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Exponential growth and continuous phase transitions
for the contact process on trees

Xiangying Huang*

Abstract

We study the supercritical contact process on Galton-Watson trees and periodic trees.
We prove that if the contact process survives weakly then it dominates a supercritical
Crump-Mode-Jagers branching process. Hence the number of infected sites grows
exponentially fast. As a consequence we conclude that the contact process dies out at
the critical value λ1 for weak survival, and the survival probability p(λ) is continuous
with respect to the infection rate λ. Applying this fact, we show the contact process
on a general periodic tree experiences two phase transitions in the sense that λ1 < λ2,
which confirms a conjecture of Stacey’s [12]. We also prove that if the contact process
survives strongly at λ then it survives strongly at a λ′ < λ, which implies that the
process does not survive strongly at the critical value λ2 for strong survival.
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1 Introduction

Harris [6] introduced the contact process on Zd in 1974, which has been extensively
studied since then. The contact process on a graph is usually viewed as a model that
describes the spread of an infection. Vertices of the graph represent individuals and the
states 0 and 1 indicate that an individual is healthy or infected. The contact process
can be defined on any graph as follows: infected sites become healthy at rate 1, while
healthy sites become infected at rate λ times the number of infected neighbors.

Pemantle [10] began the study of the contact process on trees and found that there
exist two critical values

λ1 = inf{λ : P (ξ0t 6= ∅ for all t) > 0}
λ2 = inf{λ : lim inf

t→∞
P (0 ∈ ξ0t ) > 0},

*Duke University, United States of America. E-mail: zoehuang@math.duke.edu

http://www.imstat.org/ejp/
https://doi.org/10.1214/20-EJP483
mailto:zoehuang@math.duke.edu


Exponential growth and continuous phase transitions for the contact process on trees

where ξ0t denotes the contact process on the tree starting from only the root infected.
The contact process is said to survive weakly if the process survives but the root 0

is infected for finitely many times almost surely, and survive strongly if the root 0 is
infected for infinitely many times with positive probability. It is natural to guess that the
contact process dies out at λ1 and does not survive strongly at λ2. This is true for the
contact process on a d-regular tree Td where each vertex has degree d+ 1. (See Liggett
[9] for most of the known results on regular trees.) However, proofs on regular trees
rely heavily on translation invariance, and special functions such as wρ(ξt) =

∑
x∈ξt ρ

`(x),

where ρ is some positive constant and `(x) is a function from Td to Z so that for each
x ∈ Td, `(y) = `(x)− 1 for exactly one neighbor y of x and `(y) = `(x) + 1 for the other d
neighbors y of x. The expectation of wρ(ξt) satisfies a submultiplicative relation

Ewρ(ξt+s) ≤ Ewρ(ξt)Ewρ(ξs)

which implies Ewρ(ξt) ≥ [φ(ρ)]t where φ(ρ) = limt→∞[Ewρ(ξt)]
1/t. Properties of φ(ρ)

help us obtain a lot of detailed information about the behavior of the contact process on
regular trees.

1.1 Galton-Watson trees

Turning to Galton-Watson trees, the analysis of the contact process becomes more
complicated because of the spatial heterogeneity and randomness in the tree structure.
Throughout the discussion we consider the contact process on Galton-Watson trees with
an offspring distribution D that is a random variable on N that satisfies

P (D ≥ 1) = 1 and ED > 1. (1.1)

A Galton-Watson tree is said to have a subexponential offspring distribution if its
offspring distribution D satisfies

lim sup
k→∞

(logP (D = k)) /k = 0.

In this case it is proved in Huang and Durrett [7] that

Theorem 1.1. If the offspring distribution D for a Galton-Watson tree is subexponential
and has mean µ > 1 then λ1 = λ2 = 0.

Clearly when the offspring distribution is subexponential the contact process dies
out at both critical values. To give some intuition why λ2 = 0 we discuss briefly the
case where the offspring distribution satisfies P (D ≥ k) = exp(−kα) for all k ≥ 0 where
α < 1. Within distance k of the root there are roughly µk vertices where µ is the mean
offspring number. Hence the vertex with the largest degree within distance k has degree
≈ (k logµ)1/α. A vertex with degree n along with its neighbors is called a star graph
with degree n. The contact process on a star graph with degree n can survive for time
exp(Cλ2n) for some C > 0 when n is sufficiently large (see [2]). Here and in what follows
C is a positive constant whose value can change. While surviving on a star graph within
distance k of the root, the contact process can try to push the infection back to the root
with success probability (λ/(1 + λ))k for each attempt. Since the process can survive for
time exp(Cλ2(k logµ)1/α) on a star graph with degree (k logµ)1/α, the probability that it
fails to push the infection back to the root is (while omitting some details)

≤
(
1− (λ/(1 + λ))k

)exp(Cλ2(k log µ)1/α) ≤ exp

(
−
(

λ

1 + λ

)k
exp(Cλ2(k logµ)1/α)

)
. (1.2)

Since the first term in the exponent decays exponentially while the second grows
superexponentially, the failure probability goes to 0 as k →∞ for any positive values of
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Exponential growth and continuous phase transitions for the contact process on trees

λ. That is, the contact process can successfully push the infection back to the root and
thus survive strongly for any λ > 0.

It turns out that Theorem 1.1 is sharp. The critical value is positive on Galton-Watson
trees with tails thinner than the subexponential distribution. Recently Shankar Bhamidi,
Danny Nam, Oanh Nguyen and Allan Sly [1] proved that

Theorem 1.2. Consider the contact process on the Galton-Watson tree with offspring
distribution D. If E(exp(cD)) <∞ for some c > 0, then λ1 > 0.

An offspring distribution with this property is said to have an exponential tail, which
is thinner than the tail of the subexponential distribution. For example, suppose P (D ≥
k) = exp(−ck) for k ≥ 0 and some c > 0. Following the previous heuristics the vertex
with the largest degree within distance k of the root has degree ≈ (k logµ)/c. Again the
contact process can survival for time exp(Cλ2k) on a star graph with degree (k logµ)/c

for some C > 0, and can push the infection back to the root with failure probability

(
1− (λ/(1 + λ))k

)exp(Cλ2k) ≈ exp

(
−
(

λ

1 + λ

)k
exp(Cλ2k)

)
(1.3)

when λ is sufficiently small. As log(λ/(1 + λ)) + Cλ2 < 0 when λ is small, (1.3) does not
go to 0 when k goes to infinity. This provides some intuition why λ1 is strictly positive
when the offspring distribution has an exponential tail. Comparing (1.2) and (1.3), we
can see the difference between the subexpnential distribution and the exponential-tail
distribution is that in the first case the largest degree within distance k (i.e., (k logµ)1/α)
grows superlinearly in k and overwhelms the success probability for pushing the infection
back to the root.

Since λ2 ≥ λ1 > 0 on Galton-Watson trees with exponential tails, it is now interesting
to (i) determine if λ1 < λ2 and (ii) understand the behavior of the contact process at the
critical values λ1 and λ2. We have not been able to solve the first difficult problem but
we have solved the second.

The first step is to construct a supercritical Crump-Mode-Jagers (CMJ) branching
process that is dominated by the contact process. As a consequence, we prove that the
number of infected sites in the contact process grows exponentially fast on the event of
survival. Let ξ0t be the contact process on GW(D) with only the root infected initially.

Theorem 1.3. Suppose the offspring distribution D satisfies (1.1). When λ >

λ1(GW(D)), there is a positive constant c so that

lim inf
t→∞

|ξ0t |/ect > 0 Pλ-a.s. on Ω∞ ≡ {ξ0t 6= ∅ ∀t ≥ 0}. (1.4)

Here Pλ is the annealed measure which is defined rigorously in Section 2. Suppose
an individual in the comparison CMJ branching process gives birth only once and let τ
denote that birth time. We can then look at the branching process in terms of time blocks
of duration τ and roughly know the growth of this process by time τ . This suggests
that a “block argument” should be a good strategy to prove the continuity of the phase
transition at λ1. Indeed, if the contact process ξλt with infection rate λ survives then
it dominates a supercritical CMJ branching process. For a sufficiently small ε > 0, the
contact process ξλ−εt should behave very much the same as ξλt within a finite time block
of length τ and thus also dominate a supercritical branching process. Hence we can
show that

Theorem 1.4. The contact process on GW(D) dies out at λ1(GW(D)) and the survival
probability p(λ) is continuous in [0,∞).

