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Abstract

We prove almost sure convergence of the maximum degree in an evolving graph model
combining a growing number of local choices with sublinear preferential attachment.
At each step in the growth of the graph, a new vertex is introduced. Then we draw
a random number of edges from it to existing vertices, chosen independently by
the following rule. For each edge, we consider a sample of the growing size of
vertices chosen with probabilities proportional to a sublinear function of their degrees.
Then the new vertex attaches to the vertex with the highest degree from the sample.
Depending on the growth rate of the sample and the sublinear function, the maximum
degree could be of sublinear order, of linear order, or having almost all edges drawing
to it. The proof uses various stochastic approximation processes and a large deviation
approach.
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1 Introduction

Preferential attachment graphs are used to model different complex networks that
exhibit certain properties, in particular power law degree distribution. The standard
preferential attachment graph, introduced in [BA99] by Barabási and Albert, is con-
structed by following way. We start with some initial graph G0 on n0 vertices v1−n0 , ..., v0.
Then, the graph Gn+1 is built from Gn by adding a new vertex vn+1 and drawing m edges
from it to already existing vertices Y n1 , ..., Y

n
m ∈ {v1−n0 , ..., vn} chosen independently from

each other with probabilities proportion to their degrees, i.e.

P(Y ni = vj) =
degGn vj∑n

k=1−n0
degGn vk

.

For this model, many of it properties have been studied (see, e.g. [Hof16], section 8). In
the present paper we are interested in degree distribution and maximum degree of a
modification of this model. Since the asymptotic degree distribution of a preferential
attachment graph does not depend on the initial graph, for simplification of the formulas
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Sublinear preferential attachment with choice

it is usually suggested that we start with the graph, that consists of a single edge, i.e. G1

consists of vertices v0, v1 and m edges between them.
There are different ways to generalize and modify the standard preferential attach-

ment model. One of them is to use an increasing weight function w(x), so the vertices
are chosen with probability proportional to this function of their degree:

P(Y ni = vj) =
w(degGn vj)∑n

k=1−n0
w(degGn vk)

.

The linear case was studied in [Mór02, Mór05], where Móri proved that for w(x) = x+ c,
c > −1 and m = 1 (m = 1 was considered for simplification) the degree distribution
follows power law with power −(3 + c) and maximum degree is of order n

1
2+c . The case

of a nonlinear weighted function of a form w(x) = xα (with α > 0) was studied in [Ath08].
For the sublinear case (α < 1), the degree distribution has exponential tails and the
maximum degree is of order (lnn)b for some b > 0 and for the superlinear case (α > 1),
the degree distribution is degenerate and the maximum degree is asymptotically n.

The other way to generalize the model is the addition of choice ([KR14, MP15]). In
this case, when a new vertex added to the graph, it first selects a sample of vertices
and then attaches to one of them in accordance with some rule. There were considered
different types of this rule, for example in [MP14, MP15, HJ16, Mal18] authors used rule
based on the degree of the vertices and in [HJY20, GLY19] location-based choice has
been used. In all these models the size of the sample is not growing with the number of
vertices in the graph (in [Mal18] the sample is of random size while in the rest the sample
is of constant size). The effect of the choice (from the sample of d independently chosen
vertices) appears to be somewhat similar to the effect of the nonlinear weight function.
In the case of min choice, as was shown in [MP15], the maximum degree asymptotically
ln lnn/ ln d and for max choice and linear weight function maximum degree could be
made both of sublinear and linear order (depending on parameters d and c, see [Mal18]),
and in the case of meek choice (when one choose vertex with s-th highest degree, see
[HJ16]) linear and logarithmic (but not sublinear) maximal degree could be obtained. In
the present paper, we study a combination of sublinear weight function with the max
choice from the sample of the growing size. We will show that both sublinear and linear
maximum degree is possible in this case. Note that to compensate for the effect of
sublinear weight function we would need the sample of sublinear size.

Let us describe our model. Fix α ∈ (0, 1), γ ∈ (0, 1) and cd > 0. Let us define
dn = bcdnγc (bxc means integer part of x, we will always suggest the integer part when
the variable should be an integer but it equals to noninteger term), n ∈ N. Let us
consider i.i.d. random variables m, {mn}n∈N with values in N , such that Em2 <∞. We
would consider a sequence of random graphs Gn, n ∈ Z+, that builds by the following
inductive rule. We start with the initial graph G1 that consists of two vertices v0 and
v1 and m1 edges between them. Then on n + 1-th step we add a new vertex vn+1 and
draw mn+1 edges from it to vertices Y 1

n , ..., Y
mn+1
n chosen from V (Gn) by the following

rule. For each i ∈ N , 1 ≤ i ≤ mn+1, we independently (given Gn) choose vertices
Xi,1
n , ..., X

i,dn+1
n from V (Gn) with probabilities proportional to their degree in power α:

P(Xi
n = vj) =

(degGn vj)
α∑n

k=0(degGn vk)α
.

