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Smoothness and monotonicity of the
excursion set density of planar Gaussian fields
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Abstract

Nazarov and Sodin have shown that the number of connected components of the nodal
set of a planar Gaussian field in a ball of radius R, normalised by area, converges to
a constant as R → ∞. This has been generalised to excursion/level sets at arbitrary
levels, implying the existence of functionals cES(`) and cLS(`) that encode the density
of excursion/level set components at the level `. We prove that these functionals
are continuously differentiable for a wide class of fields. This follows from a more
general result, which derives differentiability of the functionals from the decay of
the probability of ‘four-arm events’ for the field conditioned to have a saddle point
at the origin. For some fields, including the important special cases of the Random
Plane Wave and the Bargmann-Fock field, we also derive stochastic monotonicity of
the conditioned field, which allows us to deduce regions on which cES(`) and cLS(`)

are monotone.
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1 Introduction

Let f : R2 → R be a continuous stationary Gaussian field with zero mean and
covariance function K : R2 → R defined by K(x) = E(f(x)f(0)). We are interested in
the geometric properties of the (upper-)excursion sets and level sets of this field, defined
respectively as {

x ∈ R2 : f(x) ≥ `
}

and
{
x ∈ R2 : f(x) = `

}
for ` ∈ R. Specifically, we are interested in the number of connected components of
these sets in a large domain.
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Smoothness/monotonicity of the excursion set density of Gaussian fields

Smooth Gaussian fields are used to model spatial phenomena across wide ranging
domains of science, such as quantum chaos, medical imaging and oceanography (see
[19, 34, 3] respectively). As a particular example; cosmological theories predict that the
Cosmic Microwave Background Radiation observed on Earth can be well modelled as
a realisation of a stationary Gaussian field on the two-dimensional sphere. Topological
and geometric quantities provide a useful way of testing this prediction, which has
important physical implications. In particular, [28] compares the number of excursion
set components of the observed background radiation to the corresponding number for
simulated Gaussian fields at a range of levels. A better understanding of the statistical
properties of the number of excursion sets of Gaussian fields could therefore have
consequences for such analysis.

Unlike certain other geometric functionals (e.g. the volume or Euler characteristic
of excursion sets), the number of connected components is inherently difficult to study
because it is non-local: the number of components in a domain cannot be counted by
partitioning the domain and simply counting the number of components in each sub-
domain. Nazarov and Sodin [26] used an ergodic argument to study the asymptotics of
this quantity. Specifically, if f is an ergodic Gaussian field satisfying some regularity
assumptions, B(R) is the ball of radius R > 0 centred at the origin, and NLS(R, 0) is
the number of components of the nodal set {x ∈ R2 : f(x) = 0} contained in B(R), then
there is a constant cLS(0) ≥ 0 such that

NLS(R, 0)

πR2
→ cLS(0) (1.1)

as R → ∞, where convergence occurs in L1 and almost surely. Although this result
was stated only for the nodal set, the arguments in [26] go through verbatim for excur-
sion/level sets at arbitrary levels `; the respective limiting constants, denoted by cES(`)

and cLS(`), can be interpreted as the density of excursion/level set components per unit
area.

In this paper we consider properties of cES(`) and cLS(`) viewed as functions of
the level. It was shown in [6] that cES and cLS are absolutely continuous. Our main
results (Theorems 2.10, 2.11 and Corollary 2.18) show that, for a wide class of fields, the
continuous differentiability of cES and cLS at ` is equivalent to the statement that, if the
field is conditioned to have a saddle point at the origin at level `, then almost surely the
‘arms’ of the saddle (i.e. the four level lines that emanate from the saddle point) do not
connect the origin to infinity. Since we can prove that the latter property holds for many
fields, we deduce the continuous differentiability of the density functionals.

Recent work has established that, in many circumstances, the geometry of Gaussian
excursion sets exhibits similar behaviour to that of discrete percolation models [4]. In
particular, for a wide class of fields, it has been shown that the connectivity of the
excursion sets exhibits a sharp phase transition at ` = 0 [30, 25]. Our results can
therefore be compared to what is known, and conjectured, about the analogous density
functionals for discrete percolation models. Consider Bernoulli bond percolation on
the integer lattice, defined by declaring the edges of Zd to be open independently with
probability p and closed otherwise (see [16] for background on this model). Let Kn

denote the number of open clusters that are contained in [−n, n]d. Then it is known ([16,
Chapter 4]) that

Kn

(2n)d
→ κ(p)

as n→∞, almost surely and in L1. This is a direct analogue of (1.1), and is also proven
using an ergodic argument. The smoothness of κ is of interest because it is related to
the percolation phase transition. Specifically, it is conjectured in the physics literature
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Smoothness/monotonicity of the excursion set density of Gaussian fields

that κ is analytic on [0, 1]\{pc} and twice but not three times differentiable at pc, where
pc ∈ (0, 1) is the critical probability for the model; this reflects the values of certain
‘critical exponents’ which are believed to be universal for percolation models (see [16,
Chapter 9]). What has been shown rigorously, is that, for all d ≥ 2, κ is analytic on [0, pc)

and smooth on (pc, 1], and in the case d = 2 it is further known that κ is analytic on (pc, 1]

and at least twice differentiable at pc (see [16, Chapter 4]). Somewhat weaker results
have been derived for other percolation models, including the Poisson-Boolean model
and ‘spread-out’ percolation models [9].

Since the connectivity of the excursion sets of a wide class of planar Gaussian fields
is conjectured, and in some cases known, to undergo a phase transition at ` = 0 that is
analogous to the phase transition at pc for Bernoulli percolation (see [4, 7, 29, 30, 25]), it
is natural to conjecture that, for such fields, cES and cLS are also analytic on R\{0} and
twice but not three times differentiable at 0. Our proof of the continuous differentiability
of cES and cLS can be seen as a first step in this direction.

Despite the connections to classical percolation theory, the method we use to prove
differentiability of the density functionals is quite different. In Bernoulli percolation, the
starting point is the equality

κ(p) = Ep
(
|C|−1

)
,

where |C| is the number of vertices in the open cluster at the origin. By enumerating
clusters, this can be expressed as a power series in p, and the smoothness of κ can be
deduced from bounds on the coefficients in terms of connection probabilities for the
cluster at the origin.

This approach does not readily generalise to the setting of Gaussian fields: whilst it
can be shown that

cES(`) = E
(
Vol(C)−11f(0)>`

)
,

where Vol(C) is the volume of the component of
{
x ∈ R2 : f(x) ≥ `

}
containing the

origin, it is not known whether the density of (Vol(C), f(0)) is jointly continuous ([8]
studies a kind of ‘ergodic’ density for Vol(C) at the zero level). Instead, our proof of
differentiability uses an integral representation for cES and cLS that was developed in [6]
(see Theorem 2.6), although we still rely on the decay of certain ‘connection probabilities’
for the field f conditioned to have a saddle point at the origin. These connections are
the equivalent of ‘four-arm events’ in percolation, which play an important role in this
theory (e.g., in the analysis of noise sensitivity [15]).

Our study of the integral representation for cES and cLS also allows us to derive
certain montonicity properties of these functionals (see Propositions 2.20–2.22); these
results are of independent interest, and are a key input to proving lower bounds on the
variance of the number of excursion/level sets of Gaussian fields (see Remark 2.24).

2 Main results

Throughout the paper we consider a planar Gaussian field satisfying the following
assumption:

Assumption 2.1. The Gaussian field f : R2 → R is stationary and centred with
Var(f(0)) = 1 and satisfies;

1. The covariance function K ∈ C4+η′ for some η′ > 0,

2. ∇2f(0) is a non-degenerate Gaussian vector (it is conventional to treat ∇2f(0) as a
three-dimensional vector, ignoring degeneracy due to symmetry),

3. For any x ∈ R2, if f(x) − f(0) is a non-degenerate Gaussian variable then the
Gaussian vector (∇f(x),∇f(0), f(x)− f(0)) is non-degenerate.
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Smoothness/monotonicity of the excursion set density of Gaussian fields

By Kolmogorov’s theorem ([1, Theorem 1.4.2] and [17, Theorem 3.17]), K ∈ C4+η′

implies that f ∈ C2+η
loc (R2) almost surely for any η ∈ (0, η′/2), and we fix such an η for

our analysis.
Since K is continuous and positive definite, Bochner’s theorem [10] states that it is

the Fourier transform of a measure µ which is known as the spectral measure of the
field:

K(x) =

∫
R2

eit·xdµ(t).

We can alternatively state our assumptions in terms of the spectral measure: K ∈ C4+η′

is equivalent to
∫
R2 |t|4+η′dµ(t) <∞. The second and third parts of Assumption 2.1 are

equivalent to some non-degeneracy of the support of µ (see Appendix A).
We have in mind two important examples of Gaussian fields satisfying Assumption 2.1:

(1) The Random Plane Wave (RPW), with covariance K(x) = J0(|x|), where J0 is the
0-th Bessel function, and spectral measure equal to the normalised Lebesgue measure
on the unit circle; and (2) The Bargmann-Fock (BF) field, with covariance K(x) =

exp
(
−|x|2/2

)
, and Gaussian spectral measure. The RPW is a universal model for high

energy eigenfunctions of the Laplacian, see [11] for background. The BF field can be
viewed as a continuous analogue of Bernoulli percolation, since it has rapid correlation
decay and satisfies the FKG inequality, see [4] for details and further motivation.

We now formally define the density functionals cES and cLS . Let NES(R, `) and
NLS(R, `) denote respectively the number of components of

{
x ∈ R2 : f(x) ≥ `

}
and{

x ∈ R2 : f(x) = `
}

contained in B(R) (i.e. the components which intersect B(R) but not
R2\B(R)). Then the following asymptotic laws are known to hold:

Theorem 2.2 ([26, 22, 6]). Let f be a Gaussian field satisfying Assumption 2.1. For each
` ∈ R, there exist cES(`), cLS(`) ≥ 0 such that

E [NES(R, `)] = cES(`) · πR2 +O(R) and E [NLS(R, `)] = cLS(`) · πR2 +O(R)

as R→∞. The constants implied by the O(·) notation are independent of `. If f is also
ergodic, then

NES(R, `)

πR2
→ cES(`) and

NLS(R, `)

πR2
→ cLS(`)

as R→∞, almost surely and in L1.

Remark 2.3. The notation in [22] and elsewhere is slightly different: cLS in the present
paper is denoted cNS in some previous papers.

In [6] a representation of cES and cLS was given in terms of the densities of certain
types of critical points. To state this we introduce upper/lower connected saddle points.

Definition 2.4. Let x0 be a saddle point of a C2 function g : R2 → R such that there are
no other critical points at the same level as x0 (that is, if x1 is another critical point of g,
then g(x1) 6= g(x0)). We say that x0 is upper connected if it is in the closure of only one
component of

{
x ∈ R2 : g(x) > g(x0)

}
. We say that x0 is lower connected if it is in the

closure of only one component of
{
x ∈ R2 : g(x) < g(x0)

}
.

Interestingly, this definition was used as far back as 1870, by Maxwell [23], to
understand topographical properties of landscapes.

It was shown in [13, 12] that the expected number of local maxima, local minima
or saddle points of a Gaussian field with height in a certain range can be expressed
as the integral of an explicit continuous density function over the height range. In [6]
this result was extended to upper and lower connected saddle points without explicitly
computing the corresponding density functions:
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Smoothness/monotonicity of the excursion set density of Gaussian fields

Proposition 2.5 ([6, Proposition 1.8]). Let f be a Gaussian field satisfying Assump-
tion 2.1. Then there exist non-negative functions pm+ , pm− , ps+ , ps− , ps ∈ L1(R) such that
the following holds. Let Ω ⊂ R2 be compact and ∂Ω have finite Hausdorff-1 measure.
Let ` ∈ R and let Nm+(`), Nm−(`), Ns+(`), Ns−(`) and Ns(`) denote the number of local
maxima, local minima, upper connected saddles, lower connected saddles and saddles of
f in Ω with level above ` respectively. Then

E [Nh(`)] = Area(Ω)

∫ ∞
`

ph(x) dx

for h = m+,m−, s+, s−, s. Furthermore, these functions can be chosen to satisfy the
relations pm+(x) = pm−(−x), ps+(x) = ps−(−x) and ps− + ps+ = ps, and such that pm+ ,
pm− and ps are continuous.

We can now state the main result of [6], characterising cES and cLS in terms of the
densities in Proposition 2.5:

Theorem 2.6 ([6, Theorem 1.9]). Let f be a Gaussian field satisfying Assumption 2.1,
and let pm+ , pm− , ps+ , ps− denote the densities specified in Proposition 2.5. Then

cES(`) =

∫ ∞
`

pm+(x)− ps−(x) dx (2.1)

and

cLS(`) =

∫ ∞
`

pm+(x)− ps−(x) + ps+(x)− pm−(x) dx, (2.2)

and hence cES and cLS are absolutely continuous.

One of the motivations for Theorem 2.6 was to provide a tool with which to study the
excursion/level set densities: since pm+ , pm− , and ps = ps+ + ps− are explicitly known
for a wide class of fields, by establishing simple properties of ps− we can deduce results
for cES and cLS . We expand upon this method in this paper. Specifically, we consider the
function

p∗s−(`) := ps(`)P
(
f̃` has a lower connected saddle point at the origin

)
, (2.3)

where f̃` is the field f conditioned to have a saddle point at the origin at level ` (in
the sense of Palm distributions; see Lemma 3.2 for a formal definition). Under mild
conditions we show that p∗s− defines a version of ps− (recall that the latter is defined only

up to null sets). By studying f̃` we are able to deduce properties of p∗s− , and hence of
cES and cLS .

2.1 Differentiability

Our first set of results concerns the differentiability of cES and cLS . Let us begin by
detailing the necessary assumptions on f .

