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Abstract

We give a construction of an infinite stable looptree, which we denote by L∞α , and
prove that it arises both as a local limit of the compact stable looptrees of Curien and
Kortchemski (2015), and as a scaling limit of the infinite discrete looptrees of Richier
(2017), and Björnberg and Stefánsson (2015). As a consequence, we are able to prove
various convergence results for volumes of small balls in compact stable looptrees,
explored more deeply in a companion paper. We also establish the spectral dimension
of L∞α , and show that it agrees with that of its discrete counterpart. Moreover, we
show that Brownian motion on L∞α arises as a scaling limit of random walks on discrete
looptrees, and as a local limit of Brownian motion on compact stable looptrees, which
has similar consequences for the limit of the heat kernel.
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1 Introduction

Stable looptrees are a class of random fractal objects indexed by a parameter α ∈ (1, 2)

and can informally be thought of as the dual graphs of stable trees. Motivated by [48],
they were originally introduced by Curien and Kortchemski in [22], and along with their
discrete counterparts have been shown to be of increasing significance in the study of
statistical mechanics models on random planar maps. For example, the same authors
showed in [23] that a stable looptree arises as the scaling limit of the boundary of a
critical percolation cluster on the UIPT, and Richier showed in [52] that the incipient
infinite cluster of the UIHPT has the form of an infinite discrete looptree. Further results
along these lines can be found in [23], [21], [54], [8], [24] and [44], though this is a very
non-exhaustive list. More generally, they also arise as the scaling limits of boundaries of
stable maps [53], and are emerging as an important tool in the programme to reconcile
the theories of random planar maps and Liouville quantum gravity, demonstrated for
example in [50], [35] and [10].
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Infinite stable looptrees

Figure 1: A tree T and the looptree Loop(T ).

Given a discrete tree T , the corresponding discrete looptree Loop(T ) as defined in
[22] is constructed by replacing each vertex u ∈ T with a cycle of length equal to the
degree of u in T , and then gluing these cycles along the tree structure of T . This is
illustrated in Figure 1. This operation can also be applied in the case where T is an
infinite tree. If T is rooted, we will take the convention that the root of Loop(T ) is the
vertex of Loop(T ) corresponding to the edge of T joining the root of T to its first child.

In this article we will mainly be interested in the case where our tree T has a critical
offspring distribution in the domain of attraction of an α-stable law, by which we mean
that there exists an increasing sequence an ↑ ∞ such that, if (ξ(i))∞i=1 are i.i.d. copies of
ξ, then ∑n

i=1 ξ
(i) − n

an

(d)→ Zα (1.1)

as n → ∞, where Zα is an α-stable random variable (and can be normalised so that
E
[
e−λZα

]
= e−λ

α

for all λ > 0). It is shown in [14, Section 8.3.2] that necessarily

an = n
1
αL(n) for some slowly-varying function L, where we recall that slowly varying

means that L(x) > 0 for all sufficiently large x, and limx→∞
L(tx)
L(x) = 1 for all t > 0.

Equivalently, ξ([n,∞)) = k−αL(n). In the case where ξ([n,∞)) ∼ cn−α as n→∞, we
can take an = (c|Γ(−α)|n)

1
α .

Throughout the article we will make the assumption that α ∈ (1, 2), and always take
(an)∞i=1 to be the sequence appearing in (1.1). In [22, Theorem 4.1], it is shown that if
Tn is a Galton Watson tree conditioned to have n vertices with offspring distribution ξ
in the domain of attraction of an α-stable law, then we can define the α-stable looptree
(which we denote by Lα) to be the random compact metric space such that

a−1
n Loop(Tn)

(d)→ Lα

in the Gromov-Hausdorff topology as n→∞. A simulation is shown in Figure 2. In the
case α = 2, the looptrees instead rescale to the Brownian Continuum Random Tree [45,
Theorem 2].

The main purpose of this paper is to give a construction of infinite stable looptrees.
The construction is similar in spirit to Duquesne’s construction of stable sin-trees in
[26], which is the continuum analogue of Kesten’s discrete construction of an infinite
critical tree. Additionally, infinite discrete looptrees have been defined by Björnberg and
Stefánsson in [15] by applying a related loop operation to Kesten’s infinite critical tree
T∞, and similarly by Richier in [52] by applying a similar operation to a two-type version
of Kesten’s tree.

As is done for stable sin-trees in [26], we define the infinite stable looptree L∞α from
two independent stable Lévy processes, each of which is used to code the looptree on
one side of its singly infinite loopspine. This is the construction suggested in [52, Section
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Infinite stable looptrees

Figure 2: Simulation of a stable looptree, by Igor Kortchemski.

6] and is the natural extension of the coding mechanism used to define compact stable
looptrees from stable Lévy excursions.

The construction is given in Section 4. The remainder of the article is devoted to
proving various limit theorems to justify the definition, and then using these to make
deductions about Brownian motion on compact stable looptrees, which is explored more
deeply in the companion paper [6]. In particular, we prove a local limit theorem showing
that L∞α can be characterised as the local limit of compact stable looptrees, and also
as the scaling limit of infinite discrete looptrees. When combined with earlier results
of Curien and Kortchemski, Björnberg and Stefánsson, and Richier, this shows that the
diagram of Figure 3 commutes as indicated.

L
disc;m
α

discrete looptree of mass m

Lα

compact continuum

L
disc;1
α

infinite discrete looptree

L1

α

infinite continuum looptree

scaling limit as m ! 1,

Curien and Kortchemski, 2014

local limit

Richier, 2017

Stefánsson, 2015

taking mass to 1

scaling limit

Theorem 1.2

Theorem 1.1

scaling limit as m ! 1,

Remark 7.4

factor >> m
−1

α

local limit on

Björnberg and

stable looptree

as m ! 1

factor m
−1

α

Figure 3: Commuting Diagram.

We start by giving the local limit result. In what follows, we let L`α be a compact stable
looptree conditioned to have total volume `, and let L∞α be the infinite looptree introduced
above. We recall from [22] that L`α is endowed with a measure ν` which can be thought
of as the natural analogue of uniform measure on L`α. We will define a similar measure
on L∞α in Section 4, and denote it by ν∞. We also recall from [22] (respectively [6])
that there is a natural way to define shortest-distance metric (respectively a resistance
metric) on L`α, and we will define analogous metrics for L∞α in Section 4.
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Infinite stable looptrees

Theorem 1.1. Let L`α be a compact stable looptree conditioned to have mass `, and let
L∞α be as above. Then,

(L`α, d̃`, ν`, ρ`)
(d)→ (L∞α , d̃∞, ν∞, ρ∞)

as ` →∞, with respect to the Gromov-Hausdorff-vague topology. Here d̃` and d̃∞ can
denote either the geodesic metrics, or the effective resistance metrics on the respective
spaces.

Similarly, we prove the following scaling result.

Theorem 1.2. Let T∞α denote Kesten’s tree with critical offspring distribution in the
domain of attraction of an α-stable law. Also let νdisc denote the measure that gives mass
1 to every vertex of Loop(T∞α ). Then

(Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n → ∞. Here d̃ and d̃∞ can
denote either the geodesic metrics, or the effective resistance metrics on the respective
spaces.

We will see in Section 5.2 that similar results hold for the infinite discrete looptrees
defined in [15] and [52].

Given these two theorems, we are also in the right setting to apply results of [18]
regarding limits for stochastic processes on these spaces. In particular, we obtain the
following results. Note that we formally define Brownian motion on stable looptrees
in the article [6] by defining it to be the stochastic process naturally associated with
the effective resistance metric on them. In Section 4, we similarly define an effective
resistance metric on L∞α and in Section 7 we define Brownian motion on L∞α to be the
associated stochastic process. We denote it by B∞. For convenience, we restrict to
the case where ` takes integer values below, but the result holds along any countable
subsequence diverging to infinity.

Theorem 1.3. Let (B`t )t≥0 be Brownian motion on L`α, and let (B∞t )t≥0 be Brownian
motion on L∞α . Then there exists a probability space (Ω′,F ′,P′) on which we can
almost surely define a metric space (M,RM ) in which the spaces (L`α, R`, ν`, ρ`) and
(L∞α , R∞, ν∞, ρ∞) can all be embedded and such that

(L`α, R`, ν`, ρ`)→ (L∞α , R∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology as ` → ∞, and the required
Hausdorff convergence specifically holds in the metric space (M,RM ). Letting (B`)`≥1

and B∞ be as above, we have that

(B`t )t≥0
(d)→ (B∞t )t≥0

as ` → ∞, considered on the space C(R+,M) endowed with the topology of uniform
convergence on compact time intervals.

Theorem 1.4. Let (Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ) be as in Theorem 1.2. Then there exists

a probability space (Ω′′,F ′′,P′′) on which we can almost surely define a metric space
(M,RM ) in which the spaces (Loop(T∞α ), Ca−1

n d̃, n−1νdisc, ρ) and (L∞α , d̃∞, ν∞, ρ∞) can all
be embedded and such that

(Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology as n → ∞, and the required
Hausdorff convergence specifically holds on the metric space (M,RM ). Letting Y be a
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simple random walk on Loop(T∞α ), and B∞ be as above, we have that

(a−1
n Yb4nantc)t≥0

(d)→ (B∞t )t≥0

on the space D(R+,M ) endowed with the Skorohod-J1 topology as n→∞.

Again, we will prove a similar result for random walks on the other infinite discrete
looptrees in Section 7, along with annealed versions, but the one above is easiest to
state as all vertices have degree 4 in Loop(T∞).

The process B∞ is considered further in Section 7 where we prove the following
results about the spectral dimension of L∞α . Recall that the spectral dimension of L∞α is
defined as

dS(L∞α ) = lim
t→∞

−2 log(p∞t (ρ∞, ρ∞))

log t
, (1.2)

where p∞t (·, ·) is the transition density of the Brownian motion B∞ defined above, i.e. a
symmetric ν∞ × ν∞-measurable function on L∞α × L∞α such that

Ex[f(Bt)] =

∫
L∞α

f(y)pt(x, y)ν∞(dy)

for all bounded, ν∞-measurable functions f on L∞α and ν∞-almost every x ∈ L∞α .
We assume that L∞α is defined on the probability space (Ω,F ,P), and let E denote

expectation on this space.

Theorem 1.5. P-almost surely, dS(L∞α ) = 2α
α+1 .

In light of Theorem 1.5, we call dS(L∞α ) the quenched spectral dimension. We also
define the annealed spectral dimension as

daS(L∞α ) = lim
t→∞

−2 log(E[p∞t (ρ∞, ρ∞)])

log t
.

For a general space, the annealed heat kernel is trickier to bound than the quenched
one defined above, since the expected transition density may not be finite. This is the
case, for example, for the trees with heavy-tailed offspring distributions considered in
[20]. In the case of stable looptrees however we are able to bound this using the volume
and resistance estimates of Section 6, and then utilise scaling invariance of L∞α to prove
the following (more precise) result.

Theorem 1.6. We have that

daS(L∞α ) =
2α

α+ 1
.

Moreover, there exists a constant c1 ∈ (0,∞) such that E[p∞t (ρ∞, ρ∞)] = c1t
−α
α+1 .

Both the quenched and annealed spectral dimensions match those obtained for the
infinite discrete looptrees defined from offspring distributions in the domain of attraction
of an α-stable law in [15].

The results of this paper and in particular Theorem 1.1 are applied in the paper [6]
to prove various limit results for volumes of small balls in compact stable looptrees, and
also to obtain limiting heat kernel estimates in the regime t ↓ 0. We refer the reader
directly to [6] for more details. Moreover, Richier showed in [52] that the incipient
infinite cluster (IIC) of the Uniform Infinite Half-Planar Triangulation has the structure
of an infinite discrete looptree, but where each of the loops are filled with independent
critically percolated Boltzmann triangulations. The size of the loops of this looptree are
given by a distribution in the domain of attraction of a 3

2 -stable law and Theorem 5.5 will
imply that the boundary of this cluster converges after rescaling to the infinite stable
looptree L∞3/2. The question of the scaling limit of the whole cluster is more subtle but
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is conjectured to be the 7
6 -stable map [9, Section 5.4], and we hope the methods used

in this article will be a good starting point for studying random walks on the IIC. In
particular, we anticipate that such a random walk might fall into a framework similar to
the discussions of [5], in that the looptree forming the boundary of the IIC may play a
role somewhat analogous to that of the classical Sierpinski gasket in [5]. If this is the
case, then understanding Brownian motion on Lα and L∞α is an important preliminary
step to understanding the scaling limit of a random walk on the IIC.

This paper is organised as follows. In Section 2 we go over some preliminaries on
Lévy processes and stochastic processes associated with resistance forms. In Section 3
we give some background on random trees and looptrees and explain how the stable
versions can be coded by Lévy excursions. In Section 4 we give our construction of L∞α ,
which essentially involves replacing the Lévy excursion used to code a compact looptree
by two independent Lévy processes. In Section 5 we prove Theorems 1.1 and 1.2, and
explain how these are applied to study compact stable looptrees in [6]. We then proceed
to prove some precise volume and resistance bounds for L∞α in Section 6 by making
comparisons with arguments of [6]. Finally, we conclude with a study of stochastic
processes in Section 7, where we use Theorems 1.1 and 1.2 to prove Theorems 1.3 and
1.4, and also prove Theorems 1.5 and 1.6.

Throughout this paper, C,C ′, c and c′ will denote constants, bounded above and below,
that may change on each appearance. We will use the notation B∞(x, r) to denote the
open ball of radius r around x in L∞α , and B̄∞(x, r) its closure. We will instead use the
superscript ` to denote the corresponding quantities on a compact looptree conditioned
to have mass `.

2 Preliminaries

2.1 Gromov-Hausdorff-Prohorov topologies

In order to prove convergence results for measured metric spaces such as looptrees
we will work in the pointed Gromov-Hausdorff-Prohorov topology. To define this, let
F denote the set of quadruples (F,R, µ, ρ) such that (F,R) is a boundedly finite Heine-
Borel metric space, µ is a locally finite Borel measure of full support on F , and ρ is a
distinguished point of F , which we call the root. Let Fc ⊂ F denote the subset of spaces
where (F,R) is compact.

Suppose (F,R, µ, ρ) and (F ′, R′, µ′, ρ′) are elements of Fc. Given a metric space
(M,dM ), and isometric embeddings ϕ,ϕ′ of (F,R) and (F ′, R′) respectively into (M,dM ),
we define dGHPM

(
(F,R, µ, ρ, ϕ), (F ′, R′, µ′, ρ′, ϕ′)

)
to be equal to

dHM (ϕ(F ), ϕ′(F ′))+dPM (µ ◦ ϕ−1, µ′ ◦ ϕ′−1
) + dM (ϕ(ρ), ϕ′(ρ′)).

Here dHM denotes the Hausdorff distance between two sets in M , and dPM the Prohorov
distance between two measures, as defined in [13, Chapter 1]. The pointed Gromov-
Hausdorff-Prohorov distance between (F,R, µ, ρ) and (F ′, R′, µ′, ρ′) is given by

dGHP ((F,R, µ, ρ), (F ′, R′, µ′, ρ′)) = inf
ϕ,ϕ′,M

dGHPM

(
(F,R, µ, ρ, ϕ), (F ′, R′, µ′, ρ′, ϕ′)

)
(2.1)

where the infimum is taken over all isometric embeddings ϕ,ϕ′ of (F,R) and (F ′, R′)

respectively into a common metric space (M,dM ). It is well-known (for example, see [3,
Theorem 2.3]) that this defines a metric on the space of equivalence classes of Fc, where
we say that two spaces (F,R, µ, ρ) and (F ′, R′, µ′, ρ′) are equivalent if there is a measure
and root preserving isometry between them.

The pointed Gromov-Hausdorff distance dGH(·, ·), which is defined by removing the
Prohorov term from (2.1) above, can also be helpfully defined in terms of correspon-
dences. A correspondence R between (F,R, µ, ρ) and (F ′, R′, µ′, ρ′) is a subset of F × F ′

EJP 25 (2020), paper 11.
Page 6/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP413
http://www.imstat.org/ejp/


Infinite stable looptrees

such that for every x ∈ F , there exists y ∈ F ′ with (x, y) ∈ R, and similarly for every
y ∈ F ′, there exists x ∈ F with (x, y) ∈ R. We define the distortion of a correspondence
by

dis(R) = sup
(x,x′),(y,y′)∈R

|R(x, y)−R(x′, y′)|.

It is then straightforward to show that

dGH((F,R, µ, ρ), (F ′, R′, µ′, ρ′)) =
1

2
inf
R

dis(R),

where the infimum is taken over all correspondences R between (F,R, µ, ρ) and
(F ′, R′, µ′, ρ′) that contain the point (ρ, ρ′).

In this article, we will prove pointed Gromov-Hausdorff-Prohorov convergence by
first proving pointed Gromov-Hausdorff convergence using correspondences, and then
show Prohorov convergence of the measures on the resulting metric embedding.

