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Abstract

We are interested in nodes with fixed outdegrees in large conditioned Galton-Watson
trees. We first study the scaling limits of processes coding the evolution of the number
of such nodes in different explorations of the tree (lexicographical order and contour
order) starting from the root. We give necessary and sufficient conditions for the
limiting processes to be centered, thus measuring the linearity defect of the evolution
of the number of nodes with fixed outdegrees. This extends results by Labarbe &
Marckert in the case of the contour-ordered counting process of leaves in uniform
plane trees. Then, we extend results obtained by Janson concerning the asymptotic
normality of the number of nodes with fixed outdegrees.
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1 Introduction

Much attention has been recently given to the fine structure of large random trees. In
this paper, we focus particularly on the distribution of vertex degrees in large conditioned
Galton-Watson trees, and on how they are spread out in these trees.

Motivations The study of scaling limits of Galton-Watson trees (in short, GW trees)
with critical offspring distribution (that is with mean 1) conditioned by their number of
vertices has been initiated by Aldous [4, 5, 6]. Aldous showed that the scaling limit of
large critical GW trees with finite variance is the so-called Brownian continuum random
tree (CRT). As a side result, he proved the convergence of their properly rescaled contour
functions, which code the trees, to the Brownian excursion. This result was extended by
Duquesne, who showed that the scaling limits of critical GW trees, when the offspring
distribution has infinite variance and is in the domain of attraction of a stable law, are
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Figure 1: From left to right: a plane tree T with its vertices listed in the depth-first
search order, its contour function C(T ) and a linear interpolation of its Lukasiewicz path
W (T ).

α-stable trees (with α ∈ (1, 2]), which were introduced by Le Gall & Le Jan [26] and
Duquesne & Le Gall [12]. From a more discrete point of view, Abraham and Delmas
[2, 1] extended the work of Kesten [19] and Janson [16] by describing in full generality
the local limits of critical GW trees conditioned to have a fixed large number of vertices.

The number of vertices with a fixed outdegree in large conditioned critical GW trees
with finite variance was studied by Kolchin [20], who showed that it is asymptotically
normal. This topic has recently triggered a renewed interest. Minami [30] established
that these convergences hold jointly under an additional moment condition, which was
later lifted by Janson [17]. Rizzolo [34] considered more generally GW trees conditioned
on a given number of vertices with outdegree in a given set. One of the motivations for
studying these quantities is that there is a variety of random combinatorial models coded
by GW trees in which vertex degrees represent a quantity of interest. For example, in
[3], vertex degrees code sizes of 2-connected blocs in random maps and, in [22], vertex
degrees code sizes of faces in dissections. Also, Labarbe & Marckert [24] studied the
evolution of the number of leaves in the contour process of a large uniform plane tree.

Evolution of vertices with fixed outdegrees Our first contribution concerns scaling
limits of processes coding the evolution of vertices with fixed outdegrees in different
explorations of large GW trees starting from the root. We shall explore the tree in two
ways by using either the contour process (which was considered by Labarbe & Marckert
[24]), or the lexicographical order.

In order to state our result, we need to introduce some quick background and notation
(see Section 2 for formal definitions). An offspring distribution µ, which is a probability
distribution on Z+, is said to be critical if it has mean 1. To simplify notation, we set
µi = µ(i) for i ≥ 0. If T is a plane tree and A ⊂ Z+, we say that a vertex of T is a
A-vertex if its outdegree (or number of children) belongs to A. We define NA(T ) as the
number of A-vertices in T , and we set µA =

∑
i∈A µi to simplify notation. We say that T

is a µ-GW tree if it is a GW tree with offspring distribution µ. We will always implicitly
assume, for the sake of simplicity, that the support of the offspring distribution µ is
non-lattice (a subset A ⊂ Z is lattice if there exists b ∈ Z and d ≥ 2 such that A ⊂ b+dZ),
so that for every n sufficiently large a µ-GW tree conditioned on having n vertices is well
defined (but all the results carry through to the lattice setting with mild modifications).
For n ≥ 1, we denote by Tn a µ-GW tree conditioned to have n vertices.

Let T be a plane tree with n vertices. To define the contour function (Ct(T ), 0 ≤ t ≤
2n) of T , imagine a particle that explores the tree from the left to the right, starting
from the root and moving at unit speed along the edges. Then, for 0 ≤ t ≤ 2(n − 1),
Ct(T ) is defined as the distance to the root of the position of the particle at time t. We
set Ct(T ) = 0 for t ∈ [2(n − 1), 2n] (see Fig. 1 for an example). For every 0 ≤ t ≤ 1, let
NA2nt(T ) be the number of different A-vertices already visited by C(T ) at time b2ntc. In
particular, NA2n(T ) = NA(T ).
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When µ follows a geometric distribution of parameter 1/2 (so that Tn follows the
uniform distribution on the set of all plane trees with n vertices) and A = {0}, Labarbe
& Marckert showed that the convergence(

C2nt(Tn)√
n

,
N
{0}
2nt (Tn)− ntµ0√

n

)
0≤t≤1

(d)−→
n→∞

(√
2et, Bt

)
0≤t≤1

holds jointly in distribution in C([0, 1],R2), where e is the normalized Brownian excursion,
B is a Brownian motion independent of e and C([0, 1],R2) is the space of continuous
R2-valued functions on [0, 1] equipped with the uniform topology.

In words, the counting process N{0}(Tn) behaves linearly at the first order, and has
centered Brownian fluctuations. Labarbe and Marckert themselves highlight (just after
Theorem 4 in [24]) the fact that the fluctuations are centered and do not depend on the
final shape of the contour function of the tree, which is quite puzzling. It is therefore
natural to wonder if such fluctuations are universal: what happens if the tree is not
uniform, if one considers different outdegrees, or if the underlying exploration process
is different?

Before stating our result in this direction, we define the second exploration we
shall use. If T is a plane tree with n vertices, we denote by (vi(T ))0≤i≤n−1 the vertices
of T ordered in the lexicographical order (also known as the depth-first order). The
Lukasiewicz path (Wi(T ))0≤i≤n of T is defined by W0(T ) = 0 and Wi(T ) −Wi−1(T ) =

kvi−1
(T ) − 1 for 1 ≤ i ≤ n, where kvi(T ) denotes the outdegree of vi (see Fig. 1 for an

example). For t ∈ [0, n], we set Wt(T ) = Wbtc(T ). For t ∈ [0, 1], we define KAnt(T ) as the
number of A-vertices visited by W (T ) at time bntc (in other words, KAnt(T ) is the number
of A-vertices in the first bntc vertices of T in the lexicographical order). In the next
result, convergences hold in distribution in the space D([0, 1],R2) of càdlàg processes
on [0, 1] equipped with the Skorokhod J1 topology (for technical reasons it is simpler to
work with càdlàg processes; see [15, Chap. VI] for background).

Theorem 1.1. Let µ be a critical distribution with finite variance σ2 > 0 and Tn be a
µ-GW tree conditioned to have exactly n vertices. Let A ⊂ Z+ be such that µA > 0, and

set γA =

√
µA(1− µA)− 1

σ2

(∑
i∈A(i− 1)µi

)2
. Then the following assertions hold:

(i) We have(
Wnt(Tn)√

n
,
KAnt(Tn)− ntµA√

n

)
0≤t≤1

(d)−→
n→∞

(
σet,

∑
i∈A(i− 1)µi

σ
et + γABt

)
0≤t≤1

where B is a standard Brownian motion independent of e (see Fig. 2 for a simula-
tion).

(ii) The following convergence holds in distribution, jointly with that of (i):(
C2nt(Tn)√

n
,
NA2nt(Tn)− ntµA√

n

)
0≤t≤1

(d)−→
n→∞

(
2

σ
et,

∑
i∈A iµi

σ
et + γABt

)
0≤t≤1

.

As was previously mentioned, assertion (ii) of Theorem 1.1, in the particular case
where A = {0} and µ is a geometric 1/2 offspring distribution, was proved by Labarbe
& Marckert [24]. It turns out that for leaves, the fluctuations of the counting process
N{0}(Tn) are always centered, irrespective of the offspring distribution. However, the
fluctuations are different when one considers other outdegrees or the lexicographical
order instead of the contour visit counting process.

Let us briefly comment on the strategy of the proof of Theorem 1.1, which is different
from the approach of Labarbe & Marckert (who rely on explicit formulas for the number
of paths with±1 steps and various constraints). We start by working with the Lukasiewicz
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Figure 2: A simulation of a Poisson(1)-GW tree Tn with n = 11500 vertices. Left: an
embedding of Tn in the plane. Right: its Lukasiewicz path together with its renormalized
number of {1}-vertices (Wnt(Tn)/

√
n, (K

{1}
nt (Tn)− ntµ{1})/

√
n)0≤t≤1. The second one

evolves asymptotically as half of the first one plus an independent Brownian motion.

path and establish Theorem 1.1 (i) by combining a general formula giving the joint
distribution of outdegrees in GW trees in terms of random walks (Section 3) with
absolute continuity arguments and the Vervaat transform. Theorem 1.1 (ii) is then a
rather direct consequence of (i) by relating the contour exploration to the depth-first
search exploration (see in particular Lemma 4.3).

In Section 4.3, we extend Theorem 1.1 (ii) when we only take into account the k-th
time we visit a vertex with outdegree i (with k, i integers such that 1 ≤ k ≤ i+ 1). To this
end, we give a description of the structure of branches in the tree using binomial-tail
inequalities, which could be of independent interest.

Finally, an extension of this theorem to offspring distributions with infinite variance
can be found in Section 6.