Assumption 2.7. For all t ∈ R2\{0},

Cov
(
(f(t),∇f(t))

∣∣f(0),∇f(0),∇2f(0)
)

is non-degenerate (i.e. this 3× 3 matrix has non-zero determinant).

Assumption 2.8. There exist c, ν > 0 such that, for all |t| ≥ 1,

max
|k|≤3

∣∣∂kK(t)
∣∣ ≤ c|t|−(1+ν).

Moreover, there exists a neighbourhood V of the origin on which the spectral measure µ
has density ρ with respect to the Lebesgue measure and infV ρ > 0.
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Smoothness/monotonicity of the excursion set density of Gaussian fields

Assumption 2.9. For 0 < r < R, let Arm`(r,R) denote the ‘one-arm event’ that there
exists a component of {f ≥ `} which intersects both ∂B(r) and ∂B(R). Then there exist
c1, c2 > 0 such that for any 1 < r < R

P (f ∈ Arm0(r,R)) ≤ c1(r/R)c2 . (2.4)

Assumption 2.7 is extremely mild; it is satisfied whenever the support of the spectral
measure µ is not too degenerate. It is sufficient for this support to contain an open set
or an ellipse/circle (Lemma A.2), so in particular, it holds for the RPW and the BF field.

Assumptions 2.8 and 2.9 are somewhat more restrictive. Assumption 2.8 holds for
any smooth field with sufficiently nice correlation decay, and in particular holds for the
BF field, but it does not hold for the RPW (whose correlations decay only as |t|−1/2). It
also implies Assumption 2.7, by the previous remark.

Assumption 2.9 relates to the conjectured properties of the ‘percolation universality
class’, and has been shown to hold for a wide class of fields that includes the BF field
[4, 30]. Moreover it is strongly believed to hold for the RPW. We state our results directly
in terms of one-arm decay as it is likely that these bounds will be extended to more fields
over time.

Our first main result is that cES and cLS are continuously differentiable under the
above assumptions:

Theorem 2.10. Suppose f is a Gaussian field satisfying Assumptions 2.1 and 2.8–2.9
(e.g. the Bargmann-Fock field). Then cES and cLS are continuously differentiable on R.
In other words, the functions ps− and ps+ defined in Proposition 2.5 can be chosen to be
continuous, and

c′ES(`) = −pm+(`) + ps−(`)

and

c′LS(`) = −pm+(`) + ps−(`)− ps+(`) + pm−(`).

We emphasise that Theorem 2.10 applies to a wide class of fields, including the
important case of the BF field, but does not apply to the RPW as stated (although we
believe the conclusion to be true).

2.1.1 Four-arm saddle points

Theorem 2.10 follows from a more general result establishing that, under very mild
conditions, the continuous differentiability of cES and cLS is implied by the decay of
certain connection probabilities involving ‘four-arm saddles’.

Let D ⊂ R2 be a simply connected domain with piecewise C1 boundary and let x0 ∈ D
be a saddle point of g ∈ C2(R2) such that g has no other critical points at the same
level as x0. We say that x0 is four-arm in D if it is in the closure of two components of
{x ∈ D : g(x) > g(x0)} and two components of {x ∈ D : g(x) < g(x0)} (see Figure 1(a));
intuitively, a saddle point is four-arm in D if we cannot tell whether it is upper or lower
connected by looking at the values of g in D. A saddle point x0 is said to be infinite
four-arm if it is in the closure of two components of

{
x ∈ R2 : g(x) > g(x0)

}
and two

components of
{
x ∈ R2 : g(x) < g(x0)

}
(see Figure 1(b)). As mentioned in Section 1,

four-arm saddle points are analogous to four-arm events for percolation models.

Recall the conditional field f̃` (to be formally defined in Lemma 3.2) and the functions
p∗s− and ps− defined in (2.3) and Proposition 2.5 respectively.
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− −+

+

{g = g(x0)}

B(R)

(a) An upper connected saddle point that is
four-arm in B(R).

+ +

−

−

∞

∞ ∞

∞{g = g(x0)}

(b) An infinite-four-arm saddle point.

Figure 1

Theorem 2.11. Let f be a Gaussian field satisfying Assumptions 2.1 and 2.7. Then
p∗s− = ps− almost everywhere. Moreover, let a < b and suppose that for all ` ∈ (a, b)

P
(
f̃` has an infinite four-arm saddle at the origin

)
= 0. (2.5)

Then p∗s− |(a,b) is continuous, and so cES and cLS are continuously differentiable on (a, b).

Theorem 2.10 follows from Theorem 2.11 once we verify condition (2.5) under As-
sumptions 2.8 and 2.9. To do so, we use Assumption 2.8 and a Cameron-Martin argument
to treat the conditional field f̃` away from the origin as a perturbation of the uncondi-
tioned field f . We then use Assumption 2.9 to bound the relevant connection probabilities
for the unconditioned field.

As a corollary of Theorem 2.11 (actually of its proof), we deduce a bound on the
number of saddle points of a Gaussian field that are four-arm inside a ball and whose
level lies in a narrow range. This improves a bound that was previously established in
[6], and is also a key ingredient in proving lower bounds on the variance of the number
of excursion/level set components (see Remark 2.24).

Corollary 2.12. Let f be a Gaussian field satisfying all the assumptions of Theorem 2.11.
Then there exists a function δR → 0 as R→∞ and a constant c > 0 such that, for each
R > 1 and a ≤ aR ≤ bR ≤ b,

E (N4-arm (R, [aR, bR])) ≤ cmin
{
δRR

2 (bR − aR) , R
}

where N4-arm (R, [aR, bR]) is the number of saddle points of f which are four-arm in B(R)

and have level in [aR, bR].

Remark 2.13. In [6] it was shown that E (N4-arm(R)) = O(R); Corollary 2.12 supersedes
this bound whenever bR − aR = O

(
R−1

)
. It is possible to improve the conclusion of

Corollary 2.12 further by imposing stronger assumptions on the field. For example,
suppose we assume the exponential decay of arm probabilities at non-zero levels: for
some `∗ > 0 and δ ∈ (0, 1), there exist c1, c2 > 0 such that

P (f ∈ Arm`∗(δR,R)) ≤ c1e−c2R. (2.6)

Then for any a > `∗ (or b < −`∗), it is possible to prove that there exists c > 0 such that

E (N4-arm (R, [aR, bR])) ≤ cmin {R log(R)(bR − aR), R} .
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Smoothness/monotonicity of the excursion set density of Gaussian fields

In [25], it is shown that a wide class of fields satisfy (2.6), so this assumption is reasonable.
We do not prove this result formally here because Proposition 2.12 is simpler to prove,
holds for a wider class of fields, and suffices for its intended purpose (see Remark 2.24).

In light of Theorem 2.11, the fact that (2.6) is expected to hold for a wide class of
fields also suggests it should be much easier to prove the differentiability of cES away
from zero, since the probability of four-arm saddles in B(R) should decay exponentially
at non-zero levels.

2.1.2 The positivity of the level set density

In order for Theorem 2.2 to describe the leading-order asymptotics of the number of
excursion/level set components, it is crucial that the limiting constants are positive; if
they are not, then it can be shown that f almost surely has no compact excursion/level
sets. One nice consequence of the differentiability of cES and cLS is that it gives a new,
short proof of their positivity in the delicate case ` = 0:

Proposition 2.14. Let f be a Gaussian field satisfying Assumption 2.1. Suppose either
cES or cLS is differentiable at 0. Then cES(0) > 0 and cLS(0) > 0.

The positivity of cES(0) and cLS(0) are already known quite generally ([26, 18] give a
variety of sufficient conditions, whose union can be checked to exhaust fields satisfying
Assumptions 2.1 and 2.7). We restate this result because it uses a very different method
of proof; in particular, it does not rely on the ‘barrier method’.

The positivity of cES(`) and cLS(`) for ` > 0 is simpler to establish, even without
differentiability (see [6]). On the other hand, our arguments apparently do not extend
to cES(`) for ` < 0 (although this case can still be treated via the ‘barrier method’; see
Lemma 2.23).

2.1.3 Fields outside the ‘percolation universality class’

Although in general we expect the properties of cES and cLS to match those of the
analogous density functional κ from percolation theory, this can fail for fields outside the
‘percolation universality class’.

To demonstrate this, we consider the one non-trivial case in which cES and cLS are
explicitly known: fields with spectral measure supported on four or five points (see [6,
Proposition 1.20]). In [6] it was shown that, in the ‘five point case’, cES and cLS are
smooth everywhere, whereas in the ‘four point case’, cES and cLS are smooth everywhere
except zero, at which point they are continuous but not differentiable (see Figure 2).
Hence, in both cases, the smoothness of cES and cLS differs from the conjectured
properties of κ (and in different ways). However, these fields do not fall within the scope
of the present paper (they do not satisfy Assumptions 2.1 and 2.7). Moreover, being
periodic, their large-scale properties cannot be expected to match those of Bernoulli
percolation.

On the other hand, the non-differentiability of cES at zero in the ‘four point case’
does reflect a different kind of phase transition: for ` ≤ 0, {f ≥ `} almost surely has no
bounded components (cES(`) = 0), whereas for ` > 0, the number of components is of
order R2 (cES(`) > 0); see Figure 3. Moreover, a Gaussian field in the ‘five point case’
can be represented as a field in the ‘four point case’ plus an independent Gaussian level
shift. Hence the same phase transition occurs, although it does so at a random level and
so the discontinuity is averaged out.
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(a) (b)

Figure 2: The functional cES(`) for fields with spectral measure supported on four (left)
or five (right) points. The different lines correspond to different measures.

{f = 0}

+

−

+

−

+

{f = `}

Figure 3: Stylised excursion sets for fields with spectral measure supported on four
points, at the zero level (left) and at a positive level (right).

2.2 Monotonicity

We next consider monotonicity properties of cES and cLS . We begin by analysing the
ratio

p∗s−(`)/ps(`) = P
(
f̃` has a lower connected saddle point at the origin

)
,

which we intuitively expect to be non-decreasing: if we condition on the origin being a
saddle point at increasing heights, it seems more likely that it should be lower connected.
This can be made rigorous under some additional assumptions, and allows us to deduce
regions on which cES(`) and cLS(`) are monotone.

Assumption 2.15. The field f is isotropic (i.e. its law is invariant under rotations) and
hence its covariance function can be expressed as K(x) = k(|x|2). Then

χ :=
−k′(0)√
k′′(0)

≥ 1. (2.7)

Furthermore, the Gaussian vector (f(0),∇2f(0)) is non-degenerate, and for all x ∈ R2,

E

(
f(x)

∣∣∣∣ f(0) = 0,∇2f(0) =

(
1 0

0 0

))
≥ 0, (2.8)

E

(
f(x)

∣∣∣∣ f(0) = 1,∇2f(0) =

(
0 0

0 0

))
≤ 1. (2.9)

The parameter χ is used in [12] to parameterise the density of eigenvalues of ∇2f at
critical points and is shown to take values in (0,

√
2]. We note that (2.7) can be replaced

by a weaker condition (see Remark 5.8) however we do not state the general condition
here as (2.7) is much simpler to verify.
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In Section 5.1.2 we explain how (2.8) and (2.9) can be translated into explicit proper-
ties of the conditional field f̃`. We can also give equivalent versions of (2.8) and (2.9) that
are easier to check in practice. If we rescale the domain of f so that k′(0) = −1 (note
that this does not affect the value of χ), then it can be shown by Gaussian regression
that (2.8) is equivalent to

∀x ∈ R2,
(
k
(
|x|2
)

+ k′
(
|x|2
))
k′′(0) +

(
x2

1 (3k′′(0)− 1) + x2
2 (1− k′′(0))

)
k′′
(
|x|2
)
≥ 0

and (2.9) is equivalent to

∀y ≥ 0,
2k′′(0)k (y) + yk′′ (y) + k′ (y)

2k′′(0)− 1
≤ 1.

From this, it can be verified that specific fields satisfy Assumption 2.15, including the BF
field. The RPW does not satisfy Assumption 2.15; in this case χ =

√
2 but (f(0),∇2f(0))

is non-degenerate so the conditional expectations in (2.8) and (2.9) are not defined.
However we are able to prove the monotonicity of p∗s−/ps in this case too:

Theorem 2.16. Let f be the Random Plane Wave or a field which satisfies Assump-
tions 2.1, 2.7 and 2.15 (e.g. the Bargmann-Fock field). Then p∗s−(`)/ps(`) is non-decreasing
in `.

Given the definition of p∗s− , we will show that Theorem 2.16 is a consequence of f̃`− `
being stochastically decreasing in `. Our proof of the latter fact differs for the RPW and
for fields satisfying Assumption 2.15 (in the former case it is somewhat simpler, because
of the degeneracies in the RPW; see e.g. [33]).

The monotonicity of p∗s−/ps has some implications for the smoothness of cES and cLS:

Corollary 2.17. Let f satisfy the conditions of Theorem 2.16, then p∗s− has at most a
countable set of discontinuities, all of which are jump discontinuities. In particular, cES
and cLS are twice differentiable almost everywhere.

Another consequence of monotonicity is a converse of Theorem 2.11:

Corollary 2.18. Let f satisfy the conditions of Theorem 2.16, then for every a < b the
following are equivalent:

1. For all ` ∈ (a, b)

P
(
f̃` has an infinite four-arm saddle at the origin

)
= 0;

2. There exists a version of ps− which is continuous on (a, b);

3. cES(·) is continuously differentiable on (a, b);

4. cLS(·) is continuously differentiable on (a, b).

Remark 2.19. Clearly, if any of (1)–(4) hold in Corollary 2.18, then by Theorem 2.11,
the version of ps− |(a,b) which is continuous is equal to p∗s− |(a,b).