Then Y in would be the vertex with the highest degree among Xi,1
n , ..., Xi,dn

n , in case of a
tie we choose vertex in accordance with a fair coin toss.

We would be interested in the number of vertices of fixed degree and the maximum
degree of the graph. Let Nn(k) be the number of vertices of degree k in the graph
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Sublinear preferential attachment with choice

Gn and Mn be the maximum degree of vertices in Gn. Then the total weight Dn of all
vertices in Gn is

Dn :=

n∑
i=0

(
degGn vi

)α
=

∞∑
k=1

Nn(k)kα.

Note that for each n this sun contains only a finite number of nonzero terms. Let Dn(k)

be its k-th partial sum, i.e.

Dn(k) :=

k∑
j=1

Nn(j)jα.

Let us formulate our main results.

Theorem 1.1. Let P(m > c) > 0 for any c > 0 and Em2 <∞. Then

Nk(n)

n
→ P(m = k) a.s.

In particular

D(n)

n
→

∞∑
k=1

kαP(m = k) = Emα a.s. (1.1)

Theorem 1.2. Let P(m = k) ≤ ck−β for some β > 1 + 1−α
γ and constant c > 0. Let

Em2 <∞ (if β > 3 it automatically holds). Then

1. If α+ γ < 1, then M(n)

n
γ

1−α
→ x∗, where x∗ =

(
Em(1−α)cd
γEmα

) 1
1−α a.s.

2. If α+γ = 1, then M(n)
n → ρ∗ a.s., where ρ∗ is a unique positive root of 1−e

cdx
α

Emα − x
Em

3. If α+ γ > 1, then M(n)
n → Em a.s.

Theorem 1.1 shows that degrees of most vertices do not change after their appear-
ance. It happens, as would be proven in section 2, due to the increasing size of the
sample, which results in vertices with a relatively high degree to be present in the sample
with high probability. In other words, the new vertex with high probability connects to
the vertices whose degree exceeds a certain growing level. Theorem 1.2 shows how new
edges could be accumulated among vertices with high degrees. In the case α + γ > 1

almost all edges would be drawn toward a single vertex, whose degree asymptotically
equals to (Em)n, while in the case α + γ < 1 edges would be drawn to vertices with
degrees up to x∗n

γ
1−α . If we consider m to have power-law distribution then such a

combination of max choice with sublinear weighted function would result in vertices
with high degrees to follow different exponent then vertices with relatively small degrees
up to existing of the condensation for α+ γ ≥ 1.

There are two ways to increase the maximum degree of the graph. First, we could
add a new vertex with a degree higher than the degree of already existing vertices.
To prevent that, we put conditions on the tails of mn which would provide that with
high probability mn ≤ M(n) for all large enough n. Second, we could increase the
maximum degree by drawing edges to the vertex with the maximum degree. Given Gn,
the probability to draw an edge to the vertex with a maximum degree equals

pn := P
(
degGn Y

i
n = M(n)

)
=

(
1−

(
1− (M(n))αL(n)

Dn

)dn)
,

where L(n) is the number of vertices of degree M(n). We would prove Theorem 1.2 by
first proving the lower bound for the maximal degree and then using it to prove matching
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upper bound. To do so, we need lower and upper bounds on the evolution of M(n). For
the lower bound, we get

E(M(n+ 1)−M(n)|Fn) ≥ Em

(
1−

(
1− (M(n))α

Dn

)dn)
, (1.2)

where Fn is sigma-algebra that corresponds to Gn.
For the upper bound, we need to count in the impact of mn. Note that due to

conditions on m there are c > 0 and small enough cm ∈
(
0,min{ γ

1−α , 1}
)
, such that

P
(
m > nmin{ γ

1−α ,1}−cm
)
< cn−1−cm .

Hence with high probability mn < nmin{ γ
1−α ,1}−cm for all large enought n. Also,

E
(
m|m < nmin{ γ

1−α ,1}−cm
)

= Em

(
1 +O

(
1

ncm

))(
1 +O

(
1

nmin{ γ
1−α ,1}−cm

))
.