For non-compact elements of F, we will need a generalised notion of Gromov-
Hausdorff-Prohorov convergence. This is provided by the Gromov-Hausdorff vague
topology of [7]. To define it, suppose that (F,R, µ, ρ) and (Fn, Rn, µn, ρn) for each
n ≥ 0 are elements of F \ Fc. For r > 0, we let Br(F ) denote the quadruple
(B̄F (ρ, r), R|B̄F (ρ,r), µ|B̄F (ρ,r), ρ), where B̄F (ρ, r) denotes the closed ball of radius r around
the root ρ in F ; similarly for Br(Fn). Recall that we are restricting to Heine-Borel metric
measure spaces of full support, so that weak convergence is metrized by the Prohorov
metric. Following [7, Definition 5.8], we say that (Fn, Rn, µn, ρn) converges to (F,R, µ, ρ)

in the Gromov-Hausdorff-vague topology if

dGHP
(
Br(Fn),Br(F )

)
→ 0

for Lebesgue almost every r > 0. The following proposition will be useful, as it will allow
us to apply the Skorohod Representation Theorem later in Sections 5 and 7.

Proposition 2.1 ([7, Proposition 5.12]). The space of Heine-Borel boundedly finite
measure spaces equipped with the Gromov-Hausdorff-vague topology is a Polish space.

2.2 Stochastic processes associated with resistance metrics

To study Brownian motion and random walks on metric spaces we will be using the
theory of resistance forms and resistance metrics, developed by Kigami in [42] and [43].

Let G = (V,E) be a discrete graph equipped with non-negative symmetric edge
conductances c(x, y)(x,y)∈E and a measure (µ(x))x∈V . Effective resistance on G is a
function R on V × V defined by

R(x, y)−1 = inf{E(f, f)|f : V → R, f(x) = 1, f(y) = 0}, (2.2)

where we take the convention that inf ∅ =∞, and E(f, f) is an energy functional given
by

E(f, g) =
1

2

∑
x,y∈V

c(x, y)(f(y)− f(x))(g(y)− g(x)).

R(x, y) corresponds to the usual physical notion of electrical resistance between x and y
in G. It can be shown (e.g. see [57]) that R is a metric on G, so we call it the resistance
metric.

The notion of a resistance metric can be extended to the continuum as follows.

Definition 2.2 ([42, Definition 2.3.2]). Let F be a set. A function R : F×F is a resistance
metric on F if and only if for every finite subset V ⊂ F , there exists a weighted graph
with vertex set V such that R|V×V is the effective resistance on V , i.e. is given by (2.2).
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A resistance metric on a set F can be naturally associated with a stochastic process on
F via the theory of resistance forms. Roughly speaking, a resistance form is a pair (E ,F)

where E is an energy functional as above, and F is a subspace of real-valued functions
on F with finite energy (additionally it must satisfy the so-called Markov property, see
[43, Definition 3.1]).

Definition 2.3 ([43, Definition 6.2]). A resistance form (E ,F) is regular if F ∪ C0(F ) is
dense in C0(F ) with respect to the supremum norm, where C0(F ) represents the space
of continuous functions on F with compact support.

By [42, Theorems 2.3.4 and 2.3.6], there is a one-to-one correspondence between
resistance metrics and resistance forms on F , given analogously to (2.2). Moreover, if
the corresponding resistance form is regular, then it induces a regular Dirichlet form
on the space L2(F, µ), which in turn is naturally associated with a Hunt process on F as
a consequence of [32, Theorem 7.2.1]. This is automatically the case when (F,R) is a
compact resistance metric space endowed with a finite Borel measure µ of full support,
for example, but in the case of infinite looptrees we will have to put some extra work
into proving that the resistance form associated with L∞α is regular. This is done in
Proposition 7.2.

We have tried to keep background on resistance forms and Dirichlet forms to a
minimum in this article, but see [43] for more on this. The key point is that, under
appropriate regularity conditions on the underlying space (which will always be fulfilled
in this paper), there is a one-to-one correspondence between resistance metrics and
stochastic processes. The reader should feel free to skip the proof of Proposition 7.2,
which proves the required regularity in our setting, and merely use this correspondence
as a black box throughout the rest of this article.

This correspondence allows us to use results about scaling limits of measured re-
sistance metric spaces to prove results about scaling limits of stochastic processes as
detailed in the following result of [18]. Before stating it, we note that the notion of
effective resistance between points given in (2.2) can be extended to that of effective
resistance between two sets A,B ⊂ F by setting

R(A,B)−1 = inf{E(f, f)|f : F → R, f(x) = 1 ∀ x ∈ A, f(y) = 0 ∀ y ∈ B}.

Theorem 2.4 ([18, Theorem 1.2]). Suppose that (Fn, Rn, µn, ρn)n≥0 is a sequence in F
such that

(Fn, Rn, µn, ρn)→ (F,R, µ, ρ)

Gromov-Hausdorff-vaguely for some (F,R, µ, ρ) ∈ F, and R, (Rn)n≥1 are resistance
metrics on the respective spaces. Assume further that

lim
r→∞

lim inf
n→∞

Rn(ρn, Bn(ρn, r)
c) =∞. (2.3)

Let (Y nt )t≥0 and (Yt)t≥0 be the stochastic processes respectively associated with
(Fn, Rn, µn, ρn) and (F,R, µ, ρ) as described above. Then it is possible to isometrically
embed (Fn, Rn)n≥1 and (F,R) into a common metric space (M,dM ) so that

Pnρn((Y nt )t≥0 ∈ ·)→ Pρ((Yt)t≥0 ∈ ·)

weakly as probability measures as n → ∞ on the space D(R+,M) equipped with the
Skorohod J1-topology.

For more on the Skorohod-J1 topology, see [13, Chapter 3]. The intuition behind
the result above is that the convergence of metrics and measures respectively give the
appropriate spatial and temporal convergences of the stochastic processes. We will
apply it several times in this paper to take limits of stochastic processes on looptrees.
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By isometrically embedding into the universal Urysohn space (U, dU ), we can get
similar results in the annealed setting. This is quite abstract, and we do not give a
full background on the Urysohn space, but instead recall that it is a Polish space with
the property that any separable metric space can be isometrically embedded into U .
Moreover, it has a distinguished point u0 and in the case of trees and looptrees we can
always assume that the root is mapped to this canonical point. These are the only two
properties of U that we will use in this article, but its existence and further properties
are discussed in [37].

Suppose that (Fn, Rn, µn, ρn, ψn)n≥0 is a sequence such that (Fn, Rn, µn, ρn)n≥0 ∈ F
and ψn is an isometric embedding of (Fn, Rn, µn, ρn)n≥0 into U for all n. Similarly for
(F,R, µ, ρ, ψ). For the purposes of this paper, if (F,R, µ, ρ, ψ) is compact we will say that
(Fn, Rn, µn, ρn, ψn)→ (F,R, µ, ρ, ψ) in the spatial Gromov-Hausdorff topology if

dspU
(
(F,R, µ, ρ, ψ), (Fn, Rn, µn, ρn, ψn)

)
→ 0

as n→∞, where dspU
(
(F,R, µ, ρ, ψ), (Fn, Rn, µn, ρn, ψn)

)
is defined to be equal to

dHU (ψ(F ), ψn(Fn)) + dPU (µ ◦ ψ−1, µn ◦ ψn−1) + dU (ψ(ρ), ψn(ρn)). (2.4)

In the non-compact case, we will say that (Fn, Rn, µn, ρn, ϕn)→ (F,R, µ, ρ, ϕ) in the
spatial Gromov-Hausdorff vague topology if the closed balls of radius r along with their
appropriate restrictions converge for Lebesgue-almost every r > 0.

This definition is a special case of the spatial Gromov-Hausdorff vague topology used
in [18, Section 7], and it follows from the results there that dspU is a metric and induces a
separable topology on the space of elements of F isometrically embedded into U . The
definition can be made more general (and is more meaningful) in the case when we
embed non-isometrically into a space other than U . In fact the point of restricting to U
above is that, in our setting, Gromov-Hausdorff-Prohorov convergence will automatically
imply existence of isometries givingconvergence in the spatial topology introduced above,
and that U therefore provides a metric space on which we can consider the annealed
law for random walks, defined as follows.

Given a sequence of random spaces (Fn, Rn, µn, ρn, ϕn)n≥0 such that (Fn, Rn, µn, ρn) ∈
F for all n and ϕn : Fn → U is an isometric embedding, we define the annealed law of
the corresponding stochastic process by

P̃nϕn(ρn)(ϕn(Y nt )t≥0 ∈ ·) =

∫
Pnϕn(ρn)(ϕn(Y nt )t≥0 ∈ ·) dPn,

i.e. as the law of the stochastic process averaged over realisations of the underlying
random metric space. (We define this analogously when there is no dependence on n).

Theorem 2.5 ([18, Theorem 7.2]). Suppose that (Fn, Rn, µn, ρn, ϕn)n≥0 is a sequence
such that

(Fn, Rn, µn, ρn, ϕn)
(d)→ (F,R, µ, ρ, ϕ)

in the spatial Gromov-Hausdorff-vague topology, and R, (Rn)n≥1 are resistance metrics
on the respective spaces. Assume further that

lim
r→∞

lim inf
n→∞

P(Rn(ρn, Bn(ρn, r)
c) ≥ λ) = 1 (2.5)

for all λ > 0. Let (Y nt )t≥0 and (Yt)t≥0 be the stochastic processes respectively associated
with (Fn, Rn, µn, ρn) and (F,R, µ, ρ) as described above. Then

P̃nρn(ϕn(Y nt )t≥0 ∈ ·)→ P̃ρ(ϕ(Yt)t≥0 ∈ ·)

weakly as probability measures as n → ∞ on the space D(R+, U) equipped with the
Skorohod J1-topology.
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2.3 Stable Lévy excursions

Following the presentations of [25] and [22], we now introduce stable Lévy excursions,
which will be used to code stable trees and looptrees in Section 3.

Given intervals I, J ⊂ R, we first recall that D(I, J) represents the space of càdlàg
functions from I to J . For an interval [0, `] ⊂ R, we also define the càdlàg excursion
space Dexc([0, `],R≥0) by

Dexc([0, `],R≥0) = {e ∈ D([0, `],R≥0) : e(0) = e(`) = 0, e(t) > 0 for all t ∈ (0, `)}.

Throughout this article, we take α ∈ (1, 2), and X will be an α-stable spectrally
positive Lévy process as in [12, Section VIII], normalised so that

E
[
e−λXt

]
= e−λ

αt

for all λ > 0. X takes values in the space D([0,∞),R) of càdlàg functions, which we
endow with the Skorohod-J1 topology, and satisfies the scaling property that for any
constant c > 0, (c−

1
αXct)t≥0 has the same law as (Xt)t≥0. Moreover X has Lévy measure

Π(dx) =
α(α− 1)

Γ(2− α)
x−α−11(0,∞)(x)dx.

To define a normalised excursion of X, we follow [17] and let Xt = infs∈[0,t]Xs denote
its running infimum process, and set

g1 = sup{s ≤ 1 : Xs = Xs}, d1 = inf{s > 1 : Xs = Xs}.

Note that Xg1 = Xd1 almost surely, since X is spectrally positive. As in [17, Propo-
sition 1], we define the normalised excursion Xexc of X above its infimum at time 1

by

Xexc
s = (d1 − g1)

−1
α (Xg1+s(d1−g1) −Xg1)

for every s ∈ [0, 1]. Note that Xexc is almost surely an α-stable càdlàg function on [0, 1]

with Xexc(s) > 0 for all s ∈ (0, 1), and Xexc
0 = Xexc

1 = 0.

2.3.1 Itô excursion measure

We can alternatively define Xexc using the Itô excursion measure. For full details, see
[12, Chapter IV], but the measure is defined by applying excursion theory to the process
X − X, which is strongly Markov and for which the point 0 is regular for itself. We
normalise local time so that −X denotes the local time of X −X at its infimum, and let
(gj , dj)j∈I denote the excursion intervals of X −X away from zero. For each i ∈ I, the
process (ei)0≤s≤di−gi defined by ei(s) = Xgi+s−Xgi is an element of the excursion space

E =
⋃
`>0

Dexc([0, `],R≥0).

We let ζ(e) = sup{s > 0 : e(s) > 0} denote the lifetime of the excursion e. It was shown
in [38] that the measure

N(dt, de) =
∑
i∈I

δ(−Xgi
, ei)

is a Poisson point measure of intensity dtN(de), where N is a σ-finite measure on the set
E known as the Itô excursion measure.

Moreover, the measure N(·) inherits a scaling property from the α-stability of X.
Indeed, for any λ > 0 we define a mapping Φλ : E → E by Φλ(e)(t) = λ

1
α e( tλ ), so that

N ◦ Φ−1
λ = λ

1
αN (e.g. see [58]). It then follows from the results in [12, Section IV.4] that

we can uniquely define a set of conditional measures (N(s), s > 0) on E such that:
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(i) For every s > 0, N(s)(ζ = s) = 1.

(ii) For every λ > 0 and every s > 0, Φλ(N(s)) = N(λs).

(iii) For every measurable A ⊂ E

N(A) =

∫ ∞
0

N(s)(A)

αΓ(1− 1
α )s

1
α+1

ds.

N(s) is therefore used to denote the law N(·|ζ = s). The probability distribution N(1)

coincides with the law of Xexc as constructed above.

2.3.2 Relation between X and Xexc

It is easier to analyse an unconditioned Lévy process rather than an excursion, so
throughout this paper we will use the following two tools to compare the probability
of an event defined in terms of Xexc to that of the same event defined in terms of X.
The first tool is the Vervaat transform of the following proposition, which allows us to
compare to a stable bridge Xbr as an intermediate step. This is particularly useful as we
will at times consider our looptrees to be rooted at a uniform point.

Theorem 2.6 ([17, Théorème 4]). Vervaat Transform.

1. Let Xexc be as above, and take U ∼ Uniform([0, 1]). Then the process (Xbr
t )0≤t≤1

defined by

Xbr
t =

{
Xexc
U+t if U + t ≤ 1,

Xexc
U+t−1 if U + t > 1.

has the law of a spectrally positive stable Lévy bridge on [0, 1].

2. Now let Xbr be a spectrally positive stable Lévy bridge on [0, 1], and let m be the
(almost surely unique) time at which it attains its minimum. Define an excursion
Xexc by

Xexc
t =

{
Xbr
m+t if m+ t ≤ 1,

Xbr
m+t−1 if m+ t > 1.

Then Xexc has the law of a spectrally positive stable Lévy excursion.

An event defined for the stable bridge on the interval [0, T ] can then be transferred
to the unconditioned process using the fact that the law of the bridge is absolutely
continuous with respect to the law of the process, with Radon-Nikodym derivative

p1−T (−XT )

p1(0)
(2.6)

for T ∈ (0, 1) (see [12, Section VIII.3, Equation (8)]). Here the transition density pt(·, ·) for
the Lévy process X is defined analogously to that in (1.2), but with respect to Lebesgue
measure on the real line. We note here that ||p1||∞ < ∞ for all α ∈ (1, 2) since p1(·) is
continuous and vanishes at infinity (e.g. see [12, Section VIII.1]).

2.3.3 Descents

Next, we introduce the notion of a descent of a Lévy process, following the presentation
of [22, Section 3.1.3]. Let X1 and X2 be two independent spectrally positive α-stable
Lévy processes as defined above, and define a two-sided process X by setting

Xt =

{
X1
t if t ≥ 0

−X2
−t− if t < 0.
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For every s, t ∈ R, we write s � t if and only if s ≤ t and Xs− ≤ inf [s,t]X, and in this case
we set

∆Xs = Xs −Xs− , xts(X) = inf
[s,t]

X −Xs− , and uts(X) =
xts(X)

∆Xs
.

We write s ≺ t if s � t and s 6= t. As in [22], for any t ∈ R, we will call the collection
{xts(X), uts(X) : s � t} the descent of t in X.

The next proposition describes the law of descents from a typical point of X, and will
be useful in the proofs of the limit theorems. We let Xt = sup{Xs : 0 ≤ s ≤ t} denote the
running supremum process of X. The process X −X is strong Markov and 0 is regular
for itself, allowing the use of excursion theory. Let (Lt)t≥0 denote the local time of X−X
at 0. Note that, by [12, Chapter VIII, Lemma 1], L−1 is a (1 − 1

α )-stable subordinator,
and (XL−1(t))t≥0 is an (α− 1)-stable subordinator, so we can normalise local time so that
E
[
exp(−λXL−1(t)

]
= exp(−tλα−1) for all λ > 0. Finally, if Xs > Xs− , set

xs = Xs −Xs− , us =
Xs −Xs−

Xs −Xs−
.

Proposition 2.7 ([22, Proposition 3.1], [11, Corollary 1]). Let X be a two-sided spectrally
positive α-stable process as above. Then

(i)

{(−s, x0
s(X), u0

s(X)) : s � 0} (d)
= {s, xs, us : s ≥ 0 such that Xs > Xs−}.

(ii) The point measure ∑
Xs>Xs−

δ
(
Ls,

xs
us
, us
)

is a Poisson point measure with intensity dl · xΠ(dx) · 1[0,1](u)du.

We also give a technical lemma which will be used at various points in the paper. This
appeared previously in [22, Section 3.3.1] and uses an argument from [12]. The final
claim follows by bounded convergence.

First recall that for a function f : [0,∞)→ R and [a, b] ⊂ [0,∞), we define

Osc[a,b]f := sup
s,t∈[a,b]

|f(t)− f(s)|.

