |w −X| ≤ k + 1√

n

}
D′k,n :=

{
w ∈ C :

k − 1√
n
≤ |w −X| ≤ k + 2√

n

}
D′′k,n :=

{
w ∈ C :

k − 2√
n
≤ |w −X| ≤ k + 3√

n

}
and the random variables

#k,n := # {j : 1 ≤ j ≤ n, Xj ∈ Dk,n} .

(Note that D′1,n, D
′′
1,n, D

′′
2,n are disks.) On the complement of Hn, each Xj , 1 ≤ j ≤ n is

within n−1/2 of some xj ∈ Nn, and on the complement of Gδn, there are at most 2 + δ log n

roots Xl, 1 ≤ l ≤ n within n−1/2 of xj . It follows that

#k,n ≤
∣∣Nn ∩D′k,n∣∣ · (δ log n+ 2). (5.17)

We will argue that due to the fact that any distinct x, y ∈ Nn are separated by at least
1

2
√
n

, the size of Nn∩D′k,n is bounded by 162k. Indeed, for any distinct x, y ∈ Nn, the balls

B(x, n−1/2/4) and B(y, n−1/2/4) are disjoint, and if x ∈ D′k,n, then B(x, n−1/2/4) ⊂ D′′k,n.
The area of D′′k,n for k ≥ 2 is π

n (10k + 5), so at most 16(10k + 5) disjoint balls of radius

n−1/2/4 can fit in D′′k,n. Similarly, at most 162 balls of radius n−1/2/4 can fit in D′′1,n.

Combining this with equation (5.17) establishes that, on the complement of Gδn ∪Hn, we
have #k,n ≤ 162k(δ log n+ 2).

We can now find an upper bound for the second term on the left of (5.15) by breaking
this sum into pieces that correspond to the annuli Dk,n, 1 ≤ k ≤

√
n−1. To start, observe

that∑
j∈Rfar

1

|z −Xj | |X −Xj |

≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

1

|z −Xj | |X −Xj |
+

∑
j:|X−Xj |≥1

1

|z −Xj |

≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

1

(|X −Xj | − |z −X|) |X −Xj |
+

∑
j:|X−Xj |≥1

1

|X −Xj | − |z −X|
,

(5.18)

where the last line follows from the reverse triangle inequality (the next equation justifies
why |z −X| is smaller than |X −Xj |). If δ < 1/8 and n is large enough to guarantee the
conclusions of Lemma 5.11, then on the complement of ∪ni=1F

i
n ∪Gδn ∪Hn, for j ∈ Rfar,

we have

|X −Xj | ≥
1√
n
>

8δ√
n
≥ 8δ(log n)4

n |mµ(X)|
≥ 2 |z −X|

(note that |mµ(X)| ≥ (logn)4

√
n

). Substituting |X −Xj | /2 for |z −X| into the last line

of (5.18) establishes that for large n, on the complement of ∪ni=1F
i
n ∪Gδn ∪Hn,

∑
j∈Rfar

1

|z −Xj | |X −Xj |
≤

√
n−1∑
k=1

∑
j:Xj∈Dk,n

2

|X −Xj |2
+

∑
j:|X−Xj |≥1

2

|X −Xj |
,
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at which point we can use the fact that |Xj −X| ≥ k√
n

for Xj ∈ Dk,n, 1 ≤ k ≤
√
n− 1 to

obtain

∑
j∈Rfar

1

|z −Xj | |X −Xj |
≤

√
n−1∑
k=1

#k,n
2n

k2
+ 2n ≤

√
n−1∑
k=1

2
(
162k(δ log n+ 2)

)
n

k2
+ 2n.

By approximating
∑√n−1
k=1 k−1 with 1 +

∫√n−1

1
x−1 dx, we see that this last expression is

on the order of O
(
δn(log n)2

)
, where the implied constant is independent of δ. Together

with (5.16), this establishes equation (5.15) since |mµ(X)| ≥ (logn)4

√
n

.

The last lemma in this subsection establishes a lower bound on |fX(z)| that will
combine with (5.12) to fulfill the hypotheses of Rouché’s theorem on the boundary Γ of
the domain OΓ.

Lemma 5.14. For fixed δ > 0, there is a constant Čµ,δ depending only on µ and δ so that
when n ≥ Čµ,δ, on the complement of ∪ni=1F

i
n ∪Gδn, if z ∈ Γ,

|fX(z)| ≥ |pn(z)|n |mµ(X)| · e−9. (5.19)

Proof. We have

|rX(z)| =
∏

Xj∈Rnear

|z −Xj | ≤
(
|z −X|+ (log n)2

n |mµ(X)|

)|Rnear|

and ∣∣∣∣fX(z)

qX(z)

∣∣∣∣ =
1

|z − YX |
|(z − YX)r′X(z) + rX(z) (n− |Rnear|)| .

By Lemma 5.12, for large n, on the complement of ∪ni=1F
i
n∪Gδn, the polynomial expression

(z − YX)r′X(z) + rX(z) (n− |Rnear|) =
p̃′X(z)

(z − YX)n−|Rnear|−1

has degree |Rnear|, leading coefficient n, and |Rnear| roots in B
(
X, 5(logn)2

n|mµ(X)|

)
⊂ OΓ. It

follows that under these conditions,∣∣∣∣fX(z)

qX(z)

∣∣∣∣ =
n

|z − YX |
∏
w∈OΓ

p̃′X(w)=0

|z − w|

≥ n

|z − YX |

(
|z −X| − 5(log n)2

n |mµ(X)|

)|Rnear|

,

where the critical points of p̃X(z) that index the product are considered with multiplicity.