Hence on the event M(n) > nmin{ γ
1−α ,1}−cm (which holds for all large enough n with high

probability due to the lower bound) for small enough δ > 0 we get

E
(
M(n+ 1)−M(n)| Fn,mn < nmin{ γ

1−α ,1}−cm < M(n)
)

≤ Em
(

1 +O

(
1

ncm

))(
1−

(
1− (M(n))αL(n)

Dn

)dn)
.

(1.3)

We will use stochastic approximation techniques to prove almost sure convergence in
the linear case. Note that stochastic approximation is widely used to prove almost sure
convergence for linear order of maximal degree (see, for example, [MP14, HJ16, HJY20]),
while due to required conditions it usually could not be applied to prove sublinear order
of the maximum degree. For the linear case, in contrast with some previous works on
models with choice (in particular, [MP14, Mal18]), due to nonconvexity of the weight
function, we do not use persistent hub argument (see, for example, [Gal16]) and instead
use auxiliary stochastic approximation processes to separately get matching lower and
upper bounds for the maximum degree.

Let us give a short description of the stochastic approximation approach (for more
details see, for example, [Chen03, Pem07]) that we use to prove our results. Process
Z(n) is a stochastic approximation process if it could be written as

Z(n+ 1)− Z(n) = γn (F (Z(n)) + En +Rn)

where γn, En and Rn satisfy the following condition. γn is not random and
∑∞
n=1 γn >∞,∑∞

n=1(γn)2 < ∞, usually one puts γn = 1
n or γn = 1

n+1 . The function F (x) continues
with isolated roots and represents the dependence of the increment of the process from
its current state. Often the process Z(n) belongs to some interval [a, b], and therefore
the function is considered only on this interval as well. In our case we would consider
Z(n) = M(n)

n and hence a = 0. The term En is Fn-measurable where Fn is the natural
filtration of Z(n), E(En|Fn) = 0 and E((En)2|Fn) < c for some fixed constant c. Usually
one put En = 1

γn
(Z(n + 1)− E(Z(n + 1)|Fn)) and therefore the function F (x) could be

found from representation E(Z(n + 1) − Z(n)|Fn) = γn(F (Z(n)) + Rn) where Rn is a
small error term that satisfies

∑∞
n=1 γn|Rn| <∞ almost surely. Note that conditions on

En are the ones that break in the sublinear case due to multiplication on the term 1
γn

that turns to infinity. If necessary conditions are met, the process will almost surely
converge to the zero set of F (x). In our case, the function F (x) would have two roots,
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0 and a positive stable root (x∗ is a stable zero if F (x) changes sign from + to − when
approaching it, an unstable zero if it changes from − to +). So, to prove almost sure
convergence to the positive root, we would need to prove non-convergence to 0.

In the sublinear case, we would use a different approach, including large deviation
estimates. Let us give some outline of this approach. If we consider the degree of certain
vertex or the maximal degree of the graph, on step n its increase could be represented
as the sum of mn conditionally independent Bernoulli random variables. Therefore,
under certain conditions, we could estimate the evolution of the degree by the sum of
independent (given the condition) Bernoulli random variables. Then we could consider
their expectations and use large deviation results to ensure that the process does not
deviate far from its expectation. We would use the following standard large deviations
result on Bernoulli random variables

Lemma 1.3. Let η1, ..., ηn be i.i.d. bernoulli variables with parameter p. Let Sn =
∑n
i=1 ηi.

Then for any δ > 0 there are constants C and c = c(δ) > 0, such that for all n ∈ N, a ∈ N
and any p ∈ (0, 1)

P(|Sn − pn| ≥ δpn) ≤ Ce−cpn.

This is the standard multiplicative Chernoff bound.

Proof approach and organization

In section 2 we prove the strong law of large numbers for the number of vertices of
fixed degree and almost sure converges for the total weight of the graph. We would later
use it to simplify formulas for stochastic approximation argument.

In section 3 we prove Theorem 1.2 in the case α + γ ≥ 1. To do so, we use (1.2) to
get a linear lower bound for the maximum degree. Then, due to the total degree of the
graph being linear, the number of vertices with degrees above linear level is bounded by
a constant and hence a simple argument provides that L(n) = 1 with high probability
and therefore we would get almost sure convergence for the case α+ γ ≥ 1.