Lemma 2.8. Let E be an exponential random variable with parameter 1, and let X be a
spectrally positive α-stable Lévy process conditioned to have no jumps of size greater

than 1 on [0, E ]. Let Õsc = Osc[0,E]X. Then there exists θ > 0 such that E
[
eθÕsc

]
< ∞.

Moreover, E
[
eθÕsc

]
↓ 1 as θ ↓ 0.

Remark 2.9. The same results holds if E is set to be deterministically equal to 1 rather
than an exponential random variable. The proof is almost identical to the proof of the
result above, with one minor modification.

3 Background on stable trees and looptrees

3.1 Discrete trees

Before defining stable trees and looptrees, we briefly recap some notation for discrete
trees, following the formalism of [51]. Firstly, let

U =

∞⋃
n=0

Nn
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be the Ulam-Harris tree. By convention, N0 = {∅}. If u = (u1, . . . , un) and v =

(v1, . . . , vm) ∈ U , we let uv = (u1, . . . , un, v1, . . . , vm) be the concatenation of u and
v.

Definition 3.1. A plane tree T is a finite subset of U such that

(i) ∅ ∈ T ,

(ii) If v ∈ T and v = uj for some j ∈ N, then u ∈ T ,

(iii) For every u ∈ T , there exists a number ku(T ) ≥ 0 such that uj ∈ T if and only if
1 ≤ j ≤ ku(T ).

We let T denote the set of all plane trees. A plane tree T ∈ T with n + 1 vertices
labelled according to the lexicographical order as u0, u1, . . . , un can be coded by its
height function, contour function, or Lukasiewicz path, defined as follows.

• The height function (HT
i )0≤i≤n is defined by considering the vertices u0, u1, . . . , un

in lexicographical order, and then setting HT
i to be the generation of vertex ui.

• The contour function (CTt )0≤t≤2n is defined by considering a particle that starts at
the root ∅ at time zero, and then continuously traverses the boundary of T at speed
one, respecting the lexicographical order where possible, until returning to the
root. CT (t) is equal to the height of the particle at time t.

• The Lukasiewicz path (WT
m)0≤m≤n is defined by setting WT

0 = 0, then by con-
sidering the vertices u0, u1, . . . , un in lexicographical order and setting WT

m+1 =

WT
m + kum(T )− 1.

These are illustrated in Figure 4, together with points corresponding to specific
vertices in the tree, and the part of each excursion coding the subtree rooted at the red
vertex, which we denote by θ1(T ). For further details, see [27, Section 0.1].

Tree Contour function Height function

τ1(T ) τ1(T )

τ1(T )

Lukasiewicz path

Figure 4: Example of contour function, height function and Lukasiewicz path for the
given tree.

These functions all uniquely define the tree T . This can be written particularly
conveniently in the case of the contour function, since for any s, t ∈ {0, . . . , 2(n− 1)}, we
can write the tree distance as a function on {0, . . . , 2(n− 1)}×{0, . . . , 2(n− 1)} by setting

dT (s, t) = CT (s) + CT (t)− 2 inf
s≤r≤t

CT (r).

We will work mainly with the Lukasiewicz path (WT
m)0≤m≤n in this paper. It is not

too hard to see that WT
m ≥ 0 for all 0 ≤ m ≤ n− 1, and WT

n = −1. Moreover, the height
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function can be defined as a function of the Lukasiewicz path (see [27, Equation (1)]) by
setting

HT (m) =
∣∣∣{k ∈ {0, 1, . . . ,m− 1} : WT

k = inf
k≤l≤m

WT
l

}∣∣∣. (3.1)

3.1.1 Multi-type Galton-Watson trees

We will consider scaling limits of looptrees defined from both one and two-type Galton-
Watson trees in Section 5. Accordingly, let ξ, ξ◦ and ξ• be probability distributions on
Z≥0.

Definition 3.2. A Galton-Watson tree with offspring distribution ξ is a random plane
tree T with law Pξ satisfying the following properties.

(i) Pξ(k∅ = j) = ξ(j) for all j ∈ Z≥0,

(ii) For every j ≥ 1 with ξ(j) > 0, the shifted trees θ1(T ), . . . , θj(T ) are independent
under the conditional probability Pξ(· | k∅ = j), with law Pξ, where θi(T ) = {v ∈ U :

iv ∈ T }.

We say that T is critical if E[ξ] = 1. Additionally, we say a random plane tree is an
alternating two-type Galton-Watson tree with offspring distribution (ξ◦, ξ•) if all vertices
at even (respectively odd) height have offspring distribution ξ◦ (respectively ξ•). We say
that the tree is critical if E[ξ◦]E[ξ•] = 1.

3.2 Stable trees

We now introduce stable trees. These are closely related to stable looptrees, and
were introduced by Le Gall and Le Jan in [47] then further developed by Duquesne and
Le Gall in [27, 28]. For α ∈ (1, 2) we define the stable tree Tα from a spectrally positive
α-stable Lévy excursion, which plays the role of the Lukasiewicz path introduced above.
By analogy with (3.1), given such an excursion Xexc, we define the height function Hexc

to be the continuous modification of the process satisfying

Hexc(t) = lim
ε→0

1

ε

∫ t

0

1{Xexc
s < Its + ε}ds,

where Its = infr∈[s,t]X
exc
r for s ≤ t, and the limit exists in probability (e.g. see [27, Lemma

1.1.3]). We define a distance function on [0, 1] by

d(s, t) = Hexc(s) +Hexc(t)− 2 inf
s≤r≤t

Hexc(r),

and an equivalence relation on [0, 1] by setting s ∼ t if and only if d(s, t) = 0. Tα is the
quotient space ([0, 1]/ ∼, d), and we let π denote the canonical projection from [0, 1] to
Tα. If u, v ∈ Tα, we let [[u, v]] denote the unique geodesic between u and v in Tα.

This construction also provides a natural way to define a measure µ on Tα as the
image of Lebesgue measure on [0, 1] under the quotient operation.

Stable trees arise naturally as scaling limits of discrete plane trees with appropriate
offspring distributions. More specifically, let Tn be a discrete tree conditioned to have
n vertices and with critical offspring distribution ξ in the domain of attraction of an
α-stable law, and such that ξ is aperiodic. It is shown in [25, Theorem 3.1] that

ann
−1Tn → Tα (3.2)

in the Gromov-Hausdorff topology as n→∞, where an is as defined in (1.1).
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3.3 Random looptrees

Discrete looptrees are best described by Figure 1 in the introduction. Moreover,
as outlined there, stable looptrees can be defined as scaling limits of their discrete
counterparts. That is, if Tn is a Galton Watson tree conditioned to have n vertices with
critical offspring distribution ξ in the domain of attraction of an α-stable law, then

a−1
n Loop(Tn)

(d)→ Lα

with respect to the Gromov-Hausdorff topology as n → ∞ [22, Theorem 4.1], where
again in the case that ξ([n,∞)) ∼ cn−α, we can take an = (c|Γ(−α)|n)

1
α .

By comparison with (3.2), Lα can therefore be thought of as the looptree version
of the Lévy tree Tα. We now explain how this intuition can be used to code Lα from
a stable Lévy excursion, in such a way that Lα can be heuristically obtained from the
corresponding stable tree Tα by replacing each branch point by a loop with length
proportional to the size of the branch point, gluing these loops together along the tree
structure of Tα, and then taking the closure of the resulting metric space.

The following construction was introduced in [22, Section 2.3]. The Lévy excursion
itself plays the role of a continuum Lukasiewicz path. It was shown in [49, Proposition 2]
that if we define the width of a branch point in Tα, coded by a jump at t ∈ [0, 1] of size
∆t, by

lim
ε↓0

1

ε
µ({v ∈ Tα, d(π(t), v) ≤ ε}),

then the limit almost surely exists and is equal to ∆t. It is therefore natural that a jump
of size ∆ in Xexc should code a loop of length ∆ in Lα.

Accordingly, using the notation of Section 2.3.3, for every t ∈ [0, 1] with ∆t > 0, the
authors in [22, Section 2.3] equip the segment [0,∆t] with the pseudodistance

δt(a, b) = min{|a− b|, (∆t − |a− b|)}, for a, b ∈ [0,∆t], (3.3)

and define a distance function on [0, 1] by first setting

d0(s, t) =
∑
s≺u�t

δu(0, xtu)

whenever s � t, and

d(s, t) = δs∧t(x
s
s∧t, x

t
s∧t) + d0(s ∧ t, s) + d0(s ∧ t, t) (3.4)

for arbitrary s, t ∈ [0, 1].
They show that d as defined above is almost surely a continuous pseudodistance on

[0, 1], and define an equivalence relation ∼ on [0, 1] by setting s ∼ t if d(s, t) = 0. They
then define the stable looptree Lα as the quotient space

Lα = ([0, 1]/ ∼, d)

in [22, Definition 2.3]. We let p : [0, 1]→ Lα denote the canonical projection under the
quotient operation, and let ν denote the image of Lebesgue measure on [0, 1] under p. ν
therefore denotes the natural analogue of uniform measure on Lα.

In [6], we also define a resistance metric R on stable looptrees. By analogy with the
construction above, this is done by first replacing δt with the quantity rt defined by

rt(a, b) =
( 1

|a− b|
+

1

∆t − |a− b|

)−1

=
|a− b|(∆t − |a− b|)

∆t
, for a, b ∈ [0,∆t]. (3.5)
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Note that this corresponds to the effective resistance across two parallel edges of
lengths |a− b| and ∆t − |a− b|. For s, t ∈ [0, 1] with s � t, we then set

R0(s, t) =
∑
s≺u�t

ru(0, xtu). (3.6)

For arbitrary s, t ∈ [0, 1], we set

R(s, t) = rs∧t(x
s
s∧t, x

t
s∧t) +R0(s ∧ t, s) +R0(s ∧ t, t). (3.7)

We show in [6, Proposition 4.4] that R defined in this way is a resistance metric on
Lα in the sense of Definition 2.2. Moreover, in [6, Lemma 4.1] we show that for any
s, t ∈ [0, 1], we have that 1

2d(s, t) ≤ R(s, t) ≤ d(s, t), and define the resistance looptree LRα
(which we will often denote (Lα, R)) as

LRα = ([0, 1]/ ∼, R).

As a consequence, we also show in [6, Corollary 4.2] that the looptrees (Lα, d) and
(Lα, R) are homeomorphic.

The construction above is such that a jump of size ∆ corresponds naturally to a cycle
of length ∆ in Lα, which we will call a “loop”.

A key result of [22] is a Gromov-Hausdorff invariance principle. We extended the
result to include convergence of measures in [6, Proposition 4.6]. Moreover, the Gromov-
Hausdorff convergence of [22, Theorem 4.1] was originally stated with the geodesic
metric d in place of the resistance metric R, but equally holds for R. This results in the
following proposition.

Proposition 3.3 (Cf. [22, Theorem 4.1], [6, Proposition 4.6]). Let (τn)∞n=1 be a sequence
of trees with |τn| → ∞ and corresponding Lukasiewicz paths (Wn)∞n=1, and let Rn denote
the effective resistance metric on Loop(τn) obtained via (2.2) by letting an edge between
any two adjacent vertices have conductance 1. Additionally let νn be the uniform measure
that gives mass 1 to each vertex of Loop(τn), and let ρn be the root of Loop(τn), defined
to be the vertex representing the edge joining the root of τn to its first child. Suppose
that (Cn)∞n=1 is a sequence of positive real numbers such that

(i)
(

1
Cn
Wn
b|τn|tc(τn)

)
0≤t≤1

(d)→ Xexc as n→∞,

(ii) 1
Cn

Height(τn)
P→ 0 as n→∞.

Then (
Loop(τn),

1

Cn
Rn,

1

|τn|
νn, ρn

)
(d)→
(
Lα, R, ν, ρ

)
as n→∞ with respect to the Gromov-Hausdorff-Prohorov topology.

We now state a continuous version of this convergence. More generally, if f is a
function in Dexc([0, `]) for some ` ∈ (0,∞), with only positive jumps, we can replace
Xexc with f in the construction above to define the associated continuum looptree
Lf . Moreover, if fn is a sequence in Dexc([0, `]) converging to f , also all with only
positive jumps, then we can prove a similar invariance principle for the sequence of
corresponding continuum looptrees.

There are minor differences in the assumptions required for the continuum conver-
gence. In particular, note that the second condition of Proposition 3.3 that
1
Cn

Height(τn) → 0 in probability as n → ∞ is important there because it ensures that
in the limit, distances in the rescaled discrete looptrees come from the loop structure
and not from distances in the corresponding tree. More formally, in the proof of [22,
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Theorem 4.1] it is used to make a comparison between the expressions 1
Cn

∑
un�vn x

vn
un

and
∑
u�v x

v
u for the discrete and continuum trees respectively, where xvnun is the discrete

analogue of xvu. For a sequence of trees τn with 1
Cn
Wn → f in the setting of Proposition

3.3, we have for any vn ∈ Loop(τn) and v ∈ Lf that∑
un�vn

xvnun = Height(vn) +Wn(vn),
∑
u�v

xvu = f(v). (3.8)

If v and vn are in correspondence with each other, after being careful with left and
right limits we can essentially apply the result that 1

Cn
Wn(vn)→ f(v) to deduce that the

1
Cn

∑
un�vn x

vn
un also converges to

∑
u�v x

v
u in the limit to prove the invariance. To obtain

this result, it is therefore crucial that the contribution from the rescaled height function
goes to zero.

If, however, we replace the sequence of rescaled discrete looptrees with a sequence
of continuum looptrees, say coded by the functions (fn)∞n=1 each with support [0, 1] and
such that fn → f in the Skorohod-J1 topology as n→∞, then the height function won’t
appear in any of the new terms in (3.8) and so the continuum analogue of condition (ii)

of Proposition 3.3 is not required for convergence of the corresponding looptrees.
In this sense, condition (ii) reflects the fact the looptree Loop(τn) isn’t quite the

same as the looptree LWn . Condition (ii) is precisely what is required to say that the
difference between Loop(τn) and LWn becomes negligible in the limit.

Hence, in the continuum, the same proof gives the following result.

Proposition 3.4. Let (fn)n≥1 be a sequence in Dexc([0, 1],R≥0), and f ∈ Dexc([0, 1],R≥0)

be such that fn → f as n→∞ with respect to the Skorohod-J1 topology. Additionally let
ν and νn be the projections of Lebesgue measure via pf and pfn onto the spaces Lf and
Lfn respectively. Then

dGHP

((
Lfn , d̃n, νn, ρn

)
,
(
Lf , d̃f , νf , ρf

))
→ 0

as n→∞.
Here d̃ can denote either the shortest-distance metric of [22], or the resistance metric

of (3.7), but defined using the function f in place of Xexc. Similarly for d̃n and fn.

The result follows exactly as in the proof of [22, Theorem 4.1] by defining a corre-
spondence between Lf and Lfn to consist of all pairs (t, λn(t)), where λn is the Skorohod
homeomorphism that minimises the Skorohod distance between fn and f . The extension
to include convergence of measures can be obtained exactly as in [6, Proposition 4.6].

Clearly the result of the proposition will hold for functions defined on any compact
time interval, not just [0, 1]. We will use this in Section 5 to prove Theorem 1.1. Moreover,
by extending the coding functions to be constant beyond endpoints where necessary, the
result also holds providing the supports of the functions fn converge to that of f .

At some points in this paper, we will refer to the “corresponding” or “underlying”
stable tree of Lα, by which we mean the stable tree Tα coded by the same excursion that
codes Lα. We let Lα denote a compact stable looptree conditioned on ν(Lα) = 1, but
at various points we will let L̃α denote a generic stable looptree coded by an excursion
under the Itô measure but without any conditioning on its total mass. We will also let
L1
α denote a stable looptree but conditioned so that its underlying tree has height 1.

However, we will make this notation explicit at the time of writing.
The height of a stable tree T̃α is defined as Hmax = supu∈T̃α dT̃α(ρ, u). As the height

process is almost surely continuous, this maximum is almost surely realised by at least
one u ∈ T̃α. Moreover, we see from [30, Equation (23)] (and references therein) that
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there is almost surely a unique u ∈ T̃α that attains this maximum, which we denote by
uH . If L̃α is the corresponding stable looptree, we define three notions of its height:

(i) We define its LW -Height to be the looptree distance from ρ to uH .

(ii) We define its L-Height to be supu∈L̃α dL̃α(ρ, u).

(iii) We define its Lm-Height to be max X̃exc
s , where X̃exc is the Lévy excursion coding

L̃α.

In general, these are not the same. Note however that the Lm-Height is at least as big
as the L-Height, since X̃exc

s gives the distance to the point in L̃α represented by s but
going “clockwise” around all loops. At times, we will also use the notation TW -Height
and Tm-Height to denote the length of the corresponding spine in the underlying tree,
which we respectively denote by W-spine or m-spine.

3.3.1 Uniform re-rooting invariance for stable trees and looptrees

We will also use re-rooting invariance properties of stable trees and looptrees in our
arguments. In particular, Duquesne and Le Gall proved in [28, Proposition 4.8] that
stable Lévy trees are invariant under re-rooting at a uniform point. Following on from
this, they also proved the stronger result of invariance under re-rooting at a deterministic
point u ∈ [0, 1] in [29, Theorem 2.2].