Asymptotic normality of the number of vertices with fixed outdegree Our next
contribution is to extend the joint asymptotic normality of the number of vertices with
a fixed outdegree in large conditioned critical GW trees obtained by Janson [17], by
counting vertices whose outdegree belongs to a fixed subset of Z+ and by allowing a
more general conditioning. Indeed, we shall focus on µ-GW trees conditioned to have n
B-vertices, for a fixed B ⊂ Z+ (we shall always implicitly restrict ourselves to values of n
such that this conditioning makes sense).

Theorem 1.2. Let µ be a critical offspring distribution with positive finite variance and
let A,B be subsets of Z+ such that µB > 0. For n ≥ 1, let T Bn be a µ-GW tree conditioned
to have n B-vertices. Then:

(i) as n→∞, 1
nE(NA(T Bn ))→ µA

µB
;

(ii) there exists δA,B ≥ 0 such that the convergence

NA(T Bn )− nµAµB√
n

(d)−→
n→∞

N (0, δ2
A,B) (1.1)

holds in distribution, where N (0, δ2
A,B) is a centered Gaussian random variable with

variance δ2
A,B. In addition, δA,B = 0 if and only if µA = 0 or µA\B = µB\A = 0.

(iii) the convergences (1.1) hold jointly for A ⊂ Z+, in the sense that for every j ≥ 1

and A1, · · · ,Aj ⊂ Z+, ((NAi(T Bn )− nµAiµB
)/
√
n)1≤i≤j converges in distribution to a

Gaussian vector.
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As previously mentioned, this extends results of Kolchin [20], Minami [30] and Janson
[17]. The main idea is, roughly speaking, to use a general formula giving the joint
distribution of outdegrees in GW trees in terms of random walks of Section 3 (which was
already used in the proof of Theorem 1.1), combined with various local limit estimates
(Section 5). As we will see (cf (5.2)), in the case A = Z+, we have δ2

A,B = γ2
B/µ

3
B (with γB

defined as in Theorem 1.1 by replacing A by B). Also, the proof of Theorem 1.2 (ii) gives
a way to compute explicitly δA,B (see Example 5.6 for the explicit values of the variances
and covariances in the cases B = Z+ and B = {a} for some a ∈ Z+). See Section 6 for
discussions concerning other offspring distributions.

Our approach, based on a multivariate local limit theorem, applies more generally
when µ is in the domain of attraction of a stable law. In this case, it allows us to prove
the convergence of T Bn (properly renormalized) towards a Lévy tree, thus generalizing
[21, Theorem 8.1] which was stated only under the condition that B or Z+\B is finite.
These new results can be found in Section 6.

2 Background on trees and their codings

We start by recalling some definitions and useful well-known results concerning
Galton-Watson trees and their coding by random walks (we refer to [25] for details and
proofs).

Plane trees We first define plane trees using Neveu’s formalism [31]. First, let N∗ =

{1, 2, . . .} be the set of all positive integers, and U = ∪n≥0(N∗)n be the set of finite
sequences of positive integers, with (N∗)0 = {∅} by convention. By a slight abuse of
notation, for k ∈ Z+, we write an element u of (N∗)k by u = u1 · · ·uk, with u1, . . . , uk ∈ N∗.
For k ∈ Z+, u = u1 · · ·uk ∈ (N∗)k and i ∈ Z+, we denote by ui the element u1 · · ·uki ∈
(N∗)k+1 and iu the element iu1 · · ·uk ∈ (N∗)k+1. A tree T is a subset of U satisfying the
following three conditions: (i) ∅ ∈ T (the tree has a root); (ii) if u = u1 · · ·un ∈ T , then,
for all k ≤ n, u1 · · ·uk ∈ T (these elements are called ancestors of u); (iii) for any u ∈ T ,
there exists a nonnegative integer ku(T ) such that, for every i ∈ N∗, ui ∈ T if and only if
1 ≤ i ≤ ku(T ) (ku(T ) will be called the number of children of u, or the outdegree of u).
The elements of T are called the vertices of T . The set of all the ancestors of a vertex u
will be called the ancestral line of u, by analogy with genealogical trees. We denote by
|T | the total number of vertices of T .

The lexicographical order ≺ on U is defined as follows: ∅ ≺ u for all u ∈ U\{∅}, and
for u,w 6= ∅, if u = u1u

′ and w = w1w
′ with u1, w1 ∈ N∗, then we write u ≺ w if and only if

u1 < w1, or u1 = w1 and u′ ≺ w′. The lexicographical order on the vertices of a tree T is
the restriction of the lexicographical order on U ; for every 0 ≤ k ≤ |T |−1 we write vk(T ),
or vk when there is no confusion, for the (k + 1)-th vertex of T in the lexicographical
order. Recall from the introduction that the Lukasiewicz path (Wi(T ))0≤i≤|T | of T is
defined by W0(T ) = 0 and Wi(T )−Wi−1(T ) = kvi−1

(T )− 1 for 1 ≤ i ≤ |T |.

Galton-Watson trees Let µ be an offspring distribution with mean at most 1 such
that µ(0) + µ(1) < 1 (implicitly, we always make this assumption to avoid degenerate
cases). A GW tree T with offspring distribution µ (also called µ-GW tree) is a random
variable taking values in the space of all finite plane trees, characterized by the fact that
P(T = T ) =

∏
u∈T µku(T ) for every finite plane tree T . We also always implicitly assume

that gcd(i ∈ Z+, µi > 0) = 1, so that P(|T | = n) > 0 for every n sufficiently large (µ is
said to be aperiodic). All the results can be adapted to the periodic setting with mild
modifications.
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A key tool to study GW trees is the fact that their Lukasiewicz path is, roughly
speaking, a killed random walk, which allows to obtain information on GW trees from the
study of random walks. More precisely, let S be the random walk on Z+ ∪ {−1} starting
from S0 = 0 with jump distribution given by P(S1 = i) = µi+1 for i ≥ −1 (we keep the
dependency of S in µ implicit). The proof of the following lemma can be found in [25].

Lemma 2.1. Let µ be an offspring distribution with mean at most 1 and Tn be a µ-GW
tree conditioned on having n vertices. Then (Wi(Tn))0≤i≤n has the same distribution as
(Si)0≤i≤n conditionally given the event {Sn = −1, ∀ 0 ≤ i ≤ n− 1, Si ≥ 0}.

Several useful ingredients We finally gather two very useful ingredients. The first
one is a joint scaled convergence in distribution of the contour process (which was
defined in the introduction) and the Lukasiewicz path of a critical GW tree with finite
variance, conditioned to have n vertices, to the same Brownian excursion.

Theorem 2.2 (Marckert and Mokkadem [29], Duquesne [10]). Let µ be a critical offspring
distribution with finite positive variance σ2. Then the following convergence holds jointly
in distribution: (

C2nt(Tn)√
n

,
Wnt(Tn)√

n

)
0≤t≤1

d−→
(

2

σ
et, σet

)
0≤t≤1

where e has the law of the normalized Brownian excursion.

This result is due to Marckert and Mokkadem [29] under the assumption that µ has
a finite exponential moment. The result in the general case can be deduced from [10],
however it is not clearly stated in this form. See [21, Theorem 8.1, (II)] (taking A = Z+

in this theorem) for a precise statement.
The second ingredient is the local limit theorem (see [14, Theorem 4.2.1]).

Theorem 2.3. Let (Sn)n≥0 be a random walk on Z such that the law of S1 has finite
positive variance σ2. Let h ∈ Z+ be the maximal integer such that there exists b ∈ Z for
which Supp(S1) ⊂ b+ hZ. Then, for such b ∈ Z,

sup
k∈Z

∣∣∣∣∣√2πσ2nP(Sn = nb+ kh)− h exp

(
−1

2

(
nb+ kh− nE(S1)

σ
√
n

)2
)∣∣∣∣∣ −→

n→∞
0.

When Supp(S1) is non-lattice, observe that one can take b = 0 and h = 1 in the
previous result.

This theorem admits the following generalization in the multivariate setting (see e.g.
[35, Theorem 6.1]). In the multivariate case in dimension j ≥ 1, we say that a random
variable Y ∈ Zj is aperiodic if there is no strict sublattice of Zj containing the set of
differences {x − y,x,y ∈ Zj ,P(Y = x) > 0,P(Y = y) > 0}. Furthermore, Sj denotes
the set of symmetric positive definite matrices of dimension j.

Theorem 2.4. Let j ≥ 1 and (Yi)i≥1 := ((Y
(1)
i , . . . , Y

(j)
i ))i≥1 be i.i.d. random variables

in Zj , such that the covariance matrix Σ of Y1 is positive definite. Assume in addition
that Y1 is aperiodic, and denote by M the mean of Y1. Finally, define for n ≥ 1

Tn =
1√
n

(
n∑
i=1

Yi − nM

)
∈ Rj .

Then, as n→∞, uniformly for x ∈ Rj such that P (Tn = x) > 0,

P (Tn = x) =
1

(2πn)j/2
√

det Σ
e−

1
2
txΣ−1x + o

(
n−j/2

)
.

This theorem can easily be adapted when Y1 is not aperiodic. However, for conve-
nience, we shall restrict ourselves to this case in what follows.
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3 Joint distribution of outdegrees in GW trees

The first steps of the proofs of Theorems 1.1 and 1.2 both reformulate events on
trees in terms of events on random walks, whose probabilities are easier to estimate.
In this direction, in this section, we give a general formula for the joint distribution
of outdegrees in GW trees in terms of random walks (Proposition 3.1) and establish
technical estimates (Lemma 3.4) which will be later used several times.

