
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 25 (2020), article no. 80, 1–21.
ISSN: 1083-6489 https://doi.org/10.1214/20-EJP480

The contact process with dynamic edges on Z
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Abstract

We study the contact process running in the one-dimensional lattice undergoing
dynamical percolation, where edges open at rate vp and close at rate v(1− p). Our
goal is to explore how the speed of the environment, v, affects the behavior of the
process. Among our main results we find that: 1. For small enough v the process dies
out, while for large v the process behaves like a contact process on Z with rate λp,
where λ is the birth rate of each particle, so in particular it survives if λ is large. 2.
For fixed v and small enough p the network becomes immune, in the sense that the
process dies out for any infection rate λ, while if p is sufficiently close to 1 then for
all v > 0 survival is possible for large enough λ. 3. Even though the first two points
suggest that larger values of v favor survival, this is not necessarily the case for small
v: when the number of initially infected sites is large enough, the infection survives for
a larger expected time in a static environment than in the case of v positive but small.
Some of these results hold also in the setting of general (infinite) vertex-transitive
regular graphs.
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1 Introduction

Since it was first introduced by Harris in [12] more than forty years ago, the contact
process has turned into one of the most widely used models for population growth. While
most of the early work was done for the process on the Euclidean lattice, much of the
interest in more recent years has focused on studying the contact process running on
random graphs, in an attempt to understand procceses of this type in settings which
capture in a better way the main features of real-world networks, whether technological,
social, economic or biological in nature; this has lead to tremendous progress in our
understanding of both the contact process and some random graph models (see [6, 16, 5]
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The contact process with dynamic edges on Z

to name a few). However, for the most part this work has taken place in the context of
static random networks; real-world networks, on the other hand, tend to be dynamic
in nature, a characteristic that might have a large impact in the qualitative behavior
of the process. In the mathematical literature, this impact has received relatively little
attention (see [3, 4, 18], and more recently [14, 13], for some contributions in this
direction).

The goal of this work is to study the contact process running on a very simple
dynamic environment which captures one of the most important features of dynamical
networks: the continuous merging and division of connected components. This feature
has been studied for related processes such as the SIR disease model or the PUSH-PULL
rumor spreading protocol in some recent works (see [15, 2, 7, 10]). However, in all
of those cases the choice of dynamics for the network tends to reduce the number
of connections in the underlying graphs, and thus it works against the growth of the
process. Our interest in this paper, in contrast, is to understand the effect that the
introduction of dynamics has on the process independently of changes in the topology of
the network. To this end we study the contact process on networks undergoing a simple
stationary dynamics for the environment in which its edges alternate between available
and unavailable independently from each other at some given speed v, and focus on this
parameter as a measure of the rate of change. Since this speed increases both the rate
of connection and of disconnection, it is not clear a priori whether this hurts or helps the
spread of the infection. We will show that, as opposed to what was observed in [13], in
broad terms making the speed of the environment large turns out to favor survival.

We turn now to the definition of the model and our main results. We will present our
results in the simplest case when the base graph is the one-dimensional lattice, as a toy
model where we are able to distinguish clearly between the different behaviors that the
system presents for v small and v large. However, with a bit of work most of our proofs
(the main exception being Theorem 2.4, concerning small v) are valid in the setting of
general vertex-transitive regular graphs. We discuss briefly this extension in Section 2.3,
and then present the corresponding proofs in Section 3 in this more general setting.

2 Setting and results

2.1 The CPDE on Z

Consider the one-dimensional lattice (Z, E) with E the set of edges of the form {x, x+

1}. The Contact Process with Dynamic Edges {(ηt, ζt)}t≥0 (from now on abbreviated
CPDE) on Z is an interacting particle system made out of two processes, an environment
ζt : E → {0, 1} and an infection process ηt : Z→ {0, 1}, whose transition rates we define
locally as follows: for some fixed v > 0 and p ∈ (0, 1) the environment evolves at any
given e ∈ E according to

0 −→ 1 at rate vp

1 −→ 0 at rate v(1− p),

while for some fixed λ > 0, the infection evolves at any given x ∈ Z according to

0 −→ 1 with rate λnt,x

1 −→ 0 with rate 1,

where nt,x = ηt(x− 1)ζt({x, x− 1}) + ηt(x+ 1)ζt({x, x+ 1}). We interpret ζt(e) = 1 as the
edge e being available at time t, so that nt,x is the number of nearest neighbors of x that
are infected and connected to x at that given moment. It can be checked that the rates
above uniquely define the CPDE as a càdlàg Feller process in {0, 1}Z∪E , whose law we
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denote by P (or Pλ,v,p when we need to emphasize the dependence on the parameters).
Even further, this process is monotone with respect to its initial condition, meaning that
for any a ∈ {0, 1}Z and b ∈ {0, 1}E , the function P(ηt ≥ a, ζt ≥ b |η0, ζ0) is increasing on η0

and ζ0 (where we use the usual partial pointwise order between {0, 1}-valued functions).
The proof of these facts is standard (see [17]).

The CPDE can be alternatively constructed by first sampling ζ and then running ηt
on the time-inhomogeneous graph defined by the environment (the so-called quenched
process). The environment process evolves as dynamical percolation on (Z, E) (as intro-
duced in [11]); in our parametrization we introduce the parameter v, the environment
speed (i.e. the rate at which every edge updates its state), whose role in the behavior of
the process we are interested in understanding. This process is stationary with respect
to the product Bernoulli measure {0, 1}E with density p, and in what follows we will
assume (unless otherwise stated) that ζ0 is chosen at random using this distribution.
This assumption allows us to identify p as the density of available edges at any given time
and, moreover, it allows us to attribute any effect of the evolution of the environment
on the quenched process to its dynamics (and in particular its speed) rather than to
changes in the properties of the network.

From the form of the transition rates, for any fixed realization ζ of the environment
the quenched infection process is a version of the contact process running on the
evolving graph defined by ζ. It follows, in particular, that the survival probability
Pλ,v,p(ηt 6= 0 ∀t > 0 | ζ) is increasing in λ. Averaging with respect to ζ we deduce that
the annealed survival probability Pλ,v,p(ηt 6= 0 ∀t > 0) satisfies the same property, so it
makes sense to define a critical parameter λ0(v, p) for survival of the CPDE:

λ0(v, p) = inf
{
λ > 0, Pλ,v,p

(
ηt 6= 0 ∀t > 0

)
> 0
}
,

where we choose η0 = 1{0} as the initial condition for the infection process (it can be
checked using standard arguments that λ0(v, p) is the same for any initial condition
which contains a positive but finite number of infected sites).

2.2 Main results

Our main goal in this paper is to give a (partial) description of the qualitative
behaviour of λ0 as a function of v and p. An obvious first property is that λ0(p, v) is
decreasing in p, since a higher density of open edges makes it easier for the infection to
survive (this can be proved using a standard coupling argument). The dependence of λ0

on v, on the other hand, is much subtler: increasing v implies both opening and closing
edges at a quicker pace, and it is not at all clear which of the two effects has a stronger
impact on λ0 (see also Remark 2.5). But the following weaker version of monotonicity
holds:

Proposition 2.1. The function 1
vλ0(v, p) is non-increasing in v for every value of p.

The following result provides some loose bounds on λ0(v, p), in terms of the critical
parameter λ̄ := λ0(0, 1) of the standard contact process on Z, which will be useful later
on:

Proposition 2.2. For each v, λ ≥ 0 and p ∈ [0, 1], the infection process in the CPDE is
stochastically dominated from above by a contact process on Z with infection rate λ, and
from below by a contact process on Z with infection rate β(λ, v, p), where

β(λ, v, p) = 1
2

(
λ+ v −

√
(v + λ)2 − 4λvp

)
.

As a consequence,

λ̄ ≤ λ0(v, p) ≤ λ̂(v, p)
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where λ̄ is the critical parameter of the contact process on Z and

λ̂(v, p) = λ̄

(
v − λ̄
vp− λ̄

)
if vp > λ̄, λ̂(v, p) =∞ otherwise.