In [36], the authors provide an alternative proof of uniform re-rooting invariance by
considering a spinal decomposition of stable trees and using exchangeability properties
of the resulting mass partition. This additionally allows them to show that stable trees
are the only fragmentation trees for which this property holds. As a result, we obtain
a similar uniform re-rooting invariance property for stable looptrees. This is stated
precisely as [22, Remark 4.6], and the principles there show that looptrees are invariant
under re-rooting at a uniform leaf, which is an equivalent statement in the limiting case.

We will exploit this in the proof of Theorem 1.1 where we will in fact prove the
convergence result for compact stable looptrees rooted at a uniform point.

3.3.2 Williams’ decomposition of stable looptrees

The Williams’ Decomposition for stable trees was given in [1]. There, the authors show
that if we define the W-spine of a stable Lévy tree T̃α to be the unique path from its root
to uH , then T̃α can be broken along this W-spine and that the resulting fragments form
a collection of smaller Lévy trees. As a consequence, we immediately have a similar
decomposition result for looptrees.

The Williams’ Decomposition for stable trees given in [1] encodes this decomposition
of T̃α along its W-spine in a Poisson process. In the Brownian case of α = 2, this
corresponds to Williams’ decomposition of Brownian motion. Letting Hmax and uH be as
above, we define the Williams’ spine (or W-spine) of T̃α to be the segment [[ρ, uH ]], and
define the Williams’ loopspine (or W-loopspine) in the corresponding looptree L̃α to be
the closure of the set of loops coded by points in [[ρ, uH ]]. One of the main results of [1] is
a theorem which firstly gives the distribution of the loop lengths along the W-loopspine,
and additionally the distribution of the fragments obtained by decomposing along it.

Given the spine from ρ to uH , and conditional on Hmax = H, the loops along the
W-loopspine can be represented by a Poisson point measure

∑
j∈J δ(lj , tj , uj) on R+ ×

[0, H]× [0, 1] with a certain intensity. A point (l, t, u) corresponds to a loop of length l in
the W-loopspine, occurring on the W-spine at distance t from the root in the underlying
tree T̃α, and such that a proportion u of the loop is on the “left” of the W-loopspine, and

EJP 25 (2020), paper 11.
Page 18/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP413
http://www.imstat.org/ejp/


Infinite stable looptrees

a proportion 1 − u is on the “right”. In [1], this is written in terms of the exploration
process on T̃α, but we interpret their result below in the context of looptrees.

We note that when stating this result, we are not conditioning on the total mass of
T̃α: only the maximal height. The mass of T̃α will depend on its height via the joint laws
for these under the Itô excursion measure.

Theorem 3.5 (Follows directly from [1, Lemma 3.1 and Theorem 3.2]).

(i) Conditionally on Hmax = H, the set of loops in the W-loopspine forms a Poisson
point process µW-loopspine =

∑
j∈J δ(lj , tj , uj) on the W-spine in the underlying tree

with intensity

1{[0,1]}(u)1{[0,H]}(t)l exp{−l(H − t)
−1
α−1 }du dt Π(dl),

where Π is the underlying Lévy measure, with Π(dl) = 1
|Γ(−α)| l

−α−11(0,∞)(l)dl in the

stable case. We will denote the atom δ(lj , tj , uj) by Loopj .

(ii) Let δ(l, t, u) be an atom of the Poisson process described above. The set of subloop-
trees grafted to the W-loopspine at a point on the corresponding loop can be
described by a random measure M (l) =

∑
i∈I δ

(l)(Ei, Di), where Ei is a Lévy excur-
sion that codes a looptree in the usual way, and Di represents the distance going
clockwise around the loop from the point at which this sublooptree is grafted to the
loop, to the point in the loop that is closest to ρ. This measure has intensity

N(·, Hmax ≤ H − t)× 1{[0,l]}dD.

In particular, since the sublooptrees are coded by the Itô excursion measure, they
are just rescaled copies of our usual normalised compact stable looptrees, and each
of these is grafted to the loop on the W-loopspine at a uniform point around the
loop lengths.

Remark 3.6. Point (ii) is a slight extension of the results of [1] since the authors of
that paper are only concerned with stable trees, and consequently are not interested in
how the sublooptrees are distributed around each loop in the W-loopspine. Instead they
write that the subtrees incident to the W-spine at the node corresponding to the atom
δ(l, t, u) are described by a Poisson random measure with intensity lN(·, Hmax ≤ H − t).
In fact, in our proofs we will only be counting sublooptrees grafted to entire loops so the
distribution of these around each individual loop will not matter. However, it should be
clear from equation (11) and the paragraph following it in [28] that the sublooptrees are
actually distributed uniformly around each loop.

In Proposition 6.4, we will have to decompose along the loopspine from the root to a
point attaining the distance of the Lm-Height from the root. By analogy with the notation
above, we will call this the m-loopspine, and the corresponding spine in the underlying
tree the m-spine. We do not prove a specific distribution for the decomposition along
this m-loopspine, but note that by similar principles to the Williams’ case, the Poisson
measure describing the loop lengths along the m-loopspine (analogous to that in Theorem
3.5(i)) will have the form

Cα1{[0,1]}(u)1{[0,Hm]}(t)l
−αpen(l,Hm, t)du dt dl,

where Cα = α(α−1)
Γ(2−α) , as before, Hm = Tm-Height(L̃α), and pen is a lower order penalty

term. In particular, by considering only loops on incident on the first half of the m-spine,
it can be bounded above and below by a constant. Moreover, the sublooptrees grafted to
the m-loopspine will be coded by a thinned version of the Itô excursion measure. This
can be proved rigorously by applying Proposition 2.7 for an unconditioned Lévy process
and transferring to the excursion via the Vervaat transform (Theorem 2.6) and absolute
continuity relation (2.6).
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3.4 Infinite critical trees and looptrees

In this section we introduce Kesten’s tree T∞ for a given critical offspring distribution
ξ. In light of Theorem 3.8, it is the natural way to construct such an infinite tree.

Definition 3.7 ([2, Definition 2.9], adapted from [41]). Let ξ be a critical offspring
distribution, and define its size biased version ξ∗ by

ξ∗(n) = nξ(n).

The Kesten’s tree T∞ associated to the probability distribution ξ is a two-type Galton-
Watson tree distributed as follows:

• Individuals are either normal or special.

• The root of T∞ is special.

• A normal individual produces only normal individuals according to ξ.

• A special individual produces individuals according to the size-biased distribution
ξ∗. Of these, one of them is chosen uniformly at random to be special, and the rest
are normal.

Almost surely, the special vertices form a unique infinite backbone of T∞. Note that
this is one-ended. Aldous in [4] coined the term sin-trees for such trees, since they have
a single infinite spine.

The following local limit theorem was originally proved by Kesten in [41] under a
second moment condition, but was proved with the stated assumptions in [39, Theorem
7.1], and demonstrates that this construction is the right one to take.

Theorem 3.8 ([41, Lemma 1.14], [2, Theorem 2.1.1], [39, Theorem 7.1]). Let ξ be a
critical offspring distribution with ξ(0) + ξ(1) < 1 and define T∞ as in Definition 3.7. Let
Tn be a Galton-Watson tree with offspring distribution ξ conditioned on having height at
least n. Then

Tn
(d)→ T∞

with respect to the Gromov-Hausdorff-vague topology as n→∞.

The convergence is actually stated in a stronger topology in the original literature,
but we are mainly interested in Gromov-Hausdorff-vague convergence in this paper.

Kesten’s construction has been imitated in the continuum by Duquesne in [26], who
constructs continuum sin-trees and shows that these arise as the appropriate local limit
of compact continuum trees conditioned on being large. By analogy with the compact
continuum case, Duquesne’s construction involves defining two height functions from
two independent Lévy processes in the same way as done with the excursion in (3.2).
These respectively code the tree structure on the left and right sides of the spine in the
usual way.

The construction was further extended to infinite discrete looptrees in [15], where
the authors define the infinite looptree associated with a critical offspring distribution
ξ to simply be Loop′(T∞), where T∞ is constructed as in Definition 3.7, and Loop′ is an
operation very close to Loop, as defined in [22, Section 4] and which we will introduce
later in Section 5.2. This infinite looptree inherits the structure of having a loopspine
with loop sizes determined by a size-biased version of ξ, to which usual compact discrete
looptrees are grafted. The local limit theorem of Theorem 3.8 thus passes directly to the
looptree case by continuity of the Loop operation (see [15, Corollary 2.3], the proof of
which can easily be adapted to Loop rather than Loop′).

Finally, Kesten’s construction of Definition 3.7 was extended to critical multi-type
Galton Watson trees in [55, Theorem 3.1] along with an analogous local limit theorem.
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Richier in [52] then used this to define an infinite two-type looptree and showed in [53,
Lemma 5.5] that this arises as a similar local limit under appropriate conditions.

The concept of an infinite stable looptree has thus left a gap in the literature and the
purpose of this paper is to fill that gap. The construction is the one suggested in [52,
Section 6] and extends the construction of infinite discrete looptrees in the same way that
Duquesne’s continuum sin-trees extend the construction of their discrete counterparts.
The resulting local limit theorem allows us to prove various volume and heat kernel
convergence results for compact stable looptrees in [6].

4 Construction of infinite stable looptrees

Our construction uses two stable Lévy processes to code each side of the loopspine,
in place of the excursion. This is the approach suggested in [52, Section 6] and our
construction is merely the continuum version of the discrete construction of [52, Section
3], except that we have essentially turned this construction “upside down” to match the
original coding mechanism for compact looptrees.

We start by giving an equivalent construction of compact stable looptrees. We give
the construction for a looptree of mass `.

Two-sided Construction of Compact Stable Looptrees

1. Let Xbr,` be a spectrally positive, α-stable Lévy bridge of lifetime `. Let
m = m` be the (almost surely unique) time at which Xbr,` attains its infimum.

2. Let (X
(2,`)
t )t≥0 be the pre-infimum process, and (X

(1,`)
t )t≥0 be the time-

reversed post-infimum process, extended to stay constant after times m and
1−m respectively. That is,

X
(2,`)
t =

{
Xbr
t for t ∈ [0,m],

Xbr
m for t > m;

X
(1,`)
t =

{
Xbr
`−t for t ∈ [0, 1−m],

Xbr
m for t > `−m.

3. Define a function X` : R→ R by

X`
t =

{
X

(2,`)
t if t ≥ 0,

X
(1,`)
−t if t < 0.

It should be clear from the Vervaat transform that X` is just a shifted Lévy
excursion.

4. For s, t ∈ R, we define resistances r`, R`0 and R` from X` exactly as in (3.5),
(3.6) and (3.7), but with the superscript ` on all the quantities involved. We
can similarly define distances δ`, d`0 and d` exactly as in (3.4). Analogously

to the normalised case, we then set L`α = (R/ ∼, d`), and L`α
R

= (R/ ∼, R`),
and let p` : R→ L`α denote the canonical projection.

Before giving the infinite construction, we give a brief outline of the strategy for
proving Theorem 1.1, which exploits uniform rerooting invariance of stable looptrees.
By taking a stable looptree coded by an excursion Xexc,` of length `, and taking the root
to be a uniform point in U ∈ [0, `], it follows from the Vervaat transformation that the
processes (Xexc,`

t )0≤t≤U and (Xexc,`
t )U≤t≤` are distributed respectively as the post- and

pre-minimum parts of a stable Lévy bridge. Standard convergence results then imply
that on any compact interval, these converge in distribution to stable Lévy processes
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as ` → ∞. Moreover, if we think of the loopspine as the sequence of loops coded by
jump points at times 0 � t � U , then (Xexc,`

t )0≤t≤U codes for the loopspine along with
everything grafted to the left hand side of it, and (Xexc,`

t )U≤t≤` codes for everything
grafted to the right hand side of it. It is therefore natural to replace each of these by
unconditioned Lévy process in the infinite volume limit.

Due to the Vervaat transformation, this construction is entirely equivalent to the
original construction of looptrees using the Lévy excursion, but we have now split the
coding into two functions which define each side of the loopspine. To code the infinite
looptree, we will take limits of each of these functions and use these to code each side of
the infinite loopspine.

We first give the construction, and then prove Theorem 1.1 in Section 5.

Construction of Infinite Stable Looptrees

1. Let X be an α-stable, spectrally positive Lévy process, and let X ′ be an
α-stable, spectrally negative Lévy process.

2. Define a function X∞ : R→ R by

X∞t =

{
Xt if t ≥ 0,

X ′−t− if t < 0.

3. Analogously to the compact construction above, if t is a jump point of X∞

with jump size ∆t and a, b ∈ [0,∆t], set

δ∞t (a, b) = min{|a− b|,∆t − |a− b|},

r∞t (a, b) =
( 1

|a− b|
+

1

∆t − |a− b|

)−1

=
|a− b|(∆t − |a− b|)

∆t
.

Additionally, as before, for s, t ∈ R with s ≤ t set I∞s,t = infr∈[s,t]X
∞
r , and

x∞s,t = I∞s,t − X∞s− . For s, t ∈ R we again write s ≺ t if s � t (meaning that
x∞s,t ≥ 0) and s 6= t. Then, if s � t set

d∞0 (s, t) =
∑
s≺u�t

δ∞u (0, xtu),

R∞0 (s, t) =
∑
s≺u�t

r∞u (0, xtu).

Then, for general s, t ∈ R, set

d∞(s, t) = δ∞s∧t(x
∞
s∧t,s, x

∞
s∧t,t) + d∞0 (s ∧ t, s) + d∞0 (s ∧ t, t),

R∞(s, t) = r∞s∧t(x
∞
s∧t,s, x

∞
s∧t,t) +R∞0 (s ∧ t, s) +R∞0 (s ∧ t, t).

(4.1)

Finally, define an equivalence relation ∼ on R by setting s ∼ t if and only if
d∞(s, t) = 0. We define the infinite looptrees L∞α and L∞,Rα by

L∞α = (R/ ∼, d∞),

L∞,Rα = (R/ ∼, R∞).

For ease of notation and intuition, we will focus on L∞α rather than L∞,Rα in Sections 5
and 6, but the results will hold in the resistance setting by exactly the same arguments.

EJP 25 (2020), paper 11.
Page 22/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP413
http://www.imstat.org/ejp/


Infinite stable looptrees

As in the compact case, we can define the projection p∞ : R→ L∞α , which is almost
surely continuous, and endow L∞α with the measure ν∞ which is defined to be the
pushforward of Lebesgue measure on the real line to L∞α via p∞.

We also have the following proposition, as a direct consequence of the scale invariance
of the stable Lévy process.

Proposition 4.1 (Scale invariance of L∞α ). For any c > 0,

(L∞α , cd̃, ρ∞, cαν∞)
(d)
= (L∞α , d̃, ρ∞, ν∞),

where d̃ here can be equal to either d∞ or R∞.

We also record the following result, which arises as a direct consequence of Theorem
1.1, [22, Corollary 4.4] (which gives the same result in the compact case), and [16,
Theorem 8.1.9] (which implies that this property is preserved in the limit).

Corollary 4.2. Almost surely, L∞α is a length space.

5 Limit theorems

In this Section we prove Theorems 1.1 and 1.2, and other similar results.

5.1 Proof of Theorem 1.1

Theorem 1.1 is proved by applying Proposition 3.4 to the following convergence
result. The Lévy processes are all normalised as in Section 2.3.

Proposition 5.1. Let Xbr,` be a spectrally positive, α-stable Lévy bridge of lifetime `,
let X be an α-stable, spectrally positive Lévy process, and let X ′ be an independent
α-stable, spectrally negative Lévy process. Also let m` be the (almost surely unique)
time at which Xbr,` attains its minimum. Then, for any T1, T2 > 0, letting f and g be any
bounded continuous functions D([0, Ti],R)→ R, we have that

E
[
f
(

(Xbr,`
t∧m`)t∈[0,T1]

)
g
(

(Xbr,`
((`−t)∨m`)−)t∈[0,T2]

)]
→ E

[
f
(

(Xt)t∈[0,T1]

)]
E
[
g
(

(X ′t)t∈[0,T2]

)]
as `→∞.

Before we prove the proposition, we show how we can apply Proposition 3.4 to the
functions X and X ′ on compact time intervals to prove Theorem 1.1.

Proof of Theorem 1.1, assuming Proposition 5.1. We need to show that for Lebesgue
almost every r > 0,

Br(L`α)
(d)→ Br(L∞α ). (5.1)

To this end, take some r > 0. We define two times tg(r) and td(r) by

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

The purpose of defining tg(r) and td(r) like this is that X∞ codes a compact looptree on
the interval [−tg(r), td(r)], and that Br(L∞α ) is contained in this.

Note that tg(r) is P-almost surely finite, since letting Ls denote the local time spent

by (X∞−t+)t≥0 at its infimum by time s, normalised so that E
[
e
λX∞

L−1(t)

]
= e−λ

α−1t, we

have from Proposition 2.7 that the measure∑
s∈J

δ(Ls,∆s)

is a Poisson point measure of intensity dl · x1{x−α ≥ 4r}dx, where J is the set {s ≥
0 : ∆−s ≥ 4r, δ∞−s(x

∞
−s,0) ≥ r}. Moreover, by [12, Chapter VIII, Lemma 1] we know that
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L−1 is a stable subordinator of parameter 1 − 1
α , and hence Lt → ∞ P-almost surely

as t → ∞. It follows that tg(r) is P-almost surely finite for all r > 0. Similarly, since
lim inft→∞X∞t = −∞ P-almost surely, td(r) is also P-almost surely finite for all r > 0.