Finally we use Theorem 2.16 to deduce intervals on which cES and cLS are monotone.
We shall state the strongest form of our results only in the case of the RPW and BF field.
Let D+ and D+ respectively denote the lower and upper, right Dini derivatives, that is,
for g : R→ R,

D+g(x) = lim inf
ε→0+

g(x+ ε)− g(x)

ε
and D+g(x) = lim sup

ε→0+

g(x+ ε)− g(x)

ε
.

Proposition 2.20. Let f be the Random Plane Wave. Then

D+cES(`) > 0 for ` ∈ (−∞, 0.87]

D+cES(`) < 0 for ` ∈ [1,∞)
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and

D+cLS(`) < 0 for ` ∈ [1,∞).

Proposition 2.21. Let f be the Bargmann-Fock field. Then there exists ε > 0 such that

c′ES(`)

{
> 0 for ` ∈ (−ε, 0.64]

< 0 for ` ∈ [1.03,∞)

and

c′LS(`) < 0 for ` ∈ [1.03,∞).

We also present weaker results for general isotropic fields. Recall that the covariance
function of an isotropic f may be expressed as K(x) = k(|x|2) for some k : [0,∞) → R.
We also recall the parameter χ = −k′(0)/

√
k′′(0) which takes values in (0,

√
2] (see [12]

for details on this parameter).

Proposition 2.22. Let f be an isotropic field which satisfies Assumptions 2.1, 2.8–2.9
and 2.15. Then there exists ε > 0 and an explicit constant C > 0 such that

c′ES(`)

{
> 0 for ` ∈ (−ε, C)

< 0 for ` ∈
(√

2/χ,∞
)

and

c′LS(`) < 0 for ` ∈
(√

2/χ,∞
)
.

The explicit formula for the constant C is quite complicated and is given in the proof
of this proposition. However it is straightforward to apply this formula to any particular
field (as we have done for the RPW and Bargmann-Fock field in Propositions 2.20
and 2.21).

As an intermediate result to Proposition 2.20 we require that, for the RPW, cES(`) > 0

for ` ≤ 0. Since this result is not stated elsewhere in the literature, we do so here. The
proof uses the ‘barrier method’ and is near-identical to that in [26] in the case ` = 0.

Proposition 2.23. Let f be the Random Plane Wave. Then cES(`) > 0 for all ` ∈ R.

Remark 2.24. Many of the results in this work are built upon by [5] in order to prove
lower bounds on the variance of the number of level/excursion set components in B(R)

as R→∞. Specifically, it is shown that if f has sufficiently nice correlation decay (such
as the BF field), and if cES has a non-zero derivative at `, then

Var(NES(R, `)) ≥ cR2

for some c > 0 and all R sufficiently large. Moreover, if f is the RPW and one of the Dini
derivatives of cES is non-zero for ` 6= 0, then

Var(NES(R, `)) ≥ cR3

for some c > 0 and all R sufficiently large. Analogous results hold in both cases for level
sets and cLS . A key step in proving these results is to estimate the order of

E(NES(R, `)−NES(R, `+ εR)),

which is made possible by Theorem 2.10 and Corollary 2.12. Since the lower bounds also
require that cES has a non-zero derivative/Dini derivative at `, Propositions 2.20–2.22
are crucial for ensuring that they are widely applicable.
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2.3 Outline of the remainder of the paper

In Section 3 we give a formal definition of f̃`, the field f conditioned to have a saddle
point at the origin at level `, and derive explicit representations for f̃` in special cases.
In Section 4 we study topological properties of f̃`, and use this to deduce the results
outlined in Section 2.1. In Section 5 we consider stochastic monotonicity properties of f̃`,
and complete the proofs of the results in Section 2.2. Appendix A contains miscellaneous
results on the non-degeneracy of Gaussian fields.

3 The field conditioned to have a saddle at the origin

In this section we consider f̃`, the field f conditioned to have a saddle point at the
origin at level `. Using the theory of Palm distributions we give an explicit representation
for f̃`, and in the isotropic case we derive simple expressions for its distribution.

We begin with a general statement expressing f̃` as (a limit of) a Palm distribution
relative to a point process defined by the saddle points of f . Let us first recall the
relevant theory of Palm distributions (see [21, Chapter 11] for background). We define a
point process ζ to be a random measure on Rd such that ζ(B) is integer-valued for every
bounded Borel set B. We say that ζ is simple if, with probability one, ζ({s}) ≤ 1 for every
s ∈ Rd. We say that it is non-degenerate if E(ζ(B)) > 0 for every Borel set B with positive
Lebesgue measure. Let g : R2 → R be a planar random field and S a non-degenerate,
simple point process on R2, and suppose that (g,S) are jointly stationary (i.e. this joint
distribution is invariant under translations). Fix a bounded Borel set B ⊂ R2 such that
0 < E (#{s ∈ B : s ∈ S}) <∞. Then the Palm distribution of g relative to S is defined as
the random field g̃ satisfying, for any Borel cylinder set A,

P (g̃(x) ∈ A) =
E (#{s ∈ B : s ∈ S, g(x− s) ∈ A})

E (#{s ∈ B : s ∈ S})
. (3.1)

This definition is independent of the reference set B, and we may therefore write
g̃ = (g | {0} ∈ S).

Lemma 3.1. Let f be a Gaussian field satisfying Assumption 2.1. For ` ∈ R and ε > 0,
let

f̃[`,`+ε] = (f |{0} ∈ S[`, `+ ε])

be the Palm distribution of f relative to S[`, `+ ε], the point process of saddle points with
level in [`, `+ ε] (this point process is non-degenerate by Lemma A.3). Then there exists a
random field f̃` such that, as ε→ 0, f̃[`,`+ε] converges in distribution to f̃` in the topology
of uniform C2+η convergence on compacts.

It is important to distinguish f̃[`,`+ε] from the conditioned field

(f(t)|∇f(0) = 0,det∇2f(0) < 0, f(0) ∈ [`, `+ ε]),

which is defined via the distributional limit

lim
δ→0

(f(t)|f1(0), f2(0) ∈ [0, δ),det∇2f(0) < 0, f(0) ∈ [`, `+ ε]).

The latter is sometimes known as ‘vertical window conditioning’, and is the standard way
of conditioning on part of a random vector (for a Gaussian vector, this conditioning is
given explicitly by Gaussian regression, see [3, Proposition 1.2]). By constrast, the former
can be thought of as ‘horizontal window conditioning’, and corresponds to sampling a
‘typical’ saddle point (i.e. via the counting measure). The difference between these forms
of conditioning is elegantly explained in [20].

Using basic properties of Gaussian fields, we can derive explicit representations for
f̃[`,`+ε] and f̃`:
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Lemma 3.2. Let f be a Gaussian field satisfying Assumption 2.1 such that (f(0),∇2f(0))

is a non-degenerate Gaussian vector. Define α : R2 → R and β = (β11, β22, β12) : R2 → R3

to be the unique functions satisfying

E
(
f(t)

∣∣f(0) = u,∇2f(0) = U
)

= α(t)u+ β(t) · U

for all u ∈ R, U ∈ R3, and define

γ(s, t) := E
(
f(s)f(t)

∣∣f(0) = 0,∇f(0) = 0,∇2f(0) = 0
)
.

Then

f̃[`,`+ε]
d
= g + z[`,`+ε]α+ Z[`,`+ε] · β,

where g is a centred Gaussian field with covariance function γ, and
(
z[`,`+ε], Z[`,`+ε]

)
is

an independent random vector with density1

p(z[`,`+ε],Z[`,`+ε])(x,X) ∝ |detX| pf(0),∇2f(0)(x,X) 1x∈[`,`+ε]1detX<0.

Moreover,

f̃`
d
= g + `α+ Z` · β

where Z` is a random vector, independent of g, with density

pZ`(X) ∝ |detX| pf(0),∇2f(0)(`,X)1detX<0.

The functions α, β and γ in Lemma 3.2 can be computed explicitly via Gaussian regres-
sion (see [3, Proposition 1.2]). Specifically, define v0 = (f(0), ∂xxf(0), ∂yyf(0), ∂xyf(0))

and

v = (f(0),∇f(0), ∂xxf(0), ∂yyf(0), ∂xyf(0)),

and let Σ0 and Σ be the respective covariance matrices of these vectors. Then

(α(t), β11(t), β22(t), β12(t)) = Cov (f(t), v0) Σ−1
0

and

γ(s, t) = Cov (f(s), f(t))− Cov (f(s), v) Σ−1Cov (f(t), v)
′
.

In the case that (f(0),∇2f(0)) is degenerate (which includes the RPW), the represen-
tations of f̃[`,`+ε] and f̃` in Lemma 3.2 must be modified to accommodate this degeneracy;
in particular, ∇2f(0) should be considered as a vector consisting of two of its coordinates,
chosen so that they are non-degenerate with f(0), and α, β and γ defined accordingly.
For simplicity we will not state this representation formally; for the RPW we state a more
precise description below (in Proposition 3.4).

Lemmas 3.1 and 3.2 are essentially derived in [2, Chapter 6]; we repeat this here for
completeness, and so that we can extend the arguments slightly.

Proof of Lemmas 3.1 and 3.2. We assume that (f(0),∇2f(0)) is non-degenerate, since
the proof in the degenerate case is almost identical. Let T = (t1, . . . , tm) ∈ R2m and

1Here and in the proof of this lemma we treat Z[`,`+ε] interchangeably as the three-dimensional column

vector (Z[`,`+ε],11, Z[`,`+ε],22, Z[`,`+ε],12) and the symmetric 2× 2 matrix
(
Z[`,`+ε],11 Z[`,`+ε],12

Z[`,`+ε],12 Z[`,`+ε],22

)
; which form

we are using will always be clear from context. We also use this convention for Z` and X (introduced below).
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y1, . . . , ym ∈ R. Then by the definition of f̃[`,`+ε], and the Kac-Rice theorem ([1, Corol-
lary 11.2.2]),

P
(
f̃[`,`+ε](t1) ≤ y1, . . . , f̃[`,`+ε](tm) ≤ ym

)
=
E
(
#{s ∈ B(1) : ∇f(s) = 0,det∇2f(s) < 0, f(s) ∈ [`, `+ ε], f(s+ ti) ≤ yi ∀i

)
E (#{s ∈ B(1) : ∇f(s) = 0,det∇2f(s) < 0, f(s) ∈ [`, `+ ε])

=
E
(
|det∇2f(0)|1f(0)∈[`,`+ε]1det∇2f(0)<0

∏m
i=1 1f(ti)≤yi

∣∣∇f(0) = 0
)

E
(
|det∇2f(0)|1f(0)∈[`,`+ε]1det∇2f(0)<0

∣∣∇f(0) = 0
)

=

∫ y1

−∞
· · ·
∫ ym

−∞

∫
R3

∫ `+ε
`
|detX|pT (x, 0, X, U)1detX<0 dx dX∫

R3

∫ `+ε
`
|detX|p(x, 0, X)1detX<0 dx dX

dUm . . . dU1,

where pT and p denote respectively the densities of (f(0),∇f(0),∇2f(0), f(t1), . . . , f(tm))

and (f(0),∇f(0),∇2f(0)). We note that p is non-degenerate since ∇f(0) is independent
of (f(0),∇2f(0)) (this is a standard fact for Gaussian fields with constant variance, see
[1, Chapter 5]) and these vectors are non-degenerate by assumption. The density pT
may be degenerate, in which case we think of it as having atomic mass. Rearranging

these terms slightly, we can express the joint density of
(
f̃[`,`+ε](ti) : i = 1, . . . ,m

)
as

ϕ
[`,`+ε]
T (U) :=

∫
R3

∫ `+ε

`

ψx(X)pT (x, 0, X, U)/p(x, 0, X) dx dX

where

ψx(X) =
|detX|p(x, 0, X)1detX<0∫

R3

∫ `+ε
`
|detX|p(x, 0, X)1detX<0 dx dX

.

Then the characteristic function of
(
f̃[`,`+ε](t1), . . . , f̃[`,`+ε](tm)

)
is given by

ϕ̂
[`,`+ε]
T (θ) =

∫
R3

∫ `+ε

`

ψx(X)

∫
Rm

eiθ·UpT (x, 0, X, U)/p(x, 0, X) dU dx dX. (3.2)

The inner integral of equation (3.2) can be calculated by Gaussian regression (see [3,
Proposition 1.2]). Specifically, let A = (α(t1), . . . , α(tm))′, B = (β(t1), . . . , β(tm))′ and
Γ = (γ(ti, tj))i,j=1,...,m, then(

f(t1), . . . , f(tm)
∣∣f(0) = x,∇f(0) = 0,∇2f(0) = X

)
∼ N (Ax+BX,Γ).

Since pT (x, 0, X, U)/p(x, 0, X) is the probability density of this random variable, we can
substitute the characteristic function of a Gaussian vector into (3.2) to give

ϕ̂
[`,`+ε]
T (θ) =

∫
R3

∫ `+ε

`

ψx(X)eiθ·(Ax+BX)− 1
2 θ
′Γθ dx dX

= e−
1
2 θ
′Γθ

∫
R4 e

iθ·(Ax+BX)|detX|p(x, 0, X)1x∈[`,`+ε]1detX<0 dx dX∫
R4 |detX|p(x, 0, X)1x∈[`,`+ε]1detX<0 dx dX

.

Since the characteristic function of a random vector uniquely specifies its distribution,
we identify the distribution of f̃[`,`+ε] as that given in the statement of Lemma 3.2 (using
the fact that p(x, 0, X) = pf(0),∇2f(0)(x,X) since ∇f(0) is independent of

(
f(0),∇2f(0)

)
).