The proof of the domination from below by a contact process with infection rate
β(λ, v, p) is based on a result of Broman [3], while the formula for λ̂ comes simply from
solving λ̄ ≤ β(λ, v, p) for λ. The expression for λ̂ may seem opaque at first sight, but
notice that

lim sup
v→∞

λ0(v, p) ≤ lim
v→∞

λ̂(v, p) = λ̄/p, (2.1)

which means that for any λ > λ̄/p the infection process survives if v is large enough.
This proves the easier half of the first of our main theorems about λ0(v, p):

Theorem 2.3. For any p ∈ (0, 1], limv→∞ λ0(v, p) = λ̄/p.

The idea is that if v is large, the states of an edge at different times are almost
independent, so we can approximate η by a contact process with intensity λ where each
infection event is kept (independently) with probability p and dismissed otherwise, which
is simply a contact process on Z with intensity λp, and hence we must have λ0(v, p)p ≈ λ̄.

Theorem 2.3 together with (2.1) show that the upper bound λ0 ≤ λ̂ becomes sharp as
v gets large, but in general we expect λ0 to be smaller than λ̂. In particular, if we take
any fixed v ≤ λ̄ then λ̂(v, p) =∞ for all p, but if p ∼ 1 then the infection hardly ever sees
any closed edges, so we actually expect λ0 ∼ λ̄.

On the other hand, our choice of λ̂ recovers again the correct behavior of λ0 for
v ∼ 0. In this scenario the CPDE will be close to a contact process running on a static
percolation cluster of Z with parameter p, and in such a graph the infection is necessarily
trapped inside finite components where it eventually dies out, and hence we expect
λ0 −→∞ as v → 0. This is the first part of our next result:

Theorem 2.4.

(a) For all p ∈ [0, 1) we have limv→0 λ0(v, p) =∞. In other words, for all λ > 0 and all
p ∈ [0, 1) we can take v small enough so that the infection process in the CPDE dies
out.

(b) Furthermore, for p fixed and v small enough there are constants β0, β1 > 0 (which
may depend on p, λ and v) such that for any initial condition η0, we have

E(τext | η0) ≤ β0 log(|η0|) + β1

where |η0| stands for the number of initially infected sites and τext is the extinction
time of the CPDE (i.e. τext = inf

{
t ≥ 0: ηt = ∅

}
).

Remark 2.5. It is reasonable to guess that λ0(v, p) should be monotone in v: in fact, if
one thinks of the dynamics of the CPDE as having each infected site send an infection at
rate λ to a randomly chosen neighbor and then discarding those infections going through
unavailable edges or landing on already infected sites, then when v is small the network
does not change much, so many attempted infections are wasted, while larger values of
v make it easier for infected sites to reach previously unreachable healthy sites. Our
previous results together with Theorem 2.4(a) (as well as some of the results following
below) are, at least, consistent with this view.

However, Theorem 2.4(b) shows that the behavior of the CPDE is necessarily subtler
than what this guess would suggest, at least for small v. Indeed, for any λ > λ̄ it is known
that the standard contact process running on {1, . . . , N} (starting with a single infected
site) has expected extinction time bounded from below by c0ec1N , where c0, c1 > 0 are
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independent of N . On the other hand, for the CPDE starting at any η0 with |η0| large
enough it is easy to show that, with a very large probability, at least one of the initially
infected sites is contained on a connected interval of length c2 ln(|η0|), where c2 > 0

depends on p. It follows that in the static case we have

Eλ,0,p(τext | η0) ≥ c0|η0|c1c2 ,

while for v > 0 as in the theorem we have Eλ,v,p(τext | η0) ≤ β0 log(|η0|) + β1 so, for large
initial conditions, the infection running on a static environment is more resilient than
the same infection running on a slightly dynamical one.

A natural question raised by Theorem 2.4 is whether there are (small, but positive)
values of v and/or p such that λ0(v, p) =∞, which means that infections always die out,
regardless of their infection rates. We will say in such a case that the network is immune,
and we define the immunity region I accordingly as

I =
{

(v, p) ∈ (0,∞)× (0, 1), λ0(v, p) =∞
}
.

Note that all finite static graphs are immune while all infinite connected static graphs
are not, so the existence of a non-trivial immunity region would show that, in a sense, our
dynamic random graph {(Z, Et)}t≥0 lies halfway between the two cases (all connected
clusters are finite at any given time, but for any two sites x and y and any given t > 0

there is a.s. some path connecting (x, t) and (y, s) for s > t sufficiently large). Our next
result shows that if instead of taking v small as in Theorem 2.4 we take p close to zero,
then we do have immunity, and in this scenario the expected extinction time also grows
at most logarithmically with the initial condition:

Theorem 2.6.

(a) For all v > 0 there is a p0(v) ∈ (0, 1) such that λ0(v, p) = ∞ for all p < p0(v). In
other words, there is a curve v ∈ (0,∞) 7−→ p0(v) ∈ (0, 1) such that {(v, p) : 0 < p <

p0(v)} ⊆ I.

(b) Furthermore, for v fixed and any p < p0(v) there are constants β0, β1 > 0 (which
may depend on p and v, but not on λ) such that for any initial condition η0, we have

E(τext | η0) ≤ β0 log(|η0|) + β1

where |η0| and τext are as in Theorem 2.4.

Note that we are saying that, no matter how large we take v, a small enough density
p of open edges yields immunity. This may seem to be slightly counterintuitive, and in
particular it seems to contradict our intuition for the case v � 1, where we argued that
λ0 ∼ λ̄

p . Notice, however, that in that argument we took p fixed and v → ∞ instead of
v fixed and p↘ 0 (see Figure 1). In the opposite direction, since small values of v can
be seen as hurting the infection (Theorem 2.4(a)), it is natural to ask whether for any p
one can find a small enough v which guarantees immunity. The next theorem provides a
(partial) negative answer to this question:

Theorem 2.7. There exists 0 < p1 < 1 such that for all p ∈ (p1, 1), λ0(v, p) < ∞ for all
v > 0.

From Proposition 2.1 we know that λ0(v, p) =∞ implies λ0(v′, p′) =∞ for all v′ ≤ v
and p′ ≤ p. As a consequence of this and Theorems 2.6 and 2.7, we obtain the following:

Corollary 2.8. There exists p1 ∈ (0, 1) such that for every p > p1, λ0(v, p) < ∞ for all
v > 0, while for every p < p1, there is a v > 0 with λ0(v, p) =∞.
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In words, there exists a threshold parameter p1 (note p1 = limv→0 p0(v) with p0(v) as
in Theorem 2.6) which separates the scenario where there is immunity for small v, and
the one where immunity cannot occur in the network. From these considerations, one
expects the upper boundary of I to be the graph of a decreasing function, see Figure 1.

p

0 v

1
p1

I

Figure 1: Expected shape of I.

2.3 Extensions to vertex-transitive regular graphs

Let (G,E) be any infinite vertex-transitive graph with (finite) constant degree. The
CPDE can be defined on G exactly as in Section 2.1, and the definition of λ0(v, p) is the
same in this case. As we mentioned at the end of the introduction, most of our results
are valid in this more general case. We state this as follows:

Theorem 2.9. All of the results of Section 2.2 except for Theorem 2.4 are valid for the
CPDE running on G (after replacing the parameter λ̄ by the critical value λ̄G of the static
contact process running on G).

We will prove the results mentioned in this theorem in Section 3 in the more general
setting of vertex-transitive regular graphs. The only exception is Theorem 2.7 which we
will only prove on Z, since it is enough to do so because any infinite vertex-transitive
graph G contains a copy of Z.

Our proof of Theorem 2.4, on the other hand, uses one-dimensional methods, so it
cannot be extended directly to general G. We believe, although we have not pursued this
any further, that a version of (a) in that result should hold in the general setting; more
precisely, one expects that as v → 0 the critical parameter λ0(v, p) should converge to
the critical λ for the (static) contact process running on an edge percolation cluster on
G with parameter p (note that the critical p for edge percolation on Z is pc = 1, so this is
consistent with Theorem 2.4(a)).