For notational convenience, we write tg = tg(r) and td = td(r) from now on.
The compact looptree L`α is coded by an excursion Xexc,` of length `. To write this

as a two-sided construction as described in the previous section, choose U` uniform on
[0, `], and define a function Xbr,` : [−U`, `− U`] by

Xbr,`
t = Xexc,`

t+U`
−Xexc,`

U`

for all t ∈ [−U`, ` − U`]. Then Xbr,` codes L`α. Moreover, we can extend Xbr,` to R by
taking it to be constant outside of [−U`, `−U`], and by Proposition 5.1, it is then the case

that (Xbr,`
t )t∈[−tg−1,td+1]

(d)→ (X∞t )t∈[−tg−1,td+1].
Since the interval [−td− 1, tg + 1] is P-almost surely compact, and the space of càdlàg

functions with compact support endowed with the Skorohod-J1 topology is separable, it
follows by the Skorohod Representation Theorem and Proposition 5.1 that there exists
a probability space (Ω,F ,P) on which (Xbr,`

t )t∈[−tg−1,td+1] → (X∞t )t∈[−tg−1,td+1] almost
surely. We henceforth work in this space.

For each ` > 0, let λ` be the Skorohod homeomorphism (defined pointwise on Ω) from
[−tg − 1, td + 1]→ [−tg − 1, td + 1] that minimises the Skorohod distance between these
Xbr,` and X∞ on this interval. Then set t`d = λ`(td), and similarly t`g = λ`(tg).

The correspondence consisting of all pairs [t, λ`(t)] for t ∈ [−tg, td] is a subset of the
correspondence used to minimise the Gromov-Hausdorff distance in the proof of Proposi-
tion 3.4, so letting L`,rα = p`((Xbr,`

t )t∈[−t`g,t`d]) for each ` > 0 and L∞,rα = p∞((Xt)t∈[−tg,td]),

it follows from Proposition 3.4 that dGHP (L`,rα ,L∞,rα )→ 0 as `→∞. Since Br(L`α) ⊂ L`,rα
and Br(L∞α ) ⊂ L∞,rα , it thus follows that Br(L`α)

(d)→ Br′(L∞α ) for Lebesgue almost every
r′ < r. By taking a countable sequence rn → ∞ we therefore deduce the result for
Lebesgue almost-every r > 0, and the theorem follows.

We now conclude the proof of Theorem 1.1 by proving Proposition 5.1.

Proof of Proposition 5.1. The key point is that the two sides of the bridge have a density
with respect to the laws of X and X ′, in that for any f, g as in the statement of the
proposition, and any ` > T1 + T2, it follows from a minor modification of (2.6) that

E
[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
= E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)p`−T1−T2(X ′
T−2
−XT1)

p`(0)

]
,

(5.2)

where pt(·) here denotes the transition density of X. The proof then essentially just uses
the fact that m` and ` −m` tend to infinity in probability as ` → ∞, and then the fact
that with high probability, XT1 and X ′T2

will also not be too large. There are two main
steps. We first note that the quantity

E
[
f
(

(Xbr,`
t∧m`)t∈[0,T1]

)
g
(

(Xbr,`
((`−t)∨m`)−)t∈[0,T2]

)]
− E

[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
is upper bounded by

2||f ||∞||g||∞

(
P

(
m1 <

T1

`

)
+ P

(
m1 > 1− T2

`

))
,
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which converges to 0 as `→∞. This allows us to apply (5.2) as follows. First, note that
it follows from the scaling relation pt(x) = t

−1
α p1(xt

−1
α ) that

p`−T1−T2
(X ′T2

−XT1
)

p`(0)
=

(
`

`− T1 − T2

) 1
α p1

(
(`− T1 − T2)

−1
α (X ′T2

−XT1
)
)

p1(0)
.

We denote this latter quantity by p(`,X,X ′, T1, T2), so that

E
[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
− E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)]
= E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)]
.

Taking some 0 < ε� 1
α , we then decompose on the event {|XT1

|∨|X ′T2
| ≤ (`−T1−T2)

1
α−ε}

and its complement by writing the latter quantity as the sum

E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)
1{|XT1 | ∨ |X

′
T2
| ≤ (`− T1 − T2)

1
α
−ε}

]

+E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)
1{|XT1 | ∨ |X

′
T2
| > (`− T1 − T2)

1
α
−ε}

]
.

(5.3)

We deal with each of these two terms separately. For the first term, note that by
continuity of the transition density [12, Section VIII.1],

sup
|x|≤2(`−T1−T2)

1
α
−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}
→ p1(0)

as `→∞. We apply this by writing:∣∣∣∣∣∣(p(`,X,X ′, T1, T2)− 1

)
1{|XT1

| ∨ |X ′T2
| ≤ (`− T1 − T2)

1
α−ε}

∣∣∣∣∣∣
∞

≤ 1

p1(0)

(∣∣∣∣∣(( `

`− T1 − T2

) 1
α − 1

)
sup

|x|≤2(`−T1−T2)
1
α
−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}∣∣∣∣∣
+

∣∣∣∣∣ sup
|x|≤2(`−T1−T2)

1
α
−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}
− p1(0)

∣∣∣∣∣
)
,

from which we deduce that the first term in (5.3) converges to zero as `→∞, since f
and g are also bounded. To deal with the second term, we upper bound it by

||f ||∞||g||∞
1

p1(0)
||p1||∞P

(
|XT1

| ∨ |X ′T2
| > (`− T1 − T2)

1
α−ε

)
,

which also vanishes as `→∞.
It therefore follows by an application of the triangle inequality and the bounds above

that

E
[
f
(
(Xbr,`

t∧m` )t∈[0,T1]

)
g
(
(Xbr,`

((`−t)∨m`)−
)t∈[0,T2]

)]
− E

[
f
(
(Xt)t∈[0,T1]

)
g
(
(X′t)t∈[0,T2]

)]
≤ E

[
f
(
(Xbr,`

t∧m` )t∈[0,T1]

)
g
(
(Xbr,`

((`−t)∨m`)−
)t∈[0,T2]

)]
− E

[
f
(
(Xbr,`

t )t∈[0,T1]

)
g
(
(Xbr,`

(`−t)− )t∈[0,T2]

)]
+ E

[
f
(
(Xbr,`

t )t∈[0,T1]

)
g
(
(Xbr,`

(`−t)− )t∈[0,T2]

)]
− E

[
f
(
(Xt)t∈[0,T1]

)
g
(
(X′t)t∈[0,T2]

)]
→ 0

as `→∞, as claimed. We can then factorise the final term by independence of X and
X ′.
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5.2 Scaling limits of infinite discrete looptrees

In this section, we prove that infinite stable looptrees are scaling limits of infinite
discrete looptrees. We start by proving the following proposition, from which Theorem
1.2 will follow. Note the analogy with Proposition 3.3, and [22, Theorem 4.1].

Given an infinite critical discrete tree T∞, we note that it can be coded by a two-sided
Lukasiewicz path indexed by Z in the same way that an infinite critical continuum tree
can be coded by a two-sided Lévy process.

As introduced in Section 3.4, the infinite discrete looptrees defined by Björnberg
and Stefánsson in [15] are formed by first taking a critical offspring distribution ξ

in the domain of attraction of an α-stable law, and then forming Kesten’s tree T∞α
as outlined in Section 3.4. This tree has a unique infinite spine of vertices with a
size-biased version of the offspring distribution. The authors define their looptree as
Loop’(T∞α ). Here Loop’ is an operation very similar to Loop, obtained as in Figure 5,
and dGH(Loop(T∞α ), Loop’(T∞α )) ≤ 2 (see [22, Proof of Theorem 4.1]). We let L∞,1α =

Loop’(T∞α ).

Figure 5: A tree T and Loop′(T ), for the same underlying tree as in Figure 1.

Remark 5.2. In various places in other literature, the notation for Loop and Loop’ is
interchanged. We have used the notation of [22] since our paper follows on more
naturally from the results there.

We also make one further definition. Given an infinite critical tree T∞ and R > 0, we
define Loop(T∞)R to be the sublooptree of Loop(T∞) obtained by letting L be the first
loop on the infinite loopspine that is of length greater than 4R, and such that if we let l1
and l2 be the lengths of the two segments of this loop obtained by splitting the loop at
the two points where it intersects its neighbouring loops in the infinite loopspine, we
have that l1

l1+l2
∈ [ 1

4 ,
3
4 ]. We then let Loop(T∞)R be the subset of Loop(T∞) obtained by

removing all descendants of all points in L (but not removing L itself). This definition is
the discrete analogue to that of L∞,Rα given in the proof of Theorem 1.1, and is useful
since BR(Loop(T∞)) ⊂ Loop(T∞)R, but Loop(T∞)R has the advantage of being a full
looptree, whereas BR(Loop(T∞)) may contain incomplete loops.

Proposition 5.3. Let (τn)∞n=1 be a sequence of infinite critical trees (in the sense of
Kesten) with corresponding two-sided Lukasiewicz paths (Wn)∞n=1, and let d̃n denote
either the shortest-distance or effective resistance metric on Loop(τn). Additionally let
νn be the measure that gives mass 1 to each vertex in Loop(τn), and let ρn be the root of
Loop(τn), defined to be the vertex representing the edge joining the root of τn to its first
child. Suppose that (Cn)∞n=1 is a sequence of positive real numbers such that

(i) For any compact interval K ⊂ R,
(

1
Cn
Wn
bntc

)
t∈K

(d)→ (X∞t )t∈K as n→∞,

(ii) 1
Cn

Height(Tree(Loop(τn)rCn))
P→ 0 as n→∞, for all r > 0, where Tree is the inverse
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operation of Loop, and Loop(τn)R is defined above.

Then (
Loop(τn),

1

Cn
d̃n,

1

n
νn, ρn

)
(d)→
(
L∞α , d̃∞, ν∞, ρ∞

)
as n → ∞ with respect to the Gromov-Hausdorff vague topology, where d̃∞ can de-
note either the shortest-distance or effective resistance metric on L∞α , as appropriate.
Moreover, the result also holds on replacing Loop by Loop’ in all the statements above.

Proof. We start by proving the result for Loop. We will prove the result with d̃ = d and
note that the corresponding result for d̃ = R follows by the same arguments. The proof
is again a consequence of Proposition 3.3, given which, the proof is almost identical to
the proof of Theorem 1.1 (i.e. by defining an increasing sequence of sublooptrees that
exhaust the whole space, to each of which we then apply Proposition 3.3), so we omit
the details. As we did there, take r > 0, and define two times tg(r) and td(r) by

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ−s(x
0
−s) ≥ r},

td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−
}.

It then follows by the Skorohod Representation Theorem that there exists a probability
space (Ω,F ,P) upon which ( 1

Cn
Wn
nt)−(tg+1)≤t≤td+1 → (X∞)−(tg+1)≤t≤td+1 almost surely

with respect to the Skorohod-J1 topology. As in the proof of Theorem 1.1, for each n ∈ N
let λn be the Skorohod homeomorphism [−tg − 1, td + 1]→ [−tg − 1, td + 1] that minimises
the Skorohod-J1 distance between these two functions, and set tnd = λn(td), and similarly
tng = λn(tg).

By repeating the arguments of the proof of Theorem 1.1, and noting that condition
(ii) above ensures that condition (ii) of Proposition 3.3 is satisfied, we deduce that the
looptrees coded by ( 1

Cn
Wn
nt)−tng≤t≤tnd converge to the looptree coded by (X∞)t≥0. The

result then follows as in the proof of Theorem 1.1.
To prove the same result for Loop′ in place of Loop, note that since

dGH(Loop(T∞α ), Loop’(Tα∞)) ≤ 2, the Gromov-Hausdorff convergence of Proposition 3.3
holds with Loop(τn) replaced by Loop’(τn), and the Prohorov convergence of measures
of that proposition holds by the exactly the same arguments. As a consequence, we can
just repeat exactly the same proof for Loop′.

In particular, the result applies taking τn = T∞α for all n, and Cn = an. In this case,
1
Cn

Height(Tree(Loop(τn)(rCn))) will be of order rα−1n−
2−α
α L(n) for some slowly-varying

function L, so point (ii) of Proposition 5.3 holds by an appplication of Markov’s inequality.
We therefore deduce both Theorem 1.2, and Theorem 5.4 below, as a corollary.

Theorem 5.4. Take Loop’(T∞α ) as above, with ν′ the measure on Loop’(T∞α ) such that
ν′(x) = 1 for all x ∈ Loop’(T∞α ). Then

(Loop’(T∞α ), a−1
n d̃, n−1ν′, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n→∞. Here d̃ (respectively
d̃∞) can denote either the geodesic metric d (respectively d∞), or the effective resistance
metric R (respectively R∞).

5.2.1 Looptrees defined from two-type Galton Watson trees

In practice in the context of random planar maps, it is often convenient to define discrete
looptrees from alternating two-type Galton-Watson trees. In particular, Richier in [52,
Section 3] gives the following definition, illustrated in Figure 6. Given an infinite
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alternating two-type Galton-Watson tree T (as defined in Section 3.1.1), say with white
vertices at even height and black vertices at odd height, draw a loop around each black
vertex by connecting its ith white child to its (i + 1)th white child for all i, and join its
parent to both its first and last white child. Then delete the black vertices and their
incident edges; we denote the resulting structure by Loop2(T ).

Figure 6: A two-type tree and its looptree.

We now take a two-type tree T∞,2α with offspring distribution (ξ◦, ξ•) such that:

• (ξ◦, ξ•) is critical, i.e. E[ξ◦]E[ξ•] = 1.

• ξ◦ is shifted geometric with parameter 1 − p ∈ (0, 1), i.e. ξ◦(k) = (1 − p)pk for all
k ≥ 0.

• ξ• is in the domain of attraction of an α-stable law.

Before stating the scaling result, we briefly introduce two related concepts. One
of these is the Janson-Stefánsson bijection of [40], which gives a bijection between
alternating two-type Galton-Watson trees and one-type Galton-Watson trees. Given an
alternating two-type Galton-Watson tree T , we denote its image under this bijection by
ΦJS(T ). ΦJS(T ) has the same vertex set as T , but different edges, and is constructed
as follows: for every white vertex that is not equal to the root, label its offspring as
u1, . . . , uk in lexicographical order, and label its parent u0. Then draw an edge joining ui
to ui+1 for each i ∈ {0, . . . , k − 1}, and draw an edge joining uk to u. See Figure 7.

The bijection is such that each white vertex in T is therefore mapped to a leaf in
ΦJS(T ), and each black vertex in T with k offspring is mapped to a vertex in ΦJS(T ) with
k + 1 offspring.

The second concept is a (final) related loop operation Loop. Given a (one-type) tree
T , Loop(T ) is obtained by first forming Loop’(T ), and then for each vertex u ∈ Loop’(T ),
contracting each edge joining u to its rightmost child. Loop(T ) therefore has the property
that multiple loops can be grafted at the same vertex, which is not the case with Loop(T )

and Loop’(T ) (but is the case with the two-type operation Loop2).

The proof of the two-type scaling result then proceeds by applying the Janson-
Stefánsson bijection to the two-type tree, and using the following facts, which we state
without proof, but which should be plausible from looking at Figure 7.

(i) For any plane tree T endowed with a measure giving mass 1 to every vertex,
dGHP (Loop’(T ), Loop(T )) ≤ 4Height(T ) (see [53, Equation (48)] for Gromov-
Hausdorff version, then the Prohorov bound on measures follows by same rea-
soning).
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(a) ΦJS(T ).
(b) Loop’(ΦJS(T )) and Loop(ΦJS(T )).

Figure 7: Illustrations for the two-type tree T in Figure 6.

(ii) If T is an alternating two-type tree, then Loop2(T ) = Loop(ΦJS(T ))) (see [23, Lemma
4.3]).

(iii) Let T be an alternating two-type Galton-Watson tree with offspring distributions
ξ◦ and ξ• such that ξ◦ is shifted geometric with parameter 1 − p ∈ (0, 1), i.e.
ξ◦(k) = (1 − p)pk for all k ≥ 0, and E[ξ◦]E[ξ•] ≤ 1. Then ΦJS(T ) is a one-type
Galton-Watson tree with offspring distribution ξ, where ξ is such that ξ(0) = 1− p
and ξ(k) = pξ•(k − 1) for all k ≥ 1 (see [40, Appendix A]).

Moreover, under the criticality assumption, this implies that∑n
i=1 ξ

(i) − n
an

(d)→ Zα if and only if

∑n
i=1 ξ

(i)
• − 1−p

p n

p
−1
α an

(d)→ Zα. (5.4)

We are now ready to state and prove the convergence result.

Theorem 5.5. Let Loop2(T∞,2α ) be above, with (an)n≥1 as in (5.4), and let ν2 be the
measure on Loop2(T∞,2α ) such that ν2(x) = 1 for all x ∈ Loop2(T∞,2α ). Then

(Loop2(T∞,2α ), a−1
n d̃, n−1ν2, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n→∞. Again, here d̃ (respec-
tively d̃∞) can denote either the geodesic metric d (respectively d∞), or the effective
resistance metric R (respectively R∞).