In section 4 we provide the proof of Theorem 1.2 for the case α+ γ < 1. We first use
(1.2) to get lower bound for maximum degree of the graph. Then we would use a large
deviation approach towards the possible rate of growth of a fixed vertex to show that
with high probability degrees of all vertices do not grow faster than the given rate.

2 The number of vertices of fixed degree

In this section, we provide proof of Theorem 1.1.

Proof. Note that, since P(m > c) > 0 for any c > 0, the number of vertices with a degree
higher than c with high probability is of order n for any c. Therefore for any k ∈ N there
is a constant Ck > 0, such that Dn −Dn(k) ≥ Ckn with high probability. Since for any
ε > 0 with high probability Dn ≤ (2 + ε)nEm, we get that there is a constant ck ∈ (0, 1),
such that with high probability Dn(k)

Dn
≤ ck. Hence, with high probability

E
(
1{deg Y in = k}|Fn

)
=

 k∑
j=1

Nn(j)jα

Dn

dn

−

k−1∑
j=1

Nn(j)jα

Dn

dn

= exp

{
dn ln

(
Dn(k)

Dn

)}
− exp

{
dn ln

(
Dn(k − 1)

Dn

)}
≤ exp{dn ln(ck)} → 0

as n → ∞. Therefore, almost all vertices with degree k do not have edges drawn into
them, which results in the first statement of the theorem.
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Now let us get the second statement. Note that the sum of degrees of all vertices at
time n is 2

∑n
i=1mi. Hence

Dn −Dn(k) ≤ sup
x1,...,xj , j∈N:

x1+...+xj≤2
∑n
i=1mi, xl≥k,1≤l≤j

j∑
i=1

xαj .

Note that for each b > a > 0 and j ≤ b/a

sup
x1,...,xj ,:

x1+...+xj≤b, xl≥a,1≤l≤j

j∑
i=1

xαj

is a standard concave maximization (convex minimization) problem. By the method of
Lagrange multipliers, it could be easily shown that the maximum could only be achieved
under conditions of the type xi = a, i = 1, ..., l and xi = b−la

j−l , i = l + 1, ..., j for some
0 ≤ l ≤ j. Applying these conditions (and using that b/a ≥ j) we would get for each l

l∑
i=1

aα +

j∑
i=l+1

(
b− la
j − l

)α
= laα + (j − l)

(
b− la
j − l

)α
= aα

(
l + (j − l)

(
b/a− l
j − l

)α)
≤ aα

(
l + (j − l)

(
b/a− l
j − l

))
= aα−1b.

Hence

sup
x1,...,xj :

x1+...+xj≤b, xj≥a

j∑
i=1

xαj ≤ aα−1b.

Applying this estimate with a = k and b = 2
∑n
i=1mi we get that

Dn −Dn(k) ≤ 2kα−1
n∑
i=1

mi.

Therefore (Dn(k) ≤ Dn by definition)

k∑
j=1

Nn(j)

n
jα ≤ Dn

n
≤

k∑
j=1

Nn(j)

n
jα +

2
∑n
i=1mi

n
kα−1.

Due to the strong law of large numbers
∑n
i=1mi
n → Em a.s. as n→∞. Hence, if we take

the limit n→∞ while taking into account that Nn(j)
n → P(m = j) almost surely, we get

that
k∑
j=1

P(m = j)jα ≤ lim
n→∞

Dn

n
≤

k∑
j=1

P(m = j)jα + 2E(m)kα−1

almost surely. Note that we could take the limit since the sum is finite. Then by taking
limit k → ∞, we get that the left and the right side of last equation converges (since
E(m2) <∞) to the same limit, which means that limn→∞

Dn
n exists and

lim
n→∞

Dn

n
=

∞∑
j=1

P(m = j)jα = E(mα) a.s.,

which conclude the proof.
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3 The maximum degree: case α + γ ≥ 1

First, we provide an estimate of the maximum degree from below using stochastic
approximation and formula (1.2). Note that, due to Theorem 1.1, for any ε > 0 probability
of event Aε(n) = {∀l ≥ n : | Dl

lEmα − 1| < ε} turns to 1 as n turns to ∞. Define Bε(n) =

{| Dn
nEmα − 1| < ε}. Fix n0 ∈ N. For all n ≥ n0 we get

1{Bε(n)}E(M(n+ 1)−M(n)|Fn) ≥ 1{Bε(n)}Em

(
1−

(
1− (M(n))α

Dn

)dn)

≥ 1{Bε(n)}
(

1−exp

{
−dn(M(n))α

Dn

})
≥1{Bε(n)}

(
1−exp

{
− cd (M(n)/n)

α

Emα(1+ε)n1−γ−α

})
≥ 1{Bε(n)}

(
1− exp

{
− cd
Emα(1 + ε)

(
M(n)

n

)α})
.