3.1 A joint distribution

The following proposition is a key tool in the study of the outdegrees in a µ-GW tree
T , as it allows to study the joint distribution of (NZ+(T ), NB(T )):

Proposition 3.1. Let B ⊂ Z+. Let (Si)i≥0 be a random walk starting from 0, whose
jumps are independent and distributed according to µ(·+ 1), and let (JBi )i≥0 be the walk
starting from 0 such that, for all i ≥ 0, JBi+1 − JBi = 1Si+1−Si+1∈B. Then, for every n ≥ 1

and k ≥ 0,

P
(
NZ+(T ) = n,NB(T ) = k

)
=

1

n
P
(
Sn = −1, JBn = k

)
.

To see this, notice that [21, Equation (2)] exactly provides the result in the case
B = {0}, and that the same argument works for a general subset B.

The following asymptotics, which can be derived from a local limit theorem (see
e. g. [34] or [21, Theorem 8.1]) will be useful throughout the paper:

P(NB(T ) = k) ∼
k→∞

1√
2πσ2

√
µBk

−3/2, (3.1)

assuming that P(NB(T ) = k) > 0 for k sufficiently large.

3.2 A technical estimate

We introduce other probability measures as follows:

Definition 3.2. Let C ⊂ Z+ be a subset such that µC > 0. For i ∈ Z, we set

pC(i) =

{
µi+1

µC
if i+ 1 ∈ C

0 otherwise.

We let mC be the expectation of pC and σ2
C be its variance.

The following identities will be useful.

Lemma 3.3. Assume that µ is critical and has finite positive variance σ2. Let B ⊂
Z+ be such that µB > 0 and µBc > 0. Let γB ≥ 0 be such that γ2

B = µB(1 − µB) −
1
σ2

(∑
i∈B(i− 1)µi

)2
. Then the following identities hold:

(i) mBc(1− µB) +mBµB = 0,
(ii) γ2

B = µB(1− µB)− 1
σ2µ

2
Bm

2
B,

(iii) µBσ2
B + (1− µB)σ2

Bc = σ2

µB(1−µB)γ
2
B.

In particular, observe that γB is well-defined by (iii). Furthermore, if #Supp(µ) ≥ 3,
then at least one of the variances σ2

B and σ2
Bc is positive, which implies by (iii) that γB > 0.

Proof. For (i), simply write that the quantity mBc(1− µB) +mBµB is equal to

(1− µB)
∑
i≥−1

ipBc(i) + µB
∑
i≥−1

ipB(i) = (1− µB)
∑
i+1/∈B

iµi+1

1− µB
+ µB

∑
i+1∈B

iµi+1

µB

=
∑
i/∈B

(i− 1)µi +
∑
i∈B

(i− 1)µi,
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which is equal to 0 since µ is critical. The second assertion is clear, while the proof of
the last one is similar to the first one and is left to the reader.

Let us keep the notation of Proposition 3.1. In particular, recall that the walk (JBi )i≥0

is defined from (Si)i≥0 as JB0 = 0 and, for i ≥ 0, JBi+1 − JBi = 1Si+1−Si+1∈B.
We set, for c ∈ R,

kn(c) = bµBn+ c
√
nc.

The following estimate will play an important role.

Lemma 3.4. Let µ be an aperiodic critical offspring distribution with positive finite
variance σ2 such that #Supp(µ) ≥ 3, and let B ⊂ Z+ be such that µB > 0 and µBc > 0.
Assume in addition that pB or pBc is aperiodic. Fix a ∈ R and let (an) be a sequence of
integers such that an/

√
n →
n→∞

a. Then the following assertions hold as n→∞, uniformly

for c in a compact subset of R:

(i) P
(
Sn = an, J

B
n = kn(c)

)
∼ 1

n

1

2πσγB
e
− 1

2σ2
a2− 1

2γ2B
(c−µBmB

σ2
a)

2

,

(ii) P
(
NZ+(T ) = n,NB(T ) = kn(c)

)
∼ 1

n2

1

2πσγB
e
− c2

2γ2B .

Observe that (ii) is a straightforward consequence of (i) and Proposition 3.1. (i) itself
follows from the multivariate local limit theorem 2.4:

Proof of Lemma 3.4 (i). The idea is to apply Theorem 2.4 to a sequence of i.i.d. variables
in Z2, distributed as Y1 := (S1, J

B
1 ). Since pB or pBc is aperiodic, Y1 (as a 2-dimensional

variable) is aperiodic as well. Furthermore, the mean and the covariance matrix of Y1

are respectively equal to:

M =

(
0

µB

)
and Σ =

(
σ2 µBmB

µBmB µB(1− µB).

)
where σ2 is the variance of µ. In particular, det Σ = σ2γ2

B > 0.
On the other hand, as µ is non-lattice, for n large enough, uniformly for c in a compact

subset of R, P(Sn = an, J
B
n = kn(c)) > 0. An easy computation, with the help of Lemma

3.3 (ii), gives the result that we want.

4 Evolution of outdegrees in an exploration of a Galton-Watson
tree

The aim of this section is to establish Theorem 1.1. Recall from the introduction that
if T is a tree and A ⊂ Z+, C(T ) denotes the contour function of T , for 0 ≤ t ≤ 1, NA2nt(T )

denotes the number of different A-vertices already visited by C(T ) at time b2ntc and
KAnt(T ) denotes the number of A-vertices in the first bntc vertices of T in the depth-first
search (or, equivalently, the lexicographical order).

We assume here that A ⊂ Z+ is such that µA > 0. We keep the notation of Section
3.1, and denote in particular by mA the expectation of a random variable with law given
by pA(i) = µi+1

µA
1i+1∈A for i ∈ Z.

4.1 Depth-first exploration

In this section, we study the evolution of the number of A-vertices in conditioned GW
trees for the depth-first search, and establish in particular Theorem 1.1 (i). Throughout
this section, we fix a critical distribution µ with finite positive variance σ2, and we let Tn
denote a µ-GW tree conditioned on having n vertices.
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The idea of the proof of Theorem 1.1 (i) is the following. By Lemma 2.1, the con-
vergence of Theorem 1.1 (i) can be restated in terms of the random walk (Si)0≤i≤n
(with jump distribution given by P(S1 = i) = µ(i+ 1) for i ≥ −1) conditionally given the
event {Sn = −1, ∀ 0 ≤ i ≤ n − 1, Si ≥ 0}. We first establish a result for the “bridge”
version where one works conditionally given the event {Sn = −1} (Lemma 4.1) and then
conclude by using the so-called Vervaat transform.

To simplify notation, for every t ≥ 0, we set St = Sbtc and JAt =
∑btc
k=1 1{Sk−Sk−1+1∈A}

Lemma 4.1. The following convergence holds in distribution(
Snt√
n
,
JAnt − µAnt√

n

)
0≤t≤1

under P( · |Sn = −1)
(d)−→
n→∞

(
σBbrt ,

µAmA
σ

Bbrt + γAB
′
t

)
0≤t≤1

(4.1)
where Bbr is a standard Brownian bridge and B′ is a standard Brownian motion indepen-
dent of Bbr.

Proof. We first check that the corresponding nonconditioned statement holds, namely
that the following convergence holds in distribution:(

Snt√
n
,
JAnt − µAnt√

n

)
0≤t≤1

(d)−→
n→∞

(
σBt,

µAmA
σ

Bt + γAB
′
t

)
0≤t≤1

(4.2)

where B is a standard Brownian motion and B′ a standard Brownian motion independent
of B. To this end, by [18, Theorem 16.14], it is enough to check that the one-dimensional
convergence holds for t = 1. By Lemma 3.4 (i), uniformly for a, b in a compact subset of
R:

P(Sn = ba
√
nc, JAn = bµAn+ b

√
nc) ∼

n→∞

1

2πσγA

1

n
e
− 1

2σ2
a2− 1

2γ2A
(b−µAmA

σ2
a)

2

.

It is standard (see e.g. [8, Theorem 7.8]) that this implies that (Sn/
√
n, (JAn − µAn)/

√
n)

converges in distribution to (σB1,
µAmA
σ B1 + γAB

′
1), which yields (4.2).

We now establish (4.1) by using an absolute continuity argument. We fix u ∈ (0, 1), a
bounded continuous functional F : D([0, u],R2)→ R, and to simplify notation set

An = E
[
F (Snt/

√
n, (JAnt − µAnt)/

√
n)0≤t≤u|Sn = −1

]
.

Then, setting φn(i) = P(Sn = i), we have

An = E

[
F

((
Snt√
n
,
JAnt − µAnt√

n

)
0≤t≤u

)
φn−bnuc(−Sbnuc − 1)

φn(−1)

]
.

An application of the local limit theorem 2.3 allows to write as n→∞

An = E

[
F

((
Snt√
n
,
JAnt − µAnt√

n

)
0≤t≤u

)
q1−u(−Sbnuc/

√
n)

q1(0)

]
+ o(1),

where qt denotes the density of a centered Brownian motion of variance σ2 at time t.
Therefore, by (4.2), as n→∞,

An −→
n→∞

E

[
F

((
σBt,

µAmA
σ

Bt + γAB
′
t

)
0≤t≤u

)
q1−u(−Bu)

q1(0)

]
= E

[
F

((
σBbrt ,

µAmA
σ

Bbrt + γAB
′
t

)
0≤t≤u

)]
, (4.3)
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where the last identity follows from standard absolute continuity properties of the
Brownian bridge (see e.g. [33, Chapter XII]).