Proof of Theorem 5.5. Using the points above, we will show that there exists a proba-
bility space on which we can define both T∞,2α and a one-type Galton Watson tree T̃α
satisfying the assumptions of Proposition 5.3 such that, for all r > 0,

dGHP (Br
(
(Loop2(T∞,2α ), a−1

n d̃, n−1ν′, ρ)
)
,Br
(
(Loop’(T̃α), a−1

n d̃, n−1ν′, ρ)
)
→ 0 (5.5)

almost surely as n→∞. As a result, we deduce that these two looptrees have the same
Gromov-Hausdorff-Prohorov vague limit.

To do this, we first make a definition. As in the one-type case, it follows that T∞,2α

almost surely has a unique infinite spine on which vertices instead have a size-biased
offspring distribution (see [56, Section 3.1]). Analogously to previous definitions, for any
R > 0 we say that a loop on the corresponding loopspine is R-good if it has length at
least 4R and if the two points at which it is connected to adjacent loops on the loopspine
are separated by distance at least R. We then let L2

α(R) denote the subspace obtained
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by taking the union of all the loops up to and including the first R-good loop on the
loopspine, along with any sublooptrees grafted to them. The reason for this definition is
that BR(Loop2(T∞,2α )) ⊂ L2

α(R), and L2
α(R) is a full looptree (i.e. does not contain partial

loops). We also let T 2
α(R) denote the (two-type) tree such that Loop2(T 2

α(R)) = L2
α(R)

(this is well-defined since Loop2 is a bijection).
Set T̃ r,nα = ΦJS(T 2

α(ran)). We make the following observations, based on the facts
above.

1. By Fact (ii) above, Loop
(
T̃ r,nα

)
= L2

α(ran).

2. By Fact (i) above, dGHP
(

Loop
(
T̃ r,nα

)
, Loop’

(
T̃ r,nα

))
≤ 4Height

(
T̃ r,nα

)
.

Moreover, n
−1
α Height

(
T̃ r,nα

)
→ 0 in probability as n→∞ since:

P
(

Height
(
T̃ r,nα

)
≥ εn 1

α + 1
)
≤ P

(
Height

(
T 2
α(rn

1
α )
)
≥ εn 1

α + 1
)

= (1− pr,n)εn
1
α

≤ exp{−Cr−αn−
α−1
α εn

1
α },

where pr,n = 1
2P
(
ξ̂• ≥ rn

1
α

)
∼ Crαn

α−1
α as n → ∞ by assumption, since ξ̂• is a

size-biased version of ξ•.

3. By construction and Fact (iii) above, Br
(
Loop’

(
T̃ r,nα

))
= Br

(
Loop’

(
T̃α
))

, where

T̃α = limn→∞ T̃ r,nα (the Janson-Stefánsson bijection is such that this is well-defined).
Moreover, T̃α is distributed as Kesten’s critical tree with offspring distribution ξ.

These three points imply that (5.5) holds with T̃α as in Point 3 above. Then, T̃α satisfies
the conditions of Proposition 5.3 (in particular, condition (ii) of the Proposition holds

by similar arguments to those in Point 2 above), so (Loop’(T̃α), a−1
n d̃, n−1ν′, ρ)

(d)→ L∞α
as n → ∞. Since these T∞,2α and T̃α are defined on a common probability space, (5.5)
therefore implies the same distributional result for (Loop2(T∞,2α ), a−1

n d̃, n−1ν′, ρ).

Remark 5.6. In [52], these two-type looptrees are coded by upward skip-free random
walks in a similar way to the one-type case. It is also possible to write an analogous
result to Proposition 5.3 in this case, under more general assumptions on the coding
functions.

6 Volume bounds and resistance estimates for infinite stable
looptrees

In this section, we prove precise estimates on the volume and resistance growth
properties of infinite stable looptrees. These are of interest in their own right but in
Section 7 we also use these to obtain bounds on the heat kernel, and use the resistance
estimate to verify that the non-explosion conditions of Theorems 2.4 and 2.5 are satisfied
when we prove Theorems 1.3 and 1.4, along with their annealed counterparts.

In [6, Section 5], we conduct a much more detailed study of the volume growth
properties of compact stable looptrees, including proving similar results to those in
Theorem 6.1 below. For this reason we will therefore skip some technical proof details
when they are the same as in [6].

The full results are as follows. The result holds regardless of whether we define the
balls in terms of R∞ or d∞, since the two metrics are equivalent. In particular, it is
sufficient to prove the result for d∞ only, which is easier to handle. We do this below.
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Theorem 6.1 (Cf. [6, Theorem 1.4]). P-almost surely, we have:

lim sup
r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)
4α−3
α−1

)
<∞, lim sup

r↑∞

(
ν∞(B∞(ρ∞, r))

rα log log r

)
> 0,

lim inf
r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)−α

)
> 0, lim inf

r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)−(α−1)

)
<∞.

Moreover, P-almost surely, for ν∞-almost every u ∈ L∞α we have

lim sup
r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)
4α−3
α−1

)
<∞, lim sup

r↓0

(
ν∞(B∞(u, r))

rα log log r−1

)
> 0,

lim inf
r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)−α

)
> 0, lim inf

r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)−(α−1)

)
<∞.

Theorem 6.2. P-almost surely, there exists a constant c > 0 such that for all r > 0,

cr(log log(r ∨ r−1))
−(3α−2)
α−1 ≤ R∞(ρ∞, B∞(ρ∞, r)c) ≤ r.

These results are obtained as a consequence of the following propositions.

Proposition 6.3. There exist constants c, c′, C, C ′ ∈ (0,∞) such that for all r > 0, λ > 1:

C exp{−cλ
1

α−1 } ≤ P
(
ν∞(B∞(ρ∞, r)) < rαλ−1

)
≤ C ′ exp{−c′λ 1

α }

Ce−cλ ≤ P(ν∞(B∞(ρ∞, r)) ≥ rαλ) ≤ C ′λ
α−1
4α−3 e−c

′λ
α−1
4α−3

.

Proposition 6.4. There exist constants C, c ∈ (0,∞) such that for all r > 0, λ > 1:

P
(
R∞eff(ρ

∞, B∞(ρ∞, r)c) ≤ rλ−1
)
≤ Ce−cλ

1
4 .

By applying Borel-Cantelli arguments along the sequence rn = 2n (respectively
rn = 2−n) in Propositions 6.3 and 6.4, we obtain the results of Theorems 6.1 and 6.2
for the regime r ↑ ∞ (respectively r ↓ 0). For any R ∈ (0,∞), the local results can then
be extended to ν∞-almost every u ∈ L∞,Rα by uniform re-rooting invariance (recall that
(L∞,Rα )R≥0 is a sequence of nested compact looptrees that exhaust L∞α ). Taking R→∞
then gives the result.

Before outlining the proofs of Propositions 6.3 and 6.4, we briefly explain how the
fractal structure of L∞α can be encoded using the Ulam-Harris tree. This will be useful in
the proofs of both propositions. This representation is very similar to the one described
for compact looptrees in [6, Section 5.2.1], except that at the first level we will decompose
along the infinite loopspine rather than the W-loopspine.

6.1 Encoding the looptree structure in a branching process

The Williams’ decomposition of Section 3.3.2 suggests a natural way to encode the
fractal structure of L∞α in a branching process, which we will label using the Ulam-
Harris numbering convention of Section 3.1. Although the Williams’ decomposition is
defined along the maximal spine from the root of a compact tree, it follows from uniform
rerooting invariance of stable trees that we can apply the same procedure from a uniform
point instead, without changing the distribution of the decomposition.

Specifically, we let ∅ denote the root vertex of our branching process. This will
represent the whole looptree L∞α (in particular, ∅ should not be confused with ρ∞, which
is the root of L∞α ). We decompose L∞α by removing the infinite loopspine, and denote the
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resulting fragments by (L(i,o)
α )∞i=1. Moreover, we let L(i)

α denote the closure of L(i,o)
α in L∞α ,

and remark that it follows from standard properties of the Itô excursion measure that
P-almost surely, L(i)

α = L(i,o)
α ∪{ρi} for each i. We call ρi the root of Lα(i) as it is the point

at which L(i)
α is grafted to the infinite loopspine. It again follows from standard properties

of the Itô excursion measure that each fragment L(i)
α is an independent (unconditioned)

copy of a compact stable looptree, coded by an instance of the Itô measure. We will view
the set (L(i)

α )∞i=1 as the children of ∅ in our branching process, and we will index them
by N. Moreover, to each edge joining ∅ to one of its offspring i, we associate a random
variable mi = m(∅, i) which gives the mass of the sublooptree corresponding to index i.

We then repeat this decomposition along each of the sublooptrees L(i)
α , with the minor

modification that we decompose along the W-loopspine rather than the infinite loopspine.
More precisely, if i is a child of ∅, we can decompose along its W-loopspine from its root
to its point of maximal tree height to obtain a countable collection of fragments. By
taking the appropriate closures, these fragments are sublooptrees and will form the
offspring of i in our branching process. We label the offspring as (ij)j≥1. By repeating
this procedure again and again on the resulting subsublooptrees, we can keep iterating
to obtain an infinite branching process.

Remark 6.5. The spinal decomposition of [36] obtained by taking the loopspine to be
from p(U) (or the root) to an independent uniform point p(V ) is perhaps the most natural
candidate to use as the basis of this iterative procedure, but when using this to bound
the mass of small balls in Lα this leads to technical difficulties in the case when V is
chosen so that p(V ) is a point too close to p(U). This difficulty is avoided by instead
picking the maximal spine in the underlying tree.

We index this process using the Ulam-Harris tree

U =

∞⋃
n=0

Nn

defined in Section 3.1. Using the notation of [51], an element of our branching process
will be denoted by u = u1u2u3 . . . uj , and corresponds to a sublooptree which we denote

by L(u)
α ⊂ L∞α . Its offspring will all be of the form (ui)i∈N, where ui here abbreviates the

concatenation u1u2u3 . . . uji, and each will correspond to one of the further sublooptrees

obtained on performing a Williams’ decomposition of L(u)
α .

For each element u ∈ U , we set

Mu := ν∞(L(u)
α ),

by viewing L(u)
α as a subset of L∞α .

In the proofs of Propositions 6.3 and 6.4, we will select subtrees Tvol, Tres ⊂ U which
index sublooptrees of large mass or large diameter. We make this more precise in the
box below, where we describe the procedure used to obtain Tvol.

6.2 Volume bounds

To maintain consistency with the notation of [6], we take:

β1 =
α− 1

4α− 3
, β2 =

α− 1

4α− 3
, β3 =

2α− 1

2α(4α− 3)
, β4 =

1

4α− 3
.

The main point to remember is that βi ∈ (0, 1) for all i. These precise values have been
chosen to optimise the final exponent on λ, but are otherwise not important.
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Iterative Algorithm

Start by taking ∅ to be the root of Tvol. Recall this represents the whole looptree
L∞α .

1. Perform a decomposition of L∞α along its infinite loopspine.

2. Consider the resulting fragments. To choose the offspring of ∅, select the
fragments that have mass at least rαλ1−β1−β2 , and such that the roots of the
corresponding sublooptrees are within distance r of the root of ∅.

3. Repeat this process to construct Tvol in the usual Galton-Watson way. Given
an element u = u1u2 . . . uj ∈ Tvol, there is a corresponding sublooptree L(u)

α

in L∞α with root ρu and Mu ≥ rαλ1−β1−β2 . Consider the fragments obtained

in a Williams’ decomposition of L(u)
α , and select those that correspond to

further sublooptrees that are within distance r of ρu, and also such that
Mu1u2...ujuj+1

≥ rαλ1−β1−β2 , to be the offspring of u.

4. For each u = u1u2 . . . uj ∈ Tvol, set

Su =

∞∑
i=1

Mui1
{
ρui ∈ B(ρu, r)

}
1
{
Mui < rαλ1−β1−β2

}
.

By the discussion above, this algorithm is P-almost surely well defined, and is very
similar to the decomposition of compact stable looptrees used in [6, Section 5.2.2]. As
explained there, in the event that Tvol is finite we then have that:

ν∞(B∞(ρ∞, r)) ≤
∑
u∈Tvol

Su. (6.1)

Using this, we can now prove Theorem 6.1. We skip some technical details since they are
quite lengthy and can be carried out exactly as in the compact case, which is explained
fully in [6, Section 5], but comment on any necessary modifications for the infinite case.

Proof of Theorem 6.1, outline only. We start by proving the volume lower bounds, since
the proof strategy is simpler than for the upper bounds. We use the Lévy coding
mechanism of Section 3.3 and known fluctuation results for stable Lévy processes. It is
not to hard to see (perhaps with the help of a picture, though this is proved formally in
[22, Lemma 2.1(ii)] in the compact case), that for any [s, t] in [0, 1],

d∞(s, t) ≤ X∞s +X∞t − 2 inf
r∈[s,t]

X∞r . (6.2)

Recall also from Section 2.3.3 that

Osc[a,b]X
∞ := sup

s,t∈[a,b]

|X∞t −X∞s |.

We deduce from (6.2) that if Osc[0,rακ]X
∞ ≤ 1

2r, then B∞(ρ∞, r) ≥ rακ. By applying the
Vervaat transform and absolute continuity relation of (2.6), and taking either κ = λ, or
κ = λ−1, we are then able to use standard results for fluctuations of unconditioned Lévy
processes to control the behaviour of Osc, and obtain the volume lower bounds. This is
done rigorously in [6, Sections 5.1 and 5.3]. The only difference in the arguments used
there is that in the compact place, we have to replace X∞ with Xexc in (6.2). However,
all the proofs of [6] proceed by using the Vervaat transform and absolute continuity
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relation to compare Xexc with an unconditioned Lévy process X. In the infinite case the
proof is therefore simpler since we are already working with the unconditioned process.

The Lévy process picture is not so useful for proving precise volume upper bounds
since the relation (6.2) is not an equality. In fact, the upper bound it gives on the
distance is quite rough since any single jump in Xexc contributes quite heavily to Osc,
but does not immediately contribute to distances in looptrees. In particular, an entire
jump corresponds to traversing an entire loop and therefore (initially) contributes zero
overall distance in the looptree.

Set p(λ) = λ
α−1
4α−3 e−c

′λ
α−1
4α−3 . To obtain the volume upper bounds, or, more precisely, to

show that P(ν∞(B∞(ρ∞, r)) ≥ rαλ) ≤ p(λ), we therefore use the approach indicated by
(6.1) above. The proof consists of two main steps:

(i) Bounding the progeny of Tvol;

(ii) Bounding each of the terms (Su)u∈Tvol .

Again, these can be broken down into smaller steps. For (i), we first show that
the length of loopspine (or W-loopspine) contained in B∞(ρu, r) is upper bounded by
rλβ3 with probability at least 1− C ′p(λ) (cf [6, Lemma 5.5]). Conditional on this, using

the Poisson property of successive Itô excursions, the number of offspring of L(u)
α

can essentially be stochastically dominated by a Poisson(Kαλ
2β3− 1

α (1−β1−β2)) random
variable, where Kα is just a constant (cf [6, Lemma 5.6]). This is a subcritical offspring
distribution, and by applying the main theorem of [31] we deduce that, with probability
at least 1− C ′p(λ), |Tvol| ≤ λβ1 .

We now discuss a bound for a single term of the form Su, as in point (ii). We use
the fact that the sum of the lifetimes of successive Itô excursions (recall that these
represent the volumes of successive sublooptrees arranged around the loopspine) can be
represented as an α−1-stable subordinator with jump sizes corresponding to the original
excursion lengths (e.g. see [33, proof of Proposition 5.6]), which we denote by Sub. In
particular, since (as above) the relevant length of loopspine (or W-loopspine) contained
in B∞(ρu, r) is upper bounded by rλβ3 , we can upper bound Su by Subrλβ3 . Moreover, all
jumps greater than rλ1−β1−β2 have been removed from S as a result of the construction
of Tvol, which allows us to apply Lemma 2.8 to deduce that, with probability at least
1− C ′p(λ), for all u ∈ Tvol:

Su ≤ Subrλβ3 ≤ rαλ1−β1 .

By taking a union bound and summing up, we therefore deduce that, with probability at
least 1− C ′p(λ),

ν∞(B∞(ρ∞, r)) ≤
∑
u∈Tvol

Su ≤ |Tvol| sup
u∈Tvol

Su ≤ λβ1rαλ1−β1 = rαλ.

The method to obtain the infimal volume upper bound is simpler and does not require
reiterating around subsequent levels. We will say that a radius r ∈ (0,∞) is “short” if
the length of loopspine contained within B∞(ρ∞, r) is at most 3r. By scaling invariance
of L∞α , the probability that r is short is a (non-zero) constant that is independent of r (or
more usefully for an application of a generalised version of the second Borel-Cantelli
Lemma, P(r short | 2r not short) and P

(
r short

∣∣ 1
2r not short

)
are independent of r).

On the event that r is short, and using the same logic as above, we can bound the
sum of the volumes of all the incident sublooptrees by Sub3r, which is independent of
the loopspine structure. Therefore, by repeating this argument along a subsequence
rn ↓ 0 or rn ↑ ∞ of short radii, the infimal volumes will be upper bounded by the infimal
behaviour of Sub, i.e. with fluctuations at least of order (log log r−1)−(α−1) as r ↓ 0, and
(log log r)−(α−1) as r ↑ ∞.
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6.3 Applications to volume limits in compact stable looptrees

As a result of Theorem 1.1, we are able to prove various volume convergence results
that are exploited in [6] to study Brownian motion on compact stable looptrees. The main
applicable result is the following theorem. Here we let ν denote the intrinsic measure
on a compact stable looptree Lα as defined in Section 3.3, conditioned so that ν(Lα) = 1.
We also let B(ρ, r) denote the open ball of radius r around the root in Lα, and B̄(ρ, r) its
closure.