3 Proofs

3.1 Graphical representation

In this section, we provide an equivalent description of our model by a convenient
graphical representation with the help of the following independent Poisson point
processes on (0,∞):

• {Oe}e∈E and {Ce}e∈E , with intensities vp and v(1−p) respectively. These represent
the opening and closing events of the edge e. We also consider Ue = Oe ∪ Ce, the
updating events of e.

• {Ie}e∈E , with intensity λ. These represent potential infection events along the
edge e.

• {Rx}x∈Z, with intensity 1. These represent recovery events.

We construct the environment process ζt by choosing ζ0 according to a Bernoulli product
measure π with parameter p, and then setting ζt(e) = 1 if and only if the last updating
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event in Ue ∩ [0, t] was in Oe (or if ζ0(e) = 1 in case the intersection is empty). The
infection process ηt is then constructed in the usual manner (see [17, Sec. 3.6]), using
the recovery events Rx and the valid infection events Īe = {t ∈ Ie, ζt(e) = 1} as follows:
consider the graphical space Z×R+ ⊆ R×R+, with the addition of horizontal segments
of the form [x, x+ 1]× {t} with t ∈ Ī{x,x+1}. By assigning a ∗ symbol at each point (x, t)

with x ∈ Z and t ∈ Rx, we say that a continuous path P in this space is valid if it does
not contain ∗ symbols and if the second component is non-decreasing. We define ηt as
the set of all z ∈ Z such that there is a valid path P from initially infected sites to (z, t).

This construction will be used persistently throughout the paper, providing simple
and intuitive couplings between the CPDE and other processes which are easier to
analyze.

3.2 Proof of Proposition 2.1

Suppose that the infection process survives with positive probability for given λ, v, p
and take any v′ > v; rescaling time by a factor of v/v′ gives a process constructed in
the same way as the CPDE but where the Poisson point processes Ie, Oe, Ce and Rx
have intensities v′

v λ, v
′(1− p), v′p and v′/v respectively. Since v′/v > 1, we can couple

Rx with a Poisson point process R̄x with intensity rate 1 in such a way that R̄x ⊆ Rx;
the process constructed with R̄x instead of Rx is a CPDE with parameters v′

v λ, v
′ and

p. From the coupling it is obvious that survival is easier when replacing Rx by R̄x, so
λ0(v′, p) ≤ v′

v λ, and since this inequality holds for all λ > λ0(v, p) it holds for λ0(v, p) as
well, giving the result.

3.3 Proof of Proposition 2.2

The lower bound for λ0(v, p) comes simply from comparing with λ0(v, 1), or in other
words with a contact process constructed directly using {Ie}e∈E and {Rx}e∈E respec-
tively as the infection and recovery events. For the contact process dominating the
CPDE from below, which yields the upper bound, fix any e ∈ E and use the events
{Oe}e∈E , {Ce}e∈E , and {Ie}e∈E in the graphical representation to construct a process
{(ζt(e), Nt(e))}t≥0 where ζt(e) is the environment defined above and Nt(e) = |Īe ∩ [0, t]|
is the number of valid infections occuring at e up to time t. It can be easily checked that
this process is Markov and its transition rates are of the form

(0, k) −→ (1, k) at rate vp,

(1, k) −→ (0, k) at rate v(1− p),
(0, k) −→ (0, k + 1) at rate 0,

(1, k) −→ (1, k + 1) at rate λ.

From [3, Thm. 1.4], (ζt(e), Nt(e)) can be coupled with a Poisson process Pt(e) with
intensity β(λ, v, p), in such a way that every jump of Pt(e) coincides with a jump of Nt(e).
It follows that Pt(e) defines a Poisson process Pe ⊆ Īe and from the independence of
the processes across edges, the family {Pe}e∈E is independent. The result follows from
constructing a contact process with the Pe marking infection events and the Rx marking
recoveries.

Remark 3.1. A similar argument appears in the proof of Theorem 1(c) of the published
version of [18], but unfortunately that proof is flawed, and in fact the argument cannot
be applied in the setting of that paper (see the updated arXiv version cited in [18]).
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3.4 Proof of Theorem 2.3

Fix p ∈ (0, 1]. From Proposition 2.2 we already deduced that if λ > λ̄/p, then for
any v sufficiently large the process survives, so to prove Theorem 2.3 we need only to
show that if λ < λ̄/p, then for v large enough the CPDE dies out. The key idea of the
proof is that if we fix an edge e ∈ E and call t1, t2, . . . the elements of Ie in increasing
order, then if v is large most intervals (ti, ti+1) will contain an updating event s ∈ Ue,
and, conditional on that, the infection ti+1 is valid with probability p independently of
all previous infection events (and from the ones taking place at different edges). At a
heuristic level, this means that we can treat ηt as the usual contact process on G with
rate λp < λ̄G, which is subcritical.

In order to turn this heuristic into an actual proof we need to control the infection
events that do not satisfy the property stated above and show that these cannot account
for survival of ηt. We keep track of these infections with the aid of a sequence of
processes (Ft(e))e∈E defined as follows:

Definition 3.2. For each e ∈ E define a càdlàg process Ft(e) with values in {0, 1} which
starts with F0(e) = 0 and jumps at times t ∈ Ie ∪ Ue with

Ft(e) =

{
0 if t ∈ Ie,
1 if t ∈ Ue.

We say that at time t > 0 the edge e is fresh if Ft−(e) = 1.

In other words, Ft serves as an indicator function of the set of edges whose latest
event in [0, t) is an update. In order to control the infections taking place at unre-
freshed edges we will actually work with a “worst-case scenario” process ηw in which all
infections taking place at unrefreshed edges are treated as valid.

Definition 3.3. We say that an infection event t ∈ Ie is weakly valid if either Ft−(e) = 0

or Ft−(e) = 1 and t ∈ Īe. Weakly valid paths are defined analogously to valid paths in
Section 3.1, but instead of using only valid infections for the paths to move horizontally,
we use weakly valid ones. The process (ηw

t )t≥0 is defined analogously to the CPDE
starting with an initially infected site at {0}, where ηw

t (x) = 1 if and only if there is a
weakly valid path from (0, 0) to (x, t).

Any valid infection is also weakly valid, so ηt ≤ ηw
t , and hence in order to show that ηt

dies out it suffices to show that ηw
t does. We will do this by studying a third process ηp

which we define using an extension of the graphical construction, and which evolves as
the desired contact process with rate λp:

Definition 3.4. Consider an enlarged version of the graphical construction in which
we split each Ie into two independent Poisson processes, IeA and IeR with rates λp and
λ(1 − p) respectively. We say that an infection event t ∈ Ie is p-weakly valid if either
Ft−(e) = 1 and t ∈ Īe, or if Ft−(e) = 0 and t ∈ IeA. In words, an infection taking place
at a fresh edge is p-weakly valid if valid, and at an unrefreshed edge we flip a coin to
decide. p-weakly valid paths are defined analogously to weakly valid paths, and with
them we construct a process (ηpt )t≥0 analogously to ηw, starting with an initially infected
site at {0}.

It follows from its definition that any infection event is p-weakly valid with probability
p independently of all previous infections so that, as desired, ηp evolves as the (usual)
contact process with rate λp. On the other hand, notice that every p-weakly valid
infection is also weakly valid, so the processes above satisfy ηpt ≤ ηw

t for each t ≥ 0;
in fact, the two processes essentially drift apart only at times τ1, τ2, . . . at which ηw

propagates to healthy sites but ηp does not. We formally introduce said times as follows:
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Definition 3.5. Take τ0 = 0 and for each k ≥ 1 define

τk = inf{t > τk−1, ∃e = {x, y} ∈ E, ηpt (x) = 0, ηpt (y) = 1 with Ft−(e) = 0 and t ∈ IeR}.

We use the notation xk to denote the vertex in e at time τk for which ηpτk(x) = 0. We also
use the notation Np to refer to the largest k ∈ N ∪ {∞} such that τk <∞.