The convergence (4.3) shows in particular that, conditionally given Sn = −1, the pro-
cess (Snt/

√
n, (JAnt − µAnt)/

√
n)0≤t≤1 is tight on [0, u] for every u ∈ (0, 1). To check that

it is tight on [u, 1], it suffices to check that (Sn−nt/
√
n, (JAn−nt − µAn(1− t))/

√
n)0≤t≤u is

tight conditionally given Sn = −1. To this end, notice that by time-reversal the process
(Ŝi, Ĵi)0≤i≤n := (Sn − Sn−i, JAn − JAn−i)0≤i≤n has the same distribution as (Si, Ji)0≤i≤n
(and this also holds conditionally given Sn = −1). Then write(

Sn−nt√
n
,
JAn−nt − µAn(1− t)

√
n

)
0≤t≤u

=

(
Ŝn − Ŝnt√

n
,
ĴAn − µAn√

n
− ĴAnt − µAnt√

n

)
0≤t≤u

.

Now, by Lemma 3.4 (i) and the local limit theorem, uniformly for b in a compact subset
of R, P(JAn = bµAn + b

√
nc|Sn = −1) ∼ 1√

2πγAn
e−b

2/2γ2
A as n → ∞, which shows that,

conditionally given Sn = −1, (JAn − µAn)/
√
n converges in distribution. Hence by (4.3),

the process (Snt/
√
n, (JAnt − µAnt)/

√
n)u≤t≤1 is tight on [u, 1] conditionally given Sn = −1.

This allows us to conclude that this process is actually tight on [0, 1], and in addition, this
identifies the convergence of the finite dimensional marginal distributions.

In order to deduce Theorem 1.1 (i) from the bridge version of Lemma 4.1, we now
use the Vervaat transformation, whose definition is recalled here.

Set D0([0, 1],R) = {ω ∈ D([0, 1],R); ω(0) = 0}. For every ω ∈ D0([0, 1],R) and
0 ≤ u ≤ 1, we define the shifted function ω(u) by

ω(u)(t) =

{
ω(u+ t)− ω(u) if u+ t ≤ 1,

ω(u+ t− 1) + ω(1)− ω(u) if u+ t ≥ 1.

We shall also need the notation g1(ω) = inf{t ∈ [0, 1];ω(t−)∧ω(t) = inf [0,1] ω}. The shifted
function ω(g1(ω)) is usually called the Vervaat transform of ω.

Lemma 4.2. Let Bbr be a standard Brownian bridge and B an independent standard
Brownian motion. Set τ = g1(Bbr). Then(

Bbr,(τ), B(τ)
)

(d)
= (e, B′) ,

where e is a normalized Brownian excursion and B′ is a standard Brownian motion
independent of e.

Proof. Since B and Bbr are independent, it readily follows that B(τ) has the law of a
standard Brownian motion, and is independent of (τ,Bbr), and therefore is independent
of Bbr,(τ). On the other hand, Bbr,(τ) has the law of e (see e.g. [36]). The result follows.

Proof of Theorem 1.1 (i). We keep the notation of Lemma 4.2, and also let (Sbr,n, Jn) =

(Sbr,nnt , Jnnt)0≤t≤1 be a random variable distributed as (Snt, J
A
nt − ntµA)0≤t≤1 conditionally

given Sn = −1. We set τn = g1(Sbr,n). It is well-known (see e.g. [36]) that Sbr,n,(τn) has
the same distribution as (Wnt(Tn))0≤t≤1. It follows that(

Sbr,n,(τn), Jn,(τn)
)

(d)
=

(
Wnt(Tn),KAnt(Tn)− ntµA

)
0≤t≤1

.

Since Bbr and B are almost surely continuous at τ , by Lemma 4.1 and standard continuity
properties of the Vervaat transform, it follows that(

Wnt(Tn)√
n

,
KAnt(Tn)− ntµA√

n

)
0≤t≤1

(d)−→
n→∞

(
σB

br,(τ)
t ,

µAmA
σ

B
br,(τ)
t + γAB

′ (τ)
t

)
0≤t≤1

.

By Lemma 4.2, this last process has the same distribution as (σet,
∑
i∈A(i−1)µi

σ et + γAB
′
t),

and this completes the proof.
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4.2 Contour exploration

We are now interested in the evolution of the number of A-vertices in conditioned
GW trees for the contour visit counting process, and establish in particular Theorem 1.1
(ii). The idea of the proof is to obtain a relation between the counting process NA for
the contour process and the counting process KA for the depth-first search order.

In this direction, if T is a tree with n vertices, for every 0 ≤ k ≤ 2n− 2, we denote by
bk(T ) the number of different vertices visited by the contour process C(T ) up to time
k. We set bk(T ) = b2n−2(T ) for k ≥ 2n− 2, and bt(T ) = bbtc(T ) for t ≥ 0. It turns out that
the following simple deterministic relation holds between b(T ) and C(T ).

Lemma 4.3. Let T be a tree with n vertices. Then, for every 0 ≤ k ≤ 2n− 2,

bk(T ) = 1 +
k + Ck(T )

2
.

Proof. We show that the result holds for k = 0, and that if it holds at time 0 ≤ k ≤ 2n− 3

then it holds at time k + 1. For 0 ≤ k ≤ 2n− 2, let uk be the vertex visited by the contour
process at time k. First, at time k = 0, the root is the only vertex visited and b0(T ) = 1.
Now assume that the result holds until time 0 ≤ k ≤ 2n − 3. Then we see that uk+1 is
visited for the first time at time k + 1 if and only if the contour process goes up between
uk and uk+1. Therefore, bk+1(T ) = bk(T ) + 1 if Ck+1(T ) = Ck(T ) + 1 and bk+1(T ) = bk(T )

if Ck+1(T ) = Ck(T )− 1. In both cases, the formula is also valid at time k + 1.

We are now in position to establish Theorem 1.1 (ii).

Proof of Theorem 1.1 (ii). First, by Theorem 1.1 (i) and Lemma 4.3, the convergence

(
C2nt(Tn)√

n
,
b2nt(Tn)− nt√

n
,
KAnt(Tn)− ntµA√

n

)
0≤t≤1

→
(

2

σ
et,

1

σ
et,

µAmA
σ

et + γABt

)
0≤t≤1

(4.4)
holds jointly in distribution in D([0, 1],R3), where e is a normalized Brownian excursion
and B is an independent standard Brownian motion. In particular, the convergence(

b2nt(Tn)

n

)
0≤t≤1

−→
n→∞

(t)0≤t≤1 (4.5)

holds in probability.

Next, for every t ∈ [0, 1], observe that NA2nt(Tn) = KAb2nt(Tn)(Tn), so that

NA2nt(Tn)− ntµA√
n

=
KAb2nt(Tn)(Tn)− ntµA

√
n

=
KAb2nt(Tn)(Tn)− b2nt(Tn)µA

√
n

+ µA
b2nt(Tn)− nt√

n

By (4.4) and (4.5), it follows that the convergence(
NA2nt(Tn)− ntµA√

n

)
0≤t≤1

→
(µAmA

σ
et + γABt +

µA
σ

et
)

0≤t≤1

holds in distribution, jointly with (4.4). Since µAmA =
∑
i∈A(i− 1)µi, this completes the

proof.

EJP 25 (2020), paper 64.
Page 11/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP465
http://www.imstat.org/ejp/


Vertices with fixed outdegrees in large Galton-Watson trees

4.3 Extension to multiple passages

In Theorem 1.1 (ii), the process NA counts A-vertices the first time they are visited
by the contour exploration. In this Section, we are interested in what happens when
instead we count vertices at later visit times. In this direction, if T is a tree, for every
and 1 ≤ k ≤ i + 1 and 0 ≤ ` ≤ 2|T |, we denote by N i,k

` (T ) the number of vertices of
outdegree i visited at least k times by the contour exploration of T between times 0 and
`. Finally, for i ≥ 0, we set N i = N{i} to simplify notation.

As before, we fix a critical distribution µ with finite positive variance σ2, and we let
Tn denote a µ-GW tree conditioned on having n vertices.

Theorem 4.4. We have(
C2nt(Tn)√

n
,
N i

2nt(Tn)− ntµi√
n

,
N i,k

2nt(Tn)− ntµi√
n

)
0≤t≤1

(d)−→
n→∞

(
2

σ
et,

iµi
σ

et + γiBt,
(i− 2(k − 1))µi

σ
et + γiBt

)
0≤t≤1

where B is a standard Brownian motion independent of e, and

γi =
√
µi(1− µi)− 1

σ2 ((i− 1)µi)2.

The main ingredient of the proof is a relation between N i(T ) and N i,j(T ), for which
we need to introduce some notation. If T is a tree, for u ∈ T and 1 ≤ j ≤ i, we denote by
Ai,ju (T ) the number of ancestors of u in T with i children whose jth child is an ancestor
of u. For 0 ≤ t ≤ 2|T | − 2, denote by ut(T ) the vertex visited at time btc by contour
exploration. Then, for every 0 ≤ ` ≤ 2|T | − 2, observe that

N i
`(T )−N i,k

` (T ) =
∑

1≤j≤k−1

Ai,ju`(T )(T ) (4.6)

because i-vertices of T that have been visited at least once up to time `, but not k times
yet, are necessarily ancestors of u`(T ). Indeed, all the subtrees attached to a strict
ancestor of u`(T ) have either been completely visited or not visited at all (except the
subtrees containing u`(T )).

The following result, which is of independent interest, will allow to control the
asymptotic behaviour of Ai,ju (Tn), when the height of u is large enough. See [28] for
other bounds on Ai,j(Tn) under an additional finite exponential moment assumption.
For a nonnegative sequence (rn), we write rn = oe(n) if there exist C, ε > 0 such that
rn ≤ Ce−n

ε

for every n ≥ 1.

Proposition 4.5. Fix i ≥ 1. Then

P

(
∃u ∈ Tn,∃j ∈ J1, iK : |u| ≥ n1/10,

∣∣∣∣Ai,ju (Tn)

|u|
− µi

∣∣∣∣ ≥ µi
|u|1/100

)
= oe(n).