Hence for any n0 ∈ N and ε > 0 exists Fn-measurable Aε(n) = Aε(n, n0) such that
Aε(n0) = M(n0),

E (Aε(n+ 1)−Aε(n)|Fn) := Em

(
1− exp

{
− cd
Emα(1 + ε)

(
Aε(n)

n

)α})
and Aε(n) ≤M(n) on Aε(n0). Consider Bε(n) := Aε(n)/n. Then

E(Bε(n+ 1)−Bε(n)|Fn) =
Em

n+ 1

(
1− exp

{
− cd
Emα(1 + ε)

(Bε(n))
α

}
− Bε(n)

Em

)
.

Note that the function gε(x) = 1 − e−
cdx

α

Emα(1+ε) − x
Em has two roots in [0,Em], 0 and the

stable root ρ∗ε ∈ (0, 1). Also, |n(Bε(n+ 1)−Bε(n))| ≤ mn+1 and hence

E((n(Bε(n+ 1)−Bε(n)))2|Fn) ≤ Em2 <∞.

Let us show non-convergence of Bε(n) to 0. We get that

E

(
Aε(n+1)

Aε(n)

∣∣∣∣Fn)=1 +
Em

n

(
1−exp

{
− cd
Emα(1+ε)

(
Aε(n)
n

)α})
Aε(n)/n

=1 +
Em

n
hε

(
Aε(n)

n

)
,

where hε(x) =
(

1− e−
cdx

α

Emα(1+ε)

)
/x. Since hε(x)→∞ as x→ 0 there are δ > 0 and θ > 0,

such that for x < δ we get (Em)hε(x) > 1 + θ. If Aε(n)/n converges to 0 with positive
probability, then P(∀n ≥ N Aε(n)/n < δ,Aε(n)) > q for some q > 0 and N ≥ n0. Hence
for n ≥ N

1{Bε(n), Aε(n)/n < δ}E(Aε(n+ 1)|Fn)≥
(

1+
1 + θ

n

)
1{Bε(n), Aε(n)/n < δ}EAε(n).

Therefore

1{∀n≥N Aε(n)/n<δ,Aε(n)}Aε(n) ≥ 1{∀n≥N Aε(n)/n<δ,Aε(n)}Aε(N)

n−1∏
k=N

(
1+

1+θ

k

)
.

As the result, we get that on the event {∀n ≥ N Aε(n)/n < δ,Aε(n)}, which has separated
from 0 (by q) probability to occur, Aε(n) grows (in terms of expectations) as n1+θ for
all n ≥ N . But on this event Aε(n) ≤ M(n) and hence EM(n) grows at least as fast
as qn1+θ, which is impossible since there are only Θ(n) edges in the graph. Therefore
Bε(n) → ρ∗ε a.s. as n → ∞. As result, for α + γ ≥ 1 we get that lim inf M(n)

n ≥ ρ∗ε
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on Aε(n0). Hence lim inf M(n)
n ≥ ρ∗ with high probability where ρ∗ is a unique root of

function g(x) = 1− e−
cdx

α

Emα − x
Em in (0, 1).

Moreover, for α+ γ > 1 we get that

E(M(n+ 1)−M(n)|Fn) ≥ Em
(

1− exp

{
− cd (ρ∗)

α

Emα + ε
(1 + o(1))nγ+α−1

})
→ Em

almost surely, and therefore M(n)
n → Em almost surely.

Now let us prove the matching upper bound for the case α+ γ = 1. Note that since
lim infn→∞

M(n)
n ≥ ρ∗ > 0, we get that with high probability L(n) ≤ Em

ρ∗ . Therefore
L(n)(M(n))α

Dn
= O(nα−1) with high probability. Hence from formula (1.3) similar to the

lower bound we would get

E(M(n+ 1)−M(n)|Fn)

Em(1 +O(n−cm))
≤ 1− exp

{
− cdL(n)

Emα − ε

(
M(n)

n

)α
(1 +O(nα−1))

}
≤ 1{L(n) > 1}+ 1{L(n) = 1}

(
1− exp

{
− cd
Emα − ε

(
M(n)

n

)α
(1 +O(nα−1))

})
≤ 1{L(n) > 1}+

(
1− exp

{
− cd
Emα − ε

(
M(n)

n

)α
(1 +O(nα−1))

})
.

