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Abstract

For all κ > 0, we show that the support of SLEκ curves is the closure in the sup-norm
of the set of Loewner curves driven by nice (e.g. smooth) functions. It follows that the
support is the closure of the set of simple curves starting at 0.
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1 Introduction

1.1 Overview

The support of a random variable X in a Polish space is the set of points x such that
for any open neighborhood V of x, we have P(X ∈ V ) > 0. In this paper, the random
variable X will be a random process, namely the SLEκ trace, and our goal is to describe
its support.

Characterising the support of random processes such as Brownian motion and dif-
fusions is an important research problem for stochastic (partial) differential equations,
where it was initiated by Stroock and Varadhan [25] when they studied a strong maxi-
mum principle of a PDE operator. In [4] a support theorem was the key to a Hörman-
der/Malliavin theory for rough differential equations. The description of a support is
also an important step to study the invariant measure of stochastic equations (see e.g.
[27, 5]). Other questions related to support theorems are large deviation estimates, or
the continuity of solution maps of SDE and SPDE.

SLEκ is an important random planar curve that shares many analogies with Brownian
motion and other random processes. SLEκ is proven and conjectured to be the scaling
limits or interface of many discrete models arisen from statistical physics (e.g. [18,
22, 23, 24, 3]). Instead of the Markov property, it satisfies a domain Markov property.
Depending on the parameter κ, it has different regularities (similar to fractional Brownian
motion). Moreover, SLEκ is defined through a family of deterministic ordinary differential
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equations called Loewner equations with the random input
√
κB, where B is the one

dimensional Brownian motion.
Motivated by the rich study of Brownian motion and other processes and by the

similarities of SLEκ to them, it is natural to ask for a support theorem for SLEκ curves.
Before stating the main result, let us give an overview of SLEκ.

The Loewner map (defined in Section 2) associates to certain real-valued continuous
functions λ ∈ C([0, 1],R) a continuous non-crossing Loewner curve γλ ∈ C([0, 1],H).
The curve is constructed from a family of Loewner equations. Not every function in
C([0, 1],R) corresponds to a curve; see an example in [19, Section 5]. It is proved that
the Loewner curve γλ is defined if locally the 1/2-Hölder constant of λ is less than 4
([19], [14]).

We call the Loewner map with the input
√
κB the Schramm-Loewner map. It is shown

that this map is almost surely well-defined ([21, for κ 6= 8], [18, for κ = 8]), that is, a.s.
it gives rise to a curve. These random curves are called SLEκ curves, and (abusing
notation) denoted γκ (instead of γ

√
κB).

The previous properties could remind us of stochastic differential equations (SDE).
An SDE is also driven by a Brownian motion, and if one replaces the Brownian motion
by smooth functions, then the SDE becomes an ODE and has a deterministic solution.
Recall that the support of the solution to an SDE can be characterized by the solutions
of the ODEs that arise by replacing the Brownian noise by Cameron-Martin paths (see
e.g. [9, Chapter 19]). One could guess that the support of SLE can be described in the
analogous way. We show in this paper that this is indeed true.

The main difficulty in proving such statements is that the Schramm-Loewner map (or,
in the SDE case, solution map) is not continuous, and even only almost surely defined.
If it were, the support theorem for SLE would immediately follow from the well-known
support theorem for Brownian motion. Note also that the SLEκ curve is not a diffusion
process, even though the Loewner equation with Brownian motion as an input can be
seen as an SDE. Hence the method of proving support theorems for diffusion processes
does not apply directly to SLEκ.

Consider the set D of all functions that have locally vanishing 1/2-Hölder constant.
See Section 2 for the exact definition and properties of D. Our main theorem is the
following.

Theorem 1.1. Fix κ > 0. The support of SLEκ, parametrized by half-plane capacity, in
the space C([0, 1],H) is the closure of {γλ : λ ∈ D} with respect to the sup-norm topology.

Obviously D contains W 1,2, the space of Cameron-Martin paths, so we can also
describe the support of SLEκ as

S = {γλ | λ ∈W 1,2, λ(0) = 0},

in analogy to the corresponding result for SDE.
Moreover, the same set can be represented as

S = {γ ∈ C([0, 1];H) | γ simple, param. by half-plane capacity, and γ(0) = 0}.

See Section 6 for more details.
Note that in the statement of Theorem 1.1 it is important to specify the topological

space where the random process belongs to. There might be several “natural” spaces to
which the random process corresponds. SLEκ can be viewed as a subset of the plane,
a continuous path, an α-Hölder function ([15], [10]), a p-variation path, or an element
of Besov spaces ([8]). When we consider SLEκ only as compact subsets and measure
distances by the Hausdorff metric, one can show a corresponding version of Theorem 1.1
by applying the method in [2, Lemma 8.2]. For Theorem 1.1 which is a characterization
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of the support of SLEκ in the sup-norm, one needs a non-trivial effort. We believe that
a similar statement can be made for Hölder and p-variation spaces (see discussion in
Section 6). (Similarly, there are different versions of the support theorem for Brownian
motion and SDE; see for example [17], [1].)

A direct consequence of Theorem 1.1 is that all the above statements are true in the
strong topology of curves, which is weaker than the sup-norm topology. Consider the
space of continuous paths α : [0, 1] → H modulo reparametrisation. Then the strong
topology is defined by the metric

ρ(α, β) = inf
ψ

sup
t∈[0,1]

|α(t)− β ◦ ψ(t)|

where the infimum is taken over all increasing homeomorphisms from [0, 1] to [0, 1].

Corollary 1.2. Fix κ > 0. The support of SLEκ, in the strong topology, is the closure of

{γλ : λ ∈ D},

which is equal to the closure of

{γ ∈ C([0, 1];H) | γ simple, γ(0) = 0,hcap(γ[0, 1]) = 2}.

Theorem 1.1 consists of the two following results.

Proposition 1.3. Let κ ≥ 0. For each ε > 0, almost surely there exists λ ∈ D such that
‖γκ − γλ‖∞,[0,1] < ε.

Proposition 1.4. Let κ > 0. For each ε > 0 and λ ∈ D, we have P(‖γκ − γλ‖∞,[0,1] <

ε) > 0.

The first proposition implies that the set {γλ : λ ∈ D} contains the support of SLEκ,
while the second implies the other inclusion. Proposition 1.3 is similar to the Wong-Zakai
Theorem [31, 32], which is usually considered as an easier direction of support theorem.
In principle, the Wong-Zakai Theorem says that if one regularizes or approximates the
input (which is Brownian motion), then the output is also approximated. For SLEκ, κ 6= 8,
this has been shown in [26]. The result for κ = 8 follows from [18].