Before proving this bound, let us explain how Theorem 4.4 follows.

Proof of Theorem 4.4 from Proposition 4.5. We will repeatedly use the identity C`(Tn) =

|u`(Tn)| for every 0 ≤ ` ≤ 2n− 2. We first check that

max
1≤j≤i

sup
0≤`≤2n−2

∣∣∣∣∣µiC`(Tn)√
n
−
Ai,ju`(Tn)(Tn)
√
n

∣∣∣∣∣ (P)−→
n→∞

0 (4.7)

First, since for every `, Ai,ju`(Tn)(Tn) ≤ |u`(Tn)|, we may restrict our study without loss of

generality to the times ` such that |u`(Tn)| ≥ n1/10. Indeed, uniformly for 1 ≤ j ≤ i, for `
such that |u`(Tn)| < n1/10, we have n−1/2|µiC`(Tn)−Ai,ju`(Tn)(Tn)| ≤ 2n1/10−1/2 = 2n−2/5.

EJP 25 (2020), paper 64.
Page 12/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP465
http://www.imstat.org/ejp/


Vertices with fixed outdegrees in large Galton-Watson trees

By Proposition 4.5, for every n sufficiently large and ` such that |u`(Tn)| ≥ n1/10, we

have, with probability tending to 1 as n→∞, uniformly in j,
∣∣∣Ai,ju`(Tn)(Tn)− µi|u`(Tn)|

∣∣∣ <
µi|u`(Tn)|99/100. By Theorem 2.2, max0≤`≤2n−2 C`(Tn)/

√
n converges in probability as

n→∞, so that we have max0≤`≤2n−2 |u`(Tn)|99/100/
√
n→ 0. This entails (4.7).

Now, using (4.6), for 0 ≤ t ≤ 1, write

N i,k
2nt(Tn)− ntµi√

n
=
N i

2nt(Tn)− ntµi√
n

−
∑

1≤j≤k−1

Ai,ju2nt(Tn)(Tn)
√
n

Hence, by combining Theorem 1.1 (ii) with (4.7), we get

(
C2nt(Tn)√

n
,
N i

2nt(Tn)− ntµi√
n

,
N i,k

2nt(Tn)− ntµi√
n

)
0≤t≤1

(d)−→
n→∞

(
2

σ
et,

iµi
σ

et + γiBt,
iµi
σ

et + γiBt − (k − 1)µi
2

σ
et

)
0≤t≤1

where B is a standard Brownian motion and γi =
√
µi(1− µi)− 1

σ2 ((i− 1)µi)2, which

gives the desired result.

We now get into the proof of Proposition 4.5.

Proof of Proposition 4.5. First, observe that if T is a nonconditioned µ-GW tree, then

P

(
∃u ∈ Tn,∃j ∈ J1, iK : |u| ≥ n1/10,

∣∣∣∣Ai,ju (Tn)

|u|
− µi

∣∣∣∣ ≥ µi
|u|1/100

)

≤ 1

P(|T | = n)

n∑
k=dn1/10e

i∑
j=1

E

∑
|u|=k

1∣∣∣∣Ai,ju (T )
|u| −µi

∣∣∣∣≥ µi

|u|1/100

 .
In order to compute these expectations, let us mention the existence of the local limit

T ∗ of the trees Tn. This limit is defined as the random variable on the set of infinite trees
satisfying, for any r ≥ 0,

Br (Tn) →
n→∞

Br (T ∗) ,

where Br denotes the ball of radius r centered at the root for the graph distance (all
edges of the tree having length 1). T ∗ is an infinite tree called Kesten’s tree, made of
a unique infinite branch on which i.i.d. µ-Galton-Watson trees are planted (see [19] for
details). The local behaviour of the trees Tn can be deduced from the properties of this
infinite tree; in particular, a standard size-biasing identity à la Lyons–Pemantle–Peres
[27] (see [11, Eq. (23)] for a precise statement) gives

E

∑
|u|=k

1∣∣∣∣Ai,ju (T )
|u| −µi

∣∣∣∣≥ µi

|u|1/100

 = E

1∣∣∣∣∣Ai,jUk(T ∗)(T
∗)

k −µi

∣∣∣∣∣≥ µi

k1/100


= P

(∣∣∣∣Bin(k, µi)

k
− µi

∣∣∣∣ ≥ µi
k1/100

)
,

where Uk(T ∗) denotes the vertex of the unique infinite branch of T ∗ at height k. In
particular, this expectation does not depend on j.
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By (3.1) (applied with B = Z+), we therefore have, for some constant C:

P

(
∃u ∈ Tn,∃j ∈ J1, iK : |u| ≥ n1/10,

∣∣∣∣Ai,ju (Tn)

|u|
− µi

∣∣∣∣ ≥ µi
|u|1/100

)
≤ Cin3/2

n∑
k=dn1/10e

P

(∣∣∣∣Bin(k, µi)

k
− µi

∣∣∣∣ ≥ µi
k1/100

)

≤ Cin3/2
n∑

k=dn1/10e

2 exp

(
−2k

(
µik
−1/100

)2
)

where the last line is obtained by using Hoeffding inequality. Thus,

P

(
∃u ∈ Tn,∃j ∈ J1, iK : |u| ≥ n1/10,

∣∣∣∣Ai,ju (Tn)

|u|
− µi

∣∣∣∣ ≥ µi
|u|1/100

)
≤ 2Cin3/2

n∑
k=dn1/10e

exp
(
−2µ2

i k
49/50

)
= oe(n).

The desired result follows.

Finally, let us remark that the estimate of Proposition 4.5 is strong enough to get the
following refinement of Theorem 4.4 (whose proof is left to the reader):

Theorem 4.6. Let k : Z+ → Z+ such that, for i ∈ Z+, 1 ≤ k(i) ≤ i + 1. Let A ⊂ Z+.
Then the following convergence holds in distribution:(

C2nt(Tn)√
n

,
NA2nt(Tn)− ntµA√

n
,

∑
i∈AN

i,k(i)
2nt (Tn)− ntµi√

n

)
0≤t≤1

(d)−→
n→∞

(
2

σ
et,

∑
i∈A iµi

σ
et + γABt,

∑
i∈A (i− 2(k(i)− 1))µi

σ
et + γABt

)
0≤t≤1

where B is a standard Brownian motion and γA =
√
µA(1− µA)− 1

σ2 (
∑
i∈A(i− 1)µi)2.

5 Asymptotic normality of outdegrees in large Galton-Watson
trees

The main goal of this Section is to prove Theorem 1.2 (i) and (ii). We fix a critical
offspring distribution µ with finite positive variance σ2, and A,B ⊂ Z+ such that µB > 0.
If T is a tree, recall that NA(T ) is the number of A-vertices in T , and that T Bn is a µ-GW
tree conditioned to have n B-vertices. In the sequel, T is a nonconditioned µ-GW tree.
We also assume for technical convenience that pB and pBc are both aperiodic (but the
results carry through in the general setting with mild modifications).

5.1 Expectation of NA(T Bn )

Our goal is here to prove Theorem 1.2 (i). To this end, for every n ≥ 1, define the
interval In := J n

µB
− n3/4, nµB + n3/4K. The proof relies on the following estimates.

Lemma 5.1. We have:

(i) E
(
NZ+

(
T Bn
)
1NZ+ (T Bn )/∈In

)
= oe(n);

(ii) P

(∣∣∣∣NA(T Bn )
n − µA

µB

∣∣∣∣ ≥ n−1/5

∣∣∣∣NZ+(T Bn ) ∈ In
)
→ 0 as n→∞.
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Proof of Theorem 1.2 (i) using Lemma 5.1. Start by writing the quantity E[NA(T Bn )] as

E[NA(T Bn )] = P(NZ+(T Bn ) ∈ In)E[NA(T Bn )|NZ+(T Bn ) ∈ In] + E[NA(T Bn )1NZ+ (T Bn )/∈In ].

(5.1)

Observe that E[NA(T Bn )1NZ+ (T Bn )/∈In ] ≤ E[NZ+(T Bn )1NZ+ (T Bn )/∈In ] = oe(n) by Lemma 5.1
(i). In order to bound the first term in the sum of (5.1), remark that we can bound∣∣∣ 1
nE
[
NA

(
T Bn
)
|NZ+

(
T Bn
)
∈ In

]
− µA

µB

∣∣∣ from above by

1

n1/5
+

(
sup In
n

+
µA
µB

)
P

(∣∣∣∣NA(T Bn )

n
− µA
µB

∣∣∣∣ ≥ 1

n1/5

∣∣∣∣NZ+(T Bn ) ∈ In
)
.

This last quantity tends to 0 as n→∞ by Lemma 5.1 (ii) and since sup In/n→ 1/µB. In
order to complete the proof, it remains to observe that since NZ+(T Bn ) ≥ n, Lemma 5.1
(i) implies that P

(
NZ+

(
T Bn
)
/∈ In

)
→ 0.

Proof of Lemma 5.1. First, remark that

E
[
NZ+

(
T Bn
)
1NZ+ (T Bn )/∈In

]
=
∑
k/∈In
k≥n

kP
(
NZ+

(
T Bn
)

= k
)

=
1

P (NB(T ) = n)

∑
k/∈In
k≥n

kP
(
NZ+ (T ) = k,NB (T ) = n

)

≤ 1

P (NB(T ) = n)

∑
k/∈In
k≥n

P
(
JBk = n

)
by Proposition 3.1.

We now use the fact that, for any k, JBk has a binomial distribution of parameters (k, µB).
Remark that, if k /∈ In, then |n−kµB| ≥ k3/5. Hence, by Hoeffding’s inequality, for k 6∈ In,

P(JBk = n) ≤ P(|JBk − kµB| ≥ k3/5) ≤ 2e−2k1/5 . Therefore
∑
k/∈In,k≥nP(JBk = n) = oe(n).