By inspecting their joint distribution, it is clear that z[`,`+ε]
d−→ ` and Z[`,`+ε]

d−→ Z` as

ε → 0. We now fix a sequence εi ↓ 0, and create a coupling of f̃[`,`+εi] for each i such
that each field consists of the same realisation of g and the sequences {z[`,`+εi]}i∈N and

{Z[`,`+εi]}i∈N converge almost surely. Since K ∈ C4+η′

loc (R2), the same is true of α, β
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and γ and hence g ∈ C2+η
loc (R2) almost surely for the choice of η ∈ (0, η′/2) made at the

beginning of Section 2 (Kolmogorov’s theorem [26, Appendix A]). It is therefore clear
that the coupled fields f̃[`,`+εi] converge almost surely in the C2+η topology uniformly on

compact sets as i→∞ to f̃`. This completes the proof of the lemmas.

We now present simpler descriptions for f̃` in the case of isotropic fields. In this case
it is quite natural to express the Hessian component Z` in terms of its eigenvalues λ1 < λ2

and the argument θ of the first eigenvector. Recall the parameter χ = −k′(0)/
√
k′′(0) ∈

(0,
√

2], where K(t) = k(|t|2). Again we must distinguish the case in which (f(0),∇2f(0))

is degenerate, which corresponds to χ =
√

2 and implies that f is (a rescaled version of)
the RPW.

Proposition 3.3. Let f be an isotropic field satisfying Assumption 2.1 such that χ <
√

2.
Then

f̃`(·)
d
= g(·) + `α(·) + λ1b1(·, θ) + λ2b2(·, θ),

where g, α and β are as in Lemma 3.2,

b1(t, θ) = cos2(θ)β11(t) + sin2(θ)β22(t) + sin(θ) cos(θ)β12(t),

b2(t, θ) = sin2(θ)β11(t) + cos2(θ)β22(t) + sin(θ) cos(θ)β12(t),

θ is an independent random variable uniform on [0, 2π), and (λ1, λ2) is an independent
random vector with density proportional to

q`(x, y) := |x|y(y − x)1y>0>x exp

(
− 1

2σ2

(
(x− µ`)2 + (y − µ`)2 + 2τ(x− µ`)(y − µ`)

))
,

where

µ = 2k′(0) , σ2 =
16k′′(0)(2− χ2)

3− χ2
and τ =

χ2 − 1

3− χ2
. (3.3)

Proof. Recall the random vector Z` from Lemma 3.2, which we view as a 2×2 symmetric
matrix. Let λ1 < λ2 be the eigenvalues of Z`, and let θ be the argument of the eigenvector
associated to λ1. If h denotes the bijection which maps Z` to Λ := (λ1, λ2, θ), then for any
Borel set A

P (Λ ∈ h(A)) =
E
(∣∣det∇2f(0)

∣∣ 1det∇2f(0)<0,∇2f(0)∈A
∣∣f(0) = `

)
E
(
|det∇2f(0)| 1det∇2f(0)<0

∣∣f(0) = `
) .

Since f is isotropic and (f(0),∇2f(0)) is non-degenerate, [12] derives the density of
the ordered eigenvalues of (∇2f(0)|f(0) = `) and the argument of the corresponding
eigenvectors as that given above.

Proposition 3.4. Let f be the Random Plane Wave. Then

f̃`
d
= g + `α+ Z` · β,

where g is a centred Gaussian field with covariance function γ (defined as in Lemma 3.2),
α, β are defined as

α(t) = J0(|t|) + 2
t21 − t22
|t|2

J2 (|t|) ,

β11(t) = 4
t21 − t22
|t|2

J2(|t|), β12(t) = 8
t1t2
|t|2

J2(|t|),
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and Z` = (Z`11, Z
`
12)t is an independent random vector with density

ψ`(x, y) ∝
(
x(x+ `) + y2

)
1(x(x+`)+y2)>0 pf(0),f11(0),f12(0)(`, x, y).

Alternatively, f̃` has the representation

f̃`(t) = g(t) + ` · [J0(|t|) + 2 cos(2(θ − arg t))J2(|t|)] + λ · 4 cos(2(θ − arg t))J2(|t|),

where arg t denotes the argument of t and (θ, λ) = (θ, λ`) is a random vector, independent
of g, with density

pλ`,θ(x, y) ∝ x(x+ `)(2x+ `)e−4x(x+`)1x>max{0,−`}1y∈[0,2π). (3.4)

Proof. The representation
f̃` = g + `α+ Z` · β

follows from an argument similar to that used to prove Lemma 3.2. The functions α and
β can be explicitly calculated using Gaussian regression (see [3, Proposition 1.2] for
example). Next we note that (Z`11, Z

`
12) is supported on the region for which

det

(
Z`11 Z`12

Z`12 −Z`11 − `.

)
< 0.

Therefore this matrix almost surely has a unique, positive eigenvalue λ and corresponding
eigenvector with argument θ. By explicitly diagonalising this matrix, we obtain a formula
for λ and θ:

Z`11 + `/2 = (λ+ `/2) cos(2θ)

Z`12 = (λ+ `/2) sin(2θ).

By the standard change of variable formula (and explicitly evaluating ψ` in terms of the
covariance of the RPW) we can calculate the joint density of (λ, θ) to be equal to the
expression in (3.4).

4 Differentiability of excursion/level set functionals

In this section we prove the results stated in Section 2.1. We begin by studying the
space C2+η

Reg of functions h ∈ C2+η
loc

(
R2
)

which have a non-degenerate critical point at

the origin and no other critical points at level h(0). We will also use the space C2+η
Reg (R)

which is the set of all h ∈ C2+η
Reg such that h(0) is not a critical level of h|∂B(R). We endow

these spaces with the C2+η
loc topology.

By showing that f̃` ∈ C2+η
Reg (R) almost surely, we prove that f̃` having an upper (or

lower) connected saddle point in a compact region is a continuity event, from this we
deduce Theorem 2.11 (with the other results following as consequences).

Lemma 4.1. If h ∈ C2+η
Reg has a saddle point at the origin, then this saddle point is either

upper connected, lower connected or an infinite four-arm saddle.

Proof. For a small enough neighbourhood B of the origin, the level set {h = h(0)} in
B \ {0} consists of four curves that connect 0 to ∂B (the Morse lemma [24, Lemma 2.2]).
If the connected components of these curves in R2 \ B are all unbounded, the saddle
point must be infinite four-arm. If one of them is finite, then by the implicit function
theorem it is a simple C1 curve joining two points on ∂B. Hence the saddle point is
either upper connected (if the field takes values larger than h(0) on the outer boundary
of the loop) or lower connected (if the field takes values smaller the h(0) on the outer
boundary of the loop).
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We now consider saddle points which are upper or lower connected in a compact
domain. Specifically, for a C2 function h with a saddle point x0 we say that x0 is R-lower
connected if it is in the closure of only one component of {x ∈ B(x0, R) : h(x) < h(x0)}.
We make an analogous definition for R-upper connected saddles.

Lemma 4.2. Let s−(R) be the subset of functions h ∈ C2+η
Reg (R) such that the origin is

an R-lower connected saddle point of h, then s−(R) is open and closed in C2+η
Reg (R). The

same is true for the set s+(R) of functions with R-upper connected saddle points.

Proof. Let h ∈ C2+η
Reg (R) have a saddle point at the origin which is R-lower connected; we

will find a neighbourhood around h which contains only functions with such saddle points
at the origin. First we choose r ∈ (0, 1) sufficiently small that h has a four-arm saddle in
B(r). Since the origin is a non-degenerate saddle point for h, ∇2h(0) has eigenvalues
λ1 < 0 < λ2 and corresponding eigenvectors v1, v2. We now choose a neighbourhood
N1 ⊂ C2+η

Reg (R) of h (in the topology of uniform C2+η convergence) such that for all
g ∈ N1,

∂v1,v1g(0) < λ1/2 and ∂v2,v2g(0) > λ2/2.

This ensures that each function in N1 also has a saddle point at the origin.
Next we choose N2 ⊂ C2+η

Reg (R) such that for each g ∈ N2,

‖g‖C2+η(B(R)) ≤ 2‖h‖C2+η(B(R)).

We consider the four line segments joining 0 to ∂B(r) parallel to v1 and v2 and we reduce
r relative to ‖h‖C2+η(B(R)) so that for each g ∈ N1 ∩N2, the directional derivative of g on
this line segment (parallel to the line segment) has constant sign. This ensures that for
each such g the saddle point at the origin is four-arm in B(r).

There exist two connected subsets A1, A2 of ∂B(r) such that h < h(0)− 3ε on A1 ∪A2

for some ε > 0 and A1 and A2 are in different components of B(r) ∩ {h < h(0)} (see
Figure 4). We next choose a neighbourhood N3 ⊂ C2+η

Reg (R) of h such that A1 and A2 have
the same properties for any function g ∈ N3, with 3ε replaced by 2ε, and |g(0)− h(0)| < ε.

B(r)
−

−
+ +

{h = h(0)}
A1

A2

γ

Figure 4: Approximating anR-lower connected saddle point in the C2+η
(
B(R)

)
topology.

By definition of a saddle being R-lower connected, there is a curve γ in B(R) joining
A1 to A2 in {h < h(0)} and h is bounded above by h(0)− 3δ on γ for some δ > 0. Since γ
is compact we can find a neighbourhood N4 such that g < h(0)− 2δ on γ for all g ∈ N4

and |h(0)− g(0)| < δ. Combining these observation, we see that N := N1 ∩N2 ∩N3 ∩N4

is a neighbourhood of h (in C2+η
Reg (R)) and any g ∈ N has a saddle point at the origin

which is lower connected in B(R) and so the set of functions with such saddle points is
open, as required.
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The set C2+η
Reg can be partitioned into sets of functions which have either a local

maximum, a local minimum, a saddle point which is four-arm in B(R) or a saddle point
which is R-upper/lower connected at the origin. Arguments which are very similar to
those above show that each of these subsets is open, hence proving the statement of the
lemma. (For saddle points which are four-arm in B(R), we use the fact that h(0) is not a
critical level of h|∂B(R) which implies that the four level lines emanating from the origin
intersect ∂B(R) at different points.)

We next confirm that f̃` ∈ C2+η
Reg (R) almost surely:

Lemma 4.3. If f is a Gaussian field satisfying Assumptions 2.1 and 2.7, then for any
` ∈ R and R > 0, f̃` ∈ C2+η

Reg (R) almost surely.

Proof. To simplify the presentation we assume that (f(0),∇2f(0)) is non-degenerate; the
proof in the degenerate case is similar. Recall the representation of f̃` in Lemma 3.2. By
the definitions of α, β and γ, f̃` is almost surely in C2+η

loc (R2), and has a critical point at
the origin at level `. By evaluating the second order derivatives of α, β and γ, it follows
that ∇2f̃`(0) = Z`. Since the density of Z` is identically zero on the region where its
determinant is zero, det∇2f̃`(0) 6= 0 almost surely, and so the critical point at the origin
is non-degenerate.

Next we show that f̃` almost surely has no other critical points at level `. Let
Tn = B(n)\B( 1

n ) and consider (∇f̃`, f̃` − `) : Tn → R3. Bulinskaya’s lemma ([1,
Lemma 11.2.10]) states that this function almost surely has no zeroes in Tn provided the
univariate densities of (∇f̃`(t), f̃`(t)) are bounded in a neighbourhood of (0, `) uniformly
over t ∈ Tn. Since g and Z` are independent, the density of (∇f̃`(t), f̃`(t)) is given by

p∇f̃`(t),f̃`(t)(x) =

∫
R3

p∇g(t),g(t)(x− u)p∇(Z`·β(t)+`α(t)),Z`·β(t)+`α(t)(u) du

≤ sup
x∈R3

p∇g(t),g(t)(x)

∫
R3

p∇(Z`·β(t)+`α(t)),Z`·β(t)+`α(t)(u) du

= sup
x∈R3

p∇g(t),g(t)(x).

Therefore, to show that p∇f̃`(t),f̃`(t) is bounded, it is sufficient to show that the density
of (∇g(t), g(t)) is bounded uniformly in t. Since these densities are Gaussian, this is
equivalent to showing that the determinant of the covariance matrix of (∇g(t), g(t)) is
bounded away from 0 on Tn. However this is the determinant of

Cov
(
∇f(t), f(t)

∣∣f(0),∇f(0),∇2f(0)
)

which is non-degenerate for each t ∈ Tn by Assumption 2.7. Since this determinant is
continuous in t, it is bounded away from 0 on the compact set Tn. Taking the countable
union of Tn for n ∈ N then shows that f̃` almost surely has no critical points at level ` in
R2\{0}.

To verify that f̃`|∂B(R) almost surely has no critical points at level `, we apply an
identical argument to ((

− sin(θ)

cos(θ)

)
· ∇f̃`(y), f̃`(y)

)
where y = (R cos(θ), R sin(θ)). This completes the proof that f̃` ∈ C2+η

Reg (R) almost
surely.

We are now ready to prove Theorem 2.11. Let N (R)
s− [`1, `2] denote the number of

R-lower connected saddle points of f in B(1) with height in [`1, `2]. If N (R)
s− is replaced

with Ns− or Ns, we make a corresponding definition for lower connected saddle points
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or saddle points respectively. Recall that s−(R) is the subset of functions in C2+η
Reg (R)

with an R-lower connected saddle point at the origin. We also define s− and s+ to be the
subsets of C2+η

Reg with lower and upper connected saddle points at the origin respectively.

Proof of Theorem 2.11. Let f be a field satisfying Assumptions 2.1 and 2.7. The first step
is to show that p∗s− is lower semi-continuous by expressing it as the pointwise supremum
of a sequence of continuous functions. Let ` ∈ R and ε > 0 and we fix R > 0. We now
claim that

E
(
N

(R)
s− [`, `+ ε]

)
E(Ns[`, `+ ε])

= P
(
f̃[`,`+ε] ∈ s−(R)

)
.