Proof of Proposition 1.3. Let κ 6= 8. Fix a sample of ξ =
√
κB(ω). Let 0 = t0 < t1 < · · · <

tn = 1 with tk = k
n being a partition of [0, 1]. Define λ ∈ C([0, 1],R) such that

• λ(tk) = ξ(tk) for all k.

• λ is linear on [tk, tk+1], i.e.

λ(t) = λ(tk) + n(λ(tk+1))− λ(tk))(t− tk).

The result in [26, Section 4.1] states that a.s. limn→∞ ‖γλ− γξ‖∞,[0,1] = 0. This shows
Proposition 1.3 in the case κ 6= 8 since the local 1/2-Hölder constant of λ is as small as
we want, i.e. λ ∈ D.

For κ = 8, let γ8 be a sample of the SLE8 trace on the time interval [0, 1]. Then it is
almost surely in the support of SLE8, i.e. for any ε-neighborhood Bε of γ8, SLE8 is in Bε
with positive probability. From [18, Theorem 4.8] it follows that with positive probability,
a segment of some UST Peano curve γ̂, mapped into H, is also in Bε. In particular, there
is some sample of γ̂ such that ‖γ8 − γ̂‖∞,[0,1] < ε.

Moreover, the UST Peano curve is constructed in [18] as a simple, piecewise smooth
curve. Therefore, by rounding off the edges and reparametrising by half-plane capacity (a
precise argument is conducted in the proof of Proposition 6.4), we find a smooth Loewner
curve γ (which in particular has a smooth driving function) with ‖γ8 − γ‖∞,[0,1] < ε.

Proving Proposition 1.4 is the main part of this paper.
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1.2 Strategy

First let us note a main difficulty in proving Proposition 1.4. Recall that in general,
the Loewner map is not continuous, as the following example in [13, Page 116] shows.

Example 1.5. Let γ(n) be the simple polygonal path connecting the points 0, z1, w1, ẑ1,
ŵ1, z2, w2, ẑ2, ŵ2, ..., and parametrized by half-plane capacity, where

zk = − 1

n
+ i

k

n
, wk = i

k

2n
, ẑk =

1

n
+ i

k

n
, ŵk = i

k + 1/2

2n
.

One can show that the driving function satisfies |U (n)
t | ≤ c√

n
for t ∈ [0, 1] and some

constant c. But the sequence (γ(n))n∈N has no convergent subsequence.

Note that as sets, the traces γ(n) indeed come closer to the trace of the zero function,
i.e. γ(t) = i2

√
t, but not as parametrized paths.

Figure 1: The “Christmas tree”.

The above example shows that with a small change to a nice function λ, the curve γλ

could wiggle drastically. Hence the event {‖
√
κB − λ‖∞,[0,1] < δ} does not directly imply

that ‖γκ − γλ‖ < ε.

The proof of Proposition 1.4 will be of the form:

If (ξ, γξ) satisfies (A), then ‖γξ − γλ‖∞,[0,1] ≤ ε. (1.1)

Naturally, one expects (A) to contain the condition that ‖ξ − λ‖∞ is small. But we need
also something else that prevents a “Christmas tree” behaviour. The exact form of (A)

will be formulated in Corollary 3.3. The condition is roughly as follows:

For all k, ξ is close to λ on [tk, tk+1],

where 0 = t0 < t1 < · · · < tn = 1 is a partition of [0, 1] depending on λ and ε, and the
closeness of ξ to λ on [tk, tk+1] depends on how γξtk behaves on [tk+1, 1]. (γξtk denotes the
trace of the Loewner chain driven by ξ restricted to [tk, 1].) This structure of (A) allows
us to make use of the independent increments of Brownian motion, which will imply that
(A) is satisfied with positive probability.

Now we explain roughly how we estimate the difference ‖γξ − γλ‖∞,[0,1] in (1.1), and
derive condition (A).

Let 0 ≤ t0 < t1 < t2 and t ∈ [t1, t2]. As in [11, 26], one uses either

|γξ(t)− γλ(t)| ≤ |fξt0(γξt0(t) + ξ(t0))− fλt0(γξt0(t) + ξ(t0))|

+ |fλt0(γξt0(t) + ξ(t0))− fλt0(γλt0(t) + λ(t0))| (1.2)
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or

|γξ(t)− γλ(t)| ≤ |fξt0(γξt0(t) + ξ(t0))− fξt0(γλt0(t) + λ(t0))|

+ |fξt0(γλt0(t) + λ(t0))− fλt0(γλt0(t) + λ(t0))| (1.3)

where fξt0 and fλt0 are reverse Loewner flows (see Section 2), and γξt0 and γλt0 are the
Loewner traces of ξ and λ started at time t0 (see Section 3 for definitions). Which
inequality should one use?

The right-hand sides of (1.2) and (1.3) have two things in common. They contain two
terms. One is the difference between two conformal maps evaluated at the same point.
The other term is the difference between the images of two points under the same map.

The first term of (1.3) can be estimated since the expectation of the moments of (fξt0)′

have been studied carefully; see [10]. This is the strategy used in [26]. However, upon
investigating, one needs the expected moments of (fξt0)′ conditioned on ξ (which is a
multiple of Brownian motion) close to a given λ, which is not known.

It turns out that the inequality (1.2) is approachable. To estimate the second term in
the right-hand side of (1.2), we want the map fλt0 to be uniformly continuous, uniformly
in t0. This is true for sufficiently nice λ. This is where we impose the condition for λ in
Theorem 1.1.

To control the distance between γξt0(t) and γλt0(t), we just need to observe that when
|t2 − t0| is small, both points stay within a small box around 0; see Lemma 2.1.

For the first term of (1.2), we will apply (2.2) of Lemma 2.4. This lemma concerns
the difference between two conformal maps driven by two driving functions. Roughly
speaking, it tells us that

|fξt0(γξt0(t) + ξ(t0))− fλt0(γξt0(t) + ξ(t0))| .
‖ξ − λ‖∞,[0,t0]

Im γξt0(t)

where a . b means a ≤ Cb for some fixed constant C > 0.
We get an estimate that can go arbitrarily bad if γξt0(t) gets close to the real line.

Note that γξt0 depends only on the increments of ξ from t0 onwards. Since Brownian
increments on disjoint time intervals are independent, we can “safely” require a smaller
value for ‖ξ − λ‖∞,[0,t0], depending on inft∈[t1,t2] Im γξt0(t).

The aforementioned argument works for SLEκ with κ ≤ 4 since a.s. inft∈[t1,t2] Im γξt0 >

0 given fixed t0 < t1 < t2. The situation becomes more complicated when κ > 4 since

P( inf
t∈[t1,t2]

Im γξt0 = 0) > 0.