If additionally, δ < 1 and n is large enough to guarantee the bounds on |z −X| in
Lemma 5.11, we have that on the complement of ∪ni=1F

i
n ∪Gδn and for z ∈ Γ,

(log n)2

n |mµ(X)|
≤ |z −X|

δ log n
.
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Hence, if n is large enough, on the complement of ∪ni=1F
i
n ∪Gδn, for z ∈ Γ,

|fX(z)| = |pn(z)| · 1

|rX(z)|
·
∣∣∣∣fX(z)

qX(z)

∣∣∣∣
≥ |pn(z)| · n

|z − YX |
·

 |z −X|
(

1− 5
δ logn

)
|z −X|

(
1 + 1

δ logn

)
|Rnear|

≥ |pn(z)| · n |mµ(X)|
5

·

(
1− 5

δ logn

1 + 1
δ logn

)δ logn+2

≥ |pn(z)|n |mµ(X)| · e−9.

We have used Lemma 5.11 to bound |z − YX |, and the last inequality holds for large n
and comes from the fact that(

1 +
x

δ log n

)δ logn+2
n→∞−−−−→ ex.

(Note that the rate of convergence possibly depends on δ.) We have achieved (5.19) as
was desired.

We have now established both (5.12) and (5.19), where the inequalities are indepen-
dent of X, Γ, and z ∈ Γ. Since C̃µ is independent of δ, we can choose δ ∈ (0, 1/8) small

enough that C̃µδ2 < e−9. For such a δ, by Lemmas 5.13 and 5.14, for large n, on the
complement of ∪ni=1F

i
n ∪Gδn ∪Hn, any z ∈ Γ satisfies

|p′n(z)− fX(z)| < |fX(z)| .

It follows by Rouché’s theorem that for large n, on the complement of ∪ni=1F
i
n ∪Gδn ∪Hn,

p′n(z) and fX(z) have the same number of zeros inside OΓ, and by Lemma 5.12, we
conclude that p′n(z) and pn(z) have the same number of zeros inside OΓ. The inequality
in the conclusion of Lemma 5.10 follows directly from this and Lemma 5.11 part (i) (note
δ ≤ 1/4).

In the argument above, the particular curve Γ ∈Mn and the root X ∈ OΓ∩Rpair
n were

arbitrary, and all of the constants involved were independent of Γ, so we have proved
Lemma 5.10.

5.6 Bounding the Wasserstein distance

In this subsection, we use Lemma 5.10 to prove Theorem 2.3. Let w(n)
1 , . . . , w

(n)
n−1

denote the (not necessarily distinct) critical points of pn(z), and recall the definitions of
the empirical measures, µn and µ′n (see (2.1)) Since the numbers of roots and critical
points of a polynomial differ by one, we first compare the measure µ′n to the intermediate
measure

µ̃′n :=
1

n

δX +

n−1∑
j=1

δ
w

(n)
j

 , where X =
1

n

n∑
j=1

Xj .

The following lemma justifies our choice of µ̃′n.

Lemma 5.15. Let µ′n, µ̃′n, and ηn := max1≤j≤n |Xj | be defined as above. Then, with
probability 1, W1(µ′n, µ̃

′
n) ≤ 2ηn

n .

Proof. Let π̃ be the measure on C× C given by

π̃ :=
1

n

n−1∑
j=1

δ
(w

(n)
j ,w

(n)
j )

+
1

n(n− 1)

n−1∑
j=1

δ
(w

(n)
j ,X)

,
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whose marginal distributions are easily seen to be µ′n and µ̃′n. It follows from the
definition of the L1-Wasserstein metric that, almost surely,

W1(µ′n, µ̃
′
n) ≤ 1

n

n−1∑
j=1

∣∣∣w(n)
j − w(n)

j

∣∣∣+
1

n(n− 1)

n−1∑
j=1

∣∣∣w(n)
j −X

∣∣∣ ≤ 0 +
1

n
· 2ηn,

where the last inequality follows from the Gauss–Lucas theorem.

The next result is an L1-Wasserstein comparison between µn and µ̃′n that we will use
in conjunction with Lemma 5.15 and the triangle inequality to prove Theorem 2.3.

Lemma 5.16. Let X1, . . . , Xn be iid, complex random variables with distribution µ that
has a bounded density and satisfies Assumption 2.1. Then, there is a constant C,

depending only on µ, so that with probability 1 − o(1), W1(µn, µ̃
′
n) ≤ Cηn(logn)9

n , where
µn, µ̃′n, and ηn are defined as above.

Proof. Suppose w
(n)
1 , . . . , w

(n)
n−1 are critical points of pn(z) defined above, and define

w
(n)
n := X. Then, for any permutation σn of {1, 2, . . . , n}, the measure

πσn :=
1

n

n∑
j=1

δ
(Xj ,w

(n)

σn(j)
)

has marginal distributions µn and µ̃′n, so

W1(µn, µ̃
′
n) ≤

∫
|x− y| dπσn(x, y) =

1

n

n∑
j=1

∣∣∣Xj − w(n)
σn(j)

∣∣∣ . (5.20)

We will now make a judicious choice of σn in order to take advantage of the “clump-
ing” behavior of the roots and critical points of pn(z) proclaimed in the conclusion of
Lemma 5.10.