Observe that any τk is associated to an infection taking place at an unrefreshed
edge, so as v → ∞ we expect to have Np = 0, which at a heuristic level would give
ηw ≈ ηp. This in turn allows us to control ηw, since we already know that ηp behaves as a
subcritical contact process from our choice of λ. The next lemma, which formally states
our claims about Np and ηp, will be key in the proof of the theorem:

Lemma 3.6. Fix λ < λ̄/p. For any ζ0 ∈ {0, 1}E we have

Pζ0(ηpt 6= ∅ ∀t > 0) = 0,

where Pζ0 stands for the law of the process with initial environment configuration ζ0.
Furthermore,

lim
v→∞

sup
ζ0

Eζ0(Np) = 0,

where the supremum is taken over all initial configurations ζ0 ∈ {0, 1}E .

Using this final ingredient, whose proof we defer to the end of the section, we are
now able to prove Theorem 2.3. We will actually show something a little bit stronger,
namely that for every initial condition ζ0 we have that ηw dies out, i.e. that

Pζ0
(
∀t ≥ 0, ηw

t 6= ∅
)

= 0. (3.1)

Define the event
A = {∃t0 ≥ 0, ηpt = ∅ ∀ t ≥ t0},

which by Lemma 3.6 occurs with probability 1; in particular, the left hand side of (3.1)
equals Pζ0

(
{(0, 0)

w−→∞} ∩A
)
, where for y ∈ Z and t ≥ 0 the event (y, t)

w−→∞ stands for
the existence of a weakly valid path P starting at (y, t) which is unbounded in its time
component. Take a realization of the extended graphical construction and suppose P is
such a path (so that (0, 0)

w−→∞). Then, on A, P must traverse a weakly valid infection
event ({x, y}, t) which is not p-weakly valid, and such that ηpt (x) = 0 and ηpt (y) = 1 (since,
otherwise, P would also count as a weakly valid path). Hence the left hand side of (3.1)
is equal to

Pζ0
(
{∃k ∈ N, τk <∞ and (xk, τk)

w−→∞} ∩A
)
≤
∞∑
k=1

Pζ0
(
τk <∞ and (xk, τk)

w−→∞
)
.

The τk are stopping times so by the strong Markov property we get

Pζ0
(
τk <∞ and (xk, τk)

w−→∞
)

= Eζ0
(
1{τk<∞}P

(
(xk, 0)

w−→∞| ζτk , Fτk
))
.

But ηw is decreasing with respect to F0, so by taking F0 ≡ 0 and then taking the
supremum with respect to ζ0, we can use the translation invariance (in law) of ηw to
deduce

Pζ0
(
τk <∞ and (xk, τk)

w−→∞
)
≤ Pζ0

(
τk <∞) sup

ζ′0

Pζ′0

(
(0, 0)

w−→∞
)

= Pζ0(τk <∞) sup
ζ′0

Pζ′0

(
ηw
t 6= ∅, ∀t ≥ 0

)
.
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Now, τk <∞ if and only if Np ≥ k, so from the above arguments we get

Pζ0
(
ηw
t 6= ∅, ∀t ≥ 0

)
≤
∞∑
k=1

Pζ0(Np ≥ k) sup
ζ′0

Pζ′0

(
ηw
t 6= ∅, ∀t ≥ 0

)
= Eζ0(Np) sup

ζ′0

Pζ′0

(
ηw
t 6= ∅, ∀t ≥ 0

)
,

and taking the supremum over ζ0 we conclude that

sup
ζ0

Pζ0(ηw
t 6= ∅, ∀t ≥ 0) ≤ sup

ζ0

Eζ0(Np) sup
ζ′0

Pζ′0 (ηw
t 6= ∅, ∀t ≥ 0) .

But from Lemma 3.6 we know that if v is large then supζ0 Eζ0(Np) < 1, so the last
inequality gives supζ0 Pζ0(ηw

t 6= ∅, ∀t ≥ 0) = 0, proving the theorem.

Proof of Lemma 3.6. Observe that if the initial configuration for the environment were
to be chosen at random, then from a previous discussion the law of ηp would be that
of a contact process with rate λp and hence it would die out. However, since we start
with a fixed, given ζ0 and F0 ≡ 0, the first infection event at every edge could have a
higher chance to be a p-weakly valid one, which means that in ηp the time until the first
infection event in each edge has a different distribution; our goal then is to show that
this feature cannot account for survival. To this end fix any v > 1 and choose ε > 0 small
so that λ(p+ ε) < λ̄ (recall we are assuming λp < λ̄). Next, take s = log( 1−p

ε ) (which is
of course positive if ε < 1− p) and finally fix any initial condition F0 and ζ0. To show that
ηp dies out we bound it from above by a process η̄p defined as follows:

• From times 0 to s, η̄p evolves as a SI process with rate λ, i.e. without recoveries
and behaving as if all edges are open, starting with only one infected site at 0.
During this time interval the process is constructed using only I.

• From time s onwards, η̄p is constructed in the same way as ηp.

Observe that |η̄ps | has finite expectation (since G has bounded degree) and it is indepen-
dent of ζ. Also, for any s′ ≥ s the law of ζs′ is a product measure with

P(ζs′(e) = 1) = ζ0(e) exp(−vs′) + p(1− exp(−vs′)) ≤ p+ ε,

from our choice of s and our assumption v > 1. Now, it follows that each infection event
after time s has probability at most p+ ε of being a p-weakly valid one, independently of
all other infection events, so that (η̄ps+t)t≥0 is bounded from above by a contact process
running on G with rate λ(p+ ε) and with initial condition η̄ps . Since G is vertex-transitive
it follows from Theorem 1.2. in [1] that for any subcritical contact process At we have∫ ∞

0

E
(
|At|

∣∣A0 = {0}
)
dt < ∞,

so from a union bound, translation invariance and the independence between η̄ps and ζ,
we conclude similarly that∫ ∞

0

E
(
|η̄pt |
)
dt ≤ sE(|η̄ps |) + E

(∫ ∞
0

E
(
|η̄ps+t|

∣∣ η̄ps) dt)
≤ sE(|η̄ps |) + E

(∫ ∞
0

|η̄ps |E
(
|η̄ps+t|

∣∣ η̄ps = {0}
)
dt

)
= E(|η̄ps |)

(
s+

∫ ∞
0

E
(
|η̄ps+t|

∣∣ η̄ps = {0}
)
dt

)
< ∞,
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which in particular gives that ηp dies out almost surely.
We turn now to the second part of the lemma. We begin by noticing that the

expectation is maximized when ζ0 ≡ 1 so it is enough to prove the result under this initial
condition, which we now fix. Define an increasing sequence of events

An =
{
∀(x, t) /∈ B(0, n)× [0, n], ηpt (x) = 0

}
,

and then use the fact that ηp dies out almost surely for all initial configurations to write

E(Np) =

∞∑
n=1

E(Np1An\An−1
).

As before, observe that each τk corresponds to an infection event taking place at an
unrefreshed edge, and that, on the event An, ηpt (x) = 1 implies that (x, t) ∈ B(0, n) ×
[0, n] so that Np is bounded by the amount Mn of said infections taking place inside
B(0, n)× [0, n]. Thus

E(Np1An\An−1
) ≤ E(Mn).

We claim that each such term goes to zero as v →∞. Indeed, fix some n ∈ N and take
v > 16λ2n2. Next, divide Mn into Mn = ∪e∈E∩B(0,n)Mn,e, where each Mn,e corresponds
to the number of infections occuring at edge e at times when e was not fresh and
before time n. By translation invariance we obtain that all the Mn,e have the same
law, so E(Mn) ≤ |B(0, n)|E(Mn,e) for any fixed edge e. Call t0 = 0 and t1, t2, . . . the
elements of Ie. The variable Mn,e is equal to the cardinality of the set

{
k ∈ N, tk ≤

n ∧ Ue ∩ (tk−1, tk) = ∅
}

, so its expectation is equal to

∞∑
k=1

P
(
tk ≤ n ∧ Ue ∩ (tk−1, tk) = ∅

)
.