At the end, we show that it will not happen provided that ξ is close to λ, i.e.

P( inf
t∈[t1,t2]

Im γξt0 > 0 | ξ close to λ on [t0, t2]) = 1.

This is another place where we will use the properties of functions in D.

1.3 Organization of the paper

In Section 2, we gather some basic definitions and facts. In Section 3, we prove a
lemma comparing two deterministic Loewner curves. Then we use it in Section 4 to prove
Proposition 1.4 in the case κ ≤ 4. In Section 5, we prove a lemma that generalizes the
proof of Proposition 1.4 to all κ > 0. In Section 6, we discuss further characterisations of
the support and some open questions.
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2 Definitions and properties

Definition of the Loewner map. Let λ ∈ C([0, 1],R). Consider the family of
Loewner equations with different initial values:

∂tgt(z) =
2

gt(z)− λ(t)
, t ≥ 0,

g0(z) = z, z ∈ H.

For each z ∈ H, there exists Tz ∈ (0,∞] where the equation has solution up to time
Tz at which limt→T−z |gt(z) − λ(t)| = 0. Define Kt = {z ∈ H : Tz ≤ t} for each t ≥ 0. We
call Kt a compact H-hull. One can show that gt is a conformal map from H\Kt onto H.

The following lemma concerns how big the hull Kt is. See [30, Lemma 3.2] for a
(trivial) proof.

Lemma 2.1. Let (Kt) be the hulls generated by a driving function λ. Then for all z ∈ Kt,

|Re z| ≤ sup
s∈[0,t]

|λ(s)| and Im z ≤ 2
√
t.

If for every t ≥ 0, the limit

γ(t) := lim
H3z→0

g−1
t (z + λ(t))

exists and is continuous in t ∈ [0, 1], then H\Kt is the unbounded component in H of
H\γ[0, t]. The curve γ ⊂ H is called the Loewner curve driven by λ. We call a Loewner
curve simple if it intersects neither itself nor R \ {γ(0)}. In that case, Kt = γ[0, t] for all t.

For each t ≥ 0, let
ft = g−1

t and f̂t = ft(·+ λ(t)).

The maps ft and f̂t are conformal on the upper half-plane H. The latter is a centred
version of ft. To emphasize the dependence on λ, we also use notations γλ, fλt , and the
likes.

Let us denote Ω ⊂ C([0, 1],R) the set of λ that give rise to a curve.
We call the map λ 7→ γλ from Ω to C([0, 1],H) the Loewner map. It is known that:

• Ω is not a convex space. Moreover, λ ∈ Ω does not imply aλ ∈ Ω for a > 0. See [16].

• It follows from [14, 16] that if λ has local 1/2-Hölder norm less than 4, then λ ∈ Ω.
In particular, C∞([0, 1]) ⊂W 1,2([0, 1]) ⊂ Ω.

• Let P be the Wiener measure on C([0, 1],R). For each κ ≥ 0, P({λ :
√
κλ ∈ Ω}) = 1.

• We do not know whether P({λ :
√
κλ ∈ Ω, ∀κ}) = 1.

The space D.
We say that λ has local 1/2-Hölder norm less than M > 0 if there exists δ > 0 such

that

sup
|s−t|<δ

|λ(s)− λ(t)|√
|s− t|

< M.

Definition 2.2. We say that λ ∈ D if λ(0) = 0 and it has locally vanishing 1/2-Hölder
norm, that is

lim
δ→0

sup
|s−t|<δ

|λ(s)− λ(t)|√
|s− t|

= 0.

Proposition 2.3. Let λ ∈ D. Then

• λ generates a simple curve.
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• There is a function δ(·, λ) : (0,∞)→ (0,∞) such that

|z1 − z2| ≤ δ(ε;λ) =⇒ |fλt (z1)− fλt (z2)| ≤ ε ∀t ∈ [0, 1]. (2.1)

A proof of this proposition can be found in the proof of [16, Theorem 4.1]. There they
have shown that λ generates a curve, and H \ γλ is a quasi-slit half-plane, therefore a
John domain (see [20, Section 5.2] for a definition). It follows from [20, Corollary 5.3]
that ft (as a conformal map from H to a John domain) is Hölder continuous on bounded
sets, with Hölder constant and exponent depending on the John domain constant.

A particular example: When λ ≡ 0, then fλt (z) =
√
z2 − 4t which is Hölder-continuous

in z on any bounded set, uniformly in t.

The following will be our main ingredient to estimate the difference between confor-
mal maps derived from the Loewner equation.

Lemma 2.4 ([11, Lemma 2.3]). Let f1
t and f2

t be two inverse Loewner maps with U1 and
U2, respectively, as driving terms. Then for t ≥ 0 and z = x+ iy ∈ H

|f1
t (z)− f2

t (z)|

≤ ‖U1 − U2‖∞,[0,t] exp

(
1

2

[
log

It,y|(f1
t )′(z)|
y

log
It,y|(f2

t )′(z)|
y

]1/2

+ log log
It,y
y

)

where It,y =
√

4t+ y2.

Moreover,

|f1
t (z)− f2

t (z)| ≤ ‖U1 − U2‖∞,[0,t]
(
It,y
y
− 1

)
. (2.2)

Remark 2.5. The inequality (2.2) is the one that will be used. We do not use the full
strength of Lemma 2.4. What we really need is an inequality of the form

|f1
t (z)− f2

t (z)| ≤ Φ1(‖U1 − U2‖∞,[0,t])Φ2(y)

where Φ1,Φ2 are two functions such that Φ2(y) > 0 and Φ1(0+) = 0. Therefore, one can
replace (2.2) by an inequality in [13, Proposition 4.47] which says that

|f1
t (z)− f2

t (z)| ≤ ‖U1 − U2‖∞,[0,t]
(
ec0t/y

2

− 1
)

for some constant c0 > 0.

3 Comparing two Loewner curves. A deterministic estimate

We recall the following property of Loewner chains. For λ ∈ C([0, 1],R), we can run
the Loewner chain from time t0 > 0 instead of 0, i.e. solve

∂tgt0,t(z) =
2

gt0,t(z)− (λ(t)− λ(t0))
, t ≥ t0,

gt0,t0(z) = z.

We will call the corresponding hulls Kt0,t, and the trace (if it exists) γt0 .

If λ generates a trace on [0, t0], and λ(·) − λ(t0) generates a trace on [t0, 1], then λ

generates a trace on [0, 1], and γ(t) = f̂t0(γt0(t)).