To start, define the index sets SΓ, Γ ∈Mn by

SΓ := {1 ≤ j ≤ n : Xj ∈ OΓ} .

For large n, on the complement of Ebad
n , Lemma 5.10 guarantees that each OΓ, Γ ∈Mn

satisfying OΓ ∩Rpair
n 6= ∅ contains the same number of critical points and roots of pn(z).

Consequently, we can choose σn so that for each Γ ∈ MΓ satisfying OΓ ∩Rpair
n 6= ∅, we

have
σn(SΓ) =

{
1 ≤ j ≤ n− 1 : w

(n)
j ∈ OΓ

}
(recall that OΓ, Γ ∈Mn are pairwise disjoint). For the remaining indices whose images
under σn we haven’t specified, arbitrarily assign them from among the remaining choices.
(There is at least one index 1 ≤ i ≤ n for which σn(i) is still undefined because the
number of roots and critical points of pn(z) differs by 1. Recall that we have added

w
(n)
n = X to account for this fact.)

Based on our construction of σn, Lemma 5.10 also implies that for large n, on the
complement of Ebad

n ,∣∣∣Xj − w(n)
σn(j)

∣∣∣ ≤ (log n)4

n |mµ(Xj)|
when Xj ∈ Rpair

n , 1 ≤ j ≤ n (5.21)

(Indeed, Xj ∈ Rpair
n implies that Xj ∈ OΓ, with OΓ ∩Rpair

n = ∅ for some Γ ∈Mn.) By the
Gauss–Lucas theorem, each critical point (and each root) of pn(z) is in the convex hull of
the set {Xj}nj=1 of roots of pn(z), so for any Xj /∈ Rpair

n , we have the trivial bound∣∣∣Xj − w(n)
σn(j)

∣∣∣ ≤ 2ηn. (5.22)
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We now find an upper bound for W1(µn, µ̃
′
n) by splitting the sum on the right side of (5.20)

into many pieces. To start, we classify the terms based on whether or not Xj ∈ Rpair
n and

apply (5.21) and (5.22) to obtain

W1(µn, µ̃
′
n) ≤ 1

n

∑
j:Xj /∈Rpair

n

2ηn +
1

n

∑
j:Xj∈Rpair

n

(log n)4

n |mµ(Xj)|
, (5.23)

for large n, on the complement of Ebad
n . According to the definition of Rpair

n , any Xj /∈ Rpair
n

is an element of Ab4 log(logn)c ∪Ab4 log(logn)c+1, so there are Nb4 log(logn)c
n +N

b4 log(logn)c+1
n

terms in the leftmost sum. It follows that for large n, on the complement of Ebad
n ,∑

j:Xj /∈Rpair
n

2ηn ≤ 4ηnCµ log(log n)
(
e2b4 log(logn)c + e2b4 log(logn)c+2

)
�µ (log n)9ηn. (5.24)

It remains to control the rightmost sum in (5.23), which we accomplish by grouping
indices j, 1 ≤ j ≤ n that correspond to Xj that fall in the same region among An and Akn,
b4 log(log n)c+ 2 ≤ k ≤ blog(

√
n)c. We have,

∑
j:Xj∈Rpair

n

(log n)4

n |mµ(Xj)|
=

blog(
√
n)c∑

k=b4 log(logn)c+2

∑
j:Xj∈Akn

(log n)4

n |mµ(Xj)|
+

∑
j:Xj∈An

(log n)4

n |mµ(Xj)|

≤
blog(

√
n)c∑

k=b4 log(logn)c+2

Nk
n ·

(log n)4
√
n

nek−1
+ n · (log n)4

√
n

neblog(
√
n)c ,

where the last inequality follows after applying the lower bounds on |mµ(Xj)| that are
given in the definitions of An and Akn (note that there are Nk

n terms in each inner sum,
and the very last sum has at most n terms). For large n, on the complement of Ebad

n ,
we have Nk

n < 2Cµe
2k log(log n), for b4 log(logn)c ≤ k ≤ blog(

√
n)c, so, continuing from

above,

∑
j:Xj∈Rpair

n

(log n)4

n |mµ(Xj)|
≤ 2Cµ log(log n)

e(log n)4

√
n

blog(
√
n)c∑

k=b4 log(logn)c+2

ek +
(log n)4

√
n

eblog(
√
n)c

≤ 2Cµ log(log n)
e(log n)4

√
n

· log(
√
n)elog(

√
n) +

e(log n)4
√
n√

n

�µ (log n)6.

In view of the fact that P(Ebad
n ) = o(1), we complete the proof of Lemma 5.16 by

combining the last asymptotic with (5.23) and (5.24). (Note that with probability 1− o(1),
ηn log n ≥ 1.)

We conclude this subsection by remarking that Theorem 2.3 follows from Lem-
mas 5.1, 5.15, and 5.16 and the triangle inequality for the L1-Wasserstein metric.