Finally, we prove that

Theorem 1.5. The contact process on GW(D) does not survive strongly at λ2(GW(D)).
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Exponential growth and continuous phase transitions for the contact process on trees

The proof of this result is more complicated than that of Theorem 1.4 but similar in
spirit. We find the suitable “block events” and construct a comparison process based on
the block events. If the contact process with infection rate λ survives strongly then it
dominates a comparison process that guarantees strong survival, and hence the contact
process survives strongly at λ− ε for sufficiently small ε > 0.

1.2 Periodic trees

Let Tκ = (a1, a2, . . . , aκ) be a periodic tree in which the number of children in
successive generations is a1, a2, . . . , aκ. We only assume ai ≥ 1 for 1 ≤ i ≤ κ and
a1 · a2 · · · ak 6= 1. In order for the graph to be quasi-transitive and thus simplify the
computation, Tκ = (a1, a2, . . . , aκ) is arranged in the way that every vertex x in Tκ has
one neighbor above it and d(x) neighbors below it, where d(x) ∈ {a1, . . . , aκ} is the
offspring number of x.

To describe Tκ more rigorously we will introduce a function ` : Tκ → Z that assigns a
level to every vertex in Tk. Without loss of generality, a distinguished vertex o is chosen
to be the root where d(o) can be any value in {a1, a2, . . . , aκ}. Now each vertex can be
assigned a level according to their position relative to the root o. Specifically, we will
define the function ` : Tκ → Z so that (i) `(o) = 0 and (ii) for each x ∈ Tκ, `(y) = `(x)− 1

for exactly one neighbor y of x, and `(y) = `(x) + 1 for the other d(x) neighbors of x. For
a vertex x ∈ Tκ, `(x) is said to be the level of x.

If we choose the root o to be a vertex with a1 children, then the periodic tree
Tκ = (a1, a2, . . . , aκ) is such that a vertex on level ` of Tκ has a(` mod κ)+1 children.

The treatment for the contact process on Galton-Watson trees can be extended to
prove analogous conclusions on periodic trees.

Theorem 1.6. Let ξot denote the contact process on Tκ starting with vertex o infected.
(i) When λ > λ1(Tκ), there is a positive constant c so that

lim inf
t→∞

|ξot |/ect > 0 Pλ-a.s. on Ω∞ ≡ {ξot 6= ∅ ∀t ≥ 0}. (1.5)

(ii) The contact process ξot on the periodic tree Tκ dies out at λ1(Tκ) and does not survive
strongly at λ2(Tκ).

We are also interested in determining if λ1 < λ2 on general periodic trees, which is
believed to be true by Pemantle [10] and Stacey [12]. Stacey was able to prove λ1 < λ2
on what he called “isotropic block trees”, which are to some extent similar to periodic
trees but have more stringent assumptions on the structure. Intuitively, the assumptions
require that there exist automorphisms on the tree that map distinguished vertices to
one another. The rigorous definition of the isotropic block trees is a bit involved and
hence will not be stated here. Curious readers are referred to page 1718 and 1719 in
[12] for a full account.

To see the connection between isotropic block trees and periodic trees we will present
two examples of the former.

Example 1. G = (a1, a2, . . . , aκ) where ai = 1 for 1 ≤ i ≤ κ− 1 and aκ ≥ 2.

Example 2. G = (a1, a2) where a1a2 6= 1, which is a general period-2 tree.

The above examples suggest that the isotropic block trees are, to some extent, similar
to periodic trees. However, due to the somewhat stringent assumptions on the tree
structure there are still many examples of periodic trees that fall outside this category.
One of the simplest examples among them is the periodic (2,3,4) tree, where the the
number of children in successive generations is 2,3,4.
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The special structure of the isotropic blocks is a key ingredient that Stacey uses in
his proof of

exp(αt) ≤ E(|ξAt |) ≤ C exp(αt), (1.6)

where C is a constant, α is a continuous function of λ and A is a set of vertices chosen
specially, see Proposition 2.1 in [12]. For example, for a period-2 tree (a1, a2) the initially
infected set A is chosen to be a finite tree of depth 2 where the first generation has
a1 offspring and each vertex in the second generation has a2 offspring. The relation
(1.6) implies that α = 0 when λ = λ1. Hence at λ1 not only E(|ξAt |) ≤ C for all t ≥ 0 but
also ξAt dies out on an isotropic block tree. These facts are the key elements in Stacey’s
proof.

As we will see, the extinction at λ1 is the real key to the proof of the existence of an
intermediate phase. For this reason we can prove λ1 < λ2 for general periodic trees
without trying to obtain the relation in (1.6), which is a nice relation but stronger than
necessary for our purpose. We confirm Stacey’s conjecture by showing

Theorem 1.7. The contact process on the periodic tree Tκ has an intermediate phase in
the sense that λ1 < λ2.

The relation λ1 < λ2 is believed to hold for a much broader class of trees as discussed
in [10] and [12]. It will be meaningful to prove

Conjecture 1. There exists an intermediate phase λ1 < λ2 on Galton-Watson trees
whose offspring distribution has an exponential tail.

Part of the difficulty in proving this conjecture lies in the correlation between the
state of a vertex and the geometry near this vertex. In an inhomogeneous graph such
as a Galton-Watson tree, the fact that a vertex v is infected at a certain time would
imply that it is more likely for v itself to have a large degree or to be connected to some
vertices with large degrees. Our method requires a certain extent of independence
between the state of a vertex and the geometry nearby, and hence does not extend to a
highly inhomogeneous graph.

The outline of the rest of the paper is as follows. In Section 2, we will give an explicit
construction of the contact process on Galton-Watson trees. Theorems 1.3, 1.4 and 1.5
will be proved in Section 3, 4 and 5, respectively. Periodic trees will be discussed in
Section 6.

2 Model definition

The set of all realizations of the Galton-Watson trees with offspring distribution D

is denoted by GW(D) while a certain realization is denoted by T ∈ GW(D). Condition
(1.1) guarantees that T is infinite almost surely. Let PT,λ be the law of the contact
process with infection rate λ on the tree T, and let µ be the probability measure over
the realizations in GW(D). We define the annealed measure Pλ to be

Pλ( · ) = ET∼µ(PT,λ( · )) =
∑

T∈GW(D)

PT,λ( · )µ(T).

To simplify notation we will drop the index λ when the context is clear and use GW(D)

to also represent a Galton-Watson tree with offspring distribution D.

Let ξ0t denote the contact process on GW(D) with initially only the root infected. The
critical value for weak survival for the contact process on T is defined as

λ1(T) = inf{λ : PT,λ(ξ0t 6= ∅ for all t ≥ 0) > 0}.
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In fact, λ1(T) does not depend on the specific realization T ∈ GW(D). That is, λ1(T) is
a constant µ-almost surely. Pemantle proved a slightly different version of this result in
Proposition 3.1 in [10]. We will follow his proof to show

Proposition 1. λ1(T) is a constant µ-almost surely.

Proof. Let q(T) = PT,λ(ξ0t 6= ∅ ∀t ≥ 0) and p1 = Pλ(q = 0). If the root has n children
then there are n independent identically distributed subtrees that are themselves Galton-
Watson trees with offspring distribution D, which we denote by T1, . . . ,Tn. If q(Ti) > 0

for some 1 ≤ i ≤ n then q(T) ≥ λ
1+λq(Ti) > 0, where the first term is the probability to

push the infection to the root of Ti. It follows that if the contact process dies out on T
then it has to die out on all n subtrees T1, . . . ,Tn.

Let f be the generating function of D and let ak = P (D = k). By the independence of
the structures of the subtrees,

p1 = Pλ(q = 0) ≤
∑
n

an(p1)n = f(p1) (2.1)

Note that f ′(1) = ED > 1 by (1.1). (2.1) combined with f ′(1) > 1 and f(0) = 0 implies
either p1 = 1 or p1 is bounded above by the unique fixed point of f in (0, 1), which then
gives p1 = 0. Hence λ1(T) is a constant µ-almost surely.