If k ≤
√
v we bound the above probability by P

(
Ue ∩ (tk−1, tk) = ∅

)
, which is the

probability that the next event in Ie ∪Ue following tk−1 belongs to Ie, and hence is equal
to λ/(v + λ). Otherwise, if k >

√
v we bound by P

(
tk ≤ n

)
, which by a large deviation

argument and our assumption on v, is less than (e/4)k. Using these bounds, we conclude
that, as desired,

E(Mn) ≤ |B(0, n)|
[
λ
√
v

λ+ v
+ 4

(e
4

)√v ]
−−−→
v→∞

0.

Since each E(Np1An\An−1
) converges to zero, in order to finish the proof it is enough (by

the Dominated Convergence Theorem) to show that these expectations can be bounded
by the terms of a convergent series. To achieve this we construct a random variable
N̄p, similar to Np, as follows: N̄p equals the cardinality of the set of all infection events
t ∈ R+ that are not p-weakly valid, and taking place at edges {x, y} ∈ E for which either
ηt(x) = 1 or ηt(y) = 1. We have Np ≤ N̄p almost surely, so

E(Np1An\An−1
) ≤ E(N̄p1An\An−1

)

for each n and hence all we need to show is that
∑
n∈NE(N̄p1An\An−1

) = E(N̄p) < ∞.
Observe that for each edge e ∈ E the first t ∈ Ie ∪ Ue is a p-weakly valid infection event
if and only if t ∈ Ie, while all subsequent times are p-weakly valid with probability p,
independently from one another. Hence the p-weakly and non p-weakly valid infections
can be seen as resulting from the following construction:

• For each e ∈ E consider an exponential time te with rate λ+ v, a Bernoulli random
variable ce with probability λ/(v + λ), and two Poisson point processes Iewv and Iewi

with rates λp and λ(1− p), respectively. All of these variables and processes are
independent from one another.
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• The p-weakly valid infections are the elements t ∈ Iewv with t > te; te itself is
p-weakly valid if ce = 1.

• The non p-weakly valid infections are the elements t ∈ Iewi with t > te.

With this alternative construction, it follows that ηp is constructed using the Rx, Iewv, te
and ce but not the Iewi. Fix a realization of the former processes giving a construction of
ηp and observe that

E(N̄p | ηp) ≤
∑
x∈G

∑
y∼x

E
(
|{t ∈ I{x,y}wi , ηt(x) = 1}|

∣∣ ηp) ≤ ∑
x∈G

∑
y∼x

λ(1− p)
∫ ∞

0

ηpt (x) dt

= λ(1− p) deg(G)

∫ ∞
0

|ηpt | dt,

where in the second inequality we used that the Iewi are Poisson processes, so that each

variable |{t ∈ I{x,y}wi , ηt(x) = 1}| is Poisson with mean λ(1 − p)
∫∞

0
ηpt (x) dt. We deduce

that E(N̄p) ≤ λ(1− p) deg(G)
∫∞

0
E(|ηpt |) dt, which is finite from our previous analysis on

η̄p.

3.5 Proof of Theorem 2.4

In this part we work on Z. In this case, and as we mentioned above, our evolving
networks can be thought of as lying halfway between a finite and an infinite graph: even
though at all times Z is partitioned into finite components, every two sites are eventually
connected by space-time paths. The proof of Theorem 2.4 relies on showing that in this
regime the finite aspect of the evolving network dominates. The idea is simple: for small
enough values of v, in the time scale of the infection, typical connected components
look almost static, so the process becomes extinct within them; exceptionally large
components, on the other hand, are unstable, quickly dividing into smaller ones, so they
cannot account for survival.

To define what “typical connected components” are in a useful way, consider the set
r0Z where r0 ∈ N is some large integer to define later as a function of p. The main idea
is to partition Z into intervals around a family of elements chosen from this set in such a
way that we can control the infection inside them. However, since our network evolves
in time, we will need to allow these blocks to evolve as well. To this end we partition
R+ into time intervals of the form [nT, (n + 1)T ), with T > 0 a large parameter to be
fixed later as a function of λ and r0; our space-time blocks will always have the form
Bk,n × [nT, (n+ 1)T ) with

(
Bk,n

)
k∈Z spatial blocks partitioning Z, which depend on the

time parameter n and are constructed as follows.
Say that an edge e ∈ E is n-closed if ζt(e) = 0 for all t ∈ [nT, (n + 1)T ); this means

that e acts as a barrier for the infection throughout the whole time interval. Using these
barriers we introduce random variables V{k,k+1},n as

V{k,k+1},n = 1no edge e in [kr0, (k + 1)r0] is n-closed

so that V{k,k+1},n = 0 indicates that the infection cannot spread between kr0 and (k+1)r0

during the time interval [nT, (n+1)T ). Next let ek,n be the leftmost n-closed edge between
kr0 and (k + 1)r0, if there is some, and ek,n = {(k + 1)r0 − 1, (k + 1)r0} if there is none,
that is, ek,n is the last edge traversed when moving to the right of kr0 until either hitting
a barrier or (k + 1)r0. Using these variables we finally let Bk,n = [e+

k−1,n, e
−
k,n], where e−

and e+ represent the left and right vertices of e, respectively; see Figure 2 for a picture.
The construction of the Bk,n, which is random (depending on ζ), satisfies the following

properties, which are easy to check:

• The blocks
(
Bk,n × [nT, (n+ 1)T )

)
k,n∈Z partition Z×R+.
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0−r0 r0

2T

T

Figure 2: Gray rectangles represent intervals where the edge is absent, and hatched
rectangles represent the barriers given by n-closed edges. In this case there are no
0-closed edges between −r0 and 0, so the block B0,0 × [0, T ) (in red) goes from 0 to the
first barrier it encounters to the right. The block B0,1 × [T, 2T ) (in blue), on the other
hand, goes from the leftmost barrier between −r0 and 0, to the leftmost one between 0

and r0.

• The vertex kr0 always belongs to Bk,n. In particular, each Bk,n has length between
1 and 2r0 − 1.

• If V{k−1,k},n = V{k,k+1},n = 0, then there are barriers separating Bk,n from Bk−1,n

and Bk+1,n. This implies that any infection in Bk,n gets locally quarantined during
the time interval [nT, (n+ 1)T ).

The key property is the last one, since it implies that the infection should die out in Bk,n
with high probability if T is large enough (compared to r0). Define now

Uk,n = 1there is a valid path contained in Bk,n × [nT, (n+ 1)T ) which starts at time nT and ends at time (n+ 1)T .

While the V variables account for the connectivity between intervals, the U variables
account for the behaviour of the infection inside them; together they will give us enough
information to control η. To this end we identify the blocks Bk,n × [nT, (n + 1)T ) with
their respective indices (k, n) ∈ Z × N and use them as vertices of a graph H whose
edge set is obtained from the U and V variables according to the following rules:

1. If Uk,n = 1, then add the edges between (k, n) and each of (k − 1, n+ 1), (k, n+ 1),
and (k + 1, n+ 1).

2. If V{k,k+1},n = 1, then add edges as in the previous point as if Uk,n = 1 and
Uk+1,n = 1, and also the edge between (k, n) and (k + 1, n).

We say that a path between (k0, n0), (k1, n1), . . . , (kf , nf ) in H is H-valid if the se-
quence n0, . . . , nf is non-decreasing and there is no i < f such that ni = nf .