A Proof of assorted results from Section 2

A.1 Computation of mµ for radially symmetric distributions

The following lemma is useful for computing the Cauchy–Stieltjes transforms of
radially symmetric distributions, which can expedite the verification of Assumptions 2.1
and 2.2 in a variety of situations. We note that Lemma A.1 also appears as Proposition
3.1 in [18].
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Lemma A.1. Suppose µ has a density f(r, θ) = f(r) that is radially symmetric about the
origin. Then, mµ(0) = 0, and for ξ 6= 0,

mµ(ξ) =
2π

ξ

∫ |ξ|
0

rf(r) dr =
1

ξ
P(|X| < |ξ|),

where X ∼ µ.

Proof. For ξ 6= 0, we can use polar coordinates and Laurent series to obtain

mµ(ξ) =

∫ 2π

0

∫ ∞
0

f(r)

ξ − reiθ
· r dr dθ

=
1

ξ

∫ |ξ|
0

rf(r)

∫ 2π

0

1

1− r
ξ e
iθ
dθ dr − 1

ξ

∫ ∞
|ξ|

rf(r)

∫ 2π

0

ξ
r e
−iθ

1− ξ
r e
−iθ

dθ dr

=
1

ξ

∫ |ξ|
0

rf(r)

∞∑
j=0

∫ 2π

0

(
r

ξ
eiθ
)j

dθ dr

− 1

ξ

∫ ∞
|ξ|

rf(r)

∞∑
j=0

ξ

r

∫ 2π

0

e−iθ
(
ξ

r
e−iθ

)j
dθ dr.

The only nonzero integral occurs when the power on the exponential is 0, so we obtain

mµ(ξ) =
2π

ξ

∫ |ξ|
0

rf(r) dr

as is desired. Finally, observe that

mµ(0) =

∫ ∞
0

∫ 2π

0

−f(r)

reiθ
· r dθ dr = −

∫ ∞
0

f(r)

∫ 2π

0

e−iθ dθ dr = 0.

A.2 Calculations for Example 2.7

In this subsection, we establish that µ from Example 2.7 satisfies part (i) of Assump-
tion 2.1. Setting each of the three branches in (2.5) to zero shows that the only zeros of
mµ(z) are when z = 0,±

√
3. We claim that there is a C > 0 such that if X ∼ µ, and ε > 0

is small, then, P(|mµ(X)| < ε) ≤ Cε2. To start, consider that for |z + 2| < 1,

|mµ(z)| = 1

2(z − 2)

∣∣(z − 2)(z + 2) + 1
∣∣

=
1

2 |z − 2|

∣∣∣(z +
√

3−
√

3− 2
)(

z +
√

3−
√

3 + 2
)

+ 1
∣∣∣

=
1

2 |z − 2|

∣∣∣∣∣∣∣z +
√

3
∣∣∣2 + (2−

√
3)(z +

√
3)− (2 +

√
3)(z +

√
3)

∣∣∣∣
=

∣∣z +
√

3
∣∣

2 |z − 2|

∣∣∣∣∣(z +
√

3) + 2−
√

3− (2 +
√

3)
z +
√

3

z +
√

3

∣∣∣∣∣ .
Since |z + 2| < 1, it follows that |z − 2| < 6 and also, by the triangle inequality,∣∣∣z +

√
3
∣∣∣ ≤ |z + 2|+

∣∣∣√3− 2
∣∣∣ ≤ 1 + 2−

√
3 = 3−

√
3.

EJP 25 (2020), paper 100.
Page 58/68

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP499
http://www.imstat.org/ejp/


Local behavior of critical points and roots of random polynomials

Hence, the reverse triangle inequality transforms our previous calculation into

|mµ(z)| ≥
∣∣z +

√
3
∣∣

12

(∣∣∣∣∣(2 +
√

3)
z +
√

3

z +
√

3

∣∣∣∣∣− ∣∣∣z +
√

3
∣∣∣− ∣∣∣2−√3

∣∣∣)

≥
∣∣z +

√
3
∣∣

12

(
(2 +

√
3)− (3−

√
3)− (2−

√
3)
)

=

√
3− 1

4

∣∣∣z +
√

3
∣∣∣ ,

for |z + 2| < 1. Similarly, |z − 2| < 1 implies that

|mµ(z)| ≥
√

3− 1

4

∣∣∣z −√3
∣∣∣ .

Since the random variable X can only take values z for which |z ± 2| < 1, it follows that

P (|mµ(X)| < ε) ≤ P
(∣∣∣X +

√
3
∣∣∣ < cε

)
+ P

(∣∣∣X −√3
∣∣∣ < cε

)
≤ c2ε2

2
,

where c = 4/(
√

3− 1) and ε > 0 is small enough that B(
√

3, cε) ⊂ B(2, 1).

A.3 Proof of Lemma 2.20

Proof. Fix a > 0, and let b > 0 be a large constant (depending on C and a) to be
chosen later. Since Z is independent of X1, . . . , Xn it follows that, with probability 1,
Z 6∈ {X1, . . . , Xn}. Hence the sum

∑n
i=1

1
Z−Xi is well-defined and finite. By conditioning

on the values of X2, . . . , Xn and Z, it suffices to prove that

sup
w∈C

sup
z∈B(0,nC)

P

(∣∣∣∣ 1

z −X1
− w

∣∣∣∣ ≤ n−b)�a n
−a.