The critical value for strong survival is defined as

λ2(T) = inf{λ : PT,λ(0 ∈ ξ0t infinitely often) > 0}.

It follows from the same reasoning as in the proof of Proposition 1 that

Proposition 2. λ2(T) is a constant µ-almost surely.

From now on we write λ1(GW(D)) and λ2(GW(D)) for the critical values for the
contact process on a Galton Watson tree with offspring distribution D.

3 Exponential growth

In this section we prove Theorem 1.3 by showing that the contact process dominates
a supercritical Crump-Mode-Jagers branching process. On an inhomogeneous structure
such as the Galton-Watson tree, the infection state of a vertex x is correlated with the
tree structure near x. To address this issue we observe that starting with only the root
infected, when a vertex x becomes infected for the first time no information is known
about the structure of the subtree rooted at x (i.e., the subtree made of x and all of its
descendants). Hence we can “decouple” the infection state of x and the tree structure
below it.

For a vertex x ∈ T we define S(x) to be the subtree with root x, that is, S(x) contains
x together with all the descendants of x on T. For a finite set A ⊂ T, we define its
frontier F (A) to be the set of points x ∈ A for which at least one of its children, say x′,
has S(x′) ∩A = ∅. Let A′ denote the set of x′ such that x′ is the child of some x ∈ A and
S(x′) ∩A = ∅.

Let At = ∪s≤t ξ0s be the set of vertices ever infected by time t. We are interested in
the set of vertices that have never been infected and are accessible to the infection ξ0t at
time t, i.e.,

Bt = {x ∈ (At)
′ : the parent of x is in ξ0t ∩ F (At)}.

Let τk = inf{t ≥ 0 : |ξ0t ∩F (At)| ≥ k}. The fact that each vertex in |ξ0t ∩F (At)| corresponds
to at least one vertex in Bt gives |Bτk | ≥ k, i.e., there are at least k unexplored subtrees
accessible to the contact process ξ0τk . At time τk, ξ0t can try to start infections on each
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of the k subtrees, among which each infection could survive forever with a positive
probability equal to Pλ(ξ0t 6= ∅ ∀t ≥ 0). When k is taken to be sufficiently large, at
time τk the contact process ξ0t gives birth to an expected number of more than one new
process that lives forever, which make up an underlying branching process.

Recall that Ω∞ = {ξ0t 6= ∅ ∀t ≥ 0}. We will begin the proof of Theorem 1.3 by showing

Lemma 3.1. Suppose λ > λ1(GW(D)). If for every k ∈ N, τk <∞ Pλ-almost surely on
Ω∞ then (1.4) holds.

Proof. When λ > λ1(GW(D)) we have ρ := Pλ(ξ0t 6= ∅ ∀t ≥ 0) > 0. Observe that with
probability ≥ e−2(1− e−λ) an infected vertex x ∈ ξ0t ∩ F (At) can infect its child x′ ∈ Bt
within time 1 and x′ will stay infected until time 1.

Since the subtree S(x′) is still unexplored when x′ ∈ Bt first becomes infected, we
can first generate S(x′) according to the measure µ of GW(D) and then start a contact
process on it. The probability that the process ξx

′

t restricted to S(x′) will survive is

ES(x′)∼µ(PS(x′),λ(ξx
′

t 6= t for all t ≥ 0)) = ρ.

If this infection on S(x′) survives, we say x′ is a particle with an infinite line of
descendants. Note that each particle with an infinite line of descendants will contribute
at least size 1 to |ξ0t | at all times. So it suffices to show the number of particles with an
infinite line of descendants grows exponentially in time on the event Ω∞.

We will construct a branching process Zt that is dominated by the set of particles that
has an infinite line of descendants. Let Z0 contain only the root 0. Since {τk <∞} almost
surely on Ω∞ we can choose M1 large so that P (τk < M1) ≥ ρ/2. If τk ≥M1 we discard
the initial particle and there are no offspring. If τk < M1 then the initial particle gives
birth to X ∼ Binomial(k, e−2(1 − e−λ)) offspring at time τk. This is because the birth
events of different vertices in ξ0t ∩ F (At) are independent, since they involve vertices
that are disjoint in space. If k is chosen large enough then the number of offspring X̄
that will start a new process on its subtree with τk < M1 has expectation

EX̄ ≥ ke−2(1− e−λ)ρ/2 > 1,

which implies that Zt is supercritical.
The branching process is a Crump-Mode-Jagers (CMJ) branching process [3] because

the initial particle gives birth at time τk. If N(t) is the expected number of births by time
t then the Malthusian parameter c is defined through∫ ∞

0

e−ctdN(t) = 1.

Since our process has no births after time M1 it is easy to see that it satisfies the
conditions in Theorem 2 of [4], which gives

W (t) :=
Zt
ect
→W a.s. as t→∞,

where W is a non-negative random variable with P (W > 0) > 0. To improve this to the
desired conclusion we note that for any m <∞, τm <∞ almost surely on Ω∞. At time
τm, each vertex in ξ0t ∩ F (At) can start an independent branching process construction
with probability at least e−2(1− e−λ) and each branching process will live forever with
probability P (W > 0). As long as one of the branching processes lives forever we will
have the desired exponential growth of ξ0t . Hence

P
(

lim inf
t→∞

|ξ0t |/ect > 0
)
≥ P (Ω∞)P (Binomial(m, e−2(1− e−λ)P (W > 0)) ≥ 1)

= P (Ω∞)
(

1−
(
1− e−2(1− e−λ)P (W > 0)

)m)
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for any m ∈ N. Letting m → ∞ and noting that the limit can only be positive on Ω∞
proves the desired result.

Having established Lemma 3.1, to complete the proof of Theorem 1.3 it remains to
show

Lemma 3.2. For any k ∈ N, τk <∞ almost surely on Ω∞.

Proof. In a contact process, an infected site is also referred to as a particle. The event
that an infected site passes the infection to a susceptible site is also described as a
particle gives birth to another particle. The recovery of an infected site is hence also
referred to as the death of a particle. In this proof we adopt the narrative of the particles.

If some particle x ∈ ξ0t ∩ F (At) gives birth to a particle y ∈ Bt, then at the moment of
this birth y is added to ξ0t ∩ F (At). In the worst case y is the last unexplored child of x,
so x is removed from ξ0t ∩ F (At) and the size of ξ0t ∩ F (At) remains the same. Note that
the size of ξ0t ∩ F (At) will not decrease at a birth event.

When y ∈ Bt becomes infected, we try to grow |ξ0t ∩ F (At)| through consecutive birth
events on the subtree S(y). Since S(y) has not been explored by the infection, every
vertex in S(y) still has all of its offspring unexplored. When a children of y (except the
last one) is infected, the size of ξ0t ∩ F (At) increases by 1. Hence if every particle gives
birth onto a particle with offspring number at least 2, we need at most 2k consecutive
birth events on S(y) for |ξ0t ∩ F (At)| to reach size k.

Taking account of the first birth event from x to y, we need 2k + 1 consecutive birth
events before any death occurs and each of them is onto a vertex with offspring number
at least 2. Since each vertex in S(y) ∩ ξ0t ∩ F (At) is connected to at least one vertex
outside, the probability that a birth occurs before any death in S(y) ∩ ξ0t ∩ F (At) has
probability ≥ λ/(1 + λ).

We start the first trial at the first time when |ξ0t ∩ F (At)| ≥ 1, i.e., when t = 0. A trial
is said to have failed if a death occurs or a birth to a vertex with offspring number 1
occurs before we have 2k + 1 consecutive birth events to vertices with offspring number
at least 2. Define the running time Si of the i-th trial to be the first time either this trial
fails or succeeds. Si is dominated by the sum of 2k+ 1 i.i.d. Exp(1 + λ) random variables
and hence is finite almost surely. Let T0 = 0 and define

Ti = inf{t ≥ Ti−1 + Si−1 : |ξ0t ∩ F (At)| ≥ 1}

to be the time when the i-th trial starts. If Ti =∞ for some i ≥ 1 then set Tj =∞ for all
j ≥ i. Note that with an independent probability

≥
(

λ

1 + λ
· P (D ≥ 2)

)2k+1

≡ αk

a trial will succeed, so it takes finitely many attempts to have one success, which then
gives |ξ0t ∩ F (At)| ≥ k. If the i-th trial fails, either we still have |ξ0t ∩ F (At)| ≥ 1, which
means Ti+1 = Ti + Si, or |ξ0t ∩ F (At)| = 0 and we have to wait until |ξ0t ∩ F (At)| becomes
1 before starting the next trial. On the event that ξ0t survives, infinitely many sites will
be infected, i.e.,

lim
t→∞

|At| =∞ a.s. on Ω∞.