Note that the probability to increase the degree of the vertex with a degree higher the
ρ∗n is bound from below by some constant. Also, for two vertices with different degrees
probability to increase degree is higher for the vertex with a higher degree. Therefore
from standard estimates on the probability of the return of random walk to the origin,
we get that for any pair of vertices with degrees higher then ρ∗n the probability that
they have the same degree is at time n is O(n−1/2). Hence P(L(n) > 1) = O(n−1/2) and
therefore

∞∑
n=1

1{L(n) > 1}
n

<∞ a.s.

so the term 1{L(n) > 1} satisfy condition on error term R(n) of stochastic approximation.
Hence by stochastic approximation argument (as in the proof of the lower bound), we
would get that lim supn→∞

M(n)
n ≤ ρ∗−ε on Aε(n), where ρ∗−ε is the root of the function

1− e−
cdx

α

Emα−ε − x
Em in (0,Em), and hence lim supn→∞

M(n)
n ≤ ρ∗.

4 The maximum degree: case α + γ < 1

In this section, we prove Theorem 1.2 in the case α + γ < 1. To do so we would
estimate the process M(n) by sums of independent Bernoulli random variables and use
large deviations (Lemma 1.3).

Let us consider n0 ∈ N, ε > 0 (ε depends on δ, which would be introduced later). Note
that due to condition on m, there are y > 0, such that with high probability (as n0 →∞)
we have mn ≤ n

γ
1−α−y for all n > n0. Moreover, for all n ≥ n0 E(mn|mn ≤ n

γ
1−α−y) =

Em
(
1 +O

(
1
nc

))
for some constant c > 0. Also, due to convergence

∑n
i=1mi
n → Em we

get that for any c1 > 0, c2 > 0 with high probability (as n0 →∞) for all n > n0 and k ∈ N
we have ∣∣∣∣∣

n+k∑
i=n+1

mi − kEm

∣∣∣∣∣ ≤ c1(n+ k) + c2kEm. (4.1)

Also, (Emα)n
1+ε < Dn <

(Emα)n
1−ε for all n ≥ n0 with high probability (as n0 →∞). Let Cn0

be
the event that the above conditions hold. For the rest of this section, we would consider
all random variables on event Cn0

(we would omit 1{Cn0
} in formulas). Since we get
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estimates with accuracy up to 1+ ε term we would omit terms of type (1+O(n−c)), which
could occur from taking integer part or conditional expectation.

Let us estimate pn from below. Recall that dn = cdn
γ . Hence

pn ≥
(

1− exp

{
−dn(M(n))α

Dn

})
≥

(
cd(1− ε)(M(n))α

(Emα)n1−γ
+O

((
(M(n))α

n1−γ

)2
))

≥
(
cd(1− 2ε)(M(n))α

(Emα)n1−γ

)
for large enough (and non-random) n0.

Let us consider δ > 0 and σ > 0. First we prove that for any N there is n > N , such
that M(n) > (1− δ)x∗n

γ
1−α . Note that

1{M(n) ≤ (1− δ)x∗n
γ

1−α }E
(
M(n+ 1)

M(n)

∣∣∣∣Fn) = 1{M(n) ≤ (1− δ)x∗n
γ

1−α }
(

1 +
pnEm

M(n)

)
≥ 1{M(n) ≤ (1− δ)x∗n

γ
1−α }

(
1 +

cd(1− 2ε)Em

(Emα)nEm(1−α)cd
γEmα (1− δ)1−α

)

= 1{M(n) ≤ (1− δ)x∗n
γ

1−α }
(

1 +
γ

1− α
(1− 2ε)

(1− δ)1−α
1

n

)
Hence, if we choose ε > 0 such that (1−2ε)

(1−δ)1−α > 1, on event {M(n) ≤ (1− δ)x∗n
γ

1−α } for

n > N we would get (as in the proof of non-convergence Bε(n) to 0) that M(n) would
grow faster than n

γ
1−α and hence such event holds with probability 0. Therefore, for any

N there is n > N , such that M(n) > (1− δ)x∗n
γ

1−α .

Note that (for large enough n) if M(n) > (1 − δ)x∗n
γ

1−α than M(n + 1) > (1 − δ −
σ)x∗(n+ 1)

γ
1−α . Let us introduce stopping time

πn := inf{t ≥ n :
∣∣∣M(t)− (1− δ − σ)x∗t

γ
1−α

∣∣∣ > σx∗t
γ

1−α }.