Theorem 6.6. There exists a random variable (Vt)t≥0 : Ω→ D([0,∞), [0,∞)) such that
the finite dimensional distributions of the process(

r−αν(B̄(ρ, rt))
)
t≥0

converge to those of
(
Vt
)
t≥0

as r ↓ 0, and Vt denotes the volume of a closed ball of radius

t around the root in L∞α . Moreover, for any p ∈ [1,∞), setting V := V1 we have that
E[V p] <∞, and that

r−αpE
[
ν(B̄(ρ, r))p

]
→E[V p]

as r ↓ 0.

Remark 6.7. We have taken closed balls rather than open ones simply so that V is
càdlàg. We conjecture that the volume processes are in fact continuous, and that the
convergence of the theorem can be extended to hold uniformly on compacts. However,
due to the complex nature of looptrees, this is not straightforward to prove. In particular
it is difficult to replicate the argument used to prove a similar result for stable trees,
since looptrees do not have such a straightforward regeneration structure around the
boundary of a ball of radius r.

Proof. By the separability of Proposition 2.1, we can work on a probability space on which
L`α → L∞α almost surely as `→∞. By standard results on metric space convergence, it
follows that almost surely on this space, ν`(B`(ρ`, t))→ ν∞(B∞(ρ∞, t)) for all t such that
ν∞(∂B∞(ρ∞, t)) = 0 (e.g. see [34, Lemma 2.11]), and therefore for Lebesgue almost
every t. Moreover, by scaling invariance of L∞α , there are no “special” values of t, so we
deduce that for any fixed sequence 0 < t0 < t1 < . . . < tn <∞, the convergence almost
surely holds simultaneously for all of the points ti, 0 ≤ i ≤ n.

Since (ν`(B`(ρ, t)))t≥0
(d)
= (`νB(ρ, `

−1
α t))t≥0, by writing ` = r−α we therefore deduce

the result as stated. In particular, it follows that ν`(B`(ρ`, 1))
(d)→ V as `→∞.

We claim that V ∈ (0,∞) almost surely, with all moments finite. This follows immedi-
ately from the exponential upper tails of Proposition 6.3, namely that

P(V ≥ λ) ≤ Cλ
α−1
4α−3 e−cλ

α−1
4α−3

. (6.3)

We now prove that the moments of r−αν1(B(ρ1, r)) converge to those of V . To see
this, we observe that the arguments used to prove (6.3) and the compact analogue in
[6, Proposition 5.4] can be applied uniformly along the sequence L`α to give constants
c, C ∈ (0,∞) such that

P`
(
ν`(B`(ρ, r)) ≥ rαλ

)
≤ Cλ

α−1
4α−3 e−cλ

α−1
4α−3

for all ` ≥ 1. It follows that the sequence (r−αp(ν`(B`(ρ, r)))p)`≥1 is uniformly integrable
for all p ≥ 1 and so setting Cp = E[V p] we deduce that

r−αpE[(ν1(B(ρ1, r)))
p]→ Cp

for all p ≥ 1.
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6.4 Resistance bounds

We now turn to proving the resistance bounds. We use a version of the iterative
procedure described above, which we again index by a subcritical branching process, to
count the number of sublooptrees intersecting the boundary of a ball of radius r. More
formally, we will define another subtree Tres ⊂ U , but this time selecting sublooptrees of
large height, rather than of large volume, to form the offspring at each step. Since this
argument is not given in [6], we write it more carefully.

We first recall from Section 3.3 that the L-Height of a compact looptree L̃α is given
by supu∈L̃α dL̃α(ρ, u), and the Lm-Height is given by sup X̃exc. The Lm-Height is P-almost

surely realised by a unique point in L̃α, which we denote um. We refer to (the closure
of) the set of loops coded by the ancestors of um as the m-loopspine. As described in
Section 3.3.2, the Poisson measure describing the loop lengths along the m-loopspine
will have the form

Cα1{[0,1]}(u)1{[0,Hm]}(t)l
−αpen(l,Hm, t)du dt dl, (6.4)

where Cα = α(α−1)
Γ(2−α) , as before, Hm = Tm-Height(L̃α), and pen is a penalty term that is

bounded above and below by a constant on the first half of the m-spine. Moreover, the
sublooptrees grafted to the m-loopspine will be coded by a thinned version of the Itô
excursion measure.

We now define some terminology, in keeping with that used in [6, Section 5.2]
wherever possible.

Firstly, given R > 0, we say that a loop on the m-loopspine is “good” if it has length
at least 4R, and if the associated uniform random variable (that dictates the ratio of
the two segments it splits into on either side of the loopspine) is in the interval [ 1

4 ,
3
4 ].

We say the a loop is “goodish” if it just has length at least 4R. Additionally, for any
R > 0, and any (unconditioned) compact looptree L̃α (respectively any infinite looptree
L∞α ), we let ImR be the closure in L̃α (respectively L∞α ) of the union of all the loops
in the m-loopspine (respectively infinite loopspine) that intersect B̃(ρ̃, R) (respectively
B∞(ρ∞, R)). Additionally, we let |ImR | be the sum of the lengths of these loops.

We start by giving a technical lemma, the proof of which may be skipped on a first
reading.

Lemma 6.8 (Cf. [6, Lemma 5.5]). For any h > 0, λ > 1, R < λ−1− h
α−1 ,

P

(
|ImR | ≥ 3Rλ

∣∣∣∣ L-Height(L̃α) ≥ 1

2

)
≤ Ce−cλ

h∧1
.

Proof. We use a similar strategy to [6, Lemma 5.5]. Indeed, we first condition on
existence of a good loop in the m-loopspine. We then select the closest good loop to ρ.
Given such a loop, the number of goodish loops between ρ and the first good loop is
stochastically dominated by N − 1, where N is a Geometric( 1

2 ) random variable. |ImR | can
then be upper bounded by the random variable

2RN +

N∑
i=1

Q(i), (6.5)

where Q(i) denotes the sum of the lengths of all the smaller loops on the m-loopspine that
are between the (i− 1)th and ith goodish loops, and the term 2RN comes from selecting
a segment of length at most R in each direction round each of the goodish loops. Each
Q(i) can be independently approximated by an (α− 1)-stable subordinator run up until
an exponential time and conditioned not to have any jumps greater than 4R.
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Since we model the loop lengths by a subordinator indexed by the m-spine of the
underlying tree, and since the Lm-Height is at least the L-Height, we upper bound the
probability in question by

P

(
|ImR | ≥ 3Rλ, Tm-Height(L̃α) ≥ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
+ P

(
|ImR | ≥ 3Rλ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
.

(6.6)

The first of these terms can be upper bounded by Ce−cλ using exactly the same arguments
as in [6, Lemma 5.5], the point being that if the m-spine in the underlying tree is long
enough, then there is plenty of time for a good loop to occur in the corresponding
subordinator (though note that to do this formally, we have to deal with the penalty term
of (6.4), but this is minor and can be treated as in [6, Lemma 5.5]). To summarise more
concretely:

• The number of good loops on the m-loopspine is stochastically dominated by a
Poisson(cλh) random variable, so P(@ a good loop ) ≤ e−cλh .

• N is Geometric( 1
2 ), so P(N ≥ λ) ≤ Ce−cλ.

• P
(∑N

i=1Q
(i) ≥ Rλ

)
≤ Ce−cλ. Indeed, by (6.4), we can (independently for each

i) stochastically dominate each term Q(i) by an (α− 1)-stable subordinator Sub(i)

with all jumps greater than 4R removed, run up until a time ER ∼ exp(cR
−1
α−1 ). We

also let Sub(i)′ denote a rescaled version of Sub(i), instead with all jumps greater
than 4 removed, and let E ∼ exp(c). By rescaling Sub(i) and choosing θ so that

E
[
eθSub(i)′

]
< 3

2 (which we can do by Lemma 2.8), we then have that

P

(
N∑
i=1

Q(i) ≥ Rλ

)
=

∞∑
n=1

P

(
N∑
i=1

Sub(i)′

E ≥ λ

∣∣∣∣∣ N = n

)
P(N = n)

≤
∞∑
n=1

(3

2

)n
e−θλ

(1

2

)n
= Cθe

−θλ.

(6.7)

This deals with the first term in (6.6). If the m-spine is prohibitively short, then this
logic cannot be applied, however we can remedy this by noting that if the Tm-Height is
unusually small in relation to the Lm-Height, then this essentially forces the loop sizes
to be large compared to what we would normally expect.

More concretely, in this case, let M ′ be the total number of goodish loops on the
m-loopspine (i.e. the total number of loops of length at least 4R). Using the subordinator
representation of the loop lengths, we then have that

P

(
M ′ ≤ λ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
≤ cP

(
M ′ ≤ λ, Lm-Height(L̃α) ≥ 1

2
, Tm-Height(L̃α) ≤ Rα−1λh

)
≤ cP

(
SubRα−1λh ≥

1

2
− 4Rλ

∣∣∣∣ no jumps of size at least 4R

)
,

where the third line follows by removing any jumps corresponding to goodish loops from
Sub, and Sub is a subordinator with (time-dependent) jump measure

Cα1{[0,1]}(u)1{[0,Hm]}(t)l
−αpen(l,Hm, t)du dt dl,
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as in (6.4). Note that Sub is almost an (α − 1)-stable subordinator, but with the ex-
tra penalty against larger jumps. We therefore let Subα−1 denote an (α − 1)-stable
subordinator. It follows that for any k > 0, and any t, x, y > 0:

P(Subt ≥ x | no jumps of size at least y)

≤ P
(
Subα−1

t ≥ x
∣∣ no jumps of size at least y

)
= P

(
Subα−1

kα−1t ≥ kx
∣∣ no jumps of size at least ky

)
.

Taking k = R−1λ
−h
α−1 , we therefore see that

P

(
M ′ ≤ λ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
≤ P

(
Subα−1

1 ≥ 1

2
R−1λ

−h
α−1 − λ1− h

α−1

∣∣∣∣ no jumps at least 4λ−
h
α−1

)
≤ E

[
eθSubα−1

1

]
e−θλ

for sufficiently small θ > 0, where the existence of the exponential moment in the last
line follows from Remark 2.9, and we recall that R < λ−1− h

α−1 by assumption.
We can then proceed exactly as in the second and third bullet points above to deduce

that the second term in (6.6) is upper bounded by Ce−cλ. This completes the proof.

Proof of Proposition 6.4. By scaling invariance of L∞α , it is sufficient to prove the result
for r = 1.

Take R = λ−2t, for some positive constant t that will be specified later. The aim
will be to bound the cardinality of a set A ⊂ L∞α such that any path from B∞(ρ∞, R) to
B∞(ρ∞, 1)c must pass through at least one point in A. Do to this, we will define a tree
Tres ⊂ U , obtained similarly to Tvol in the box above, but with two important differences:

• Rather than decomposing along the W-loopspine in the second and subsequent
steps, we decompose along the m-loopspine.

• Rather than reiterating around sublooptrees of larger mass, we reiterate around
those with large L-Height: specifically, those that are grafted to the m-loopspine
within distance R of the root, and with L-Height at least 1

2 . We decompose along
the m-loopspine to um rather than the loopspine to the point achieving the L-Height
purely because it is more convenient to write down an expression of the form (6.4)
in this case. However, an expression of the form of (6.4) should also be true in the
case of this loopspine.

We will show that, with sufficiently high probability, the total progeny of Tres is at
most 1

2λ
t, and that, on this event, we can pick a set A of cardinality at most λ2t. In this

case we are done: since A is a cutset, we then have that

R∞eff(ρ
∞, B∞(ρ∞, 1)c) ≥ R∞eff(ρ

∞, A), (6.8)

and due to the underlying tree structure this latter quantity is lower bounded by the
resistance of 2|A| edges connected in parallel, each of resistance λ−2t. More precisely:

R∞eff(ρ
∞, A) ≥ (|A|λ2t)−1 ≥ 1

2
λ−4t.

We will then optimise over t to obtain the result.
To this end, we first turn to bounding |Tres|. As commented under (6.4), the sequence

of sublooptrees incident to the m-loopspine at a point in ImR can be stochastically
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dominated by those coded by the classical (unthinned) Itô excursion measure along this
segment, so the offspring distribution of a particular u ∈ Tres will be Poisson(C̃|Im,uR |),
where C̃ = N(L-Height ≥ 1

2 ), and we have added an extra superscript u to denote the
dependence on u. By applying Lemma 6.8 with h = (α− 1)(2t− 1), it then follows exactly
as in [6, Lemma 5.7] that

P
(
|Tres| ≥ λt

)
≤ λtP

(
|ImR | ≥ Rλt

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
+ P

(
|T̂ | ≥ 1

2
λt
)

≤ CλtCe−cλ
t(h∧1)

+ Ce−cλ
t

,

where T̂ is a Galton-Watson tree with Poisson(C̃λ−t) offspring distribution.
Assuming now that |Tres| < 1

2λ
t, we claim that we can pick a set A of cardinality at

most λ2t. In fact, rather than just assuming that |Tres| < 1
2λ

t, we can assume that all of
the events we conditioned on in order to construct the event {|Tres| < 1

2λ
t} do indeed

occur. In particular, we can assume that:

(i) For each u ∈ Tres, letting Nu be the number of goodish loops on the m-loopspine
between ρu and the first good loop, we have that Nu < λt.

(ii) For each u ∈ Tres, letting Q
(i)
u denote the sum of the length of the shorter loops

between successive goodish loops on the m-loopspine,

Nu∑
i=1

Q(i)
u < Rλt = λ−t.

(iii) |Tres| < 1
2λ

t.

Assuming this, we now describe how we select the set A. This is illustrated in Figure
8 below which represents the m-loopspine of some u ∈ Tres. In particular, on this m-
loopspine, we can pick two points on each of the goodish loops, and two points on the
first good loop, to be in A. Moreover, these points can be chosen so that they are within
distance R + λ−t of the “base point” of the loop (see Figure 8). If one of the goodish
loops violates the condition that the length of its shorter segment is less than R, we can
instead treat it as the first good loop.

From the assumptions above, we deduce the following:

(i)′ For all u ∈ Tres, the number of points of A contained in L(u)
α is at most 2Nu which

by (i) above is in turn at most 2λt.

(ii)′ |A| ≤ |Tres|2λt = λ2t.

(iii)′ Points in A that are selected as points in the looptree corresponding to u are within
distance |ImR |+ λ−t of ρu, i.e. distance 2λ−t of ρu.

(iv)′ All points in A are within distance |Tres|λ−t + λ−t of ρ∞, which is at most 1
2 by (iii)

above.

(v)′ Therefore, any sublooptree grafted to the m-loopspine of L(u)
α for some u ∈ Tres

that has L-Height less than 1
2 , will not intersect B(ρ, 1)c. In other words, A is really

a cutset.

From the probabilistic bounds above, and since we set h = (α−1)(2t−1), we therefore
deduce that

P

(
R∞eff(ρ

∞, B∞(ρ∞, 1)c) ≤ 1

2
λ−4t

)
≤ CλtCe−cλ

t(h∧1)
+e−cλ

t

≤ CλtCe−cλ
t(2t−1)(α−1)

+Ce−cλ
t

.
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Figure 8: How to select A. The red segment contains the portion of B(ρ∞, R) intersecting
the m-loopspine.

In particular, choosing t > α
2(α−1) , we obtain

P

(
R∞eff(ρ

∞, B∞(ρ∞, 1)c) ≤ 1

2
λ−4t

)
≤ Ce−cλ

t

,

or equivalently,

P
(
R∞eff(ρ

∞, B∞(ρ∞, 1)c) ≤ λ−1
)
≤ Ce−cλ

1
4 .

7 Random walk limits

7.1 Brownian motion and spectral dimension of L∞α
As in the case of compact looptrees, the looptree convergence results can be used to

give a collection of limit results for random walks and Brownian motion on sequences of
looptrees. Before we do this, we have to show that R∞ is in fact a resistance metric, and
that the resistance form associated with the metric space (L∞α , R∞) is regular, which
implies that it is also a regular Dirichlet form on the space L2(L∞α , ν) and so is naturally
associated with a stochastic process. This is done in the following two propositions.

Proposition 7.1. P-almost surely, R∞ is a resistance metric in the sense of Definition
2.2.

Proof. This follows from [6, Proposition 4.4], in which we prove the same result for
compact stable looptrees. In particular, any finite set of points V in L∞α is contained in
B(ρ∞, r) for some r > 0. Taking such an r, we then define tg(r) and td(r) exactly as we
did in the proof of Theorem 1.1; that is, we set

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

As in previous proofs, it then follows thatB(ρ∞, r) ⊂ p∞([−tg(r), td(r)]), and p∞(−tg(r)) =

p∞(td(r)). Moreover, p∞([−tg(r), td(r)]) codes a compact stable looptree, which, in keep-
ing with earlier notation, we denote by Lα(r). We endow it with a metric and a measure
by restricting R∞ and ν∞ to Lα(r).