We will use the following lemma to compare the difference between two Loewner
curves.
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Lemma 3.1. Suppose λ ∈ D with the function δ(·, λ) as in (2.1). Let 0 ≤ t0 < t1 < t2 ≤ 1

with tk+1 − tk ≤ ∆t, k = 0, 1.
Let ξ ∈ C([0, 1],R) generate a Loewner trace γξ, such that ξ(t) − ξ(t0), t ∈ [t0, t2],

generates a trace γξt0 , and suppose

ct0,t2 := inf
t∈[t1,t2]

Im γξt0(t) > 0.

Moreover, suppose ‖ξ−λ‖[0,t0] ≤ ε0, ‖(ξ− ξ(t0))− (λ−λ(t0))‖[t0,t2] ≤ ε1, and ε0, ε1 ≤ ε̄
where ε0, ε1, ε̄ > 0.

Then for any a > 0, t ∈ [t1, t2] we have

|γξ(t)− γλ(t)| ≤ a+ ε0c
−1
t0,t2 if ϕ(2∆t;λ) + 5ε̄ ≤ δ(a;λ),

where ϕ(·;λ) is an increasing function with ϕ(0+;λ) = 0, depending on λ.

Remark 3.2. The lemma roughly says that

‖γξ − γλ‖[t1,t2] . Φ(‖ξ − λ‖[0,t2]) +
‖ξ − λ‖[0,t0]

ct0,t2

where Φ is an increasing function with Φ(0+) = 0 that depends on the modulus of
continuity of λ.

Note that ct0,t2 depends only on the increment (ξ(t)− ξ(t0)), t ∈ [t0, t2]. Therefore, if
‖ξ − λ‖[0,t0] is very small compared to ct0,t2 , then

‖γξ − γλ‖[t1,t2] . ‖ξ − λ‖[t0,t2].

We also see that when γξ behaves like the “Christmas tree”, then ct0,t2 will be small.
In order to prevent this behaviour, we can change ξ on the interval [0, t0], making
‖ξ − λ‖[0,t0] smaller while leaving ct0,t2 unchanged.

Proof of Lemma 3.1. Let λ and ξ satisfy the conditions of Lemma 3.1. Observe that
‖ξ − λ‖[t0,t2] ≤ |ξ(t0)− λ(t0)|+ ‖(ξ − ξ(t0))− (λ− λ(t0))‖[t0,t2] ≤ ε0 + ε1.

Let t ∈ [t1, t2]. We follow (1.2) and estimate

|γξ(t)− γλ(t)| ≤ |fξt0(γξt0(t) + ξ(t0))− fλt0(γξt0(t) + ξ(t0))|

+ |fλt0(γξt0(t) + ξ(t0))− fλt0(γλt0(t) + λ(t0))|. (3.1)

First we estimate the second term of the right-hand side.
Denoting the modulus of continuity of λ by osc(·;λ), we have |λ(r)− λ(s)| ≤ osc(|r −

s|;λ), and consequently |ξ(r) − ξ(s)| ≤ |ξ(r) − λ(r)| + |λ(r) − λ(s)| + |λ(s) − ξ(s)| ≤
osc(|r − s|;λ) + 4ε̄ for any r, s ∈ [t0, t2]. Therefore, by Lemma 2.1,

|Re γλt0(s)| ≤ osc(2∆t;λ),

| Im γλt0(s)| ≤ 2
√

2∆t,

|Re γξt0(s)| ≤ osc(2∆t;λ) + 4ε̄,

| Im γξt0(s)| ≤ 2
√

2∆t,

for s ∈ [t0, t2]. This means that

|γξt0(t) + ξ(t0)− λ(t0)− γλt0(t)| ≤ 2 osc(2∆t;λ) + 5ε̄+ 2
√

2∆t =: ϕ(2∆t;λ) + 5ε̄. (3.2)

Suppose ϕ(2∆t;λ) + 5ε̄ ≤ δ(a;λ) for some a > 0. Then by the definition of δ and the
above observation

|fλt0(γξt0(t) + ξ(t0))− fλt0(γλt0(t) + λ(t0))| ≤ a
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which provides us a bound on the second term of (3.1).
For the first term of (3.1), we apply Lemma 2.4 to obtain

|fξt0(γξt0(t) + ξ(t0))− fλt0(γξt0(t) + ξ(t0))| ≤ ε0y
−1

where y = Im γξt0(t) ≥ ct0,t2 .
Combining everything, we obtain

|γξ(t)− γλ(t)| ≤ a+ ε0c
−1
t0,t2

for t ∈ [t1, t2] if ϕ(2∆t;λ) + 5ε̄ ≤ δ(a;λ).

If we break [0, 1] into short sub-intervals, we can apply this argument on each sub-
interval. On the very first sub-interval t ∈ [0, t1] we can directly estimate |γξ(t)− γλ(t)|
with Lemma 2.1. Together this will estimate ‖γξ − γλ‖∞,[0,1]. The precise conditions are
the following.

Corollary 3.3. Suppose λ ∈ D with the function δ(·, λ) as in (2.1). Let 0 = t0 < t1 < ... <

tn = 1 such that tk − tk−1 ≤ ∆t for all k ≥ 1.
Suppose ξ ∈ C([0, 1],R) with ξ(0) = 0 generates a Löwner trace such that

ctk,tk+2
:= inf

t∈[tk+1,tk+2]
Im γξtk(t) > 0 for all k ≥ 0,

where γξtk is the Löwner trace driven by ξ(tk + t)− ξ(tk).
Let 0 < ε̄ < a be constants such that ϕ(∆t;λ) < a and ϕ(2∆t;λ) + 5ε̄ ≤ δ(a;λ), where

ϕ(·;λ) is defined as in (3.2).
Furthermore, suppose that ε1, ..., εn are given such that εk < ε̄/2 ∧ a ctk,tk+2

and
ε1 + ...+ εk ≤ 2εk for all k, and moreover suppose that

‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ εk

for all k ≥ 1.
Then

|γξ(t)− γλ(t)| ≤ 3a

for all t ∈ [0, 1].

Proof. Let t ∈ [0, 1]. In case t ≤ t1, applying Lemma 2.1 in the same way as in the proof
of Lemma 3.1 implies

|γξ(t)− γλ(t)| ≤ ϕ(∆t;λ) + ε̄ < 2a.

If t ≥ t1, we find k ≥ 0 such that t ∈ [tk+1, tk+2]. We apply Lemma 3.1 with the time
points 0 ≤ tk < tk+1 < tk+2.

Observe that ‖ξ−λ‖[0,tk] ≤ ε1+...+εk ≤ 2εk ≤ ε̄ and ‖(ξ−ξ(tk))−(λ−λ(tk))‖[tk,tk+2] ≤
εk+1 + εk+2 ≤ 2εk+2 ≤ ε̄.