Let us estimate probability that M(πn) > (1− δ)x∗(πn)
γ

1−α if at time n process M(n) >

(1− δ − σ)x∗n
γ

1−α . In particular, that would mean that M(t) > (1− δ − 2σ)x∗t
γ

1−α for all
n ≤ t ≤ πn.

To do so, first note that

1{t < πn}pt ≥ 1{t < min{τn, πn}}
(
cd(1− 2ε)((1− δ)x∗)α

(Emα)
t

γ
1−α−1

)
= 1{t < πn}

(
γ(1− 2ε)(1− δ − 2σ)αx∗

(1− α)Em
t

γ
1−α−1

)
.

Let us consider moments ti = (1 + iσ)n. Note that if M(ti) > (1 − δ − σ)x∗t
γ

1−α
i , then

M(t) > (1− δ − 2σ)x∗t
γ

1−α for all t ∈ [ti, ti+1]. For t ∈ [ti, ti+1] on event {t < πn} we get
that

pt ≥
(
γ(1− 2ε)(1− δ − 2σ)αx∗

(1− α)Em
t

γ
1−α−1
i+1

)
≥ p̂i :=

(
γ(1− 2ε)(1− δ − 2σ)αx∗

(1− α)Em
((1 + σ)(1 + iσ))

γ
1−α−1 n

γ
1−α−1

)

ECP 25 (2020), paper 87.
Page 9/12

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP368
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Sublinear preferential attachment with choice

Hence, due to (4.1), on Cn0
∪ {t < πn} difference M(ti+1) −M(ti) could be estimated

from below by the sum of (σEm− c1(1 + σ)− c2σEm)n Bernoulli random variables with
parameter p̂i. Due to lemma 1.3 we get that

P

(
M(ti+1)−M(ti)<(1−σ)σ

(
1− c1(1+σ)

σEm
−c2

)
(1−2ε)(1−δ−2σ)α (1+σ)

γ
1−α−1

× γ

1− α
x∗(1 + iσ)

γ
1−α−1n

γ
1−α , Cn0

∪ {ti+1 < πn}
)
< e−cn

γ
1−α

for some c > 0. Note that since α < 1, for each δ > 0 we could choose small enough
c1, c2, σ, ε > 0, such that

(1− σ)(1− c1(1 + σ)

σEm
− c2)(1− 2ε)(1− δ − 2σ)α (1 + σ)

γ
1−α−1 > 1− δ + σ.

Let us fix such parameters. Let us consider events

Ei :=

{
M(ti+1)−M(ti) < σ(1− δ + σ)

γ

1− α
x∗(1 + iσ)

γ
1−α−1n

γ
1−α

}
.

Then P(Ei, Cn0 ∪ {ti+1 < πn}) < e−cn
γ

1−α . Therefore for any j ∈ N

P(∃1 ≤ i ≤ j : Ei, Cn0 ∪ {tj+1 < πn}) < je−cn
γ

1−α
.

Note that if for all i ≤ j

M(ti+1)−M(ti) ≥ σ(1− δ + σ)
γ

1− α
x∗(1 + iσ)

γ
1−α−1n

γ
1−α

then, if (1 + (j + 1)σ)
γ

1−α − 1 > 1, which holds for large enought j, we get

M(tj+1)−M(n) ≥ σ(1− δ + σ)
γ

1− α
x∗n

γ
1−α

j∑
i=0

(1 + iσ)
γ

1−α−1

≥ (1− δ + σ)x∗n
γ

1−α

(
(1 + (j + 1)σ)

γ
1−α − 1

)
≥ (1− δ)x∗n

γ
1−α

(
(1 + (j + 1)σ)

γ
1−α − 1

)
+ σx∗n

γ
1−α

= (1− δ)x∗(tj+1)
γ

1−α − (1− δ − σ)x∗n
γ

1−α

and hence (under suggestion M(n) > (1− δ − σ)x∗n
γ

1−α )

M(tj+1) ≥ (1− δ)x∗(tj+1)
γ

1−α ,

which imply that tj+1 ≥ πn. Also, in this case M(πn) > (1− δ)x∗(πn)
γ

1−α . Therefore,

P
(
M(πn) < (1− δ − 2σ)x∗(πn)

γ
1−α , Cn0

)
≤ je−cn

γ
1−α

.