Finally, define a discrete-time process {Zn}n∈N (which we call Z(U, V ) when empha-
sizing the dependency on the U and V variables) taking values in the family of finite
subsets of Z, with Z0 being the set of all k ∈ Z such that Bk,0 contains an initially
infected site, and for n ≥ 1, Zn is the set of all the k ∈ Z such that there is some H-valid
path starting at Z0×{0} and ending in (k, n). The next result shows that {Zn}n∈N in fact
provides a suitable upper bound for η:

Proposition 3.7. Take k ∈ Z and n ∈ N. Outside a null probability event, if there is
some x ∈ Z with x ∈ Bk,n such that ηnT (x) = 1, then k ∈ Zn. In particular, Zn = ∅
implies that ηnT ≡ 0 almost surely.
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n = 0

n = 1

0 1 1 0 0 00 0 1 0 0

Figure 3: Construction of H using the U and V variables (in red and blue, respectively).
Observe that the second vertex from the left at the bottom is isolated, yet its U variable
is equal to 1, meaning that the infection is able to survive there, which is the reason it is
connected to the vertices on the row above.

n = 0

n = 1

ab

c

Figure 4: An H-valid path from node a to node c. The path represents that an infection
starting at the block a is able to propagate to block b between times 0 and T , and some
of the infected vertices can belong to block c at time T .

Proof. If n = 0, then there is some x ∈ Bk,0 such that η0(x) = 1 and the result fol-
lows from the definition of Z0. Now suppose that n ≥ 1 and take some x ∈ Bk,n
such that ηnT (x) = 1. Using the graphical construction from Section 3.1 we deduce
that there must be a valid path between some (x0, 0) with η0(x0) = 1, and (x, nT ).
Even further, assuming that there are no infection events at times of the form nT (as
is almost surely the case), this path defines a unique sequence of space-time points
(x0, 0), (x1, T ), . . . , (xn−1, (n−1)T ), (xn, nT ) of points, which in turn defines a sequence of
indices (k0, 0), (k1, 1), . . . , (kn, n) representing the blocks containing these points. Notic-
ing that k0 ∈ Z0, it will be enough to show that there is an H-valid path connecting all
the (kj , j)’s. Observing that joining two H-valid paths results in a H-valid path, it will
actually be enough to show that there is such a path connecting (k0, 0) and (k1, 1). To do
so we consider two cases.

Suppose first that the path joining (x0, 0) and (x1, T ) is entirely contained in Bk0,0 ×
[0, T ). Observe that in this case x1 necessarily belongs to Bk0,0 and hence (k0 − 1)r0 <

x1 < (k0 + 1)r0, so in particular k0 − 1 ≤ k1 ≤ k0 + 1. Now, since there is a valid path
contained in Bk0,0 × [0, T ) (joining points at the top and the bottom of the block), then
we necessarily have Uk0,0 = 1 and hence the edge between (k0, 0) and (k1, 1) belongs to
H, defining an H-valid path.

Next suppose that the path joining (x0, 0) and (x1, T ) is not entirely contained in
Bk0,0 × [0, T ). Let then k′0 be the index of the interval Bk′0,0 containing x1, and observe
that if k′0 = k0, then we have k0 − 1 ≤ k1 ≤ k0 + 1 as before, and since the path is not
contained in Bk0,0 × [0, T ) we deduce that either V{k0−1,k0},0 = 1 or V{k0,k0+1},0 = 1 so
there are edges in H as if Uk0,0 = 1 and we conclude as before. Suppose now that k′0 > k0

(the case k′0 < k0 is analogous) and observe that for any k0 ≤ j < k′0 we necessarily have
V{j,j+1},0 = 1, giving that the edge between (j, 0) and (j + 1, 0) belongs to H. As before,
we also know that the edge between (k′0, 0) and (k1, 1) belongs to H and hence the path
(k0, 0), (k0 + 1, 0), . . . , (k′0, 0), (k1, 1) is H-valid, giving the result.

It follows from its definition that Z is a Markov process obtained as a particular
variant of oriented percolation. We say that this process dies out (or gets extinct) if
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it ever reaches ∅ and call Next its extinction time, which, from the proposition above,
satisfies τext ≤ TNext almost surely (where τext is the extinction time of the CPDE). It
follows that if we can prove a version of Theorem 2.4 for Z, that is, Next <∞ a.s. and
E(Next|Z0) ≤ β0 log(|Z0|) + β1, then τext <∞ a.s. and

E(τext|η0) ≤ E(TNext|Z0(η0)) ≤ T (β0 log(|Z0|) + β1) ≤ β̃0 log(|η0|) + β̃1,

where we have used that |Z0| ≤ |η0| since every k ∈ Z0 represents an interval Bk,0
containing an initially infected site.

The construction of Z is relatively simple, but the complexity of the CPDE still remains
hidden within the U and V variables, and thus obtaining the result for Z could be just as
hard as obtaining it for the original process. What saves us is that, as can be checked
directly, Z(U, V ) is increasing in the U and V variables, meaning that if for each k and
n we have Uk,n ≤ U ′k,n and V{k,k+1},n ≤ V ′{k,k+1},n, then Zm(U, V ) ⊆ Zm(U ′, V ′) for all m.
It will be enough then to show that we can find a family of i.i.d. variables U ′ and V ′ as
above which dominate the U and V variables, and prove a version of Theorem 2.4 for
Z(U ′, V ′). We begin by showing this latter result:

Lemma 3.8. Suppose that the U ′k,n and V ′{k,k+1},n are independent Bernoulli random
variables with parameter ε > 0. If ε is small enough, then Z(U ′, V ′) dies out a.s. for any
finite initial configuration. Furthermore, there are β0, β1 > 0 such that

E(Next|Z0) ≤ β0 log(|Z0|) + β1.

Proof. Consider i.i.d. uniform random variables u′k,n and v′{k,k+1},n on [0, 1] and, for some
given ε > 0, let U ′k,n = 1 and V ′{k,k+1},n = 1 if u′k,n ≤ ε and v′{k,k+1},n ≤ ε (this serves the
usual purpose of coupling realizations of these variables for different values of ε). Fix
then some value of ε and define for any finite set A ⊆ Z the function FA(n) = P(Next ≤
n |Z0 = A). Conditioned on Z0 = A, we have Next ≤ n if and only if the event⋂

a∈A

{
there are no H-valid paths from (a, 0) to Z× {n}

}
occurs. Each of the events in this intersection is decreasing in the U ′ and V ′ variables
so we can apply the FKG inequality to obtain

FA(n) ≥
∏
a∈A

P(there are no H-valid paths from (a, 0) to Z× {n})

= P(there are no H-valid paths from (0, 0) to Z× {n})|A| =
(
F{0}(n)

)|A|
,

where we have used translation invariance. Take now g(x, ε) to be the probability
generating function of the variable |Z1| conditioned on Z0 = {0}, that is,

g(x, ε) =

∞∑
k=0

P(|Z1| = k |Z0 = {0})xk,

and use the inequality above along with total probabilities and the Markov property to
deduce

F{0}(n+ 1) =
∑
B⊆Z
B finite

P(Next ≤ n+ 1, Z1 = B |Z0 = {0})

=
∑
B⊆Z
B finite

P(Next ≤ n, |Z0 = B)P(Z1 = B |Z0 = {0})

≥
∑
B⊆Z
B finite

(
F{0}(n)

)|B|
P(Z1 = B |Z0 = {0}) = g(F{0}(n), ε).
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Since g(·, ε) is monotone, we get

F{0}(n) ≥ g(n)(F{0}(0), ε) = g(n)(0, ε)

where g(n)(·, ε) is defined inductively as g(n+1)(x, ε) = g(g(n)(x, ε), ε). Now for any fixed ε
we have that for all x ∈ (0, 1),

1− g(x, ε)

1− x
=

∞∑
k=1

P(|Z1| = k |Z0 = {0})1− xk

1− x
≤ E(|Z1|

∣∣Z0 = {0}),

so that 1−g(n+1)(0, ε) ≤ E(|Z1|
∣∣Z0 = {0})[1−g(n)(0, ε)] and hence we deduce inductively

that
1− F{0}(n) ≤ 1− g(n)(0, ε) ≤ E(|Z1|

∣∣Z0 = {0})n.