The claim now follows from Lemma A.2 below by taking ε := n−b and choosing b

sufficiently large in terms of C and a.

Lemma A.2. Fix C > 0, and let X be a complex-valued random variable that is absolutely
continuous (with respect to Lebesgue measure on C) and which has density bounded
by nC . If E|X| ≤ nC , then for every a > 0 and 0 < ε < 1,

sup
w∈C

sup
z∈B(0,nC)

P

(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ 4
√
εnC + 4πεn3C+2a + n−a.

Proof. Fix w ∈ C and z ∈ B(0, nC). We consider two cases. If |w| ≤
√
ε, then

P

(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ P(∣∣∣∣ 1

z −X

∣∣∣∣ ≤ 2
√
ε

)
≤ P

(
|X − z| ≥ 1

2
√
ε

)
≤ 2
√
ε
(
E|X|+ nC

)
≤ 4
√
εnC

by Markov’s inequality.
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We now consider the case where |w| >
√
ε. Define the event E := {|X| ≤ nC+a}. By

Markov’s inequality, it follows that P(Ec) ≤ n−a. Thus, we obtain

P

(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ P(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ √ε|z −X|)
≤ P

(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ √ε|z −X| ∣∣∣∣ E)P(E) + P(Ec)

≤ P
(∣∣∣∣ 1

w
− (z −X)

∣∣∣∣ ≤ 2
√
εnC+a

)
+ n−a

≤ P
(
X ∈ B(w−1 − z, 2

√
εnC+a)

)
+ n−a

≤ πnC
(
2
√
εnC+a

)2
+ n−a.

Combining the bounds above yields

P

(∣∣∣∣ 1

z −X
− w

∣∣∣∣ ≤ ε) ≤ 4
√
εnC + 4πεn3C+2a + n−a

for any w ∈ C and z ∈ B(0, nC). The proof of the lemma is complete.

B A heavy-tailed CLT

In this subsection, we prove Theorem B.1, a CLT for “heavy-tailed” random variables
that have the same distribution as Y := 1

ξ−X , where X ∼ µ and µ has a continuous

density f in a neighborhood of ξ. Notice that E |Y |p < ∞ for p ∈ [0, 2), but E |Y |2 = ∞.
Many results demonstrate that Y is in the domain of attraction of a normal random
variable (see e.g. Section XVII.5 in [9], Theorem 11 in Section 6.4 of [10], and Theorem
3.10 in [26]), however, our implementation of Theorem B.1 requires specific information
about the parameters of the limiting normal distribution; we include an explicit statement
and proof for clarity.

Theorem B.1. Let X1, X2, . . . be iid, complex-valued random variables with common
distribution µ, fix s, k ∈ N, and suppose ξ1, . . . , ξs, t1, . . . , tk ∈ C are deterministic val-
ues with ξ1, . . . , ξs distinct. In addition, assume that µ has a bounded density f in a
neighborhood of each ξl, 1 ≤ l ≤ s, that is continuous at these points. Then,

1√
n log n

n∑
j=1

s∑
k=1

tk

[
1

ξk −Xj
−mµ(ξ)

]
−→ N

in distribution as n→∞, where N is a complex random variable with mean zero whose
real and imaginary parts have a joint Gaussian distribution that has covariance matrix

Σ :=

s∑
k=1

π |tk|2 f(ξk)

2
I. (B.1)

(Here, I denotes the 2× 2 identity matrix.)

Proof. We proceed by Lindeberg’s exchange method [20]. (See also [4]. Similar methods
have been applied to problems in random matrix theory; see e.g. [33], [34].) To that end,
let N,N1, N2, . . . be a sequence of iid complex random variables independent of {Xj},
whose components have a joint Gaussian distribution with mean zero and covariance
matrix Σ, defined in (B.1), and let g : C → R be a smooth test function with compact
support. We will show that∣∣∣∣∣∣E

g
 1√

n log n

n∑
j=1

s∑
k=1

tk

[
1

ξk −Xj
−mµ(ξk)

]− E
g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣→ 0, (B.2)
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as n → ∞, which implies convergence of the corresponding measures in the vague
topology. Convergence in distribution follows because for each n, n−1/2

∑n
j=1Nj has the

same distribution as the random variable N . (See e.g. Exercise 1.1.25 of [31], pages
23–33.)

Since the random variables
∑s
k=1

tk
ξk−Xj are heavy-tailed, we initially need to truncate

them. Let ε ∈ (0, 1) be fixed, and define

ζj :=

s∑
k=1

tk
ξk −Xj

1{|ξk−Xj |−1<ε
√
n logn},

ζ̃j := ζj − E[ζj ].

(Be aware that this notation suppresses the dependence of ζj and ζ̃j on ε and n.)