We first note that, by Lemma 4.2, the event s−(R) is contained in the Borel σ-algebra
generated by the C2+η

Reg (R) topology and that f̃[`,`+ε] is measurable with respect to this
σ-algebra. Furthermore, by an elementary argument (see, for example, [26, Lemma A.1])
this σ-algebra is generated by cylinder sets; those which depend on the value of the
function at only finitely many points. Since the distribution of f̃[`,`+ε] on cylinder sets
is defined in (3.1) as an empirical measure, these two measures must coincide on the
σ-algebra generated by this π-system. This verifies the claim.

By Lemma 3.1, f̃[`,`+ε] converges in distribution to f̃` (in the C2+η
loc topology) as ε→ 0,

and since having a saddle point at the origin which is R-lower connected is a continuity
event for f̃` (Lemmas 4.2 and 4.3), the portmanteau lemma implies that

P
(
f̃[`,`+ε] ∈ s−(R)

)
→ P

(
f̃` ∈ s−(R)

)
as ε → 0. By inspecting the form of pZ` it is clear that f̃`

d−→ f̃`0 as ` → `0 in the C2+η
loc

topology. So by applying the portmanteau lemma again, we see that P(f̃` ∈ s−(R)) is
continuous in `. Hence the function

p
(R)
s− (`) := ps(`)P

(
f̃` ∈ s−(R)

)
, (4.1)

is continuous in `. Now note that

1

ε
E
(
N

(R)
s− [`, `+ ε]

)
=
E (Ns[`, `+ ε])

ε

E
(
N

(R)
s− [`, `+ ε]

)
E(Ns[`, `+ ε])

→ p
(R)
s− (`)

as ε→ 0 (by Proposition 2.5). Hence E(N
(R)
s− [−∞, `]) is differentiable in ` with derivative

p
(R)
s− (`). We now allow R to vary; since s−(R) is non-decreasing in R and ∪R>0s

−(R) = s−,
taking the limit of (4.1) shows that

p∗s−(`) = lim
R→∞

p
(R)
s− (`)

for each ` ∈ R. Hence p∗s− is indeed a pointwise supremum of continuous functions, and
so is lower semi-continuous.

We next prove that p∗s− = ps− almost everywhere. Let a < b, then since |p∗s− − ps− | is
bounded, by dominated convergence∫ b

a

ps−(x)− p∗s−(x) dx = lim
R→∞

∫ b

a

ps−(x)− p(R)
s− (x) dx

= lim
R→∞

E
(
Ns− [a, b]−N (R)

s− [a, b]
)

= 0,

where in the last line we have used the definition of ps− , the fundamental theorem of
calculus applied to E(N

(R)
s− [−∞, `]) (along with the differentiability proven above), and
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then dominated convergence once again. Since a and b are arbitrary, we conclude that
p∗s− = ps− almost everywhere.

To finish the proof we show that (2.5), the condition that f̃` does not have an infinite
four-arm saddle, implies the continuity of p∗s− . Observe that, by repeating the arguments
above, we may define the lower semi-continuous function

p∗s+(`) := ps(`)P
(
f̃` ∈ s+

)
which is a version of ps+ . By Lemmas 4.1 and 4.3, the saddle point of f̃` at the origin must
be either upper connected, lower connected or an infinite four-arm saddle. Therefore

1− P
(
f̃` has an infinite four-arm saddle

)
= P

(
f̃` ∈ s+ ∪ s−

)
=
p∗s+(`)

ps(`)
+
p∗s−(`)

ps(`)
. (4.2)

(Note that ps(`) > 0 by Lemma A.3.) Now suppose that (2.5) holds, that is, for all ` ∈ (a, b),
f̃` almost surely does not have an infinite four-arm saddle point at the origin. By (4.2)
we see that p∗s+(`) = ps(`)− p∗s−(`) for all ` ∈ (a, b). Since p∗s+ is lower semi-continuous
(and ps is continuous), we deduce that p∗s− is upper semi-continuous on (a, b). Hence we
have shown that p∗s− is both upper and lower semi-continuous on (a, b), which completes
the result.

As mentioned previously, Theorem 2.10 follows from Theorem 2.11 once we verify
condition (2.5). This is done in the next lemma:

Lemma 4.4. Let f be a Gaussian field satisfying Assumptions 2.1 and 2.8–2.9. Then for
every ` ≥ 0 and r > 0,

P
(
f̃` ∈ Arm`(r,R)

)
→ 0 (4.3)

as R→∞. In particular, for all ` ∈ R, f̃` almost surely does not have an infinite four-arm
saddle point at the origin.

Proof. We first note that if f̃` has an infinite four-arm saddle at the origin, then both
{f̃` ≥ `} and {f̃` ≤ `} = {−f̃` ≥ −`} have unbounded components containing the origin.
Then, since f̃` and −f̃−` have the same distribution by Lemma 3.2, the second claim of
this lemma follows from the first.

Since the event Arm`(r,R) is weakly increasing in r, it is sufficient to prove (4.3) for
a sequence rR →∞ as R→∞. This allows us to make use of the fact that, far from the
origin, the distribution of f̃` is close to that of f .

By Assumption 2.8 and Lemma A.2 we know that (f(0),∇2f(0)) is non-degenerate.
Recall the representation for f̃` in Lemma 3.2

f̃` = g + `α+ Z` · β,

and recall also the explicit expressions for α, β and the covariance of g derived after
this lemma. Since this covariance is expressed as the difference of two positive definite
functions, if we let f1 be a centred Gaussian field with covariance

K1(s, t) = Cov (f(s), v) Σ−1Cov (f(t), v)
′
,

then we can decompose f = g + f1, where f1 and g are independent. Since K1 can be
expressed as a linear combination of ∂k1K(s)∂k2K(t), for |k1|, |k2| ≤ 2, by Assumption 2.8
there exists c1, ν > 0 such that, for all r > 1,

sup
s,t/∈B(r)

sup
|k|≤2

∣∣∂kK1(s, t)
∣∣ ≤ c1r−2(1+ν). (4.4)
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Moreover, since α, β can be expressed as a linear combination of ∂kK(t), for |k| ≤ 2, by
Assumption 2.8 there exists c2, ν > 0 such that

sup
|t|>r
|α(t)| ≤ c2r−(1+ν) and sup

|t|>r
‖β(t)‖∞ ≤ c2r−(1+ν). (4.5)

Next, we fix ` ≥ 0 and apply a Cameron-Martin argument to the unconditional field
f . Specifically, by [25, Corollary 3.7] (valid by the condition on the spectral density in
Assumption 2.8, and since Arm`(r,R) is an increasing event with respect to the field)
there exists c3, r0 > 0 such that for all r > r0 the following holds: if F : R2 → R is a
continuous random field coupled with f such that

P
(
‖f − F‖∞,A(r,R) ≥ ε

)
≤ δ

where ‖ · ‖∞,A(r,R) denotes the supremum norm on A(r,R) the centred annulus of inner
radius r and outer radius R, then

P (F ∈ Arm`(r,R)) ≤ P (f ∈ Arm`(r,R)) + δ + c3Rε. (4.6)

We will apply this bound to F = f̃`. Note that, by the union bound,

P

(∥∥∥f − f̃`∥∥∥
∞,A(r,R)

≥ ε
)

≤ P
(
‖`α+ Z` · β‖∞,A(r,R) ≥ ε/2

)
+ P

(
‖f1‖∞,A(r,R) ≥ ε/2

)
≤ 1

{
`‖α‖∞,A(r,R) ≥ ε/8

}
+

∑
i∈{11,12,22}

P
(
|Z`,i|‖βi‖∞,A(r,R) ≥ ε/8

)
+ P

(
‖f1‖∞,A(r,R) ≥ ε/2

)
(4.7)

where Z`,i denotes the elements of the random vector Z`. We now show that, for a
suitable choice of r = rR →∞ and ε = εR → 0, the three terms in (4.7) all decay to zero
as R→∞.

By (4.5), and since Z`,i is almost surely finite, the first two terms in (4.7) converge
to zero as long as εr1+ν →∞. If we assume this convergence is sufficiently fast (to be
specified below) then it is a standard estimate for the norm of a Gaussian field that the
third term of (4.7) also converges to zero. This argument is essentially the same as [25,
Lemma 3.12], but our setting is slightly different so we give a complete proof.

Let Bx(1) denote the ball of radius 1 centred at x. Covering A(r,R) with O(R2) unit
balls, and by the union bound,

P
(
‖f1‖∞,A(r,R) ≥ ε/2

)
≤ c3R2 sup

x∈A(r,R)

P
(
‖f1‖∞,Bx(1)) ≥ ε/2

)
.

By the Borell–TIS inequality ([1, Theorem 2.1.1]), for all u > 0,

P
(
‖f1‖∞,Bx(1)) ≥ mx + u

)
≤ 2e−u

2/(2σ2
x),

where
mx = E[‖f1‖∞,Bx(1)] and σ2

x = sup
y∈Bx(1)

K1(y, y).

By Kolmogorov’s theorem [26, Appendix A.9], there is a c4 > 0 such that

mx < c4 sup
s,t∈Bx(1)

sup
|α1|,|α2|≤1

(∂α1,α2K1(s, t))
1/2

.

Therefore, by (4.4),

sup
x∈A(r,R)

mx < c5r
−1−ν and sup

x∈A(r,R)

σ2
x < c5r

−2−2ν .
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Taking u = ε/4 and assuming that ε/4 > c5r
−1−ν we have

P
(
‖f1‖∞,A(r,R) ≥ ε/2

)
≤ 2c6R

2 exp(−c7ε2r2+2ν).

To finish, we take

r =
R

log(R)
and ε =

1

R log(R)

and observe that for this choice the right hand side of the estimate above converges to 0

as R→∞. Combining all of these estimates together we have that the right hand side
of (4.7) tends to zero as R→∞.

Substituting into (4.6), and noting that r/R → 0 and Rε → 0 as R → ∞, proves
that P(f̃` ∈ Arm`(r,R)) can be made arbitrarily small, which completes the proof of the
lemma.

Proof of Theorem 2.10. This is immediate from Theorem 2.11 and Lemma 4.4.

To end the section we prove the remaining results stated in Section 2.1, namely
Corollary 2.12 and Proposition 2.14.

Proof of Corollary 2.12. By [6, Lemmas 2.4 and 4.5], E(N4-arm(R)) = O(R) as R → ∞,
so it suffices to prove the other bound here. Recall that A(R− r,R) denotes the annulus
of inner radius R− r and outer radius R. We first note that for any 1 < r < R

N4-arm(R, [aR, bR]) ≤Nc (A (R− r,R) , [aR, bR]) +N4-arm,r (B (R− r) , [aR, bR])

where, by a slight abuse of notation, Nc (A (R− r,R) , [aR, bR]) denotes the number of
critical points in A (R− r,R) which have level in [aR, bR], and N4-arm,r(B(R− r), [aR, bR])

denotes the number of saddle points t ∈ B(R− r) which are four-arm in B(t, r) and have
level in [aR, bR]. Using the Kac-Rice theorem ([1, Corollary 11.2.2]) and the independence
of (f(0),∇2f(0)) and ∇f(0)

E (Nc(A(R− r,R), [aR, bR]))

=

∫
A(R−r,R)

E
(∣∣det

(
∇2f(0)

)∣∣1f(0)∈[aR,bR]

∣∣∇f(0) = 0
)
p∇f(0)(0) dt

= c1
(
R2 − (R− r)2

) ∫ bR

aR

E
(∣∣det

(
∇2f(0)

)∣∣∣∣f(0) = x
)
pf(0)(x) dx

≤ c2Rr · (bR − aR)

(4.8)

for some c1, c2 > 0 independent of R. By stationarity of f

E(N4-arm,r(B(R− r), [aR, bR])) ≤ R2 E (N4-arm,r(B(1), [aR, bR]))

= πR2

∫ bR

aR

ps(x)− p(r)
s− (x)− p(r)

s+ (x) dx
(4.9)

where p(r)
s− and p(r)

s+ are the continuous functions defined as in the proof of Theorem 2.11.

In this proof it is shown that as r → ∞, p(r)
s− + p

(r)
s+ converges pointwise monotonically

to p∗s− + p∗s+ = ps which is continuous. Therefore by Dini’s theorem this convergence is
uniform on [a, b] and so for any ε > 0 taking r sufficiently large relative to ε ensures that
the right hand side of (4.9) is bounded above by εR2(bR − aR). If we choose r depending
on R such that r →∞ but r/R→ 0 as R→∞, then combining (4.8) and (4.9) proves the
corollary.
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Proof of Proposition 2.14. By Theorem 2.6 and the identities in Proposition 2.5,

cLS(`) = cES(`) + cES(−`). (4.10)

Let us also consider the function

h(`) = cES(`)− cES(−`). (4.11)

In [6, Corollary 1.12], this is interpreted as the asymptotic mean Euler characteristic of
the excursion set at level `, and hence shown via explicit calculation to be equal to the
C1 function

h(`) =
√

det∇2K(0)
`

(2π)3/2
e−`

2/2.

If cLS(0) = 0, then it follows from (4.10) that cES(0) = 0. Similarly, if cLS is differentiable
at 0, then by (4.10) and the differentiability of h, cES is also differentiable at 0.

It remains to show that if cES is differentiable at 0 then cES(0) 6= 0. Suppose for
the sake of contradiction that cES(0) = 0. Then by the non-negativity of cES , we have
c′ES(0) = 0. Hence, by (4.11), h′(0) = 0. Since h has critical points only at ` = ±1, we
have derived the necessary contradiction.