(i) follows by (3.1) (applied with B = Z+),
For (ii), we use the fact that

P

(∣∣∣∣∣NA
(
T Bn
)

n
− µA
µB

∣∣∣∣∣ ≥ n−1/4

∣∣∣∣∣NZ+(T Bn ) ∈ In

)

=
1

P (NB(T ) = n|NZ+(T ) ∈ In)
P

(∣∣∣∣NA (T )
n

− µA
µB

∣∣∣∣ ≥ n−1/5, NB(T ) = n

∣∣∣∣NZ+(T ) ∈ In
)

Note that

1

P (NB(T ) = n|NZ+(T ) ∈ In)
=

P
(
NZ+(T ) ∈ In

)
P (NB(T ) = n,NZ+(T ) ∈ In)

≤ 1

P
(
NB(T ) = n,NZ+(T ) = b nµB c

)
which grows at most polynomially in n according to Lemma 3.4 (ii). The second assertion
now follows from the fact that

P

(∣∣∣∣NA (T )
n

− µA
µB

∣∣∣∣ ≥ n−1/5

∣∣∣∣NZ+(T ) ∈ In
)
≤ sup
k∈In

P

(∣∣∣∣NA (T )
n

− µA
µB

∣∣∣∣ ≥ n−1/5

∣∣∣∣NZ+(T ) = k

)
.

In virtue of (3.1) (applied with B = Z+), it suffices to check that P(|N
A(T )
n − µA

µB
| ≥

n−1/5, NZ+(T ) = k) = oe(n) when k ∈ In. By Proposition 3.1,

P

(∣∣∣∣NA (T )

n
− µA
µB

∣∣∣∣ ≥ n−1/5, NZ+(T ) = k

)
≤ P

(∣∣∣∣JAk − nµAµB
∣∣∣∣ ≥ n4/5

)
.
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Vertices with fixed outdegrees in large Galton-Watson trees

When k ∈ In, this last quantity is bounded from above by P(|JAk − kµA| ≥ n4/5 − µAn3/4),
which is oe(n) since JAk has a binomial distribution of parameters (k, µA). This proves
(ii).

5.2 Asymptotic normality of NA(T Bk )

The first step is to establish the following local version of Theorem 1.2 when A = Z+.

Proposition 5.2. As k →∞,

P
(
NZ+

(
T Bk
)

= bk/µB +
√
kyc
)
∼

√
µ3
B

2πγ2
B

1√
k

exp

(
−µ

3
B
γ2
B

y2

2

)
,

uniformly for y in a compact subset of R.

It is standard that this implies the following asymptotic normality:

NZ+(T Bk )− k/µB√
k

d→ N (0,
γ2
B
µ3
B

). (5.2)

Proof of Proposition 5.2. By Lemma 3.4 (ii), we have as n → ∞, uniformly for c in a
compact subset of R,

P
(
NZ+(T ) = n,NB(T ) = kn(c)

)
∼ 1

2πσγB

1

n2
exp

(
− 1

γ2
B

c2

2

)
. (5.3)

By using (3.1), we have

P(NZ+(T ) = n|NB(T ) = kn(c)) ∼ µB

γB
√

2πn
exp

(
− 1

γ2
B

c2

2

)
.

Then observe that for y ∈ R, as n, k →∞, it is equivalent to write n = k/µB + y
√
k+O(1)

and k = nµB − y
√
nµ

3/2
B +O(1). Hence

P

(
NZ+(T ) = b k

µB
+ y
√
kc|NB(T ) = k

)
∼

µ
3/2
B

γB
√

2πk
exp

(
−µ

3
B
γ2
B

y2

2

)
.

This completes the proof.

We are now in position to establish Theorem 1.2 (ii), which will be a consequence of
the following estimate.

Lemma 5.3. Let A,B ⊂ Z+ such that the quantities µA∩B, µA\B, µB\A, µAc∩Bc are
all positive. Then there exists σ2

A,B > 0, CA,B ∈ R such that for fixed u, v ∈ R ∪
{+∞,−∞}, u < v and y ∈ R, we have, as k →∞,

P

(
NA(T Bk )− k µA

µB√
k

∈ (u, v)

∣∣∣∣∣NZ+(T Bk ) = bk/µB +
√
kyc

)
∼ 1√

2πσ2
A,B

∫ v

u

e
− 1

2σ2A,B
(z−CA,By)

2

dz.

(5.4)

Proof of Theorem 1.2 (ii), using Lemma 5.3. First assume that the four quantities µA∩B,
µA\B, µB\A, µAc∩Bc are all positive. Fix u < v. For y ∈ R and k ∈ Z+, set

fk(y) = P

(
NA(T Bk )− k µAµB√

k
∈ (u, v), NZ+(T Bk ) = bk/µB +

√
kyc

)
√
k
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and remark that P((NA(T Bk )− k µAµB )/
√
k ∈ (u, v)) =

∫
R
fk(y)dy. Also, for y, z ∈ R define

g(y, z) by

g(y, z) =
1√

2πγ2
e
− y2

2γ2
1√

2πσ2
A,B

e
− 1

2σ2A,B
(z−CA,By)2

.

where γ2 = γ2
B/µ

3
B. Observe that

∫
R2 g(y, z)dydz = 1. Then, by Proposition 5.2 and

Lemma 5.3, fk(y) converges pointwise, as k → ∞, to
∫ v
u
g(y, z)dz. Hence, by Fatou’s

lemma and Fubini-Tonnelli’s theorem,

lim inf
k→∞

P

(
NA(T Bk )− k µAµB√

k
∈ (u, v)

)
≥
∫ v

u

[∫
R

g(y, z)dy

]
dz.

By Portmanteau theorem, if (Xk) is a sequence of real-valued random variables such
that for every u < v, lim infk→∞P(u < Xk < v) ≥ P(u < X < v) for a certain random
variable X, then Xn converges in distribution to X. This implies that

P

(
NA(T Bk )− k µAµB√

k
∈ (u, v)

)
→
∫ v

u

∫
R

1√
2πγ2

e
− y2

2γ2
1√

2πσ2
A,B

e
− 1

2σ2A,B
(z−CA,By)2

dy

 dz
=

∫ v

u

1√
2πδ2
A,B

e
− 1

2δ2A,B
z2

dz

with δ2
A,B = C2

A,Bγ
2 + σ2

A,B > 0. We leave the case where at least one of the quantities
µA∩B, µA\B, µB\A, µAc∩Bc is 0 to the reader, which is treated in the same way. In
particular, one gets that δ2

A,B > 0 except when µA = 0 or µA\B = µB\A = 0. This
establishes the asymptotic normality of (NA(T )|NB(T ) = k) with an expression of the
limiting variance.

The proof of Lemma 5.3 is based on the following result, whose proof is a direct
adaptation of the proof of Lemma 3.4 in the multivariate setting.

Lemma 5.4. Fix a ∈ R, and let (B1, . . . ,Bj) be a partition of Z+, satisfying, for all
i ∈ J1, jK, µBi > 0. Assume in addition that at least one of the laws pB1 , . . . , pBj is
aperiodic. For 1 ≤ i ≤ j and ci ∈ R, define ni(ci) := bnµBi + ci

√
nc. Then there exists a

symmetric positive definite matrix Σ := Σ (B1, . . . ,Bj) ∈ Sj (R) such that the following
assertions hold, uniformly for (c1, . . . , cj) in a compact subset of Rj satisfying in addition∑j
i=1 ni(ci) = n:

(i) Let (an) be a sequence of integers such that an/
√
n→ a. Then, as n→∞,

P
(
Sn = an, J

B1
n = n1(c1), . . . , JBjn = nj(cj)

)
∼ 1

(2πn)
j/2√

det Σ
e−

1
2
txΣ−1x,

where x = (a, c1, . . . , cj−1).

(ii) With the same notations, as n→∞, we have

P
(
NZ+(T ) = n,NB1(T ) = n1(c1), . . . , N

Bj (T ) = nj(cj)
)
∼ 1

n

1

(2πn)j/2
√
detΣ

e−
1
2
t
xΣ−1x,

where, here, x = (0, c1, . . . , cj−1).

Remark 5.5. For convenience, as before, we state here the theorem in the aperiodic
case. Remark however that the case where none of the laws pB1

, . . . , pBj are aperiodic
boils down to the aperiodic case, up to a change of variables.
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Proof of Lemma 5.3. Let us fix y ∈ R. First, write

P

(
NA(T Bk )− k µA

µB√
k

∈ (u, v)

∣∣∣∣∣NZ+(T Bk ) = bk/µB +
√
kyc

)

=

P

(
NA(T )−k µA

µB√
k

∈ (u, v), NB(T ) = k,NZ+(T ) = bk/µB +
√
kyc
)

P
(
NB(T ) = k,NZ+(T ) = bk/µB +

√
kyc
)

∼ C(y)k5/2
∫ v

u

P

(
NA(T ) = bkµA

µB
+
√
khc, NB(T ) = k,NZ+(T ) = bk/µB +

√
kyc
)
dh,

where the last asymptotic equivalent follows from (5.3) with C(y) = 2πσγB
µ2
B

exp
(
y2µ3
B

2γ2
B

)
.