Lemma 3.1 shows

|γξ(t)− γλ(t)| ≤ a+ 2εkc
−1
tk,tk+2

< 3a.

Remark 3.4. The list of conditions for Corollary 3.3 looks quite long. We describe
roughly how we will find suitable variables such that the corollary can be applied.

Suppose that λ and a are given. We will pick ε̄ and ∆t accordingly. Then, to choose
ε1, ..., εn and ξ, note that each ctk,tk+2

depends only on the increments of ξ on the interval
[tk, tk+2]. Therefore we can choose εk depending on the increments of ξ on [tk, 1], and
afterwards choose the increments of ξ on [tk−1, tk], then again choose εk−1, and so on.
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4 Proof of the support theorem for κ ≤ 4

Let ξ(t) =
√
κBt and let λ ∈ D. Let a > 0 be given.

For simplicity, we first show Theorem 1.1 for κ ≤ 4. In this case γξ is a simple trace,
as well as γξtk for all tk ≥ 0. In particular, it will never touch the real line after time 0 and

automatically guarantees the condition ctk,tk+2
= inft∈[tk+1,tk+2] Im γξtk(t) > 0 of Corollary

3.3.
The remaining task is to find a set of positive probability where all conditions of

Corollary 3.3 are satisfied.
First choose ∆t > 0 and ε̄ < a such that ϕ(∆t;λ) < a and ϕ(2∆t;λ) + 5ε̄ ≤ δ(a;λ).

Next, partition [0, 1] into sub-intervals 0 = t0 < t1 < ... < tn = 1 such that |tk − tk−1| ≤ ∆t

for all k ≥ 1.
Suppose now that we have (arbitrary) random variables εk ≤ ε̄ that are a.s. positive

and measurable w.r.t. Ftk,1 (where Fr,s denotes the sigma algebra generated by Brownian
increments between time r and s). By inductively applying the independence of Brownian
increments, we claim that

P(∀k : ‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ εk) > 0.

To verify this claim, suppose that for some 1 ≤ k < n

P(∀l ≥ k + 1 : ‖(ξ − ξ(tl−1))− (λ− λ(tl−1))‖∞,[tl−1,tl] ≤ εl) > 0.

Then since εk is a.s. positive,

P(εk ≥ b and ∀l ≥ k + 1 : ‖(ξ − ξ(tl−1))− (λ− λ(tl−1))‖∞,[tl−1,tl] ≤ εl) > 0

for b > 0 small enough. Since the Brownian increments on [tk−1, tk] are independent of
Ftk,1, it follows that

P(‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ b
| εk ≥ b and ∀l ≥ k + 1 : ‖(ξ − ξ(tl−1))− (λ− λ(tl−1))‖∞,[tl−1,tl] ≤ εl)

= P(‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ b)
> 0

and consequently

P(∀l ≥ k : ‖(ξ − ξ(tl−1))− (λ− λ(tl−1))‖∞,[tl−1,tl] ≤ εl) > 0,

which implies the claim.
Now, it remains to choose suitable εk. Since κ ≤ 4, the curve γξtk a.s. does not hit the

real line for all k. Hence, the random variable ctk,tk+2
(ω) := inft∈[tk+1,tk+2] Im γ

ξ(ω)
tk

(t) is
a.s. positive. It is also measurable w.r.t. Ftk,tk+2

.1

Then, inductively backward in k, choose

εk =
εk+1

2
∧ a ctk,tk+2

. (4.1)

Finally, every

ω ∈ {∀k : ‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ εk}

satisfies the conditions of Corollary 3.3, and therefore,

‖γξ(ω)(t)− γλ(t)‖∞,[0,1] ≤ 4a.

This finishes the proof of Proposition 1.4 in the case κ ∈ (0, 4].

1Note that the solution of the Loewner ODE is measurable with respect to the driver since it can be seen as
the limit of a Picard iteration.
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5 Proof of the support theorem for general κ

In case κ > 4, we can use the same proof as before, but the condition

ct0,t2(ω) = inf
t∈[t1,t2]

Im γ
ξ(ω)
t0 (t) > 0

might be violated. Hence, our main task here is to add some condition that guarantees
ct0,t2(ω) > 0 for almost all ω.

Our main idea is as follows. Let 0 ≤ t0 < t1 < t2. We write γξt0(t) = f̂ξt0,t1(γξt1(t)) where

fξt0,t1 is a conformal map that (extended to the boundary) maps some real interval I onto

∂Kξ
t0,t1 ,2 and R \ I into R \ {0}. If γξt1(t) ∈ H, then trivially γξt0(t) ∈ H. Hence, we only

need to focus on the case γξt1(t) ∈ R. Recall that if ‖(ξ − ξ(t1)) − (λ − λ(t1))‖[t1,t2] < ε̄,
Lemma 2.1 implies

|Re γξt1(t)| ≤ osc(∆t;λ) + 2ε̄ =: α

for t ∈ [t1, t2]. We will show that, under some conditions,

the real interval [−α, α] is contained in the interior of I. (5.1)

This implies γξt1(t) ∈ I and consequently γξt0(t) ∈ ∂Kξ
t0,t1 . Moreover, by a property of

SLE proven by D. Zhan (see below), ∂Kξ
t0,t1 intersects R only at its endpoints. Since

γξt1(t) actually lies in the interior of I, then γξt0(t) lies in the interior of ∂Kξ
t0,t1 which is

contained in H.
Finally, note that (5.1) is reasonable because by the assumption λ ∈ D and the

freedom to choose ε̄, we can estimate

α ≈ (a small number) ·
√

∆t,

where for I, at least in the extreme case ξ ≡ 0, it can be calculated that I = [−2
√

∆t, 2
√

∆t].
Now, we fill the above arguments with more rigorous details. First, we analyze fξt0,t1

as the inverse map of the Loewner flow driven by ξ(·)− ξ(t0), t ∈ [t0, t1].
In order to do so, we analyze the time-reversed Loewner equation. Recall that if (gt)

is the Loewner flow driven by ξ, then for any s0 > 0 we can write f̂s0 = hs0 + ξ(s0) where
(ht) is the solution of

∂tht(z) = − 2

ht(z)−W (t)
, h0(z) = z,

with W (t) = ξ(s0−t)−ξ(s0). For all z ∈ C\{W (0)}, this ODE can be solved on t ∈ [0, T (z)[

where T (z) is the first time when ht(z)−W (t) hits 0, and T (z) =∞ for all z /∈ R.
Suppose that f̂s0 : H → H\Ks0 can be continuously extended to the boundary R.