Remark 4.5. Assuming differentiability of cES or cLS at `, the above argument actually
shows that cLS(`) > 0 for all ` 6= ±1 (although it apparently says nothing about the
positivity of cES(`) for ` 6= 0).

5 Monotonicity results

In this section we prove the monotonicity results stated in Section 2.2. The main inter-
mediate step is to show that the finite-dimensional projections of f̃` − ` are stochastically
decreasing in `, which we do in the next subsection.

5.1 Stochastic monotonicity

Our analysis differs depending on whether we deal with the RPW or a general
isotropic field satisfying Assumption 2.15, the RPW case being somewhat simpler.

5.1.1 Stochastic monotonicity for the RPW

Let f be the RPW. The first step is to show, via explicit calculation, that f̃` − ` is
stochastically decreasing in ` at every point.

By Proposition 3.4, f̃` has the distribution

f̃`(t) = g(t) + ` · [J0(|t|) + 2 cos(2(θ − arg t))J2(|t|)] + λ · 4 cos(2(θ − arg t))J2(|t|) (5.1)

for the random vector (θ, λ) defined in that proposition. To simplify notation, we define

a := a(t, θ) = 1− J0(|t|)− 2 cos(2(θ − arg t))J2(|t|)
b := b(t, θ) = 4 cos(2(θ − arg t))J2(|t|).

The key fact leading to stochastic monotonicity is that, by Lemma 5.1 below, a(t, θ) ≥ 0

for all t and θ. This is equivalent to the statement that for all t ∈ R2

α(t) = E (f(t) | f(0) = 1, f11(0) = f12(0) = 0) ≤ 1.

For general isotropic fields, we show in Lemma 5.6 that Assumption 2.15 implies α(t) ≤ 1

(recall that α has a slightly different definition in the general case, see Lemma 3.2).
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Lemma 5.1. For all t ∈ R2 and θ ∈ R,

a = a(t, θ) = 1− J0(|t|)− 2 cos(2(θ − arg t))J2(|t|) ≥ 0.

Proof. It is sufficient to prove that, for s ≥ 0,

1− J0(s)− 2J2(s) ≥ 0 and 1− J0(s) + 2J2(s) ≥ 0.

By the identity 2J1(s)/s = J0(s) + J2(s) and an explicit uniform bound on
√
s|Jn(s)| given

in [27, Theorem 2.1], the first inequality holds for all s > 4. Hence, since 1 − J0(0) −
2J2(0) = 0 and d

ds (1 − J0(s) − 2J2(s)) = J3(s) (which is non-negative for s ∈ [0, 4]), the
first inequality holds for all s ≥ 0.

The same bound from [27] shows that the second inequality holds for s ≥ 11. Since
|J0| ≤ 1 everywhere and J2(s) ≥ 0 for s ∈ [0, 5] ∪ [9, 11], the inequality also holds on
these intervals. We verify the second inequality on the remaining compact set [5, 9] by
inspection. More precisely, since∣∣∣∣ dds (1− J0(s) + 2J2(s))

∣∣∣∣ = |2J1(s)− J3(s)| ≤ 2|J1(s)|+ |J3(s)| < 2,

it suffices to check that 1− J0(s) + 2J2(s) > 0.08 for all s ∈ {5 + 4i/100 : i = 0, 1, . . . , 100}.

Remark 5.2. We prove the above lemma by somewhat explicit computations. We believe
that there might be a more conceptual proof of this statement.

We shall actually show the slightly stronger statement that f̃`− ` is pointwise stochas-
tically decreasing conditional on all values of (g, θ):

Lemma 5.3. Let f be the RPW. For t ∈ R2 and c ∈ R

P
(
f̃`(t)− ` ≤ c

∣∣∣g, θ)
is non-decreasing in ` ∈ R.

Proof. Given the representation in (5.1), we have

P
(
f̃`(t)− ` ≤ c

∣∣∣g, θ) =


P (λ ≤ (c− g(t) + a`)/b) if b(t, θ) > 0,

P (λ ≥ (c− g(t) + a`)/b) if b(t, θ) < 0,

1a`+c−g(t)≥0 if b(t, θ) = 0.

(5.2)

It remains to show that each of the expressions on the right-hand side of (5.2) are
non-decreasing in ` for all values of g, θ and c. Recall that a = a(t, θ) ≥ 0 by Lemma 5.1.
Hence 1a`+c−g(t)≥0 is clearly non-decreasing in `. Moreover, after integrating (3.4), we
see that for a differentiable function h : R→ R

d

d`
P (λ ≤ h(`)) = pλ(h)

(
h′(`) +

h(`)

2h(`) + `

)
≤ pλ(h) (h′(`) + 1) (5.3)

where the last inequality follows from the fact that pλ(h) is zero unless h > 0∨ (−`). Now
let h(`) = (c− g(t) + a`)/b, and first suppose b > 0. Then h′(`) = a/b > 0, h/(2h+ `) ≥ 0

on the region h > 0 ∨ (−`) and pλ(h) ≥ 0 (as a probability density) so (5.3) shows that
the left hand side of (5.2) is non-decreasing whenever b > 0. Finally we suppose b < 0

and note that

h′(`) + 1 =
a(t, θ) + b(t, θ)

b(t, θ)
=

1− J0(|t|) + 2 cos(2(θ − arg t))J2(|t|)
b(t, θ)

=
a(t, θ + π/2)

b(t, θ)
≤ 0.

So once again, (5.3) shows the left hand side of (5.2) is non-decreasing whenever b < 0,
completing the proof of the lemma.
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We now extend this result to finite-dimensional projections of f̃` − `. Recall that a
random vector X = (X1, . . . , Xn) is said to stochastically dominate a random vector Y =

(Y1, . . . , Yn), written X � Y , if E(g(X)) ≥ E(g(Y )) for any coordinate-wise increasing
g : Rn → R. Clearly, if X � Y then Xi � Yi for each i = 1, . . . , n. The converse is not
true in general, but a useful sufficient condition can be formulated using the notion of
copulas.

Let X = (X1, . . . , Xn), where Xi has cumulative density function Fi and induced
probability measure Pi. Then Sklar’s theorem states that there exists a (unique on
Πn
i=1Range(Pi)) function CopX : [0, 1]n → [0, 1], known as the copula of X, such that

P (X ∈ A1 × · · · ×An) = CopX(P1(A1), . . . ,Pn(An))

for all A1, . . . , An ∈ B(R). The copula is equivalently specified by

CopX(u1, . . . , un) = P (F1(X1) ≤ u1, . . . , Fn(Xn) ≤ un) , (5.4)

i.e. CopX is the joint cumulative density function of the collection of uniform-[0,1] random
variables F1(X1), . . . , Fn(Xn).

Theorem 5.4 ([32, Theorem 2]). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be random
vectors with induced marginal probability measures P1, . . . ,Pn and Q1, . . . ,Qn respec-
tively. If CopX = CopY , Πn

i=1Range(Pi) = Πn
i=1Range(Qi), and Xi � Yi for each i, then

X � Y .

Using this theorem, we extend Lemma 5.3 to show the stochastic monotonicity of the
finite-dimensional projections f̃` − `, conditional on any g, θ.

Lemma 5.5. Let f be the RPW. For `1 < `2 and t1, . . . , tn ∈ R2,(
f̃`1(t1)− `1, . . . , f̃`1(tn)− `1

∣∣∣g, θ) � (f̃`2(t1)− `2, . . . , f̃`2(tn)− `2
∣∣∣g, θ) . (5.5)

Proof. By Theorem 5.4 it is sufficient to show that the random vectors in (5.5) have the
same copula (these copulas are uniquely defined on the same domain, and the stochastic
domination of the marginals follows from Lemma 5.3).

Fix ` ∈ R and t1, . . . , tn ∈ R2, and consider the copula

CopZ := Cop
f̃`(t1)−`,...,f̃`(tn)−`

∣∣g,θ.
By the definition of a and b, we can express

f̃`(t)− ` = g(t)− `a(t, θ) + λ`b(t, θ)

for deterministic functions a, b. Since g(ti), `a(ti, θ) and b(ti, θ) are constants under
the conditioning on (g, θ), and since copulas are invariant under strictly increasing
transformations,

CopZ = Cop
λ`·sign(b(t1,θ)),...,λ`·sign(b(tn,θ))

∣∣g,θ = Cop
λ`·sign(b(t1,θ)),...,λ`·sign(b(tn,θ))

∣∣θ,
where the last equality holds since g is independent of λ = λ` and θ. Notice that the
random vector (λ` · sign(b(t1, θ)), . . . , λ` · sign(b(tn, θ))

∣∣θ) consists of λ` multiplied by a
constant vector (with elements taking values 1, −1 or 0). Hence by considering the
alternative characterisation of a copula in (5.4), it is clear that CopZ does not depend on
the distribution of λ`, and so is independent of `.
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5.1.2 Stochastic monotonicity in the general isotropic case

The copula argument in the RPW case relies crucially on the degeneracy of RPW, which
implies that after conditioning on θ and g, the field depends only on the single random
variable λ. For general isotropic fields, f̃` is defined in terms of two eigenvalues, so this
argument fails. Instead we use a different method that works with the finite-dimensional
projections directly.

Let f satisfy Assumptions 2.1, 2.7 and 2.15. Recall from Proposition 3.3 that

f̃`(t) = g(t) + `α(t) + λ1b1(t, θ) + λ2b2(t, θ)

for α, b1, b2 as stated in the proposition (recall that b1 and b2 are defined in terms of β).
The role of Assumption 2.15 is to ensure the following inequalities hold for α, b1, b2:

Lemma 5.6. Let f satisfy Assumptions 2.1, 2.7 and 2.15. For all t ∈ R2 and θ ∈ [0, 2π),

b1(t, θ) ≥ 0 , b2(t, θ) ≥ 0 and α(t) ≤ 1.

Proof. From the definition of b1(t, θ) and β, it is immediate that b1(t, 0) is the quantity
given in Assumption 2.15 to be non-negative for all values of t. Since f is isotropic, b1 is
non-negative for all values of θ. (By the identity cos(θ) = sin(θ + π/2), this also means
that b2 is non-negative.) Similarly, α is the function given in Assumption 2.15 to be
bounded above by 1.

Lemma 5.7. Let f satisfy Assumptions 2.1, 2.7 and 2.15. For any t1, . . . , tn ∈ R2 and
u1, . . . , un ∈ R,

P
(
f̃`(ti)− ` ≤ ui ∀i = 1, . . . , n

∣∣∣g, θ)
is non-decreasing in ` ∈ R.

Proof. Since the ui are arbitrary, we may assume g(ti) = 0 for all i. We define the region

A` =
{

(x, y) ∈ R2 : xb1(ti, θ) + yb2(ti, θ) ≤ ui + (1− α(ti))`, ∀i = 1, . . . , n
}

so that f̃`(ti)− ` ≤ ui for all i if and only if (λ1, λ2) ∈ A`. It is enough to prove that the
probability of the latter event is non-decreasing in ` because (λ1, λ2) is independent of
(g, θ). Given the density of (λ1, λ2) in Proposition 3.3,

d

d`
P ((λ1, λ2) ∈ A`) =

d

d`

∫
A`
q`(x, y) dxdy∫

R2 q`(x, y) dxdy

=

∫
R2 q` dxdy · dd`

∫
A`
q` dxdy −

∫
A`
q` dxdy · dd`

∫
R2 q` dxdy(∫

R2 q` dxdy
)2 .

Since b1, b2 ≥ 0 and α ≤ 1 by Lemma 5.6, A` is non-decreasing in `, and so for this
derivative to be non-negative it is sufficient that∫

A`
d
d`q`(x, y) dxdy∫

A`
q`(x, y) dxdy

≥
∫
R2

d
d`q`(x, y) dxdy∫

R2 q`(x, y) dxdy
. (5.6)

By direct evaluation

d

d`
q`(x, y) =

µ(1 + τ)

σ2
(x+ y − 2µ`)q`(x, y),

where µ, τ and σ2 are defined in (3.3). Since µ < 0, (5.6) is equivalent to

E (λ1 + λ2|(λ1, λ2) ∈ A`) ≤ E (λ1 + λ2) . (5.7)
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To complete the proof of the lemma, we show that this inequality holds for any possible
region A`. Since the shape of A` might be quite complicated (see Figure 5 for a typical
example), we divide the analysis into three cases and in each case show that conditioning
on (λ1, λ2) being contained in some simple region can only increase the expectation of
λ1 + λ2 relative to conditioning on (λ1, λ2) ∈ A`.

x

y

A`

Figure 5: A typical example of the region A`.

(Case 1). Suppose b1(ti, θ)/b2(ti, θ) = 1 for all i, so that the boundary of A`, denoted
∂A`, is a line of the form x+ y = c for some c ∈ R. (Note that A` is a subset of the entire
plane not just the upper-left quadrant which is the support of (λ1, λ2).) Then trivially

E (λ1 + λ2|(λ1, λ2) ∈ A`) = E (λ1 + λ2|λ1 + λ2 ≤ c) ≤ E (λ1 + λ2)

and so (5.7) is verified in this case.