In order to prove that this quantity has a limit as k →∞ and compute it, it is enough to
prove that the map gk defined by

gk(h) = k5/2P

(
NA(T ) = bkµA

µB
+
√
khc, NB(T ) = k,NZ+(T ) = bk/µB +

√
kyc
)

converges uniformly on (u, v) to an integrable function on (u, v).
Remark that we can write gk(h) = k5/2

∑
`∈Z+

q`, where

q` = P

(
NA∩B(T ) = `,NA\B(T ) = bkµA

µB
+
√
khc − `,NB\A(T ) = k − `,

NA
c∩Bc(T ) = bk/µB +

√
kyc − bkµA

µB
+
√
khc − k + `

)
.

In other words, we sum over all possible values ` of NA∩B(T ). The idea is that, if ` is far
from its expectation (namely, kµA∩B/µB), then q` is small. On the other hand, we control
q` by Lemma 5.4 when ` is close to its expectation. More specifically, set

Ik(h) :=

{
` ∈ Z+;

(
`, bkµA

µB
+
√
khc − `, k − `, b k

µB
+
√
kyc − bkµA

µB
+
√
khc − k + `

)
∈ Ck,

}
,

where

Ck =

{
k
µA∩B
µB

, k
µA\B

µB
, k
µB\A

µB
, k
µAc∩Bc

µB

}
+
[
−k3/5, k3/5

]4
.

First, remark that, for ` ∈ Z+, q` ≤
∑4
i=1P(NAi(T ) = `

∣∣NZ+(T ) = b kµB +
√
kyc),

where (A1,A2,A3,A4) := (A ∩ B,A\B,B\A,Ac ∩ Bc). Therefore,

∑
`/∈Ik(h)

q` ≤
4∑
i=1

P

(∣∣∣∣NAi(T )− kµAi
µB

∣∣∣∣ ≥ k3/5
∣∣NZ+(T ) = b k

µB
+
√
kyc
)

=

4∑
i=1

P
(
|Bi − E[Bi]| ≥ k3/5

)
(1 + o(1)) ,

where Bi ∼ Bin(bk/µBc, µAi). Thus, using Hoeffding inequality, we get:∑
`/∈Ik(h)

q` = oe(k) (5.5)

uniformly in h ∈ R.
On the other hand, by Lemma 5.4 (ii), there exists an invertible matrix Σ ∈ S4(R) and

a constant C1 > 0 such that, uniformly for h ∈ R,∑
`∈Ik(h)

q` ∼
∑

`∈Ik(h)

C1k
−3e−

1
2
tx`Σ

−1x` (5.6)
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for x` := ((`− k µA∩BµB
)/
√
k, y, h, 0).

By Equations (5.5) and (5.6), by summing over all ` ∈ Z+, we get that, as k → ∞,

uniformly in h ∈ R, gk(h)→ C2 exp
(
−BA,B (h− CA,By)

2
)

for a certain C2 depending on

A,B, and some constants BA,B, CA,B depending on A and B. Since this limiting function
is integrable, by uniform convergence, for any u, v ∈ R ∪ {+∞,−∞},

P

(
NA(T Bk )− k µA

µB√
k

∈ (u, v)

∣∣∣∣∣NZ+(T Bk ) = b k
µB

+
√
kyc

)
−→
k→∞

C̃(y)

∫ v

u

e−BA,B(h−CA,By)
2

dh,

where C̃(y) is a constant only depending on y (and A,B). By taking u = −∞ and v = +∞,
one sees that C̃(y) does not depend on y. Hence, there exists σ2

A,B > 0 such that, for

any y ∈ R, C̃(y) = 1/
√

2πσ2
A,B. Furthermore, by taking again u = −∞ and v = +∞, the

value of the right hand side is 1, which tells us that BA,B = 1
2σ2
A,B

. Finally, we conclude

that for every y ∈ R and u < v:

P

(
NA(T Bk )− k µA

µB√
k

∈ (u, v)

∣∣∣∣∣NZ+ (T Bk ) = b
k

µB
+
√
kyc
)
−→
k→∞

1√
2πσ2
A,B

∫ v

u
e
− 1

2σ2A,B
(h−CA,By)

2

dh

which completes the proof of Lemma 5.3.

Finally, we briefly present the proof of Theorem 1.2 (iii), which is based again on
Lemma 5.4 (ii).

Let us consider the tree T Bk for a certain B ⊂ Z+. Let A1, . . .Aj ⊂ Z+. It induces

a partition of Z+ made of the set E :=
{
∩j+1
i=1Ci, Ci ∈ {Ai,Aci} , Cj+1 ∈ {B,Bc}

}
\{∅}. Let

(ui, vi)1≤i≤j be real numbers with ui < vi for every 1 ≤ i ≤ j. Then

P

NA1(T Bk )− k µA1
µB√

k
∈ (u1, v1), . . . ,

NAj (T Bk )− k
µAj
µB√

k
∈ (uj , vj)


=
∑
n∈Z+

P
(
NZ+(T ) = n

)
P (NB(T ) = k)

×P

NA1(T Z+
n )− k µA1

µB√
k

∈ (u1, v1), . . . ,
NAj (T Z+

n )− k
µAj
µB√

k
∈ (uj , vj), N

B(T Z+
n ) = k


=
∑
n∈Z+

P
(
NZ+(T ) = n

)
P (NB(T ) = k)

∑
(xH)H∈E∈In

P

(
∩
H∈E

NH
(
T Z+
n

)
= xH

)

for some finite set In ∈ Z|E|+ . We can now rewrite this probability in terms of random
walks and use Lemma 5.4 (ii) in order to get the asymptotic normality of the quantity

P

(
NA1(T Bk )− k µA1

µB√
n

∈ (u1, v1), . . . ,
NAj (T Bk )− k µAjµB√

n
∈ (uj , vj)

)
.

Example 5.6. In explicit cases, it is possible to carry out the calculations in the proof
of Theorem 1.2 to compute the value of δA,B and of the covariances. We give several
examples:

– In the case B = Z+ and A = {r} with r ≥ 1 (which was treated by [17]), one has
δ2
A,B = µr(1−µr)− (r− 1)2µ2

r/σ
2 and the covariance between the limiting Gaussian

random variables for A1 = {r} and A2 = {s} is −µrµs − (r − 1)(s− 1)µrµs/σ
2.

– In the case B = {a} for some a ∈ Z+ and A = {r}, one has δ2
A,B = µr

µa
(1 + µr

µa
) −

(r−a)2µ2
r

µaσ2 and the covariance between the limiting Gaussian random variables for

A1 = {r} and A2 = {s} is µrµs
µ2
a

(
1− (r − a)(s− a)µaσ2

)
.
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– In particular, in the case B = {0} (this corresponds to conditioning by a fixed
number of leaves, and is useful in the study of dissections [22]) and A = {r}, one

has δ2
A,B = µr

µ0
(1 + µr

µ0
) − r2µ2

r

µ0σ2 and the covariance between the limiting Gaussian

random variables for A1 = {r} and A2 = {s} is µrµs
µ2
0

(
1− rsµ0

σ2

)
.

– In the case B = {0} and A = Z+, by (5.2), δ2
Z+,{0} = 1−µ0

µ2
0
− 1

µ0σ2 .

Remark 5.7. Using the same arguments as in the end of this Section, it is possible to
show that convergences of the exploration processes in Theorem 1.1 hold jointly for
A1, ...,Ak ⊂ Z+ (with correlated Brownian motions), and to extend the results with Tn
replaced with T Bn .

6 Several extensions

We now present some possible extensions of Theorems 1.1 and 1.2 for other types of
offspring distributions. A natural one is the extension of these results to distributions µ
that are said to be in the domain of attraction of a stable law. We first properly define this
notion, before explaining how the two abovementioned theorems can be generalized in
this broader framework. The second extension that we present is the case of subcritical
non-generic laws, where the offspring distribution is not critical anymore. In this case,
we asymptotically observe in the random tree Tn a condensation phenomenon, where
one vertex has macroscopic degree. See e.g. [16, Example 19.33] for more context.

6.1 Stable offspring distributions

Let us first provide some background. We say that a function L : R∗+ → R∗+ is slowly
varying if, for any c > 0, L(cx)/L(x)→ 1 as x→∞. For α ∈ (1, 2], we say that a critical
distribution µ belongs to the domain of attraction of an α-stable law if either µ has finite
variance (in which case α = 2) or there exists a slowly varying function L such that

V ar (X1X≤x) ∼
x→∞

x2−αL(x), (6.1)

where X is a random variable of law µ. In this case, for any sequence (Dn)n≥1 of positive
numbers satisfying

nL(Dn)

Dα
n

→
n→∞

α(α− 1)

Γ(3− α)
, (6.2)

we have the following joint convergence:

Theorem 6.1. Let α ∈ (1, 2] and µ a critical distribution with infinite variance in the
domain of attraction of an α-stable law. Let (Dn)n≥1 be a sequence satisfying (6.2). Then,
there exists two nondegenerate random processes X(α), H(α), depending only on α, such
that the following convergences hold jointly:

(i) We have(
Wnt(Tn)

Dn
,
KAnt(Tn)− ntµA√

n

)
0≤t≤1

(d)−→
n→∞

(
X

(α)
t ,

√
µA(1− µA)Bt

)
0≤t≤1

.

(ii) The following convergence holds in distribution, jointly with that of (i):(
Dn

n
C2nt(Tn),

NA2nt(Tn)− ntµA√
n

)
0≤t≤1

(d)−→
n→∞

(
H

(α)
t ,

√
µA(1− µA)Bt

)
0≤t≤1

.

Here, B denotes is a standard Brownian motion independent of (X(α), H(α)).
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The processes X(α), H(α) only depend on α, and are the continuous-time analogues
of respectively the Lukasiewicz path and the contour function of the so-called α-stable
tree (see Fig. 3 for a picture, and [12] for more details). This stable tree is a random
compact metric space introduced by Duquesne and Le Gall [12], known to be the scaling
limit of the sequence of size-conditioned µ-Galton-Watson trees (Tn), when µ is in the
domain of attraction of an α-stable law. Notably, when α = 2, X(2) = H(2) = e.