Since At cannot grow when ξ0t ∩ F (At) = ∅ we have |ξ0t ∩ F (At)| ≥ 1 infinitely often on
the event Ω∞, meaning that for any n ∈ N

{Tn <∞} a.s. on Ω∞.
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Hence we have infinitely many trials almost surely on the event of survival. Since the
birth and death symbols involved in different trials come from regions disjoint in space
and time, each trial succeeds with probability ≥ αk independent of the fates of previous
trials. Therefore we will have a success in finite time almost surely on Ω∞. The proof of
Lemma 3.2 is complete and Theorem 1.3 has been established.

Remark 3.3. Our method is robust in the sense that it works on a broad class of trees.
For example, in order to prove exponential growth for the contact process on periodic
trees it suffices to extend the proof of Lemma 3.2 to periodic trees. The key element
in the proof of Lemma 3.2 is the expansion of the infected frontier ξ0t ∩ F (At) through
consecutive birth events, which holds true for periodic trees too. It is easy to see that
if ai ≥ 2 for all 1 ≤ i ≤ κ in the periodic tree Tκ = (a1, . . . , aκ), then each birth event in
the infected frontier will cause the size |ξ0t ∩ F (At)| to increase by 1. If we only assume
a1a2 · · · aκ 6= 1, then we need κ consecutive birth events in the frontier to ensure that the
size |ξ0t ∩ F (At)| increases by 1.

4 Continuous survival probability

In the branching process Zt in the proof of Lemma 3.1, a particle can only give
birth within time M1, which means we are only looking at a finite time “block” in the
corresponding graphical representation. We drop the superscript 0 and let ξλt denote the
contact process with infection rate λ and recovery rate 1 starting from the root infected.
Within this “block” the process ξλt and ξλ

′

t should behave very much the same if λ′ is
sufficiently close to λ. If ξλt survives with positive probability, tuning down the infection
rate λ slightly to λ′ the resulting process ξλ

′

t should still behave similarly in the finite
time “block”, which then implies the survival of ξλ

′

t . We will follow this idea to prove
both results in this section. A superscript λ is used to denote the infection rate. For
example, τλk is the corresponding hitting time of the event {|ξλt ∩ F (At)| ≥ k}.
Lemma 4.1. The contact process on GW(D) dies out at λ1(GW(D)).

Proof. To prove the conclusion it suffices to show Pλ(ξ0t 6= ∅ for all t ≥ 0) > 0 implies
λ > λ1. Let ρ := Pλ(ξ0t 6= ∅ for all t ≥ 0) > 0. For reasons that will become clear later we
choose k,M1 so that

ke−2(1− e−λ)ρ/2 > 2 and P (τλk < M1) ≥ ρ/2. (4.1)

For a small δ > 0 we have

P (τλ−δk < M1) ≥ P ({ξλt = ξλ−δt for all t ≤ min{τλk ,M1}} ∩ {τλk < M1}).

For any ε > 0, when δ is sufficiently small we have

P (ξλt 6= ξλ−δt for some t ≤ min{τλk ,M1}) < ε.

Hence,
P (τλ−δk < M1) ≥ 1− ε− (1− ρ/2) = ρ/2− ε.

Following the proof of Lemma 3.1 we can construct a branching process Zt dominated
by ξλ−δt , where a particle gives birth to X ∼ Binomial(k, e−2(1 − e−λ−δ)) offspring if
τλ−δk < M1, and to no offspring if τλ−δk ≥M1. When ε and δ are sufficiently small, by the
choice of k in (4.1) the mean number of offspring is

EX ≥ ke−2(1− e−λ−δ)(ρ/2− ε) > 1.

Hence Zt is supercritical and survives with positive probability, which implies ξλ−δt

survives with positive probability. So λ > λ− δ ≥ λ1 and this completes the proof.
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Let p(λ) := Pλ(ξ0t 6= ∅ ∀t ≥ 0) be a function of λ that represents the survival
probability of the contact process ξλt .

Lemma 4.2. p(λ) is continuous on [0,∞).

Proof. The right continuity of p(λ) is immediate since

Pλ(ξ0t 6= ∅) ↓ p(λ)

as t ↑ ∞ and Pλ(ξ0t 6= ∅) is increasing and continuous in λ for each t.
We have proved that p(λ) ≡ 0 on [0, λ1], so it remains to prove the left continuity for

p(λ) on (λ1,∞). Take λ > λ1, which trivially gives p(λ) > 0. We will show for any ε > 0,
there exists λ′ < λ such that p(λ′) > p(λ)− ε.

Since λ > λ1 there exists λ0 such that λ > λ0 > λ1. It follows from the same argument
as in the proof of Lemma 4.1 that we can construct a supercritical branching process Zt
that is dominated by ξλ0

t . Moreover, there exists some constant c > 0 and a non-negative
random variable W0 with P (W0 > 0) > 0 such that

Zt
ect
→W0 as t→∞.

To simplify notation we will write σ = e−2(1− e−λ0)P (W0 > 0). For a given δ > 0 we
will choose m so that (1−σ)m < δ. Since τλm <∞ almost surely on Ω∞ ≡ {ξλt 6= ∅ ∀t ≥ 0},
we can choose M2 sufficiently large so that

P (τλm ≤M2) ≥ (1− δ)p(λ). (4.2)

When λ′ < λ is sufficiently close to λ we also have

P (ξλt 6= ξλ
′

t for some t ≤M2) < δ. (4.3)

Without loss of generality we can assume λ′ > λ0. Observe that each vertex in
the frontier ξλ

′

t ∩ F (At) can start an independent branching process with probability
≥ e−2(1 − e−λ0) and each branching process lives forever with probability at least
P (W0 > 0) since λ′ > λ0. On the event {ξλt = ξλ

′

t for t ≤ M2} ∩ {τλm ≤ M2}, the process
ξλ
′

t can give birth to X ∼ Binomial(m,σ) branching processes that survive. If X ≥ 1

then the process ξλ
′

t survives since it dominates a surviving branching process. Hence

p(λ′) ≥ P
(
{ξλt = ξλ

′

t for t ≤M2} ∩ {τλm ≤M2}
)
P (Binomial(m,σ) ≥ 1) (4.4)

It follows from (4.2) and (4.3) that when λ′ is sufficiently close to λ

P
(
{ξλt = ξλ

′

t for t ≤M2} ∩ {τλm ≤M2}
)
≥ (1− δ)p(λ)− δ,

which then gives

p(λ′) ≥ ((1− δ)p(λ)− δ)(1− (1− σ)m) ≥ ((1− δ)p(λ)− δ)(1− δ).

Therefore, for any given ε > 0 there exists δ sufficiently small and λ′ sufficiently close to
λ so that p(λ′) > p(λ)− ε.

Remark 4.3. The same construction can be carried out on periodic trees straightfor-
wardly, thus proving the continuity of survival probability p(λ) for the contact process on
periodic trees. As a consequence, the contact process dies out at λ1 on periodic trees.
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Exponential growth and continuous phase transitions for the contact process on trees

5 No strong survival at λ2

We start by introducing some new notation. Let GW+(D) be the set of all realizations
of the “root-added” Galton-Watson tree in which the root 0 has offspring number 1 and
its only offspring is the root of a Galton-Watson tree with offspring distribution D. A
realization in GW+(D) is denoted by T+ and the measure over the realizations by ν.

Define the measure Pλ,+ to be

Pλ,+( · ) = ET+∼ν(PT+,λ( · )) =
∑

T+∈GW+(D)

PT+,λ( · )ν(T+).

We will drop the index λ when the context is clear. The contact process on GW+(D)

with with root 0 initially infected will be denoted by η0t while the contact process on
GW(D) will still be denoted by ξ0t .