(Case 2). Now suppose that b1(ti, θ)/b2(ti, θ) ≥ 1 for all i and that this inequality
is strict for some i (allowing for the degenerate case that b2(ti, θ) = 0). Let c∗ =

E (λ1 + λ2|(λ1, λ2) ∈ A`) and then we note that the line x + y = c∗ must intersect ∂A`
at precisely one point (since the distribution of (λ1, λ2) is continuous) which we denote
by (d1, d2). We now consider the region {x ≤ d1}, conditioning on (λ1, λ2) lying in this
region weakly increases the probability that λ1 + λ2 = c for c ≥ c∗ and weakly decreases
this probability for c < c∗ (see Figure 6). Therefore

E (λ1 + λ2|(λ1, λ2) ∈ A`) ≤ E(λ1 + λ2|λ1 ≤ d1). (5.8)

If b1(ti, θ)/b2(ti, θ) ≤ 1 for all i and this inequality is strict for some i, then an entirely
analogous argument shows that for some d2

E (λ1 + λ2|(λ1, λ2) ∈ A`) ≤ E(λ1 + λ2|λ2 ≤ d2). (5.9)

(Case 3). Suppose that for some i and j, b1(ti, θ)/b2(ti, θ) < 1 < b1(tj , θ)/b2(tj , θ).
Defining c∗ as before we note that the line x+ y = c∗ must intersect A` (by definition of
c∗) and so must intersect ∂A` at two points (since the distribution of (λ1, λ2) has no atoms).
We denote these points by (d1, d2) and (e1, e2) and without loss of generality take d1 < e1.
We now consider the region {x ≤ e1} ∩ {y ≤ d2}. Reasoning as before, conditioning on
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x

y

x+ y = c∗

A`

(a)

x

y

x+ y = c∗

(b)

Figure 6: When A` takes the form shown in (a) (Case 2), we condition on the region
shown in (b), which weakly increases the mean of λ1 + λ2.

(λ1, λ2) lying in this region weakly increases the probability that λ1 + λ2 = c for c ≥ c∗

and weakly decreases this probability for c < c∗ (see Figure 7). So in this case

E (λ1 + λ2|(λ1, λ2) ∈ A`) ≤ E(λ1 + λ2|λ1 ≤ e1, λ2 ≤ d2). (5.10)

x

y

A`

x+ y = c∗

(a)

x

y

x+ y = c∗

(b)

Figure 7: When A` takes the form shown in (a) (Case 3), we condition on the region
shown in (b), which weakly increases the mean of λ1 + λ2.

From (5.8), (5.9) and (5.10) we see that in order to complete the proof of the lemma,
we need only verify (5.7) (or, equivalently, (5.6)) when A` is of the form {λ1 ≤ c1},
{λ2 ≤ c2} or {λ1 ≤ c1, λ2 ≤ c2}. Furthermore, since λ2 ≥ 0 ≥ λ1, we may assume c1 ≤ 0

and c2 ≥ 0.
Gromov’s theorem ([14, Theorem 1.3]) states that if h1, h2 are integrable on [a, b]

such that h2 > 0 and h1(x)/h2(x) is non-increasing in x then
∫ c
a
h1(x) dx/

∫ c
a
h2(x) dx is

non-increasing in c. Applying this to

h1(x) :=

∫ c2

−∞

d

d`
q`(x, y) dy and h2(x) :=

∫ c2

−∞
q`(x, y) dy
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we see that, provided h1(x)/h2(x) is non-increasing, we have∫ c1
−∞

∫ c2
−∞

d
d`q`(x, y) dydx∫ c1

−∞
∫ c2
−∞ q`(x, y) dydx

is non-increasing in c1. Then taking c1 →∞, we see that we need only verify (5.6) when
A` is of the form {λ1 ≤ c1} or {λ2 ≤ c2}.

It remains to show that h1(x)/h2(x) is non-increasing in x, which is equivalent to
E(λ1 + λ2|λ1 = x, λ2 ≤ c2) being non-decreasing in x for x < 0. Using the joint density of
(λ1, λ2) given in Proposition 3.3

E(λ1 + λ2|λ1 = x, λ2 ≤ c2) =

∫ c2
0
y(y2 − x2) exp(− 1

2σ2 (y −m)2) dy∫ c2
0
y(y − x) exp(− 1

2σ2 (y −m)2) dy

where m = (1 + τ)µ` − τx. We next differentiate this expression with respect to x. To
simplify the resulting expression, we let Z be a random variable with density proportional
to exp(− 1

2σ2 (y − m)2)1y∈[0,c2] (i.e. Z is a truncated normal variable). Then using the
Leibniz rule for differentiating integrals:(∫ c2

0
y(y − x) exp(− 1

2σ2 (y −m)2) dy∫ c2
0

exp(− 1
2σ2 (y −m)2) dy

)2(
d

dx
E(λ1 + λ2|λ1 = x, λ2 ≤ c2)

)

= (E(Z2)− xE(Z))

−3τE
(
Z2
)
− 2xE (Z) + τx2 +

τc2(c22 − x2)e−
(c2−m)2

2σ2∫ c2
0

exp(−(y −m)2/(2σ2)) dy


−
(
E(Z3)− x2E(Z)

)−(2τ + 1)E(Z) + τx+
τc2(c2 − x)e−

(c2−m)2

2σ2∫ c2
0

exp(−(y −m)2/(2σ2)) dy

 .

This expression can be rearranged to take the form

(2τ + 1)E
(
Z3
)
E (Z)− 3τE

(
Z2
)2︸ ︷︷ ︸

A

+ τE
(
c22Z

2(c2 − Z)
) e−

(c2−m)2

2σ2∫ c2
0
e−

(y−m)2

2σ2 dy︸ ︷︷ ︸
B

− x

(2− 3τ)E
(
Z2
)
E (Z) + τE

(
Z3
)︸ ︷︷ ︸

C

+ τE
(
c2Z

(
c22 − Z2

)) e−
(c2−m)2

2σ2∫ c2
0
e−

(y−m)2

2σ2 dy︸ ︷︷ ︸
D



+ x2

τE (Z2
)

+ (1− 2τ)E (Z)
2︸ ︷︷ ︸

E

+ τc2E (Z (c2 − Z))
e−

(c2−m)2

2σ2∫ c2
0
e−

(y−m)2

2σ2 dy︸ ︷︷ ︸
F

 .

Then, since x < 0, we need only verify that each of the terms A-F are non-negative. We
show this by using two facts: first, that 0 ≤ Z ≤ c2 (which is true by definition) and
second, that 0 ≤ τ ≤ 1 (which holds because τ = (χ2 − 1)/(3− χ2) and Assumption 2.15
implies that 1 ≤ χ2 ≤ 2).

These two facts immediately show that B, D and F are non-negative. Furthermore

A ≥ (2τ + 1)
(
E
(
Z3
)
E(Z)− E

(
Z2
)2)

C = 2(1− τ)E
(
Z2
)
E (Z) + τCov

(
Z2, Z

)
E = (1− τ)E (Z)

2
+ τVar(Z)
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(where the first inequality uses τ ≤ 1). Applying the Cauchy-Schwarz inequality to
Z2 = Z3/2Z1/2 shows that A is non-negative. Using the fact that Z ≥ 0 (so that Z2 is an
increasing function of Z) implies that C ≥ 0. Since τ ∈ [0, 1] we see that E ≥ 0.

Using Gromov’s theorem in the same way as above, shows that in order to verify (5.7)
for A` of the form {λ2 ≤ c2} or {λ1 ≤ c1} it is enough to show that E(λ1 + λ2|λ2 = c2)

and E(λ1 + λ2|λ1 = c1) are non-decreasing in c2 > 0 and c1 < 0 respectively. This can be
proven using a near identical calculation to that for d

dxE(λ1 + λ2|λ1 = x, λ2 ≤ c2) (the
only change is the region on which Z is truncated, which means there will be no terms
analogous to B, D and F above). This completes the proof of the lemma.

Remark 5.8. In Assumption 2.15, we impose the condition that χ ≥ 1. The only point in
this paper at which we use this condition is in the proof of Lemma 5.7, in order to show
that

E (λ1 + λ2|λ1 = x, λ2 ≤ c2) , E (λ1 + λ2|λ1 = x) , and E (λ1 + λ2|λ2 = x)

are non-decreasing in x (for all c2 ≥ 0). Therefore, if an alternative method was found to
verify this property (or to verify that (5.7) holds for A` of the form {λ1 ≤ c1}, {λ2 ≤ c2}
and {λ1 ≤ c1, λ2 ≤ c2}) for fields with χ < 1, then our results (including Theorem 2.16)
would also hold for such fields.

We expect that it should be possible to extend our results in this way. In the proof
of Lemma 5.7 we use χ ≥ 1 (or equivalently, τ ≥ 0) to show that A-F are non-negative.
If we explicitly evaluate these terms using the higher order moments of a truncated
normal distribution, then numerical calculations suggest that A+B, C+D and E+F are
non-negative for all relevant values of τ , (i.e. including negative values) which would be
sufficient to prove this lemma in such cases. We do not attempt to prove this analytically,
because the algebraic expressions involved in these calculation are quite long and we
are primarily interested in the case of the BF field, for which τ = 0.

5.2 Proof of Theorem 2.16

We now use Lemmas 5.5 and 5.7 to complete the proof of Theorem 2.16, treating the
RPW case and the general case simultaneously.

Proof of Theorem 2.16. We begin by fixing a realisation of g and θ. Let A(ε, R) denote
the annulus on the plane centred at the origin with inner radius ε and outer radius R.
We discretise this region by considering the points with polar coordinates(

r
(n)
i , ω

(n)
j

)
:= (ri, ωj) := (ε+ i2−n(R− ε), θ + j2−n2π)

for i, j = 0, 1, . . . , 2n. We consider these points as a graph by placing an edge between
(ri1 , ωj1) and (ri2 , ωj2) if and only if |i1 − i2|+ |j1 − j2| = 1. We define a site percolation
model by declaring the vertex (ri, ωj) open if f̃`(ri, ωj) − ` < 0 (so an edge is open
precisely when both of its vertices are open). Let Sε,R,n,` denote the event that there is
an open path between (ε, θ) and (ε, θ + π) in this percolation model.

Let Sε,R,` denote the event that {f̃` < `} ∩ A(ε, R) contains a path joining (ε, θ) to
(ε, θ + π). We claim that with probability one,

1Sε,R,` = lim
n→∞

1Sε,R,n,` . (5.11)

Since f̃` has no critical points at level ` away from the origin (Lemma 4.3), the level
set {f̃` = `} ∩ A(ε, R) consists of C2+η curves. So in particular, if there exists a path
in {f̃` < `} ∩ A(ε, R) joining (ε, θ) to (ε, θ + π), then for n sufficiently large we may

assume this path lies on the graph with vertices (r
(n)
i , ω

(n)
j ) as defined above. Hence
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1Sε,R,` ≤ lim infn 1Sε,R,n,` . If there is no path in {f̃` < `} ∩A(ε, R) joining (ε, θ) to (ε, θ+ π)

then there are three possibilities: (1) f̃` − ` is non-negative at (ε, θ) or (ε, θ+ π); (2) there
exists a path in {f̃` ≥ `} ∩ A(ε, R) joining (ε, ωi) to (ε, ωj) for some ωi ∈ (θ, θ + π) and
ωj ∈ (θ − π, θ), (here we note that by Lemma 4.3, f̃`|∂B(ε) has no local extrema at level
` and we assume that n is sufficiently large to find such ωi, ωj); or (3) there exist two
paths in {f̃` ≥ `} ∩ A(ε, R) which join (ε, ωi) and (ε, ωj) respectively to ∂B(R) for ωi, ωj
as before (See Figure 8). In this case, by Lemma 4.3 we may assume that the paths
intersect ∂B(R) at different points.

(ε, θ)(ε, θ + π)

(ε, ωi)

(ε, ωj)

{
f̃` ≥ `

}Aε,R

(a)

Aε,R

(ε, θ)(ε, θ + π)

(ε, ωi)

(ε, ωj)

{
f̃` ≥ `

}

(b)

Figure 8: Two of the three ways in which Sε,R,` can fail, corresponding to cases (2) and
(3) above respectively.

In each of these cases, for all n large enough we can construct corresponding
paths on the discrete lattice as above which block a discrete path from joining (ε, θ)

to (ε, θ + π) in {f̃` < `} and so Sε,R,n,` cannot occur for sufficiently large n. Therefore
1Sε,R,` ≥ lim supn 1Sε,R,n,` , completing the proof of the claim.

Since Sε,R,n,` depends on only finitely many points of f̃` and is a decreasing event, by
Lemma 5.5 for the RPW and Lemma 5.7 for general fields

P (Sε,R,n,`1 |g, θ) ≤ P (Sε,R,n,`2 |g, θ)

for any `1 < `2. Then by (5.11) and the bounded convergence theorem

P (Sε,R,`1 |g, θ) ≤ P (Sε,R,`2 |g, θ) . (5.12)

Now let SR,` be the event that f̃` has an R-lower connected saddle point at the
origin. Conditional on θ, if this event occurs then so must Sε,R,` for ε sufficiently small.
Conversely, if the saddle point at the origin is not R-lower connected, then it must be
four-arm in B(R) or R-upper connected. In both of these cases, Sε,R,` cannot occur for ε
sufficiently small. We conclude that 1SR,` = limε→0 1Sε,R,` and by applying the bounded
convergence theorem to (5.12) we see that

P (SR,`1 |g, θ) ≤ P (SR,`2 |g, θ) . (5.13)

Finally we let S` be the event that f̃` has a lower connected saddle point at the origin
and note that trivially S` = ∪RSR,`. Applying this to (5.13) shows that

P (S`1 |g, θ) ≤ P (S`2 |g, θ) .
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Integrating over realisations of g and θ implies that P(S`1) ≤ P(S`2) and so by definition
(see the proof of Theorem 2.11)

p∗s−(`1)

ps(`1)
≤
p∗s−(`2)

ps(`2)
.

A near identical argument shows that p∗s+(`)/ps(`) is non-increasing in `.

5.3 Remaining results

We now prove the remaining results stated in Section 2.2, namely Corollaries 2.17
and 2.18 and Propositions 2.20–2.23.