Lemma B.2. There is a constant Cµ,s,~t > 0, depending only on µ, s, and t1, . . . , tk, and
there is a natural number Kµ,g,ε so that n ≥ Kµ,g,ε implies∣∣∣∣∣∣E

g
 1√

n log n

n∑
j=1

ζ̃j

− E
g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣ ≤ Cµ,s,~t ε.
Proof. By Taylor’s theorem applied to the Taylor series for g centered at

A1,n :=
1√

n log n

n∑
j=2

ζ̃j ,

we have

g

 1√
n log n

n∑
j=1

ζ̃j

 = g (A1,n) +
gx (A1,n)√
n log n

Re
(
ζ̃1

)
+
gy (A1,n)√
n log n

Im
(
ζ̃1

)
+
gxx (A1,n)

2n log n
Re
(
ζ̃1

)2

+
gyy (A1,n)

2n log n
Im
(
ζ̃1

)2

+
gxy (A1,n)

n log n
Re
(
ζ̃1

)
Im
(
ζ̃1

)
+R3

 1√
n log n

n∑
j=1

ζ̃j

 ,

where ∣∣∣∣∣∣R3

 1√
n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ ≤ 8 · Cg
2! · (n log n)3/2

∣∣∣ζ̃1∣∣∣3 ,
and Cg is any constant that is an upper bound for the mixed partial derivatives of g up to
and including order three (which are compactly supported and thus bounded). Taking
the expectation of both sides yields (by independence and the fact that ζ̃j are centered)

E

g
 1√

n log n

n∑
j=1

ζ̃j


= E[g(A1,n)] +

E[gxx (A1,n)]

2n log n
E

[
Re
(
ζ̃1

)2
]

+
E[gyy (A1,n)]

2n log n
E

[
Im
(
ζ̃1

)2
]

+
E[gxy (A1,n)]

n log n
E
[
Re
(
ζ̃1

)
Im
(
ζ̃1

)]
+ E

R3

 1√
n log n

n∑
j=1

ζ̃j

 .
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Similarly, we have

E

g
N1√

n
+

1√
n log n

n∑
j=2

ζ̃j


= E[g(A1,n)] +

E[gxx (A1,n)]

2n
E
[
Re (N1)

2
]

+
E[gyy (A1,n)]

2n
E
[
Im (N1)

2
]

+
E[gxy (A1,n)]

n
E [Re (N1) Im (N1)] + E

R3

N1√
n

+
1√

n log n

n∑
j=2

ζ̃j

 ,
where ∣∣∣∣∣∣R3

N1√
n

+
1√

n log n

n∑
j=2

ζ̃j

∣∣∣∣∣∣ ≤ 8 · Cg
2! · n3/2

|N1|3 .

The difference between these two equations is bounded by∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E
g
N1√

n
+

1√
n log n

n∑
j=2

ζ̃j

∣∣∣∣∣∣
≤ Cg

2n

∣∣∣∣ 1

log n
E
[
Re(ζ̃1)2

]
− E

[
Re (N1)

2
]∣∣∣∣

+
Cg
2n

∣∣∣∣ 1

log n
E
[
Im(ζ̃1)2

]
− E

[
Im (N1)

2
]∣∣∣∣

+
Cg
n

∣∣∣∣ 1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
− E [Re (N1) Im (N1)]

∣∣∣∣
+

4Cg
(n log n)3/2

E

[∣∣∣ζ̃1∣∣∣3]+
4Cg
n3/2

E
[
|N1|3

]
.

If we continue, for 2 ≤ k ≤ n, the process of computing the second order Taylor
polynomials of g centered at

Ak,n :=
1√
n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j

and evaluating them at both

1√
n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k

ζ̃j and
1√
n

k∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j ,

we find that∣∣∣∣∣∣E
g
 1√

n

k−1∑
j=1

Nj +
1√

n log n

n∑
j=k

ζ̃j

− E
g
 1√

n

k∑
j=1

Nj +
1√

n log n

n∑
j=k+1

ζ̃j

∣∣∣∣∣∣
≤ Cg

2n

∣∣∣∣ 1

log n
E
[
Re(ζ̃k)2

]
− E

[
Re (Nk)

2
]∣∣∣∣

+
Cg
2n

∣∣∣∣ 1

log n
E
[
Im(ζ̃k)2

]
− E

[
Im (Nk)

2
]∣∣∣∣

+
Cg
n

∣∣∣∣ 1

log n
E
[
Re(ζ̃k) Im(ζ̃k)

]
− E [Re (Nk) Im (Nk)]

∣∣∣∣
+

4Cg
(n log n)3/2

E

[∣∣∣ζ̃k∣∣∣3]+
4Cg
n3/2

E
[
|Nk|3

]
.
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Now, repeatedly applying the triangle inequality and using the fact that the ζ̃j and Nj
are iid gives ∣∣∣∣∣∣E

g
 1√

n log n

n∑
j=1

ζ̃j

− E
g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣
≤ Cg

2

∣∣∣∣ 1

log n
E
[
Re(ζ̃1)2

]
− E

[
Re (N)

2
]∣∣∣∣

+
Cg
2

∣∣∣∣ 1

log n
E
[
Im(ζ̃1)2

]
− E

[
Im (N)

2
]∣∣∣∣

+ Cg

∣∣∣∣ 1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
− E [Re (N) Im (N)]

∣∣∣∣
+

4Cg

log n
√
n log n

E

[∣∣∣ζ̃1∣∣∣3]+
4Cg√
n
E
[
|N |3

]
.