From now on we set At = ∪0≤s≤t η0s . Let |v| denote the distance from vertex v to the
root 0. For a vertex x ∈ η0t ∩ F (At), define a branch of x to be

S+(x) = {x} ∪ S(x′),

where x′ can be any child of x that has not been infected by time t. Observe that S+(x)

follows the distribution of GW+(D).
The strategy of proving Theorem 1.5 is to identify a tractable process embedded in

the contact process that would infect the root infinitely often when the contact process
survives strongly. To find this embedded process it helps to look at the the macroscopic
behavior of the contact process when λ > λ2.

Observe that for a sufficiently large j a lot of vertices on level j will be infected at
a certain time jt1 with probability δ. This observation is intuitive if we think about the
contact process on regular trees and will be proved in Lemma 5.1. If there are sufficiently
many of these vertices we should be able to use them to pass the infection back to the
root with a sufficiently large probability q. Then we partition the Galton-Watson tree into
blocks of depth j. The root of each block (since its first infection) will be infected after
time jt1 with probability at least δq. The nice thing about trees is that at distance jn
there will be O(ecn) such blocks so that the success probability of pushing the infection
from distance jn to (j − 1)n is sufficiently large. For this reason we can use a recursive
relation to show that in the embedded process the probability that the root is infected
infinitely often is positive.

Having identified the embedded process (which is essentially a block construction),
we will slightly tune down the infection rate λ and show the embedded process with a
reduced infection rate λ − ε still can infect the root infinitely often. The continuity of
phase transition at λ2 is thus established by a classical argument of contradiction.

The first step is to establish the observation that a lot of vertices on level j will be
infected at a certain time jt1 with probability δ. This will come in handy when we estimate
the probability of successfully pushing the infection back to the root. Specifically, we
consider the infected vertices in the frontier F (At) in order to obtain the independence
between the subtree structure and the infection state of its root.

Despite the seemingly complicated statement, the proof of Lemma 5.1 is standard
calculation of Binomial random variable.

Lemma 5.1. If λ > λ1, there exists α, β, δ > 0 and t1 such that for all j ≥ 1,

Pλ,+(|η0jt1 ∩ F (Ajt1) ∩ {v : jαt1 ≤ |v| ≤ jβt1}| ≥ ejcλt1) ≥ δ,

where cλ is a positive number which may depend on λ.
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Proof. Let θ = P+(η0t 6= ∅ for all t ≥ 0). It follows from the proof of Lemma 3.1 that
there exists c > 0 such that when t1 is sufficiently large

P+(|η0t1 ∩ F (At1)| ≥ ect1) ≥ 3

4
θ.

For reasons that will become clear later, we choose t1 large enough so that the following
also holds

(θect1)/8 > 1 (5.1)

Given the choice of t1 we can then choose α small and β large so that

P+(|η0t1 ∩ F (At1) ∩ {v : αt1 ≤ |v| ≤ βt1}| ≥ ect1) ≥ 1

2
θ ≡ δ. (5.2)

A vertex x is said to be good if the event in (5.2) with probability δ occurs for the
contact process on S+(x) with x initially infected. If the root 0 is good, we say the root
is a good vertex at level 0. The good vertices in η0jt1 ∩ F (Ajt1) ∩ {v : jαt1 ≤ |v| ≤ jβt1}
are called the good vertices at level j. Let Nj be the number of good vertices at level j.
Trivially we have

|η0jt1 ∩ F (Ajt1) ∩ {v : jαt1 ≤ |v| ≤ jβt1}| ≥ Nj .
Hence it suffices to estimate Nj . Note that the good vertices in η0t1 ∩ F (At1) ∩ {v : αt1 ≤
|v| ≤ βt1} correspond to disjoint branches, so N1 dominates a Binomial(ect1 , δ) random
variable if the root 0 is good.

For a random variable X ∼ Binomial(n, p), Chebyshev’s inequality gives

P
(
X ≤ np

2

)
≤ V ar(X)

(np/2)2
≤ 4

np
. (5.3)

By (5.3) with n = ect1 and p = δ,

P

(
N1 ≤

δect1

2

∣∣∣∣N0 = 1

)
≤ P

(
Binomial(ect1 , δ) ≤ δect1

2

)
≤ (4/δ)e−ct1 ,

where (4/δ)e−ct1 < 1 by (5.1). The branches of good vertices at level 1 are disjoint, so
the random variable N2 dominates Binomial(N1e

ct1 , δ), which gives

P

(
N2 ≤

(
δect1

2

)2 ∣∣∣∣N1 ≥
δect1

2

)
≤ P

(
Binomial

(
δe2ct1

2
, δ

)
≤
(
δect1

2

)2
)

≤ 2

(
2e−ct1

δ

)2

≤
(
(4/δ)e−ct1

)2
.

It follows from the Markov property that Ni+1 depends only on Ni for i ≥ 0. Hence,
for any j ≥ 1

P

(
Nj ≥

(
δect1

2

)j)
≥ δP

(
N1 ≥

δect1

2

) j−1∏
i=1

P

(
Ni+1 ≥

(
δect1

2

)i+1 ∣∣∣∣Ni ≥ (δect12

)i)

≥ δ
j∏
i=1

(
1−

(
(4/δ)e−ct1

)i) ≥ δσ
where σ ≡

∏∞
i=1

(
1− ((4/δ)e−ct1)i

)
> 0. Since (θect1)/8 > 1 there exists 0 < cλ < c such

that

ecλt1 < 2 <
θect1

4
=
δect1

2
.

The last equality follows from the definition δ = θ/2. Hence for any j ≥ 1, P (Nj ≥
ejcλt1) ≥ δσ > 0.
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We are now ready to prove Theorem 1.5, i.e., the contact process on GW(D) does
not survive strongly at λ2(GW(D)).

Proof of Theorem 1.5. Since Pλ2(0 ∈ ξ0t i.o.) = 0 if and only if Pλ2,+(0 ∈ η0t i.o.) = 0, it
suffices to show the latter. Our goal is to show that Pλ,+(0 ∈ η0t i.o.) > 0 implies λ > λ2.
Now suppose Pλ,+(0 ∈ η0t i.o.) > 0. Theorem 4.1 implies that λ > λ1, so there exists λ0
such that λ > λ0 > λ1. Applying Lemma 5.1 to the contact process with infection rate λ0,
there exists positive cλ0 so that for all j ≥ 1,

Pλ0,+(|η0jt1 ∩ F (Ajt1) ∩ {v : jαt1 ≤ |v| ≤ jβt1}| ≥ ejcλ0 t1) ≥ δ (5.4)

for some choice of α, β, δ and t1.
Let Bj = η0jt1 ∩ F (Ajt1) ∩ {v : jαt1 ≤ |v| ≤ jβt1} and let x be a vertex in Bj . We use

the notation (x, 0)→ (0, t) to denote the event that running the contact process on the
shortest path connecting x and 0 with x initially infected, 0 will be infected at time t.
Trivially, if every particle in the direct path from x ∈ Bj to 0 lives for at least 2/α and
pushes the infection toward the root 0 between time [1/α, 2/α] then

Pλ0((x, 0)→ (0, t) for some t ∈ [jt1, (2β/α)jt1]) ≥
(
e−2/α(e−λ0/α−e−2λ0/α)

)jβt1 ≡ (q0)jβt1 .

Fix ε = (cλ0
/2) and ρ = 1

4Pλ,+(0 ∈ η0t i.o.). For reasons that will become clear later we
choose j0 such that

Cj0 ≡ δρe(cλ0−ε)j0t1 > 1. (5.5)

From now on we write t0 ≡ j0t1. We want to use the vertices in Bj0 to push the infection
back to the root 0. For some vertex x ∈ Bj0 , let ηxt denote the contact process restricted
to the branch S+(x) starting with x infected. If x ∈ ηxt for many times, then the infection
can try many times to push back to the root. Hence the probability of successfully
pushing the infection from x back to 0 is increased if x ∈ ηxt for many times. To estimate
the success probability let σx0 = 0 and define

σxi+1 = inf{t > σi + (2β/α)t0 : x ∈ ηxt }.