Figure 3: An approximation of the α-stable tree and the processes X(α) and H(α), for
α = 1.6.

Note that, setting σ2 = ∞ in the definition of γA given in Theorem 1.1, we obtain
exactly γA =

√
µA(1− µA), so that Theorem 6.1 is indeed the natural generalization of

the finite variance case. An interesting remark, in the infinite variance case, is that the
two marginals of the limiting processes are independent.

On the other hand, the results of Theorem 1.2 still hold in this case:

Theorem 6.2. Let µ be a critical offspring distribution with infinite variance in the
domain of attraction of a stable law, and let A,B be subsets of Z+ such that µB > 0. For
n ≥ 1, let T Bn be a µ-GW tree conditioned to have n B-vertices. Then:

(i) as n→∞, 1
nE(NA(T Bn ))→ µA

µB
;

(ii) there exists δA,B ≥ 0 such that the convergence

NA(T Bn )− nµAµB√
n

(d)−→
n→∞

N (0, δ2
A,B)

holds in distribution, where N (0, δ2
A,B) is a centered Gaussian random variable with

variance δ2
A,B. In addition, δA,B = 0 if and only if µA = 0 or µA\B = µB\A = 0.

(iii) the convergences (1.1) hold jointly for A ⊂ Z+, in the sense that for every j ≥ 1

and A1, · · · ,Aj ⊂ Z+, ((NAi(T Bn )− nµAiµB
)/
√
n)1≤i≤j converges in distribution to a

Gaussian vector.

These two generalizations can be obtained by slightly adapting the proofs of Theorems
1.1 and Theorem 1.2. Let us only explain the most important changes in these proofs,
which consist in generalizing Theorems 2.2 and 2.4 in the stable framework:

Theorem 6.3 (Duquesne & Le Gall [12]). Let α ∈ (1, 2], and let µ a critical distribution in
the domain of attraction of an α-stable law. Let (Dn)n≥1 be a sequence satisfying (6.2).
Then, the following convergence holds jointly in distribution:(

Dn

n
C2nt(Tn),

1

Dn
Wnt(Tn)

)
0≤t≤1

(d)→
n→∞

(
H

(α)
t , X

(α)
t

)
0≤t≤1

.

The other ingredient is a multivariate local limit theorem in the stable case. When
the first coordinate of a random vector is in the domain of attraction of a stable law and
has infinite variance, while all others coordinates have finite variance, the random vector
satisfies a local limit theorem. In addition, the first coordinate of the limiting object is
independent of all others, which themselves are distributed as a Gaussian vector:
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Theorem 6.4 (Resnick & Greenwood [32], Hahn & Klass [13], Doney [9]). Let α ∈ (1, 2].

Let j ≥ 1 and (Yi)i≥1 := ((Y
(1)
i , . . . , Y

(j)
i ))i≥1 be i.i.d. random variables in Zj , such

that Y (1)
1 is in the domain of attraction of an α-stable law µ and has infinite variance,

and that the covariance matrix Σ of the vector (Y
(2)
1 , . . . , Y

(j)
1 ) is symmetric positive

definite. Assume in addition that Y1 is aperiodic, and denote by M (k) the mean of Y (k)
1 ,

for 1 ≤ k ≤ j. Finally, define for n ≥ 1

Tn =

n∑
i=1

(
Y

(1)
i −M (1)

Dn
,
Y

(2)
i −M (2)

√
n

, . . . ,
Y

(j)
i −M (j)

√
n

)

Then, as n→∞, uniformly for x := (x(1), . . . , x(j)) in a compact subset of Rj satisfying
P (Tn = x) > 0,

P (Tn = x) ∼
g
(
x(1)

)
Dn

× 1

(2πn)(j−1)/2
√

det Σ
e−

1
2
tx̃Σ−1x̃,

where g is the density of µ and x̃ := (x(2), . . . , x(j)).

Let us explain how we obtain this result, by combining the results of [9], [13] and
[32]. We first focus on the case j = 2. When α ∈ (1, 2), [32, Theorem 3] states that the

convergences of the two marginals
∑n
i=1(Y

(1)
i −M (1))/Dn and

∑n
i=1(Y

(2)
i −M (2))/

√
n

hold, and that obtaining these two convergences separately is enough to get Theorem 6.4.
The same theorem states in addition that the two limiting marginals are independent.

On the other hand, when j = 2, α = 2 and µ has infinite variance, Theorem 3 in [13]
shows that Tn converges in distribution to a bivariate normal variable, and that the
first coordinate of the limiting distribution is independent of the second (the constant
γn that appears in the statement of [13, Theorem 3] can be proved to be 0, so that the
renormalization matrix An appearing in this theorem is diagonal). This, coupled with
[9, Theorem 1] (which, roughly speaking, states that a bivariate central limit theorem
implies a local limit theorem), implies Theorem 6.4 in the case α = 2, j = 2. Although
these results are only stated for j = 2 (with the exception of [13, Theorem 3], which is
generalized in [13, Theorem 5]), they still hold for j ≥ 3 with mild motifications.

The proof of Theorem 6.1 follows the proof of Theorem 1.1 in the finite variance
case, applying Theorem 6.4 to the random vector (S1, J

A
1 ). In order to generalize the

results of Theorem 1.2 to the infinite variance case, we apply Theorem 6.4 to the vector
(Sn, J

B∩A
n , J

B\A
n , J

A\B
n , JA

c∩Bc
n ).

Convergence of T An to the stable tree We finish the study of the stable case by
proving the convergence of the conditioned trees (T An ), properly renormalized, to the
stable tree, for any A ⊂ Z+ satisfying µA > 0. More precisely, the multivariate theorem
2.4, along with Proposition 3.1, allows to obtain the following asymptotics, which
generalizes [21, Theorem 8.1 (i)]:

Proposition 6.5. Let α ∈ (1, 2], and let µ be in the domain of attraction of an α-stable
law with infinite variance. Let A ⊂ Z+ be such that µA > 0, µAc > 0 and T be a µ-GW
tree. Then, there exists a constant C depending only on µ and A such that the following
holds as n→∞, for the values of n such that P

(
NA(T ) = n

)
> 0:

P
(
NA(T ) = n

)
=
∑
k≥0

P
(
NZ+(T ) = k,NA(T ) = n

)
∼ C

L(n)n1+1/α
,

where L verifies (6.1).

EJP 25 (2020), paper 64.
Page 22/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP465
http://www.imstat.org/ejp/


Vertices with fixed outdegrees in large Galton-Watson trees

Note that our bivariate approach allows to prove it for all A ⊂ Z+, while [21, Theorem
8.1 (i)] holds only when A or Z+\A is finite. An immediate corollary of Proposition 6.5 is
the joint convergence of the contour function and the Lukasiewicz path of the conditioned
tree T An :

Corollary 6.6. Restricting ourselves to the values of n such that P(NA(T ) = n) > 0,(
DN(T An )

N(T An )
C2N(T An )t(T An ),

1

DN(T An )

WN(T An )t(T An )

)
0≤t≤1

(d)→
n→∞

(
H

(α)
t , X

(α)
t

)
0≤t≤1

.

The proof of this corollary follows exactly the proof of [21, Theorem 8.1 (II)]. In
particular, this convergence implies the convergence in distribution of the tree T An ,
viewed as a metric space for the graph distance and properly renormalized, towards the
α-stable tree for the Gromov-Hausdorff distance (see e.g. [25, Section 2] for details).

6.2 Subcritical non-generic offspring distributions

We now focus on the case where µ is subcritical (that is with mean strictly less
than 1) and µk ∼ ck−β as k → ∞, with fixed c > 0 and β > 2, and B = Z+. This is an
interesting case, as a condensation phenomenon occurs (see [16, 23]): a unique vertex
with macroscopic degree comparable to the total size of the tree emerges. Then the
following asymptotic normality holds.

Theorem 6.7. Assume that µ is an offspring distribution such that µk ∼ ck−β as k →∞,
with fixed c > 0 and β > 2, and denote by Tn a µ-GW tree conditioned to have n vertices.
Let k ≥ 1 and A1,A2, . . . ,Ak ⊂ Z+ be finite. Then we have the joint convergence in
distribution (

NA1(Tn)− nµA1√
n

, . . . ,
NAk(Tn)− nµAk√

n

)
−→ (ZA1 , . . . , ZAk),

where ZAi ∼ N (0, µAi(1− µAi)) and for i 6= j:

Cov(ZAi , ZAj ) = µAi∩Aj − µAiµAj .

Proof. By [7, Theorem 1] (see [23, Sec. 2.1] for its use in this context) or [16, Theorem
19.34] after removing the largest outdegree in Tn, the other outdegrees are asymp-
totically i.i.d. with distribution µ. Therefore, for every M ≥ 1, the law of the vector(
N{1}(Tn), . . . , N{M}(Tn)

)
is asymptotically multinomial with parameters (n, µ1, . . . , µM ).

The result follows.

Conjecture We have seen that the conclusions of Theorem 6.7 hold for µ with infinite
variance in the domain of attraction of a stable law and for µ a subcritical power law.
We believe that these conclusions should hold for any µ critical with infinite variance,
as well as for µ subcritical with no exponential moment. In particular, we should get,

for any A ⊂ Z+, (NA(Tn)− nµA)/
√
n

d→ N (0, µA (1− µA)). However, in the general
case, nothing is known about the scaling limits of such GW trees (see [16] for detailed
arguments and counterexamples) and no general local limit theorem exists, which
prevents us from directly generalizing our methods.
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