(This holds when the driver is in D, or a multiple of Brownian motion.) It is known that
exists a closed interval I such that

I = {x ∈ R : T (x) ≤ s0} = {x ∈ R : f̂s0(x) ∈ Ks0}. (5.2)

Therefore we can analyze the interval I just by the time-reversed Loewner equation.
J. Lind has shown in [14, Corollary 1] that if W has 1/2-Hölder constant less than 4,

then T (x) is comparable to x2. A comparison argument will show that the result stays
true if the driver is slightly modified. The next two results make it more precise.

2We consider hulls K as closed subsets of the space H, so ∂K = {z ∈ K | B(z, δ) ∩ (H \K) 6= ∅ for all δ >
0}.
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Lemma 5.1. Let V 1, V 2 ∈ C([0,∞),R) with V 1(0) = V 2(0) = 0 and let (hjt )t≥0 solve

∂th
j
t (x) = − 2

hjt (x)− V j(t)
, hj0(x) = x

for x ∈ R \ {0}, t ∈ [0, T j(x)) where T j(x) is the first time when hjt (x) − V j(t) hits 0,
j = 1, 2.

Let t > 0, x > 0, and δ = ‖V 1 − V 2‖∞,[0,t]. If T 1(x+ δ) ≤ t, then T 2(x) ≤ t.

Proof. Assume without loss of generality that T 1(x+ δ) = t, i.e. h1
s(x+ δ) exists for all

s < t and only dies at time t.
We claim that for all s < t, ∂sh2

s(x) < ∂sh
1
s(x+ δ). (Note that this means |∂sh2

s(x)| >
|∂sh1

s(x+ δ)| since both are negative.)
At s = 0 this is obviously true since

− 2

h2
0(x)− V 2(0)

= − 2

x
< − 2

x+ δ
= − 2

h1
0(x+ δ)− V 1(0)

.

Now if the claim holds for all s < s0, then

h2
s0(x)− x =

∫ s0

0

∂sh
2
s(x) ds <

∫ s0

0

∂sh
1
s(x+ δ) ds = h1

s0(x+ δ)− (x+ δ).

Consequently,

h2
s0(x)− V 2(s0) ≤ h2

s0(x)− V 1(s0) + δ < h1
s0(x+ δ)− V 1(s0),

i.e.

− 2

h2
s0(x)− V 2(s0)

< − 2

h1
s0(x+ δ)− V 1(s0)

.

This shows that there cannot be a first time s0 where the claim is violated. By the
continuity of V j and hjt (x), and therefore also ∂th

j
t (x) in t, the claim is never violated at

any time.
To finish the proof of the lemma, note that we have also shown above that

h2
s(x)− V 2(s) < h1

s(x+ δ)− V 1(s)

for all s ∈ [0, t]. If T 1(x+ δ) ≤ t, this means that h1
s(x+ δ)−V 1(s) = 0 for some s ≤ t, and

consequently h2
s(x)− V 2(s) = 0 for some smaller s < t.

Corollary 5.2. Let V ∈ C1/2([0, T ],R) with ‖V ‖1/2 < 4 and V (0) = 0. Then there
exists some constant c > 0, depending on ‖V ‖1/2, such that if W ∈ C[0, T ], W (0) = 0,
‖W − V ‖∞ ≤ c

√
t, and |x| ≤ c

√
t, then TW (x) ≤ t.

Proof. By symmetry, it suffices to consider x > 0. By [14, Corollary 1], there exists a
constant c′ depending on ‖V ‖1/2 such that if x ≤ c′

√
t, then TV (x) ≤ t.

Let c := c′/2. If x ≤ c
√
t, then x+ ‖W − V ‖∞ ≤ c′

√
t, so TV (x+ ‖W − V ‖∞) ≤ t. The

previous lemma implies TW (x) ≤ t.

Now, we apply this corollary to our context of λ ∈ D and ξ that is close to λ.

Corollary 5.3. Let λ ∈ D. Then for sufficiently small ∆t > 0 (depending on λ) and ε̄ > 0

(depending on λ and ∆t) the following holds:
Let ξ ∈ C[0, 1] with ξ(0) = 0. Suppose that ξ generates a Loewner trace γξ, and

ξ(t)− ξ(∆t), t ∈ [∆t, 2∆t], generates a trace γξ∆t, and ‖ξ−λ‖[0,∆t] ≤ ε̄, ‖(ξ− ξ(∆t))− (λ−
λ(∆t))‖[∆t,2∆t] ≤ ε̄.

Then if γξ∆t(t) ∈ R for some t ∈ [∆t, 2∆t], then γξ(t) ∈ Kξ
∆t.

If additionally ∂Kξ
∆t intersects R only at its endpoints, then Im γξ(t) > 0.
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In other words, the corollary states that inft∈[∆t,2∆t] Im(γξ(t)) > 0 when ξ is close
enough to λ in a quantitative way.

Proof. Since the constant c > 0 in Corollary 5.2 depends only on ‖V ‖1/2, we can fix c > 0

corresponding to, say, ‖V ‖1/2 = 3. Let ∆t be small enough such that on the interval

[∆t, 2∆t], the 1/2-Hölder constant of λ is less than c/2, and let ε̄ ≤ c
4

√
∆t. By Lemma 2.1,

|Re γξ∆t(t)| ≤
c

2

√
∆t+ 2ε̄ ≤ c

√
∆t

for t ∈ [∆t, 2∆t].

If now γξ∆t(t) ∈ R, then Corollary 5.2, applied to V (s) = λ(∆t − s) − λ(∆t) and
W (s) = ξ(∆t− s)− ξ(∆t), and (5.2) imply that

γξ(t) = f̂ξ∆t(γ
ξ
∆t(t)) ∈ ∂K

ξ
∆t.

Now suppose that ∂Kξ
∆t intersects R only at its endpoints. Then γξ(t) ∈ H as long as

it is not one of the endpoints.

In the above argument, c and ∆t can be chosen such that the set {x ∈ R | f̂ξ∆t(x) ∈
Kξ

∆t} contains more than the interval [−c
√

∆t, c
√

∆t]. Then this interval gets mapped to

an inner segment of ∂Kξ
∆t, and not to its endpoints. In particular, γξ(t) is in the interior

of ∂Kξ
∆t.

We remark that the assumption on ξ holds almost surely if ξ is a multiple of Brownian
motion.

Lemma 5.4 ([33, Theorem 6.1]). Let κ > 4, and (Kt) the hulls of SLEκ. For any t > 0,
almost surely ∂Kt intersects R only at its endpoints.

Now, we can prove Proposition 1.4.