(B.3)

In order to establish Lemma B.2, we need to show that each of the terms on the right
side of (B.3) is dominated by ε as n → ∞. It is in these computations that we use the
fact that f is continuous at ξ1, . . . , ξs. To take advantage of this hypothesis, fix η > 0,
and note that there is a δ = δ(η) > 0 such that δ < 1

2 min1≤k<l≤s |ξk − ξl| and for which
|z − ξk| < δ implies |f(z)− f(ξk)| < η for 1 ≤ k ≤ s. We have

E
[
Re2(ζ̃1)

]
= E

[
Re2(ζ1)

]
− (E [Re(ζ1)])

2 ≤ E
[
Re2(ζ1)

]
≤ E

[
Re2

(
s∑

k=1

tk
ξk −X1

)
s∏

k=1

1|ξk−X1|≥δ

]

+

s∑
k=1

E

Re2

(
s∑
l=1

tl
ξl −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

∏
l 6=k

1|ξl−X1|≥δ


≤

(
s∑

k=1

|tk|
δ

)2

+

s∑
k=1

E

[
Re2

(
tk

ξk −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

]

+ 2

s∑
k=1

∑
l 6=k

|tl|
δ
E

∣∣∣∣ tk
ξk −X1

∣∣∣∣+

s∑
k=1

∑
l 6=k

|tl|
δ

2

,

where the last inequality follows from the fact that

Re2(z + w) = Re2(z) + 2 Re(z) Re(w) + Re2(w) ≤ Re2(z) + 2 |z| |w|+ |w|2 .

Since E
∣∣∣ 1
ξk−X1

∣∣∣ is bounded by a constant that depends only on µ (see Lemma 3.5), there

is a constant Cs,~t,δ depending on s, t1, . . . , ts and δ so that, continuing from above,

E
[
Re2(ζ̃1)

]
≤ Cs,~t,δ +

s∑
k=1

E

[
Re2((ξk −X1)/tk)

|(ξk −X1)/tk|4
11/(ε

√
n logn)<|ξk−X1|<δ

]

≤ Cs,~t,δ +

s∑
k=1

(f(ξk) + η) |tk|2
∫ 2π

0

∫ δ/|tk|

1/(|tk|ε
√
n logn)

r2 cos2 θ

r4
r dr dθ

≤ Cs,~t,δ +

s∑
k=1

π(f(ξk) + η) |tk|2 log(δε
√
n log n).

Dividing both sides by log n yields

1

log n
E
[
Re2(ζ̃1)

]
≤

s∑
k=1

|tk|2
π(f(ξ) + η)

2
+ o(1). (B.4)

EJP 25 (2020), paper 100.
Page 63/68

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP499
http://www.imstat.org/ejp/


Local behavior of critical points and roots of random polynomials

On the other hand, similar to above,

E
[
Re2(ζ̃1)

]
= E

[
Re2(ζ1)

]
− (E [Re(ζ1)])

2

≥
s∑

k=1

E

Re2

(
s∑
l=1

tl
ξl −X1

)
11/(ε

√
n logn<|ξk−X1|<δ

∏
l 6=k

1|ξl−X1|≥δ

− o(log n)

≥
s∑

k=1

E

[
Re2((ξk −X1)/tk)

|(ξk −X1)/tk|4
11/(ε

√
n logn)<|ξ−X1|<δ

]
− o(log n)

≥
s∑

k=1

(f(ξk)− η) |tk|2
∫ 2π

0

∫ δ/|tk|

1/(|tk|ε
√
n logn)

r2 cos2 θ

r4
r dr dθ − o(log n)

≥
s∑

k=1

π(f(ξk)− η) |tk|2 log(δε
√
n log n)− o(log n),

and dividing by log n yields

E
[
Re2(ζ̃1)

]
log n

≥
s∑

k=1

π(f(ξk)− η) |tk|2

2
− o(1). (B.5)

If we combine inequalities (B.4) and (B.5) and first take lim supn→∞ (respectively
lim infn→∞) of both sides and then take η → 0, we see that

lim
n→∞

1

log n
E
[
Re2(ζ̃1)

]
=

s∑
k=1

πf(ξk) |tk|2

2
= E[Re2(N)]. (B.6)

(Note: f is bounded, and by Lemma 3.5, the expectation of |ξ −X1|−1 is uniformly
bounded, so the limit in n is uniform in ξ.) Nearly identical arguments show that

lim
n→∞

1

log n
E
[
Im2(ζ̃1)

]
=

s∑
k=1

πf(ξk) |tk|2

2
= E[Im2(N)] (B.7)

and

lim
n→∞

1

log n
E
[
Re(ζ̃1) Im(ζ̃1)

]
= 0 = E[Re(N) Im(N)], (B.8)

with the only difference being that when we find bounds for E
[
Re(ζ̃1) Im(ζ̃1)

]
, we

consider separately the cases where the integrand is positive and negative.

In our quest to prove Lemma B.2, we next show that

lim sup
n→∞

1

log n
√
n log n

E

[∣∣∣ζ̃1∣∣∣3] ≤ Oµ,s,~t(ε). (B.9)

Note that

E

[∣∣∣ζ̃1∣∣∣3] ≤ 2 · E
[
|ζ1|3

]
+ 6 · E

[
|ζ1|2

]
· E |ζ1| ≤ 8ε

√
n log n

s∑
k=1

|tk|E
[
|ζ1|2

]
,

where the last inequality comes from using that, almost surely, |ζ1| ≤ ε
√
n log n

∑s
k=1 |tk|.