Choose m so that
1− (1− (q0)βt0)m ≥ e−εt0 , (5.6)

which is a lower bound on the probability that x successfully pushes the infection to the
root 0 within m independent trials. If the process ηxt restricted to S+(x) reinfects x for
infinitely many times then σxm < ∞, i.e., Pλ,+(σxm < ∞) ≥ Pλ,+(0 ∈ η0t i.o.). So we can
choose M2 such that

Pλ,+(σxm ≤M2) ≥ 1

2
Pλ,+(0 ∈ η0t i.o.) = 2ρ. (5.7)

For any ε < λ − λ0, the estimates in (5.4) through (5.6) are still true for the contact
process with infection rate λ− ε since λ− ε > λ0. By (5.7) there exists a sufficiently small
ε > 0 with ε < λ− λ0 that satisfies

Pλ−ε,+(σxm ≤M2) ≥ ρ.

A vertex x is said to be (m,λ − ε)-recurrent if {σxm ≤ M2} occurs for the contact
process ηxt with infection rate λ − ε. If x is (m,λ − ε)-recurrent then with probability
≥ e−εt0 it can reinfect the root after time t0. Each vertex in Bj0 is (m,λ− ε)-recurrent
independently with probability at least ρ.

Now we are ready to show λ > λ2. The following argument is inspired by the proof of
Proposition 4.57 in Liggett [9]. Let ri = Pλ−ε,+(∃ t ≥ 2it0 such that 0 ∈ η0t ). To estimate
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ri+1 we first run the contact process up to time t0. According to (5.4) at time t0 the set
of infected frontier Bj0 has size ≥ L0 ≡ exp(cλ0

t0) with probability δ. Recall that ηxt is
the contact process restricted to the branch S+(x) starting with x infected. Let

Rx = {∃ t ≥ 2it0 such that x ∈ ηxt } and Gx = {x is (m,λ− ε)-recurrent}.

If for some x ∈ Bj0 the event Rx ∩ Gx occurs then x is reinfected after (2i + 1)t0 and
can push the infection back to the root after 2(i+ 1)t0 with probability at least e−εt0 . It
follows that

ri+1 ≥ Pλ−ε,+ (∃x ∈ Bj0 such that Rx ∩Gx occurs) · e−εt0

≥ Pλ0,+

(
Binomial(|Bj0 |, Pλ0,+(Rx ∩Gx)) ≥ 1

)
· e−εt0 (since λ0 < λ− ε). (5.8)

On a given tree T+, Rx and Gx are positively correlated, as they are both increasing
functions of the infection events and decreasing functions of the recovery events (see
Liggett [9] for an account of positive correlation). Thus

P+(Rx ∩Gx) = ET+∼ν(PT+(Rx ∩Gx)) ≥ ET+∼ν(PT+(Rx) · PT+(Gx)).

In order to estimateET+∼ν(PT+(Rx)·PT+(Gx)) we will adopt a normal positive correlation
argument. The reader can skip this part and jump straight to (5.9).

Now observe that the root-added Galton-Watson tree T+ can be represented by a
collection of i.i.d. random variables. Let the random variables Z0 = 1 and Z1 ∼ D be
the number of offspring of the added root and the root, respectively. Then we sample a
series of i.i.d. random variables Z1,1, . . . , Z1,Z1 ∼ D to represent the number of offspring
for each individual in the first generation. The offspring of each individual in the second
generation is then given by the collection {Z1,i,1, . . . , Z1,i,Z1,i}

Z1
i=1, and so on.

To simplify notation we write the index (i1, i2, . . . , in) as i = (i1, i2, . . . , in, 0, . . . ) ∈ NN.
Hence, given a collection ~Z = {Zi : i ∈ NN} of i.i.d. random variables we can construct
a Galton-Watson tree accordingly. Note that different ~Z’s can be mapped to the same
T+ ∈ GW+(D). For example, if Z1 = 1 then we only use the element Z1,1 to construct
the next generation, ignoring the elements Z1,2, Z1,3 and so on. Let µ∗ denote the
measure over the realizations of ~Z. A function h of ~Z is said to be increasing if for a pair
~Z1, ~Z2 with Z1

i ≤ Z2
i for all i we have h(~Z1) ≤ h(~Z2). It follows from the Harris inequality

(see Section 2.2 in [5]) that µ∗ has positive correlations, that is, Eµ∗fg ≥ Eµ∗f · Eµ∗g for
all increasing functions f and g with finite second moments. Note that the measure ν on
GW+(D) can be obtained from µ∗ by collapsing different ~Z’s mapping to the same T+,
which means, for example,

ET+∼ν(PT+(Rx)) = E~Z∼µ∗(P~Z(Rx))

Both P~Z(Rx) and P~Z(Gx) are increasing with respect to ~Z, so it follows from the positive
correlations of µ∗ that

ET+∼ν (PT+(Rx) ·PT+(Gx)) =E~Z∼µ∗(P~Z(Rx) ·P~Z(Gx))≥E~Z∼µ∗(P~Z(Rx)) ·E~Z∼µ∗(P~Z(Gx))

=ET+∼ν(PT+(Rx))ET+∼ν(PT+(Gx)) = P+(Rx)P+(Gx)

That is,
P+(Rx ∩Gx) ≥ P+(Rx)P+(Gx) ≥ riρ. (5.9)

Now we can finish the calculation in (5.8)

ri+1 ≥ P (|Bj0 | ≥ L0)P (Binomial(L0, riρ) ≥ 1)e−εt0 ≥ δe−εt0(1− (1− riρ)L0)
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where the term δ comes from (5.4). Set f(r) = δe−εt0(1 − (1 − rρ)L0). Then f(0) = 0

and f(1) < 1. Now the reason for our choice of j0 in (5.5) has become clear. Under this
choice of j0 we have

f ′(0) = δρe−εt0L0 = Cj0 > 1.

It follows that f has a fixed point r∗ ∈ (0, 1), i.e., f(r∗) = r∗. Now we prove ri ≥ r∗

inductively for i ≥ 0. First we have r0 = 1. Suppose ri ≥ r∗, then the monotonicity of f
implies that

ri+1 ≥ f(ri) ≥ f(r∗) = r∗.

Thus we have proved ri ≥ r∗ for all i ≥ 0, which implies that Pλ−ε,+(0 ∈ η0t i.o.) > 0 and
thus λ− ε ≥ λ2. Therefore we have shown λ > λ2 and this completes the proof.

6 The weak survival phase on periodic trees

In this section we consider the contact process on a general periodic tree Tκ. We
will prove (i) λ1 < λ2 (see Theorem 1.7) and (ii) the contact process does not survive
strongly at λ2 (see Theorem 1.6, (ii)). The rest of Theorem 1.6 can be proved by similar
arguments to that of the Galton-Watson trees and hence is omitted here. The reader is
referred to the remarks in previous sections for ideas of the proofs.

Recall that the periodic tree Tκ = (a1, a2, . . . , aκ) is arranged in the way that every
vertex x in Tκ has one neighbor above it and d(x) neighbors below it, where d(x) ∈
{a1, . . . , aκ} is the offspring number of x. To simplify notation we will let γ =

∏κ
i=1 ai.

Without loss of generality, a distinguished vertex o is chosen to be the root and is said
to be on level 0. Recall that the function ` : Tκ → Z assigns a level to each vertex in
Tκ, which is defined as follows: (i) `(o) = 0 and (ii) for each x ∈ Tκ, `(y) = `(x)− 1 for
exactly one neighbor y of x, and `(y) = `(x) + 1 for the other d(x) neighbors of x.

6.1 The growth profile

We now follow Liggett [8] and Stacey [12] to define the weight of a vertex x by

wρ(x) = ρ`(x),

where ρ > 0 is a constant to be specified later. The weight of a set A of vertices is defined
to be

wρ(A) =
∑
x∈A

ρ`(x).

Take {en : n ∈ Z} in Tκ such that `(en) = n and |en − en+1| = 1, where e0 is what
we called the root o. As many of the things we will discuss are analogous to results
in Liggett [9] for the homogeneous tree Td, we will use the same notation as in [9].
Throughout the discussion we will use ξt to denote the contact process on Tκ starting
with only the root o infected.

Define

u(n) = P (en ∈ ξt for some t).