Proof of Proposition 1.4. The case κ ≤ 4 has already been shown in Section 4. The proof
for κ > 4 is almost identical.

Let a > 0 be given. Choose ∆t > 0 and ε̄ < a such that ϕ(∆t;λ) < a and ϕ(2∆t;λ) +

5ε̄ ≤ δ(a;λ). This time we additionally require ∆t and ε̄ to satisfy the condition of
Corollary 5.3.

Then we partition the interval [0, 1] into 0 = t0 < t1 < ... such that |tk − tk−1| = ∆t,
k ≥ 1.

The random variables εk ≤ ε̄ are chosen as in (4.1). Corollary 5.3 together with
Lemma 5.4, applied to ξ − ξ(tk), t ∈ [tk, tk+2], imply that a.s.

ctk,tk+2
= inf
t∈[tk+1,tk+2]

Im γξtk(t) > 0

for all k ≥ 0. Hence, εk are a.s. positive. The argument in Section 4 shows that the event

∀k : ‖(ξ − ξ(tk−1))− (λ− λ(tk−1))‖∞,[tk−1,tk] ≤ εk

has positive probability.

For each ω in this event, Corollary 3.3 implies that ‖γξ(ω) − γλ‖∞,[0,1] ≤ 4a. This
finishes the proof.
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6 Further characterisations of the support and open questions

We note that the set

S := {γλ : λ ∈ D} ⊆ C([0, 1];H)

is a deterministic set and does not depend on κ. One may ask for what specific λ (besides
λ ∈ D) we have γλ ∈ S?

First, it is worth mentioning that all curves in S are indeed Loewner curves, i.e. they
satisfy the local growth property (which is not obvious since the closure is taken in the
space C([0, 1];H). We show this below in Proposition 6.3.

First recall that the half-plane capacity enjoys a uniform continuity property, described
in [12, Lemma 4.4]. We will apply it in the following way.

Lemma 6.1. For any R > 0 and ε > 0 there exists δ > 0 such that if K1,K2 are
compact H-hulls with radius less than R such that K1 ⊆ fill(Kδ

2) and vice versa, then
|hcap(K1)− hcap(K2)| < ε.

Here, for a compact set A ⊆ H, fill(A) denotes the complement of the unbounded
connected component of H \A, and Aδ the δ-neighbourhood of A.

For a sequence of domains Hn ⊆ H that contain a common neighbourhood of ∞,
their kernel (with respect to∞) is the largest domain H containing a neighbourhood of
∞ such that any compact K ⊆ H is contained in all but finitely many Hn.

Lemma 6.2. Let Hn ⊆ H be a sequence of simply connected domains that contain a
common neighbourhood of∞, and let H be their kernel (with respect to∞). Let z ∈ H,
0 < r1 < r2, and z1, z2 ∈ B(z, r1) ∩ H. If for all n the points z1 and z2 are in the same
connected component of B(z, r1) ∩Hn, then they are in the same connected component
of B(z, r2) ∩H.

Proof. Since H is a domain, we can find a simple polygonal path α1 in H from z1 to z2.
Note that such a path hits ∂B(z, r1) only a finite number of times. Moreover, by a small
perturbation we can choose α1 to cross ∂B(z, r1) at each such time. If α1 does not cross
∂B(z, r1) at all, we are done, so assume from now on that it does. Let U ⊆ H be an open
neighbourhood of α1. The definition of kernel implies U ⊆ Hn for all but finitely many n.
Without loss of generality we restrict ourselves to that subsequence.

Suppose for the moment that (small neighbourhoods of) z1 and z2 lie in the same
connected component of B(z, r1) \ α1. This means that z1 and z2 can be connected by
a simple path α2 in B(z, r1) that does not intersect α1 except at its endpoints. In that
case, α1 ∪ α2 is a simple loop and by the Jordan curve theorem separates Ĉ into two
components. Call the component that contains∞ the “outside” component.

By construction, α1∪α2 separates ∂B(z, r1) into finitely many segments, alternatingly
“inside” and “outside”. Let A be an “inside” segment. Then there exists an open
connected set UA ⊆ B(z, r2) \ B(z, r1) in the neighbourhood of A that is still “inside”
α1 ∪ α2. We claim that UA ⊆ Hn for all n. This will imply that Û := U ∪

⋃
A “inside”

UA ⊆ Hn

for all n, and hence Û ⊆ H. By alternatingly following segments of α1 and UA, we see
that Û connects z1 and z2 in B(z, r2) ∩H.

Let n ∈ N. By assumption, we can find a path α3 in B(z, r1) ∩Hn that connects z1

to z2. Since α2 ∪ α3 ⊆ B(z, r1), the winding numbers of α1 ∪ α2 and α1 ∪ α3 around UA
are the same. Therefore UA is disconnected from∞ (and hence also from R) by α1 ∪ α3.
Since α1 ∪ α3 ⊆ Hn and Hn is simply connected, we must have UA ⊆ Hn.

It remains to handle the case that (small neighbourhoods of) z1 and z2 lie in different
components of B(z, r1) \ α1. By construction, α1 ∩B(z, r1) consists of finitely many seg-
ments. Pick the segment α̃ that bounds the component in which (a small neighbourhood
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of) z1 lies, and let z̃2 ∈ α̃. Now z1 and z̃2 fulfil the conditions of the lemma again because
any path in B(z, r1) from z1 to z2 needs to cross α̃, and for each n one such path lies in
Hn (by the assumption on z1, z2). Moreover, (small neighbourhoods of) z1 and z̃2 lie in
the same component of B(z, r1) \ α1. By the previous part of the proof, z1 and z̃2 are in
the same connected component of B(z, r2) ∩H. Repeating this argument, the lemma in
the general case follows by induction.

Proposition 6.3. Let γn : [0, 1] → H be simple paths in H starting at γn(0) = 0 and
parametrised by half-plane capacity. Suppose ‖γ − γn‖∞ → 0 and let Kt = fill(γ[0, t]).
Then the family (Kt)t∈[0,1] is parametrised by half-plane capacity and satisfies the local
growth property.

Proof. Lemma 6.1 implies hcap(γn[0, t]) → hcapKt for all t, so the parametrisation by
half-plane is preserved.

To show that (Kt) satisfies the local growth property, we will find for any ε > 0 some
δ > 0 such that for all t there exists a crosscut of length less than ε in H \ Kt that
separates Kt+δ \Kt from∞. In the following, we call Hn

t := H \ γn[0, t] and Ht := H \Kt.
Since γ is uniformly continuous, we find δ > 0 such that |γ(t) − γ(s)| < ε for all

|t− s| < δ.
Now let t ∈ [0, 1] and z1, z2 ∈ Kt+δ\Kt. It suffices to consider z1, z2 ∈ γ[t, t+δ]\Kt since

this set bounds Kt+δ \Kt. We claim that z1 and z2 are in the same connected component
of Ht \ ∂B(γ(t), 2ε). This will imply that there exists a segment of ∂B(γ(t), 2ε) ∩Ht that
separates z1 and z2 from ∞ in Ht (This can be seen e.g. by mapping Ht to H). That
segment is the desired crosscut.