Since je−cn
γ

1−α form convergence series this estimate implies the lower bound.
Now, let us prove matching upper bound. We will use arguments similar to the

lower bound. The main difference is that instead of considering the upper bound for the
maximum degree we obtain the upper bound for the degree of the given vertex. Since we
get exponential bound for probability, additional summing over all vertices (that present
at a given time) does not affect the convergence of the series and resulting bound.

Let us consider n0 and for n ≥ n0 estimate from above (on Cn0
) the condition proba-

bility pn(v) to draw an edge to a single vertex. Note that such probability is increasing
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under the condition that there are no vertices with a higher degree in the sample, which
achieved for vertices with the highest degree. For condition probability qn to draw an
edge to a certain vertex with the highest degree we get

qn =
1

Ln

(
1−

(
1− Ln(M(n))α

Dn

)dn)
≤ 1

Ln

Ln(M(n))αdn
Dn

=
(M(n))αdn

Dn
.

Hence for any vertex v we have

pn(v) ≤ (degn(v))αdn
Dn

≤ (1 + ε)
cd(degn(v))α

(Emα)n1−γ
.

Therefore, similar to the lower bound, for any N there is n > N , such that

degn(v) ≤ (1 + δ)x∗n
γ

1−α .

If we once again consider stopping time

ρn(v) := inf
{
t ≥ n :

∣∣∣degt(v)− (1 + δ + σ)x∗k
γ

1−α

∣∣∣ > σx∗t
γ

1−α

}
we would get that

1{t < ρn(v)}pt(v) ≤ 1{t < ρn(v)}
(
γ(1 + ε)(1 + δ + 2σ)αx∗

(1− α)Em
t

γ
1−α−1

)
.

On Cn0 ∪ {t < ρn(n)} the difference degti+1
(v)− degti(v) could be estimated from above

by the sum of (σEm+ c1(1 + σ) + c2σEm)n Bernoulli random variables with parameter
pt(v). Therefore, for t ∈ [ti, ti+1], ti = (1 + iσ)n, we get

pt(v) ≤
(
γ(1 + ε)(1 + δ + 2σ)αx∗

(1− α)Em
((1− σ)(1 + (i+ 1)σ))

γ
1−α−1 n

γ
1−α−1

)
and hence

P

(
degti+1

(v)−degti(v)>(1+σ)σ

(
1+

c1(1+σ)

σEm
+c2

)
(1+ε)(1+δ+2σ)α (1−σ)

γ
1−α−1

× γ

1− α
x∗(1 + (i+ 1)σ)

γ
1−α−1n

γ
1−α , Cn0 ∪ {ti+1 < ρn(v)}

)
< e−cn

γ
1−α

for some c > 0. Therefore, similar to the lower bound, let us consider events

Ei(v) :=

{
degti+1

(v)− degti(v) > σ(1 + δ − σ)
γ

1− α
x∗(1 + (i+ 1)σ)

γ
1−α−1n

γ
1−α

}
,

and for each δ > 0 we choose small enough c1, c2, σ, ε > 0, such that for any j

P(∃1 ≤ i ≤ j : Ei(v), Cn0 ∪ {tj+1 < ρn(v)}) < je−cn
γ

1−α
.

Hence for large enough (that depends on other parameters but not on n) j

P
(
degπn(v)>(1+δ+2σ)x∗(πn)

γ
1−α , Cn0 , πn<(1+(j+1)σ)n

)
≤ je−cn

γ
1−α

.

Therefore

P
(
∃v ≤ (1 + (j + 1)σ)n : degπn(v) > (1 + δ + 2σ)x∗(πn)

γ
1−α , Cn0

, πn < (1 + (j + 1)σ)n
)

≤ j(1 + (j + 1)σ)ne−cn
γ

1−α
.

Since j(1 + (j + 1)σ)ne−cn
γ

1−α forms convergent series this estimate implies the upper
bound.
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5 Discussion

In the present work, we put conditions on m to insure that with high probability a
new vertex would not have the maximum degree. It could be interesting to see what
happens if we weaken such conditions, for example, if parameters γ and α would still
affect asymptotic of the maximum degree.

The other modification of the model is to consider the combination of the min choice
with a superlinear function. It is not clear if the power-law type of maximum degree
could be achieved in this case. For example, in [HJ16] for a meek choice (when we
choose vertex with s-th highest degree for s > 1) was shown that the maximum degree
could be either of linear order or of (lnn)b order with no power-law type of behavior.
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