In order for the infection ξt to reach e(n+m)κ it has to first reach enκ. Thus if we restart
the contact process with only enκ infected at the moment ξt reaches enκ, by the strong
Markov property

u((m+ n)κ) ≥ u(mκ)u(nκ). (6.1)

See (4.47) in Liggett [9] for a detailed argument. Hence

β(λ) := lim
n→∞

[u(nκ)]1/n
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exists and satisfies
β(λ) = sup

n
[u(nκ)]1/n.

It is easy to show that β(λ) is independent of the type of vertex that is initially infected.
Let S(x) denote the subtree that contains vertex x and all of its descendants. We

will use ξ̄t to denote the contact process restricted to S(o), starting with only the root o
infected. The following can be derived from the proof of Lemma 4.53 in [9]. Hence we
only give a sketch of proof here.

Lemma 6.1. For any λ,

lim
n→∞

(
sup
t
P (enκ ∈ ξ̄t)

) 1
n

= β(λ).

Sketch of proof. Let B(x, n) = {y ∈ Tκ : |y − x| ≤ n}. Let vr(m) be the probability that
ξot restricted to B(o, r) infects em for some t ≤ r. Then

lim
r→∞

vr(m) = u(m).

Now take positive integers j, k,m, n satisfying

jm+ r ≤ n.

Let x0 = e(n−jm)κ, x1 = e(n−(j−1)m)κ, . . . , xj = enκ. In order to have an infection path
from (o, 0) to (enκ, t) for some t ≤ nr, we consider the intersection of following events:

the infection starting from o reaches x0 within time 1 without exiting S(o),

the infection from x0 reaches x1 within time r without exiting B(x1, r),

. . .

the infection from xj−1 reaches xj within time r without exiting B(xj , r).

Therefore

P (enκ ∈ ξ̄t for some t ≤ nr) ≥ P (e(n−jm)κ ∈ ξ̄t for some t ≤ 1)[vr(mκ)]j

Observe that
P (enκ ∈ ξ̄i+1) ≥ e−1P (enκ ∈ ξ̄t for some t ∈ [i, i+ 1]).

Hence

sup
t
P (enκ ∈ ξ̄t) ≥ max

0≤i<nr
P (enκ ∈ ξ̄i+1)

≥ e−1 max
0≤i<nr

P (enκ ∈ ξ̄t for some t ∈ [i, i+ 1])

≥ e−1

nr
P (enκ ∈ ξ̄t for some t ≤ nr)

≥ e−1

nr
P (e(n−jm)κ ∈ ξ̄t for some t ≤ 1)[vr(mκ)]j .

Therefore

lim inf
n→∞

(
sup
t
P (enκ ∈ ξ̄t)

) 1
n

≥ [vr(mκ)]1/m.

Taking r →∞ and then m→∞ gives the result.

To simplify notation, in this section we will write λ1 for λ1(Tκ) and λ2 for λ2(Tκ). The
structure of the periodic trees are similar in a way to the homogeneous trees, which
allows us to obtain many useful properties on β(λ). Here we only list one property to be
used later:
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Lemma 6.2.
(

λ
1+λ

)κ
≤ β(λ1) ≤ 1/γ.

Proof. When the vertex ei is infected, the probability that it infects ei+1 before the
infection recovers is λ/(1 + λ). If this event occurs for every vertex on the path from e0
to enκ then enκ ∈ ξot for some t. That is,

u(nκ) = P (en ∈ ξt for some t) ≥
(

λ

1 + λ

)nκ
,

which implies that β(λ) ≥
(

λ
1+λ

)κ
.

Suppose β(λ) > 1/γ. There exists some constant a so that β(λ) > a > 1/γ. By Lemma
6.1 there exists t0 and n0 such that

P (en0κ ∈ ξ̄t0)1/n0 ≥ a.

For n ∈ Z, we will use
Ln = {x ∈ Tκ : `(x) = n}

to denote the set of vertices on level n. Let B1 = {x ∈ ξ̄t0 : x ∈ Ln0κ}. Then
E|B1| ≥ (aγ)n0 > 1. At time t0, at each x ∈ B1 we can start an independent con-
tact process restricted to S(x) and run them for time t0. Continuing this construction
gives a supercritical branching process. Therefore β(λ) > 1/γ implies λ > λ1, i.e.,
β(λ1) ≤ 1/γ.

6.2 Proof of Theorem 1.7

The above discussion completes our preparation for the proof. Now we will proceed
to show the existence of an intermediate phase for the contact process on periodic trees.

There are κ types of vertices in the periodic tree Tκ categorized according to their
offspring numbers and relative positions in the tree. A vertex that corresponds to ai+1 in
the tree Tκ = (a1, a2, . . . , aκ) is said to be of type i, where i ∈ {0, 1, . . . , κ− 1}. Let ξi,λt be
the contact process on Tκ with infection rate λ, starting with an infected type i vertex
that we denote by xi. We will also set xi to be the root on level 0 and define the function
` : Tκ → Z accordingly.

If we only look at levels {Lnκ}n∈Z of the tree Tκ then the structure resembles a
homogeneous tree Tγ . Here we state a Lemma in Liggett [9] that will be useful in our
proof.

Lemma 4.26 (See [9] Part I). Let T d denote the homogeneous tree with degree d+ 1

and root o. Let
αn(ρ) =

∑
|x−o|=n

ρ`(x).

Then α0(ρ) = 1 and for n ≥ 1

αn(ρ) =

{
dn−1ρn(d2ρ2−1)+ρ−n(ρ2−1)

dρ2−1 , dρ2 6= 1

ρ−n[(n+ 1)− (n− 1)ρ2], dρ2 = 1.

It is known that for the contact process ξλ1
t on homogeneous trees, the expectation of

its weight Ewρ(ξ
λ1
t )→ 0 as t→∞, see [12]. This is a key ingredient in Stacey’s proof in

[12]. For a given ε > 0 and a sufficiently large t0 we have Ewρ(ξ
λ1
t0 ) ≤ ε. Hence for some

λ slightly larger than λ1 we have

Ewρ(ξ
λ
t0) ≤ 2ε.
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Using this fact Stacey constructed a supermartingale Mn :=
wρ(ξ

λ
nt0

)

(2ε)n and showed the
contact process does not survive strongly at this λ.

We will carry out an analogous argument for the periodic trees. In Lemma 6.3 we
estimate the weight function at λ1 for the contact process on periodic trees and then in
the proof of Theorem 1.7 the supermartingale is constructed. The new ingredient in our
argument is the extinction of the contact process on periodic trees at λ1, which is used
in the proof of Lemma 6.3.

Lemma 6.3. For any ε > 0, there exists t0 > 0 so that

max
i∈{0,1,...,κ−1}

Ewρ(ξ
i,λ1

t0 ) ≤ ε.

Proof. We will consider the contact process ξi,λ1

t starting with a type i vertex xi infected
and set xi to be the root of Tκ. Recall that Ln = {x ∈ Tκ : `(x) = n} denotes the set
of vertices on level n and S(x) denotes the subtree that contains vertex x and all of its
descendants. For a vertex x ∈ ∪n∈ZLnκ we shall define a block with root x to be

Sxκ = {y ∈ S(x) : |y − x| ≤ κ− 1}.

Note that every vertex in ∪n∈ZLnκ has type i. Define Dn(xi) = {x ∈ Tκ : |x − xi| = n}
and

Bn(xi) = {x ∈ Tκ : |x− xi| = nκ, `(x) = 0 (mod κ)}.

The tree Tκ can be partitioned into a disjoint union of blocks

Tκ = ∪x∈∪m∈ZLmκSxκ .