By the choice of δ we have z1, z2 ∈ Ht ∩ B(γ(t), ε), and we can find r > 0 such that
B(zi, 2r) ⊆ Ht ∩ B(γ(t), ε), i = 1, 2. Let n be large enough so that ‖γ − γn‖∞ < r. In
particular, B(zi, r) ⊆ Hn

t ∩B(γ(t), ε), i = 1, 2.
Note that the uniform convergence of γn implies γn[0, t]→ Kt in the sense of kernel

convergence. Since γn are simple, B(z1, r) and B(z2, r) are connected by γn(]t, t+ δ]) in
Hn
t . Moreover, γn(]t, t+ δ]) ⊆ B(γ(t), ε+ r) by the choice of δ and n. So by Lemma 6.2,

B(z1, r) and B(z2, r) are in the same connected component of B(γ(t), 2ε) ∩Ht.

We turn back to the question of characterising S. Just from the definition of the
support, for fixed κ′ 6= 8, we have a.s. γκ

′ ∈ S. Moreover, since piece-wise linear
functions are in D, any γλ that is approximated by a sequence of Loewner curves
generated by piece-wise linear drivers is in S. In particular, [26, Theorem 2.2] shows
that if λ is weakly 1/2-Hölder and |(f̂λt )′(iy)| ≤ Cy−β for some β < 1 and all t, y ∈ ]0, 1],
then γλ has such an approximation, hence is in S.

We can also represent S by different sets of curves. For instance,

S = {γλ : λ piece-wise linear and λ(0) = 0}.

From the results in [26] it follows that

S = {γλ : λ piece-wise square-root and λ(0) = 0}.

Or

S = {γλ | λ ∈ C∞ and λ(0) = 0}

= {γ ∈ C∞((0, 1];H) | γ simple, param. by half-plane capacity, and γ(0) = 0}.

To see the last equality, suppose we have a simple curve γ ∈ C∞((0, 1];H) with γ(0) = 0.
Then we can approximate it by a simple smooth curve γ̃ ∈ C∞((0, 1];H) with γ̃(t) = i2

√
t
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on a very small time interval t ∈ [0, δ]. Then γ̃ is driven by a smooth driving function (see
[6]), so γ̃ ∈ S. (Strictly speaking, we also need to parametrise γ̃ by half-plane capacity,
but this will not change the approximation much, as the proof of Proposition 6.4 below
shows.)

We can say more.

Proposition 6.4. Let γ = C([0, 1];H), with γ(0) = 0, be a simple curve. Then γ ∈ S if
and only if it is parametrised by half-plane capacity.

Proof. First let us show that any γ ∈ S is necessarily parametrised by half-plane capacity.
Let γ ∈ S and find a Loewner curve γλ, e.g. a sample of SLE, (which by definition is
parametrised by half-plane capacity) such that ‖γ − γλ‖∞,[0,1] < ε. From Lemma 6.1 it
follows that

|hcap(γ[0, t])− hcap(γλ[0, t])| = |hcap(γ[0, t])− 2t| ≤ φ(ε) for all t ∈ [0, 1]

where φ : (0,∞)→ (0,∞) is a function depending on sup{|γ(t)| : t ∈ [0, 1]} and satisfying
φ(0+) = 0. Since this is true for all ε > 0, we have

hcap(γ[0, t]) = 2t for all t ∈ [0, 1]

as claimed.
For the converse, let ε > 0. From [29, Lemma 4.4] it follows that there exists a linear

interpolation γP that is simple and ‖γ−γP‖∞,[0,1] < ε. Then we can find a simple smooth
curve η ∈ C∞((0, 1];H), with η(0) = 0, such that ‖η − γP‖∞,[0,1] < ε, and consequently
‖η − γ‖∞,[0,1] < 2ε. Let η̄ be the reparametrisation of η by half-plane capacity. Since
η̄ ∈ S, we only need to show that ‖η̄ − γ‖∞,[0,1] is small.

Again, from Lemma 6.1, since ‖η − γ‖∞,[0,1] < 2ε, it follows that

|hcap(η[0, t])− hcap(γ[0, t])| ≤ φ(ε) for all t ∈ [0, 1]

where φ : (0,∞)→ (0,∞) is a function depending on sup{|γ(t)| : t ∈ [0, 1]} and satisfying
φ(0+) = 0.

Note that hcap(γ[0, t]) = 2t = hcap(η̄[0, t]]) for all t. Hence, η̄(t) = η(s) where |t− s| ≤
φ(ε)/2. That implies

‖η̄ − γ‖∞,[0,1] ≤ φ̃(ε)

where φ̃ : (0,∞)→ (0,∞) depending on φ and the uniform continuity of γ, and satisfying
φ̃(0+) = 0.

There are further questions that we have not answered.

• Can one strengthen the topology in Theorem 1.1? Note that the statement of
Theorem 1.1 is the same regardless of κ. But as shown in [10], for each κ there
exists an optimal α∗(κ) such that γκ is α-Hölder continuous for α < α∗(κ). Ideally,
we would like to characterise the support of SLEκ in the α-Hölder space, or similarly,
in the p-variation space where p > p∗(κ) (see [8]).

(Note that it is proved in [7] that γλ is 1/2-Hölder continuous on [0, 1] for λ ∈W 1,2.
Hence, almost surely the α-Hölder norm of (γκ − γλ) is finite for some α > 0.)

• We do not know how P(‖γκ − γλ‖∞,[0,1] < ε) behaves as ε→ 0+. However as κ→ 0,
we believe that similarly to [28] the following is true:

lim
κ→0
−κ lnP(‖γκ − γλ‖∞,[0,1] < ε) = inf

{U∈W 1,2:‖γU−γλ‖∞;[0,1]<ε}

1

2

∫ 1

0

|U ′(t)|2 dt.
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• To what extent does the converse of Proposition 6.3 hold? Is every (not necessarily
simple) curve, parametrised by half-plane capacity, that satisfies the local growth
property in fact in S? (If not, is there a characterisation which curves are in S?)

This would give us a full characterisation of S, generalising Proposition 6.4 to
general curves in C([0, 1];H).

Update: In an ongoing work, the second author gives a positive answer to this
question.
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