Proof of Corollary 2.17. Since p∗s−/ps is monotone it has at most a countable number
of discontinuities, all of which are jump discontinuities. By the continuity of ps, the
same is true of p∗s− . Since cES is absolutely continuous (Theorem 2.6) it is differentiable
almost everywhere (see [31, Theorem 7.18]) with derivative p∗s− − pm+ . The density
pm+ is derived explicitly in [12] and is continuously differentiable. It also follows from
monotonicity that p∗s−/ps is differentiable almost everywhere, and since ps is smooth
(again, from [12]) the same is true of p∗s− , thus showing that cES is twice differentiable
almost everywhere. A similar proof applies to cLS .

Proof of Corollary 2.18. Since the equivalence of (2)–(4) follows from Theorem 2.6, and
(1) implies (2) by Theorem 2.11, it remains to show that (2) implies (1). Now suppose
there exists a version of ps− which is continuous on (a, b), denoted p̃s− . Then p̃s−/ps =

p∗s−/ps almost everywhere, and since the former is continuous and the latter is monotone,
this equality must hold pointwise on (a, b), so p∗s− is continuous on (a, b). We note that
p̃s+ := ps− p̃s− defines a continuous version of ps+ and arguing as above then shows that
p∗s+ is continuous on (a, b). Therefore the almost everywhere equality p∗s− + p∗s+ = ps is

in fact true for all points in (a, b), and by (4.2) f̃` almost surely has no infinite four-arm
saddle at the origin for all ` ∈ (a, b).

Proof of Proposition 2.23. We use the ‘barrier method’, that is, we show that the proba-
bility of having at least one component of {f ≥ `} contained in B(r) is strictly positive
for some fixed r > 0. By linearity of expectation and stationarity of f , this shows that
lim infR→∞E(NES(R, `))/R2 > 0, so in particular cES(`) > 0.

It is known that the RPW has the orthogonal expansion

f(x) =
∑
m∈Z

amJ|m|(r)e
imθ

where (r, θ) represents x in polar coordinates, Jm is the m-th Bessel function and
am = bm + icm = a−m with b0, (

√
2bm)m∈N and (

√
2cm)m∈N independent standard (real)

Gaussians and c0 = 0. (This function is clearly Gaussian and can be shown to have the
correct covariance structure using Graf’s addition theorem for Bessel functions.) Let r be
the minimiser of J0, so r ≈ 3.83 and J0(r) < −0.4. We note that by considering the power
series for the Bessel functions, it can be shown that for x ∈ [0, 4], |Jm(x)| ≤ e4(2m/m!).
Finally we note that Jm is bounded in absolute value by 1 for any m. Now consider the
event that

a0 > min{|`|, 1} and |a−1|, |a−2|, |a1|, |a2| ≤ C1 and ∀|m| > 2, |am| ≤ C2(m!)/4m.

It is easily seen that this event has positive probability, and for appropriately chosen
constants C1, C2 > 0, we see that on this event f(0) > ` and f(x) < ` for any x such
that |x| = r. Therefore f has a component of {f ≥ `} contained in B(r) with positive
probability, completing the proof of the result.
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Proof of Proposition 2.20. By Corollary 2.18 we may assume that ps−(`)/ps(`) is non-
decreasing. In [12] it is shown that for the RPW

pm+(x) =
1

4
√

2π3/2

(
(x2 − 1)e−

x2

2 + e−
3x2

2

)
1x≥0

ps(x) =
1

4
√

2π3/2
e−

3x2

2 .

In particular, pm+(x) = 0 for x < 0, so by Theorem 2.6 for `′ < ` ≤ 0

cES(`′)− cES(`) =

∫ `

`′
−ps−(x) dx.

Taking `′ → −∞ shows that for ` < 0

cES(`) =

∫ `

−∞
ps−(x) dx.

By Proposition 2.23 this is positive for every ` < 0, so in particular there must exist
arbitrarily negative x such that ps−(x) > 0. Since ps−(`)/ps(`) is non-decreasing, we
conclude that ps− is strictly positive for all ` ∈ R. Since ps−(x) = ps+(−x) we also see
that ps+(x) > 0 for all x and since ps− + ps+ = ps we see that 0 < ps−(x)/ps(x) < 1 for all
x ∈ R. Finally, we note that there must exist a sequence `n > 0 with `n → 0 such that
ps−(`n)/ps(`n) ≥ 1/2 for all n. Indeed, if this were not true, by monotonicity, there would
exist a neighbourhood of 0 on which ps−/ps < 1/2 and by symmetry ps+/ps < 1/2 on a
possibly smaller neighbourhood, but then there would exist a set of positive measure on
which ps− + ps+ < ps giving a contradiction.

For `′ ≤ ` and ε > 0

1

ε

∫ `+ε

`

ps−(`′)

ps(`′)
ps(x)− pm+(x) dx ≤ 1

ε

∫ `+ε

`

ps−(x)− pm+(x) dx

≤ 1

ε

∫ `+ε

`

ps−(`+ ε)

ps(`+ ε)
ps(x)− pm+(x) dx.

By Theorem 2.6 and continuity of ps we therefore see that

ps−(`′)

ps(`′)
ps(`)− pm+(`) ≤ D+cES(`) ≤ D+cES(`) ≤ ps−(`+ ε)

ps(`+ ε)
ps(`)− pm+(`).

Since ps−/ps < 1, evaluating the final inequality using the explicit forms of ps and pm+

shows that D+cES(`) < 0 whenever ` ≥ 1. Since ps− > 0 and pm+(`) = 0 for ` ≤ 0, taking
`′ = ` in the first inequality shows that D+cES(`) > 0 for ` ≤ 0. If ` > 0 then we may
take `′ = `n as defined above for sufficiently large n. Then by evaluating the densities
explicitly we see that 1/2ps(`)− pm+(`) > 0 for ` ∈ (0, 0.876] thus completing the proof of
the statements for cES .

Since pm−(x) = 0 for x > 0, we see from Theorem 2.6 that

cLS(`+ ε)− cLS(`)

ε
=
cES(`+ ε)− cES(`)

ε
− 1

ε

∫ `+ε

`

ps+(x) dx

for ` > 0. As D+cES(`) < 0 for ` ≥ 1 and ps+ ≥ 0, taking the limit superior here shows
that D+cLS(`) < 0 (for ` ≥ 1).

Proof of Propositions 2.21 and 2.22. By Theorem 2.10, both cES and cLS are differen-
tiable and so by Theorem 2.6

c′ES(`) = ps−(`)− pm+(`) ≤ ps(`)− pm+(`)

c′LS(`) = pm−(`) + ps−(`)− pm+(`)− ps+(`) ≤ pm−(`) + ps(`)− pm+(`).
(5.14)
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The densities pm− , ps and pm+ were derived for isotropic fields satisfying (a weaker
version of) Assumption 2.1 in [12]. In the proof of [6, Corollary 1.19] it is shown that
both right hand expressions in (5.14) are strictly negative whenever ` >

√
2/χ (with

χ defined prior to the statement of this proposition). We note that this is a sufficient
condition for the derivatives to be negative, chosen for its simplicity. For many fields,
the derivatives will be negative on a larger region and this can be found by using the
densities specified in [12] with the appropriate value of χ. Specifically, these densities
are given in terms of χ and ξ2 := −k′(0)/k′′(0) by

pm+(x) = pm−(−x) =
1

πξ2

(
χ2(x2 − 1)φ(x)Φ

(
χx√

2− χ2

)
+
χx
√

2− χ2

2π
e
− x2

2−χ2

+

√
2√

π(3− χ2)
e
− 3x2

2(3−χ2) Φ

(
χx√

(3− χ2)(2− χ2)

))

ps(x) =
1

πξ2

√
2√

π(3− χ2)
e
− 3x2

2(3−χ2)

where φ and Φ denote the standard normal probability density and cumulative density
respectively. For the Bargmann-Fock field, (for which χ = 1) substituting these densities
into (5.14) shows that c′ES(`), c′LS(`) < 0 for ` ≥ 1.03 improving on the general bound
` >
√

2/χ =
√

2.

Finally we note that c′ES(0) = ps−(0)− pm+(0), and by the identities ps−(x) = ps+(−x),
ps− + ps+ = ps almost everywhere and the fact these densities are all continuous,
we see that ps−(0) = ps(0)/2. Evaluating the densities given in [12] at zero shows that
ps(0)/2 > pm+(0) so we conclude that c′ES(0) > 0. Since cES is continuously differentiable,
we can extend this to a neighbourhood of the origin.

By Theorem 2.16, ps−(`)/ps(`) is non-decreasing and so for ` > 0

ps−(`)

ps(`)
≥ ps−(0)

ps(0)
=

1

2
.

Therefore c′ES(`) ≥ ps(`)/2− pm+(`) for ` ≥ 0. Evaluating the densities above then gives
an explicit constant C such that this expression is strictly positive for ` ≤ C. In the case
of the Bargmann-Fock field, C = 0.64.

A Non-degeneracy

We verify some claims about the non-degeneracy of Gaussian fields:

Lemma A.1. Let f be a C2, stationary, planar Gaussian field. Then the spectral measure
µ being supported on the union of two lines through the origin is equivalent to the
Gaussian vector ∇2f(0) being degenerate.

Proof. By [1, Chapter 5], for any s, t ∈ R2 and α, β, γ, δ ∈ N∪{0} (such that the following
derivatives are defined)

E

(
∂α+β

∂tα1 ∂t
β
2

f(t)
∂γ+δ

∂sγ1∂s
δ
2

f(s)

)
=

∫
R2

(−ix1)α(−ix2)βe−it·x(−ix1)γ(−ix2)δe−is·x dµ(x)

where µ is the spectral measure of f . Then for a ∈ R3,

E
(
(a · ∇2f(0))2

)
=

∫
R2

|a1x
2
1 + a2x

2
2 + a3x1x2|2 dµ(x).
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If ∇2f(0) is degenerate, then we may choose a 6= 0 such that this expression is zero,
and hence the integrand is identically zero on the support of µ. Hence the support of µ
is contained in the zero set of this binary quadratic form which is contained in the union
of two lines through the origin.

Conversely if the support of µ is contained in the union of two lines through the
origin, then we may choose a 6= 0 such that the zero set of a1x

2
1 + a2x

2
2 + a3x1x2 is equal

to this union. Hence the integral above will be zero and ∇2f(0) will be degenerate.

Lemma A.2. Let f : R2 → R be a Gaussian field which is stationary and centred with
Var(f(0)) = 1 and covariance function K ∈ C4+η′ . If the support of the spectral measure
µ contains a centred ellipse (or circle), then Assumptions 2.1 and 2.7 hold. Moreover, if
the support of µ contains an open set then, for any distinct t1, . . . , tn ⊂ R2, the vector

(f(t1), . . . , f(tn),∇f(t1), . . . ,∇f(tn),∇2f(t1), . . . ,∇2f(tn))

is non-degenerate (so in particular, Assumptions 2.1 and 2.7 hold).

We note that these results could be proven under much weaker conditions on the
support of the spectral measure using the arguments we give below. We do not attempt
to formulate the most general conditions.

Proof. First consider the case that the support of µ contains an ellipse/circle. Let a ∈ R9

and
w := (f(t),∇f(t), f(0),∇f(0),∇2f(0)).

By the same arguments as in the proof of Lemma A.1

E
(
(a · w)2

)
=

∫
R2

∣∣a · (−e−it·x, ix1e
−it·x, ix2e

−it·x,−1, ix1, ix2, x
2
1, x1x2, x

2
2)
∣∣2 dµ(x).

If Assumption 2.7 does not hold, then there exists a choice of a such that this expectation
is zero and one of the first three elements of a is non-zero. Hence the integrand above
must be identically zero on the support of µ. By considering the real and imaginary parts
explicitly, the zero set of this integrand cannot contain an ellipse/circle centred at the
origin and so neither can the support of µ. By a near-identical argument, and Lemma A.1,
f also satisfies the non-degeneracy conditions of Assumption 2.1. (The other conditions
are satisfied by the premise of this lemma.)

By a completely analogous argument we see that if(
f(t1), . . . , f(tn),∇f(t1), . . . ,∇f(tn),∇2f(t1), . . . ,∇2f(tn)

)
is degenerate then some non-trivial linear combination of

e−it1·x, . . . , e−itn·x,

ix1e
−it1·x, . . . , ix1e

−itn·x, ix2e
−it1·x, . . . , ix2e

−itn·x

x2
1e
−it1·x, . . . , x2

1e
−itn·x, x2

2e
−it1·x, . . . , x2

2e
−itn·x, x1x2e

−it1·x, . . . , x1x2e
−itn·x

is identically zero on the support of µ. Since the ti are distinct, we see that the support
of µ cannot contain an open set.

Lemma A.3. Let f be a Gaussian field satisfying Assumption 2.1. Then the density of
saddle points ps defined in Proposition 2.5 is non-zero for all ` ∈ R.

Proof. By the Kac-Rice theorem (Corollary 11.2.2 of [1]), and the independence of ∇f(0)

and (f(0),∇2f(0)),

ps(`) = E
[∣∣det∇2f(0)

∣∣1det∇2f(0)<0

∣∣ f(0) = `
]
pf(0)(`). (A.1)
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We note that by Gaussian regression

Cov
(
∇2f(0)

∣∣ f(0) = `
)

= Cov
(
∇2f(0)

)
− Cov

(
∇2f(0), f(0)

)
Cov

(
∇2f(0), f(0)

)t
where Cov

(
∇2f(0)

)
is a three by three matrix and Cov

(
∇2f(0), f(0)

)
is a three-dimen-

sional row vector. Since we assume that ∇2f(0) is non-degenerate, the conditional
covariance matrix above is the difference between a rank three and rank one matrix, so
must have rank at least two. Therefore (∇2f(0)|f(0) = `) must be supported on either a
two or three dimensional (affine) subspace of R3. This implies that the support of(

det∇2f(0)
∣∣ f(0) = `

)
(A.2)

is R, and hence by (A.1) ps(`) > 0 for all ` ∈ R.
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