The weight Ewρ(ξ
i,λ1

t ) can be split into two parts:

Ewρ(ξ
i,λ1

t ) ≤
κN−1∑
n=0

∑
x∈Dn(xi)

wρ(x)P (x ∈ ξi,λ1

t ) +

∞∑
n=κN

∑
x∈Dn(xi)

wρ(x)P (x ∈ ξi,λ1

t ) (6.2)

To obtain an upper bound on the second term in (6.2), we count the weight of the whole
block Sxκ if some vertex in this block is infected at time t. Hence

∞∑
n=κN

∑
x∈Dn(xi)

wρ(x)P (x ∈ ξi,λ1

t ) ≤
∑
n≥N

∑
x∈Bn(xi)

wρ(S
x
κ)P (Sxκ ∩ ξ

i,λ1

t 6= ∅) (6.3)

Set a0 = 1 and it is straightforward to compute

wρ(S
x
κ) =

κ−1∑
m=0

ρ`(x)+m · m∏
j=0

aj

 ≤ γρ`(x)(κ−1∑
m=0

ρm

)
≤ γ

1− ρ
· ρ`(x). (6.4)

Let Γxi,x denote the path on Tκ from xi to x. If Γxi,x ∩ Sxκ 6= {x}, then the first vertex in
Sxκ that will be reached by the infection is not x. In this case, let x∗ ∈ Γxi,x denote the
vertex that satisfies |x− x∗| = κ. That is, the infection starting at xi would spread to Sxκ
through vertex x∗ ∈ Sxκ . Then we know

P (Sxκ ∩ ξ
i,λ1

t 6= ∅) ≤

{
P (x ∈ ξi,λ1

t for some t) if Γxi,x ∩ Sxκ = {x},
P (x∗ ∈ ξi,λ1

t for some t) otherwise.

Therefore, for x ∈ Bin,

P (Sxκ ∩ ξ
i,λ1

t 6= ∅) ≤ β(λ1)|xi−x|−1 = β(λ1)n−1. (6.5)
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Putting (6.4) and (6.5) together we have

(6.3) ≤
∑
n≥N

∑
x∈Bn(xi)

γ

1− ρ
· ρ`(x)β(λ1)n−1. (6.6)

Define αn(ρ) =
∑
x∈Bn(xi) ρ

`(x). As a simple corollary of Lemma 4.26 we have α0(ρ) = 1

and
αn(ρ) = ρ−nκ[(n+ 1)− (n− 1)ρ2κ] when γρ2κ = 1. (6.7)

It follows from (6.7) and β(λ1) ≤ 1/γ (see Lemma 6.2) that we can choose N sufficiently
large so that

∑
n≥N

∑
x∈Bn(xi)

γ

1− ρ
· ρ`(x)β(λ1)n−1 ≤ γ

β(λ1)(1− ρ)

∑
n≥N

γ−n/2(n+ 1)

 ≤ ε/2. (6.8)

Notice that this choice of N is independent of the type of vertex that is initially infected
as well as the time t. When N is fixed, since at λ1 the contact process dies out

lim
t→∞

κN−1∑
n=0

∑
x∈Din

wρ(x)P (x ∈ ξi,λ1

t ) = 0

for any i ∈ {0, 1, . . . , κ− 1}. That is, there exists Mi > 0 so that when t ≥Mi,

κN−1∑
n=0

∑
x∈Din

wρ(x)P (x ∈ ξi,λ1

t ) ≤ ε/2. (6.9)

Taking t0 = max{M0,M1, . . . ,Mκ−1} and adding up (6.8) and (6.9) proves the desired
result.

Proof of Theorem 1.7. Given ε < 1/4, by Lemma 6.3 we can choose t0 so that

max
i∈{0,1,...,κ−1}

Eλwρ(ξ
i,λ1

t0 ) ≤ ε.

Since maxi∈{0,1,...,κ−1}Eλwρ(ξ
i,λ
t0 ) is a continuous function with respect to λ, there exists

λ > λ1 so that
max

i∈{0,1,...,κ−1}
Eλwρ(ξ

i,λ
t0 ) < 2ε ≡ δ.

Without loss of generality we consider the contact process ξ0,λt that starts with a type 0
vertex infected. Let Ft be the σ-algebra generated by ξ0,λt up to time t. We can show that

E[wρ(ξ
0,λ
(n+1)t0

)|Fnt0 ] ≤
∑

x∈ξ0,λnt0

ρ`(x)E
∑
y∈ξx,λt0

ρ`(y)−`(x)

≤

 ∑
x∈ξ0,λnt0

ρ`(x)

 · max
i∈{0,1,...,κ−1}

Ewρ(ξ
i,λ
t0 ) ≤ δ · wρ(ξ0,λnt0).

It follows that

Mn :=
wρ(ξ

0,λ
nt0)

δn

is a non-negative supermartingale, which converges almost surely as n goes to infinity.
Since δ = 2ε < 1/2,

wρ(ξ
0,λ
nt0)→ 0 as n→∞.

Intuitively this implies that the process ξ0,λt (where λ > λ1) does not survive strongly.
See Proposition 1.0 in [12] for a complete argument. Therefore λ1 < λ ≤ λ2.
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6.3 Weak survival at λ2

In this section we complete the proof of Theorem 1.6 by showing the contact process
on Tκ does not survive strongly at λ2. Since λ1(Tκ) < λ2(Tκ) we know the process
survives weakly at λ2. The proof on periodic trees is very much similar to that of Galton-
Watson trees. In this case, the estimations are simpler due to the more regular structure
that comes from periodicity.

Without loss of generality, a vertex with offspring number a1 is chosen to be the root
o. Let ξ̄t denote the contact process restricted to the subtree S(o) starting with the root
o infected.

Proof of Theorem 1.6 (ii). Our goal is to show that ρ ≡ P (o ∈ ξ̄λt i.o.) > 0 implies λ > λ2.
Suppose when the infection rate is λ we have ρ > 0. First observe that

ρ = P (o ∈ ξ̄λt for a sequence of times t ↑ ∞) ≤ u(n)

for all n and λ > 0. (The reader is referred to Theorem 4.65 in [9] for more details.)
Hence β(λ) = limn→∞ u(n)1/n ≥ limn→∞ ρ1/n = 1. Lemma 6.1 then implies that for any
δ > 0 there exists n0 and t0 so that

P (en0κ ∈ ξ̄λt0) ≥ (1− δ)n0 .

As P (en0κ ∈ ξ̄λt0) is continuous with respect to λ, there exists ε > 0 so that

P (en0κ ∈ ξ̄λ−εt0 ) ≥ (1− 2δ)n0 .

Now we will estimate the size of the infection by comparing with a branching process.
Define Ln = {x ∈ S(o) : |x− o| = nκ}. Let B0 = {o} and B1 = {x ∈ ξ̄λ−εt0 : x ∈ Ln0}. Then
E|B1| ≥ (γ(1− 2δ))n0 > 1 when we choose δ to be sufficiently small. Specifically we will
choose δ so that γ(1− 2δ)2 > 1 for reasons that will become clear later.

At time t0, at each x ∈ B1 we can start an independent contact process restricted to
S(x) and run it for time t0. Continuing this construction gives a supercritical branching
process |Bm| with mean E|B1|. It is clear from the construction that Bm ⊂ ξ̄λ−εmt0 ∩ Lmn0

.
Since |Bm| is a supercritical branching process,

lim
m→∞

|Bm|
(E|B1|)m

exists almost surely and is not trivially zero. Therefore, there exists a ε > 0 such that

P (|Bm| ≥ ε(E|B1|)m) ≥ ε (6.10)

for all sufficiently large m. For reasons that will become clear later we choose m0

sufficiently large so that

P (|ξ̄λ−εm0t0 ∩ Lm0n0 | ≥ ε(γ(1− 2δ))m0n0) ≥ P (|Bm0 | ≥ ε(γ(1− 2δ))m0n0) ≥ ε

and
ε2((1− 2δ)2γ)m0n0 > 1.

Let ri = P (o ∈ ξ̄λ−ε2im0t0
) and M ≡ ε(γ(1− 2δ))m0 . We can obtain the following recursive

relation:

ri+1 ≥ P (Binomial(|ξ̄λ−εm0t0 ∩ Lm0n0
|, ri) ≥ 1)P (em0n0κ ∈ ξ̄λ−εm0t0)

≥ P (|ξ̄λ−εm0t0 ∩ Lm0n0 | ≥M)(1− (1− ri)M )P (en0κ ∈ ξ̄λ−εt0 )m0 (6.11)

≥ ε(1− 2δ)m0n0(1− (1− ri)M ). (6.12)
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Setting f(r) = ε(1− 2δ)m0n0(1− (1− r)M ). By our choices of δ and m0,

f ′(0) = ε2((1− 2δ)2γ)m0n0 > 1.

Following the same argument as in the proof of Theorem 1.5 we can show there exists
r∗ > 0 such that ri ≥ r∗ for all i ≥ 0. That is, ξ̄λ−εt survives strongly, which implies
λ > λ− ε ≥ λ2.
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