From the construction of the U ′ and V ′ variables and the fact that Z is increasing in
them, it follows that |Z1| decreases to zero a.s. as ε → 0, so if E(|Z1|

∣∣Z0 = {0}) < ∞
monotone convergence shows that for small enough ε

γ := E(|Z1|
∣∣Z0 = {0}) < 1,

from which we conclude F{0}(n) −→ 1. We deduce that for any finite B ⊆ Z

P(Next =∞|Z0 = B) = lim
n→∞

(1− FB(n)) ≤ lim
n→∞

(1− F{0}(n)|B|) = 0,

and hence that Z dies out almost surely. Furthermore, for such small ε an easy calculation
gives

E(Next |Z0 = B) =

∞∑
k=1

(
1− FB(k)

)
≤

∞∑
k=1

(
1− (1− γk)|B|

)
≤ − logγ(|B|) + 1 +

∞∑
k=d− logγ(|B|)e

(
1− (1− γk)|B|

)
,

and if |B| is large, using the inequality 1 − x ≥ e−2x for small x the sum on the right
can be bounded by

∑∞
k=d− logγ(|B|)e 2|B|γk ≤ 2|B|

1−γ γ
− logγ(|B|) = 2

1−γ , giving the required
bound on the expectation.

It only remains to prove E(|Z1|
∣∣Z0 = {0}) < ∞. To this end observe that given

Z0 = {0}, Z1 is either empty or an interval containing 0, and in the latter case, this
interval is given as [e−l , e

+
r ] where el and er are the first edges to the left and right of 0,

respectively, such that V ′e,0 = 0. Fixing ε as before, it follows that for each k ≥ 4 there are
k− 2 possible such intervals of length k, each one occurring with probability εk−3(1− ε)2,
and hence the sum

∑∞
k=0 kP(|Z1| = k |Z0 = {0}) is finite.

Thanks to the lemma, all that remains to prove is that for any λ > 0, p ∈ (0, 1) and ε >
0, we can choose v, T and r0 in such a way that we can couple our U and V variables with

an i.i.d. Ber(ε) family. To this end take v = 1/T and fix δ0 = e−1+(1−p)(1−e−1)−e−p
1−e−p e−p ∈

(0, 1), which, as we will show later with the aid of (3.2), is a lower bound for the
probability of an edge being n-closed for this choice of v. Next, take r0 ∈ N large enough
so that (1− δ0)r0 < ε, and choose T > 0 to be sufficiently large so that, letting τext be the
extinction time of the standatd contact process running on the interval [0, 2r0] starting
with every vertex infected, we have P

(
τext ≥ T

)
< ε.

Now, observe that all the V variables depend only on ζ, and that given a realization
of the environment the U variables depend on the I and R processes on disjoint sets, so
they are independent. Furthermore, each block Bk,n has length at most 2r0 − 1 so our
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choice of T yields P(Uk,n = 1 | ζ) < ε as desired for any realization of ζ. On the other
hand, each V{k,k+1},n depends on the U process and the C variables on Bk,n, so Ve,n and
Ve′,m are independent as long as e 6= e′. So all that remains to prove now is that

P
(
Ve,n = 1

∣∣ Ve,n−1, · · · , Ve,0
)
≤ ε

for any e ∈ E and n ∈ N. This inequality will follow from the next result, whose easy but
tedious proof is deferred until the end of this section.

Proposition 3.9. Fix v, p and T . For given e∈E define wen = 1ζt(e)=1 for some t∈ [nT, (n+1)T ).
Then for all n ≥ 1,

P(wen = 0 |wen−1, . . . , w
e
0) ≥ δ := e−pvT

[
e−vT+(1−p)(1−e−vT )−e−pvT

1−e−pvT

]
, (3.2)

and for n = 0 we have P(we0) ≥ δ.
Notice that replacing v = 1/T in the definition of δ we recover δ0 and using that

V{k,k+1},n = 1 ⇐⇒ for all edges in [kr0, (k + 1)r0] we have wen = 1,

Proposition 3.9, together with the independence of the ζt processes on different edges,
imply that

P
(
Ve,m = 1

∣∣ Ve,m−1, · · · , Ve,0
)
≤ (1− δ0)r0 ≤ ε.

This completes the proof of the theorem.

3.6 Proof of Theorem 2.6

The proof of this theorem follows closely what was done in the proof of Theorem
2.4, where for fixed p and λ we were able to couple the CPDE running on Z with a
process Z which dies out provided that v was sufficiently small. Surprisingly enough,
when taking v fixed and p small instead, it is possible to adapt the proof to obtain not
only that the result holds for general G, but also that the coupled process Z dies out
independently of the value of λ. Indeed, we will show that if p is sufficiently small, then
we can divide time into intervals of the form [nT, (n+ 1)T ) where every edge has a very
large probability of being n-closed (as opposed to our previous proof, where we could
only find some n-closed edge within a large enough interval Bk,n). In particular, most
vertices will be isolated throughout these intervals and as a result, infections confined to
these quarantined vertices die out in time of order 1.

Fix λ > 0, v > 0, and take ε > 0 small (to be fixed later), which we use to define an
auxiliary parameter M = 2 max{ε−1, v log(ε−1)}. Next choose p small enough so that

e−pM
[
e−M+(1−p)(1−e−M )−e−pM

1−e−pM

]
≥ 1− ε (3.3)

(which is possible by our choice of M because the expression on the left goes to 1 −
1−e−M
M ≥ 1− 1

M as p→ 0). Next, partition R+ into time intervals of the form [nT, (n+1)T ),
where T = M/v, and define the variables {Ve,n} and {Ux,n} for x ∈ G, e ∈ E and n ∈ N
as

Ve,n = 1ζt(e)=1 for some t∈[nT,(n+1)T ),

Ux,n = 1Rx∩[nT,(n+1)T )=∅.

Observe that if Ve,n = 0 then the infection cannot use e to spread throughout [nT, (n+

1)T ) and hence if
∑
y∼x V{x,y},n = 0 we deduce that x is isolated during this time period.

We will show that this is very likely to happen, and in that scenario, Ux,n = 0 implies that
any infection at x dies out before time (n + 1)T . Using these variables, which do not
depend on the infection processes, we construct a graph H with vertex set G×N and
whose edge set is obtained from the U and V variables according to the following rules:

1. If Ux,n = 1, then add the edge between (x, n) and (x, n+ 1).
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2. For e = {x, y}, if Ve,n = 1, then add edges as if Ux,n = 1 and Uy,n = 1, and also the
edge between (x, n) and (y, n).

The resulting graph is similar to the one defined in the proof of Theorem 2.4, and in terms
of it we define H-valid paths and the process Z analogously to what was done there. It
can be checked that for this new process Z analogous versions of Proposition 3.7 and
Lemma 3.8 hold, so in order to conclude both statements of the theorem, it is enough to
bound the U and V variables by an i.i.d. family of Bernoulli random variables with small
enough parameter ε. Notice that the U variables are independent from one another, and
are also independent from the V variables, which in turn are also independent among
themselves whenever indexed by different edges. As a result, all we need to show is that

P
(
Ux,n = 1

)
≤ ε and P

(
Ve,n = 1

∣∣ Ve,n−1, · · · , Ve,0
)
≤ ε

for any x ∈ G, e ∈ E and n ∈ N. For the first inequality, observe that P
(
Uk,n = 1

)
=

e−T = e−M/v ≤ ε from our choice of M , while for the second inequality we can use
Proposition 3.9 directly with wen = Ve,n to obtain

P
(
Ve,n = 1

∣∣ Ve,n−1, · · · , Ve,0
)
≤ 1− δ

with δ as defined in (3.2). Replacing T = M/v we see that δ is equal to the expression on
the left hand side of (3.3), and the desired inequality follows. We conclude that Z (and
hence the CPDE) dies out, and the result then follows from noticing that the construction
does not depend on λ, so that λ0(v, p) =∞.

3.7 Proof of Theorem 2.7

Our goal is to prove that if p is sufficiently close to 1, then for every v > 0 we can
take λ large enough so that the infection process η survives. To this end we use again
a block construction argument, this time based on the usual comparison with oriented
percolation as introduced in [9]. As mentioned in Section 2.3 it is enough to prove this
result in the case G = Z, so we make this assumption.