It then follows exactly as in [6, Proposition 4.4] that R∞ restricted to Lα(r) is a
resistance metric on Lα(r), and that we can therefore construct a weighted network
with vertex set V with matching effective resistance. The same network will therefore
work for L∞α .
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Proposition 7.2. P-almost surely, the resistance form associated with the metric space
(L∞α , R∞) is regular.

Proof. We let (E∞,F∞) denote the resistance form on L∞α associated with the resistance
metric R∞ as in (2.2). According to Definition 2.3, we need to show that for any
f ∈ C0(L∞α ) and any ε > 0, we can find g′ ∈ F∞ ∩ C0(L∞α ) such that ||f − g′||∞ ≤ ε. The
key point is that by cutting off the infinite loopspine of L∞α at an appropriate cutpoint,
any such f is also a compactly supported function on a compact stable looptree, and
therefore approximable on this compact looptree, since all resistance forms on compact
spaces are regular. Formally, we proceed as follows.

First, note that since f is compactly supported, then its support must be contained in
B(ρ∞, r) for some r > 0. Taking such an r, we then define tg(r) and td(r) exactly as we
did in the proof of Theorem 1.1; that is, we set

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

As in previous proofs, it then follows thatB(ρ∞, r) ⊂ p∞([−tg(r), td(r)]), and p∞(−tg(r)) =

p∞(td(r)). We denote this projected point by vr. Moreover, p∞([−tg(r), td(r)]) codes a
compact stable looptree, which, in keeping with earlier notation, we denote by Lα(r).
We endow it with a metric and a measure by restricting R∞ and ν∞ to Lα(r), and denote
the associated resistance form by (Er,Fr).

The key point is the following: by [43, Theorem 8.4], and the one-to-one corre-
spondence given by (2.2) and its continuum extension on compact spaces, (Er,Fr) is
obtained as the trace of (E∞,F∞) on Lα(r), and is such that for any f ∈ Fr, Er(f, f) =

E∞(h(f), h(f)), where h(f) is the unique harmonic extension of f to L∞α .
Now take f ∈ F∞. Note that, necessarily, f(vr) = 0, since f is continuous. Moreover,

vr is a point on the infinite loopspine that cuts ρ∞ off from∞. Arbitrarily, we now choose
a new point v′r on the loopspine, coded by a jump point of X∞, that also separates ρ∞

from ∞, but such that R∞(ρ∞, v′r) > R∞(ρ∞, vr). It follows that v′r is coded by jump
point of X∞ at a time that we denote by −tg,2(r), where tg,2(r) > tg(r) and −tg,2(r) � 0.
For any s with −tg,2(r) � s ≺ −tg(r), set as = δs(x

∞
s,0), and bs = ∆s − δs(x∞s,0), so that as

gives the length of the “shorter” segment of the corresponding loop in the loopspine,
and bs gives the length of the “longer” segment (see Figure 9). Set

dmin =
∑

−tg,2(r)�s≺−tg(r)

as, dmax =
∑

−tg,2(r)�s≺−tg(r)

bs.

These are defined so that dmin gives the looptree distance between vr and v′r, and dmax

gives the “longer distance” between them, which is the length of the path between them
that traverses the longer side of all the loops in the loopspine that lie between vr and v′r
(see Figure 9).

Additionally, let td,2(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg,2(r)−
}. Then p∞([−tg,2(r), td,2(r)])

codes another compact stable looptree which we denote by Lα(r)′, satisfying Lα(r) ⊂
Lα(r)′ ⊂ L∞α .

Since Lα(r) is compact, it follows that (Er,Fr) is regular, so there exists g ∈ Fr ∩
C0(Lα(r)) with ||f |Lα(r) − g||∞,Lα(r) ≤ ε. We therefore define a function g′ ∈ C0(L∞α )

by setting g′ = g on Lα(r), g′ = 0 on L∞α \ Lα(r)′, and extending harmonically on
Lα(r)′ \ Lα(r).

Since g approximates fLα(r) in the supremum norm, it follows that |g(vr)| ≤ ε,
and moreover it then follows by the maximum principle for harmonic functions that
||g′Lα(r)′\Lα(r)||∞ ≤ ε. Consequently, ||f − g′||∞ ≤ ε. It therefore just remains to show
that E∞(g′, g′) <∞.
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ρ
1

vr
v
0

r

Lα(r)

Lα(r)
0

bs

as

to 1

Figure 9: Illustration of how we cut the infinite loopspine.

Let (E ′r,F ′r) denote the restriction of (E∞,F∞) to Lα(r)′. Since the spaces
Lα(r),Lα(r)′ \ Lα(r) and L∞α \ Lα(r)′ are disjoint, and g′ is the harmonic extension
of g′|Lα(r)′ to L∞α , it follows by bilinearity and from consistency properties of resistance
forms and their traces given in [43, Section 8] that

E∞(g′, g′) = E ′r(g′|Lα(r)′ , g
′|Lα(r)′). (7.1)

However, since Lα(r)′ is simply a compact looptree, this is automatically finite.

As a result, we deduce that the resistance metric space is naturally associated with a
Hunt process on (L∞α , R∞), which we call Brownian motion on L∞α and denote by B∞.

7.2 Quenched results

We can apply Theorem 2.4 to the results of Theorems 1.1 and 1.2 to deduce conver-
gence results for stochastic processes on the corresponding spaces. The only additional
detail in the proofs of these results is that we have to check that the non-explosion
condition at (2.3) is satisfied, i.e. that

lim
r→∞

lim inf
`→∞

R`(ρ`, B`(ρ`, r)c) =∞

almost surely, where R` here denotes the resistance metric on L`α.

7.2.1 Local limits

The local limit theorem of Theorem 1.1 immediately allows us to apply Theorem 2.4 to
deduce that Brownian motion on L`α converges in distribution to Brownian motion on
L∞α as `→∞ on compact time intervals. Indeed, it follows from Theorem 2.1 and the
Skorohod Representation Theorem that there exists a probability space on which the
convergence on Theorem 1.1 holds almost surely. Moreover, the explosion condition is
satisfied as an immediate consequence of Proposition 6.4. In particular, the arguments
used to prove Proposition 6.4 are also valid for compact stable looptrees, so we deduce
that the resistance bounds of Proposition 6.4 almost surely hold along the sequence
(L`α)`∈N.

Theorem 1.3 then follows by a direct application of Theorem 2.4.
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7.2.2 Scaling limits

We can also deduce similar results from Theorems 1.4, 5.4 and 5.5. In this case, the
non-explosion condition is satisfied as a result of [15, Lemma 3.5], which says that for
Loop’(T∞α ), there exist q, C ∈ (0,∞) such that

P
(
Reff(ρ,B(ρ, r)c) ≤ rλ−1

)
≤ Cλ−q. (7.2)

In light of Proposition 6.4, we conjecture that there should in actual fact be exponential
tail decay, but polynomial decay is sufficient for our purposes here. Indeed, to verify
(2.3), we need to show that

lim
r→∞

lim inf
n→∞

n
−1
α Reff(ρ,B(ρ, rn

1
α )c) =∞

P-almost surely. This follows directly from applying a Borel-Cantelli argument along a
suitable subsequence using the probabilistic bound (7.2). Moreover, the same arguments
apply for Loop(T∞α ) since Reff(ρ,Br(Loop(T∞α ))c) ≥ Reff(ρ,Br−1(Loop’(T∞α ))c).

Similarly, the result also holds for the two-type looptree Loop2(T∞,2α ),
since Reff(ρ,Br(Loop(T∞α ))c) ≥ Reff(ρ,Br−Height(Tree(Loop’(T∞α )r))(Loop’(T∞α ))c), and
r−1Height(Tree(Loop’(T∞α )r))→ 0 in probability, with exponential tail decay (as in Point
2 of the proof of Theorem 5.5), allowing further Borel-Cantelli arguments.

In all the different versions of infinite looptrees that we have considered, the Gromov-
Hausdorff-Prohorov convergence holds with the uniform measure on vertices of the
looptree, and the associated stochastic process is therefore a variable speed random
walk.

In the case of Loop(T∞α ), all vertices have degree 4, so in this case the stochastic
process is actually a constant speed random walk, with exp(4) waiting times at each
vertex. However, by applying Kolmogorov’s Maximal Inequality to the time index of this
stochastic process (as in the proof of [6, Theorem 1.1]) we can show that the waiting
times average out sufficiently well over time so the scaling limit result will also hold for
a simple random walk on Loop(T∞α ) (although sped up deterministically by a factor of 4).

Theorem 1.4 therefore follows by an immediate application of Theorem 2.4 to Propo-
sition 5.3.

In the case of Loop’(T∞α ), all internal vertices have degree 4, and all leaf vertices
have degree 2. This corresponds to the fact the the only significant difference between
Loop(T∞α ) and Loop’(T∞α ) is that in Loop’(T∞α ) the loops corresponding to leaves are
missing, and has the effect that (on average) the random walk waits twice as long at leaf
vertices compared to internal vertices. This reflects the fact that the random walks on
Loop(T∞α ) and Loop’(T∞α ) can (almost, technically only after adding one extra vertex to
the loop containing the root in Loop(T∞α )) be coupled so that they move identically at
internal vertices, but so that a random walk on Loop’(T∞α ) remains in its present position
whenever the random walk on Loop(T∞α ) traverses a loop corresponding to a leaf vertex
(note this can be traversed in either direction). It therefore makes sense that we should
be taking a scaling limit of the variable speed random walk on Loop’(T∞α ), rather than
the constant speed one.

We similarly have to take a variable speed random walk on Loop2(T∞,2α ), although
there is not such a simple coupling in this case. In the next theorem, we let L∞,1α =

Loop’(T∞α ), L∞,2α = Loop2(T∞,2α ), Y var,i denote a variable speed random walk on L∞,iα ,
and νi denote the measure giving mass 1 to each vertex. The non-explosion condition
is again satisfied by the same arguments as in Section 7.2.1 above. We then have the
following analogues of Theorem 1.4.

Theorem 7.3. Take i ∈ {1, 2}. There exists a probability space (Ω′,F ′,P′) on which
we can almost surely define a common metric space (M,RM ) in which the spaces
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(L∞,iα , a−1
n d̃, n−1ν′, ρ) and (L∞α , d̃∞, ν∞, ρ∞) can all be isometrically embedded and such

that

(L∞,iα , a−1
n d̃, n−1νi, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology, and the convergence specifically
holds on the metric space (M,RM ). Letting Y var,i and B∞ be as above, we have that

(a−1
n Y var,i

bnantc)t≥0
(d)→ (B∞t )t≥0

on the space D(R+,M ) as n→∞.

Remark 7.4. We could also prove other convergence results, for example by taking
increasing sequences of increasingly rescaled discrete looptrees to approximate L∞α , in
some sense combining Theorems 1.1 and 3.3, and deduce similar convergence results
for random walks, exactly as we did in the cases above. This corresponds to the diagonal
line in Figure 3.

7.3 Annealed results

We can also prove similar results in the annealed setting by embedding into the
Urysohn space, where we recall that if (F,R, µ, ρ, ϕ) is a random element of F with law
P such that ϕ : F → U is a (possibly random) isometric embedding, and (Yt)t≥0 is a
stochastic process on F , we define its annealed law by

P̃ϕ(ρ)(ϕ(Yt)t≥0 ∈ ·) =

∫
Pϕ(ρ)(ϕ(Yt)t≥0 ∈ ·) dP,

as introduced in Section 2.2.
Again we will restrict to the subsequence of integral ` in Theorem 7.5 below, but the

result holds along any countable subsequence diverging to infinity.

Theorem 7.5. Let (L`α, d̃`, ν`, ρ`)`≥1 be as in Theorem 1.1. Then there exist (random)
embeddings ϕ` : (L`α, d̃`, ν`, ρ`)→ U,ϕ : (L∞α , d̃∞, ν∞, ρ∞)→ U such that

P̃`ϕ`(ρ`)
(
ϕ`(B

`
t )t≥0 ∈ ·

)
→ P̃ϕ(ρ)((B

∞
t )t≥0 ∈ ·)

weakly as probability measures on the space D(R+, U) endowed with the Skorohod-J1

topology as n→∞.

Proof. The proof of Theorem 1.1 implies that there exists a probability space on which
(L`α, d̃`, ν`, ρ`)→ (L∞α , d̃∞, ν∞, ρ∞) almost surely in the Gromov-Hausdorff vague topology.
In particular, there exists a metric spaceM = L∞α tL1

αtL2
αt. . . defined on this probability

space such that L`α → L∞α almost surely. Moreover, by properties of the Urysohn space
discussed in Section 2.2, there exists an isometry ψ : M → U such that ψ(ρ∞) = u0.

For each ` ∈ N∪ {∞}, let ϕ` be the canonical isometry embedding L`α into M . It then
follows that ψ` := ψ ◦ ϕ` is an isometry from L`α to U and moreover that almost surely,
ψ`(L`α) → ψ∞(L∞α ) Gromov-Hausdorff vaguely as ` → ∞. Viewing (ϕ`)`≥1 and ψ∞ as
spatial embeddings, this therefore automatically implies that the spaces converge in
the metric introduced at (2.4). Since the topology induced by this metric is a particular
instance of the spatial Gromov-Hausdorff topology used in [18, Section 7], we are in
the right setting to apply Theorem 2.5. Indeed, the non-explosion condition (2.5) is
satisfied as a direct consequence of Proposition 6.4, which also uniformly holds along the
sequence (L`α)l≥1. The theorem then follows by a direct application of Theorem 2.5.

We can also prove a similar results for the spaces Loop(T∞α ), L1
α and L2

α. We omit the
proofs since they are essentially identical to that of Theorem 7.5 above.
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Theorem 7.6. Let (Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ) be as in Theorem 1.2. Then there exist

(random) embeddings ϕn : (Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ)→ U,ϕ : (L∞α , d̃∞, ν∞, ρ∞)→ U

such that

P̃nϕn(ρn)

(
ϕn
(
a−1
n Y

(n)
b4nantc

)
t≥0
∈ ·
)
→ P̃ϕ(ρ)((B

∞
t )t≥0 ∈ ·)

weakly as probability measures on the space D(R+, U) endowed with the Skorohod-J1

topology as n→∞.

Theorem 7.7. Take i ∈ {1, 2}, and let (L∞,iα , a−1
n d̃, n−1νi, ρ) be as in Theorem 7.3. Then

there exist (random) embeddings ϕn : (L∞,iα , a−1
n d̃, n−1νi, ρ)→ U,ϕ : (L∞α , d̃∞, ν∞, ρ∞)→

U such that

P̃nϕn(ρn)

(
ϕn(a−1

n Y var,i
bnantc)t≥0 ∈ ·

)
→ P̃ϕ(ρ)((B

∞
t )t≥0 ∈ ·)

weakly as probability measures on the space D(R+, U) endowed with the Skorohod-J1

topology as n→∞.

7.4 Heat kernel convergence and spectral dimension

To conclude, we now show how Theorem 1.1 can be applied to give results on the
heat kernel of Brownian motion on compact stable looptrees. First, note that it follows
from the scaling invariance of Proposition 4.1 that the annealed heat kernel for L∞α
satisfies the scaling relation

E[p∞t (ρ, ρ)] = k
α
α+1E[p∞kt(ρ, ρ)] (7.3)

for any k > 0. Similarly, if we let p`t denote the transition density of Brownian motion on
a looptree coded by an excursion of length `, we have that

E
[
p1
t (ρ, ρ)

]
= k

α
α+1E

[
pk

1
α+1

kt (ρ, ρ)

]
.

Setting k = t−1 we see that

t
α
α+1E

[
p1
t (ρ, ρ)

]
=E

[
pt
−1
α+1

1 (ρ, ρ)

]
.

Moreover, since we are in a resistance framework, it follows from [19, Theorem 2 and
Proposition 14] that

t
α
α+1 p1

t (ρ, ρ)
(d)→ p∞1 (ρ, ρ)

as t ↓ 0. To deduce that the corresponding expectations also converge, we just need to
show that E[p∞1 (ρ, ρ)] is finite. However, since the transition density can be bounded by
bounding the volume and resistance growth (by a continuum version of [46, Proposition
1.4], for example), the exponential tail decay of Propositions 6.3 and 6.4 also give
an upper exponential tail decay for the transition density. We therefore deduce that
E[p∞1 (ρ, ρ)] is finite, so we can apply similar arguments to those in the previous section
to deduce that

t
α
α+1E

[
p1
t (ρ, ρ)

]
→ E[p∞1 (ρ, ρ)]

as t→∞. This is stated as [6, Theorem 1.8], where Brownian motion on Lα is studied
more closely.

Similarly, it also follows from [46, Theorem 1.5, Part II] (adapted to the continuum)
that the heat kernel p∞t (ρ, ρ) almost surely experiences at most log-logarithmic fluctua-

tions around a leading term of t
−α
α+1 as t ↑ ∞ and as t ↓ 0, and therefore that the quenched

spectral dimension of Lα is almost surely equal to 2α
α+1 .
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To establish the annealed spectral dimension, we take k = t−1 in (7.3) to deduce that

E[p∞t (ρ, ρ)] = t
−α
α+1E[p∞1 (ρ, ρ)] .

Since E[p∞1 (ρ, ρ)] is finite, this implies that the annealed spectral dimension is also equal
to 2α

α+1 . This concludes the proof of Theorem 1.6.
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