Choose δ1 > 0 so that δ1 <
1
2 min1≤k<l≤s |ξk − ξl| and that for |z − ξk| < δ1, 1 ≤ k ≤ s, we
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have |f(z)− f(ξk)| < 1. Then, it follows that for n large enough to ensure 1
ε
√
n logn

≤ δ1,

E

[∣∣∣ζ̃1∣∣∣3]
log n

√
n log n

≤
s∑

k=1

8ε |tk|
log n

E
[
|ζ1|2

]

≤
s∑

k=1

8ε |tk|
log n

E
( s∑

k=1

tk
ξk −X1

)2 s∏
k=1

1|ξk−X1|≥δ1


+

s∑
k=1

E

( s∑
l=1

tl
ξl −X1

)2

11/(ε
√
n logn<|ξk−X1|<δ1

∏
l 6=k

1|ξl−X1|≥δ1


≤

s∑
k=1

8ε |tk|
log n

(
s∑
l=1

|tk|
δ1

)2

+

s∑
k=1

8ε |tk|
log n

s∑
l=1

E

[∣∣∣∣ tl
ξl −X1

∣∣∣∣2 11/(ε
√
n logn<|ξl−X1|<δ1

]

+

s∑
k=1

8ε |tk|
log n

 s∑
l=1

2E

∣∣∣∣ tl
ξl −X1

∣∣∣∣∑
j 6=l

|tj |
δ1

+

s∑
l=1

∑
j 6=l

|tj |
δ1

2
 ,

where we have used the fact that |z + w|2 ≤ |z|2 + 2 |z| |w|+ |w|2. Continuing from above,
where the second sum is the only one of non-negligible order, we have

1

log n
√
n log n

E

[∣∣∣ζ̃1∣∣∣3]
≤

s∑
k=1

8ε |tk|
log n

s∑
l=1

E

[∣∣∣∣ tl
ξl −X1

∣∣∣∣2 11/(ε
√
n logn<|ξl−X1|<δ1

]
+ o(1)

≤
s∑

k,l=1

8ε |tk|
log n

8ε(f(ξl) + 1) |tl|2
∫ 2π

0

∫ δ1

1/(ε
√
n logn)

1

r2
r dr dθ + o(1)

=

s∑
k,l=1

16πε(f(ξl) + 1) |tk| |tl|2 log(δ1ε
√
n log n)

log n
+ o(1)

and taking lim supn→∞ establishes (B.9). We conclude the proof of Lemma B.2 by
combining equations (B.3), (B.6), (B.7), (B.8), and (B.9) in view of the facts that |N | has
a finite third moment and f(z) and ε are bounded.

In order to establish (B.2), we still need to remove the truncation, which we will
accomplish through a series of interpolations. We have

1√
n log n

n∑
j=1

s∑
k=1

tk

(
1

ξk −Xj
−mµ(ξk)

)

=
1√

n log n

n∑
j=1

(
s∑

k=1

tk
ξk −Xj

− ζj

)
+

1√
n log n

n∑
j=1

ζ̃j

+
1√

n log n

n∑
j=1

(
E[ζj ]−

s∑
k=1

tkmµ(ξk)

)
.
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For n large enough to guarantee that the density, f , is well-defined and bounded by a
constant, Cf , on

s⋃
k=1

B

(
ξk,

1

ε
√
n log n

)
,

it follows that

E

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

(
s∑

k=1

tk
ξk −Xj

− ζj

)∣∣∣∣∣∣ and

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

(
E[ζj ]−

s∑
k=1

tkmµ(ξk)

)∣∣∣∣∣∣
are both less than

n√
n log n

s∑
k=1

|tk|E
[

1

|ξk −X1|
1|ξk−X1|−1≥ε

√
n logn

]

≤ nsmax1≤k≤s |tk| · Cf√
n log n

∫ 2π

0

∫ 1/(ε
√
n logn)

0

1

r
r dr dθ

≤ nsmax1≤k≤s |tk| · Cf√
n log n

2π

ε
√
n log n

= o(1).

Consequently,

E

∣∣∣∣∣∣ 1√
n log n

n∑
j=1

s∑
k=1

tk

(
1

ξ −Xj
−mµ(ξ)

)
− 1√

n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ = o(1).

We can take advantage of the fact that g is Lipshitz (indeed, g is smooth with compact
support, so it has bounded partial derivatives), to obtain

E

∣∣∣∣∣∣g
 1√

n log n

n∑
j=1

s∑
k=1

tk

(
1

ξ −Xj
−mµ(ξ)

)− g
 1√

n log n

n∑
j=1

ζ̃j

∣∣∣∣∣∣ = o(1).

Lemma B.2 now implies that for n larger than a constant depending on µ, g, ε, s, and
t1, . . . , ts,∣∣∣∣∣∣E

g
 1√

n log n

n∑
j=1

s∑
k=1

tk

[
1

ξ −Xj
−mµ(ξ)

]− E
g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
g
 1√

n log n

n∑
j=1

ζ̃j

− E
g
 1√

n

n∑
j=1

Nj

∣∣∣∣∣∣+ o(1)

= Oµ,s,~t,g(ε),

so taking ε→ 0 yields equation (B.2). The conclusion of Theorem B.1 follows since our
choice of g was arbitrary.
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