For any T > 0 we divide Z × [0,∞) into
blocks Bk,n the form Bk,n = Ik,n × [nT, (n+ 1)T ) with
Ik,n =

{
4k − 2n, . . . , 4k − 2n+ 3

}
. Note that, with this

choice, half of each block lies on top of each of the two ad-
jacent blocks in the row below it, as shown in the picture.
For each k and n we say that the block Bk,n is “good”, an
event which we denote asWk,n, if the following conditions
hold:

0

B−2,0B−1,0 B0,0 B1,0

B−1,1 B0,1 B1,1

B−1,2 B0,2 B1,2 B2,2

(c1) For each edge e lying inside Ik,n we have Oe ∩ [nT, (n+ 1)T ) 6= ∅.

(c2) For each edge e lying inside Ik,n we have Ce ∩ [nT, (n+ 1)T ) = ∅.

(c3) Let Tk,n =
⋃
x,e inside Ik,n

(Rx ∪ Ce ∪ Oe) ∩ [nT, (n + 1)T ). Then |t1 − t2| > δ for all
t1, t2 ∈ Tk,n ∪ {nT, (n+ 1)T}.

(c4) For all edge e lying inside Ik,n we have Ie ∩
[
nT + lTδ

6 , nT + (l+1)Tδ
6

]
6= ∅ for all

0 ≤ l < 6
δ .

In words, conditions (c1) and (c2) say that all edges lying inside Ik,n become available
at some time in [nT, (n+ 1)T ) and remain so until time (n+ 1)T , while conditions (c3)
and (c4), on the other hand, ensure that between two non-infection events there is a (not
necessarily valid) infection between each pair of neighbouring vertices in Ik,n.
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Next we choose the parameters of our model and our block construction. Fix ε > 0

and take M > 0 large enough so that e−M/2 ≤ ε/12 and then p close enough to 1 so
that 1 − e−M(1−p) ≤ ε/12 (this will determine the value of the parameter p1 which we
are looking for in Theorem 2.7). Now fix v > 0 and take T = M/v. Focusing on a
single block Bk,n we have that: P(c1) = (1 − e−Mp)3 > 1 − ε

4 from our choice of M ;
P(c2) = e−3(1−p)M > 1− ε

4 from our choice of p; P(c3)↗ 1 as δ ↘ 0, so we can choose
δ > 0 small enough such that P(c3) ≥ 1−ε/4; and having fixed δ, P(c4)↗ 1 as λ↗∞, so
we can take λ large enough such that P(c4) ≥ 1−ε/4. From this choice of the parameters
we conclude that P(Wk,n) ≥ 1− ε for each k and n.

Take now the directed graph with vertex set {Bk,n}k∈Z,n∈N and where each block
Bk,n has Bk,n+1 and Bk+1,n+1 as directed neighbors. Since all of the events Wk,n are
independent, by taking the subgraph of all the blocks satisfying these events we recover
the two-dimensional site percolation model of [8] with percolation parameter at least
1− ε. By choosing ε sufficiently small we deduce that with positive probability there is
an infinite path (Bkn,n)n∈N starting at B0,0 (which, from our construction of the network
satisfies kn+1 ∈ {kn, kn + 1} for each n). Observe that by choosing ε we fix the value of
p = p1, while the parameter v only determines T . We claim that on the event where this
infinite path exists, we obtain survival of η as soon as I0,0 contains two adjacent vertices
x0, y0 such that η0(x0) = η0(y0) = ζ0({x0, y0}) = 1.

To prove this claim, observe that conditions (c1)-(c4) imply that at time T , ηT (x) = 1

and ζT (e) = 1 for each vertex x and edge e in I0,0. Indeed, from condition (c1), if an edge
is absent in I0,0 at time 0, then it appears at some point in the time interval [0, T ). On the
other hand, from condition (c2) no edge can disappear in this interval. We deduce that
the edge {x0, y0} remains available throughout [0, T ) and that all edges are available at
time T , giving ζT ≡ 1 inside I0,0.

Furthermore, observe that from condition (c3) we can ac-
tually deduce that ζT−δ ≡ 1 inside I0,0, since there are no
updating or recovery events in [T − δ, T ]. To deduce the anal-
ogous result for η enumerate the recovery events of x0 and
y0 as r1, r2, . . .. Conditions (c3) and (c4) imply that there is
always an infection event between these vertices at each inter-
val (rj , rj+1) which is valid since the edge {x, y} is available at
all times. In particular, we deduce that at time T−δ either x or
y (or both) are infected, but in the time interval [T −δ, T ) there
are no infection or recovery events and all edges are available,
so from condition (c4) we can easily obtain the existence of
valid infection paths from x and y to all sites in I0,0.

*
*
*
*
*
*

*

*
*
*

*
*

Now half of the block Bk1,1 lies on top of B0,0, so from the observation, Ik1,1 contains
two adjacent vertices x1, y1 such that ηT (x1) = ηT (y1) = ζT ({x1, y1}) = 1, and we can
repeat the argument above to conclude that at time 2T , η2T (x) = 1 and ζ2T (e) = 1 for
each vertex x and edge e in Ik1,1. Repeating this argument iteratively we conclude that
at each time nT there are vertices x, y ∈ Ikn,n such that ηnT (x) = ηnT (y) = 1, yielding
survival of η.

3.8 Proof of Proposition 3.9

Recall that wen = 0 is equivalent to ζt(e) = 0 for all t ∈ [nT, (n+ 1)T ) and notice that
P
(
wen = 0

∣∣FnT ) = e−pvT1{ζnT (e)=0}, where FnT is the σ-algebra generated by ζ up until
time nT . Thus it is enough to show the improved inequality

P(ζnT (e) = 0|wen−1, ζ(n−1)T (e), wen−2, . . . , w
e
0) ≥ e−vT+(1−p)(1−e−vT )−e−vpT

1−e−vpT = epvT δ =: δ′
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for n ≥ 1 and P(ζ0(e) = 0) = (1− p) ≥ δ′ for n = 0. Observing that the probability above
is equal to P(ζT (e) = 0|we0, ζ0(e)) due to the Markov property and homogeneity of the
environment, there are three cases to be considered when n ≥ 1.

Assume first that ζ0(e) = 1, which by definition implies we0 = 1. Then ζT (e) = 0 if and
only if U ∩ [0, T ) 6= ∅ and the last updating event is in Ce. The probability of such an event
is (1− p)(1− e−vT ), and hence we need to show that this expression is larger than δ′. To
do so, observe that after multiplying by evpT − 1 and rearranging terms, the inequality
(1− p)(1− e−vT ) ≥ δ′ is equivalent to

e−(1−p)vT + (1− p)(1− e−vT )− 1 ≤ 0,

which always holds, since the function x 7−→ e−xvT + x(1− e−vT )− 1 is convex and equal
to zero at x = 0 and x = 1. Observe that this bound also gives the result for n = 0, since
P(ζ0(e) = 0) ≥ (1− p)(1− e−vT ) ≥ δ′.

Assume now that ζ0(e) = 0 and we0 = 1. Here we compute the conditional probability
directly. For the numerator, it is easy to see that the event {ζT (e) = 0, we0 = 1, ζ0(e) = 0}
corresponds to ζ0(e) = 0 and |Ue ∩ [0, T )| ≥ 2 with the last updating event belonging
to Ce and from the rest at least one belonging to Oe. The probability of this event is
(1−p)2

∑∞
n=2

[
1− (1− p)n−1

]
e−vT (vT )n

n! = (1−p)[e−vT +(1−p)(1−e−vT )−e−vpT ]. For the
denominator, the event {we0 = 1, ζ0(e) = 0} corresponds to ζ0(e) = 0 and Oe ∩ [0, T ) 6= ∅,
so it has probability (1− p)(1− e−vpT ). Dividing the two expressions we obtain δ′.

Finally, for the case ζ0(e) = 0 and we0 = 0, we have by definition of we0 that ζT (e) = 0,
so the conditional probability is equal to 1, and the result follows.
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