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Abstract

In this note, we prove an Lp uniform approximation of the fractional Brownian motion
with Hurst exponent 0 < H < 1

2
by means of a family of continuous-time random walks

imbedded on a given Brownian motion. The approximation is constructed via a path-
wise representation of the fractional Brownian motion in terms of a standard Brownian
motion. For an arbitrary choice εk for the size of the jumps of the family of random
walks, the rate of convergence of the approximation scheme is O(ε

p(1−2λ)+2(δ−1)
k )

whenever max{0, 1− pH
2
} < δ < 1, λ ∈

(
1−H

2
, 1
2
+ δ−1

p

)
.
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1 Introduction

The fractional Brownian motion BH (henceforth abbreviated by FBM) with Hurst
exponent H ∈ (0, 1) is the zero mean Gaussian process with covariance function
E[BH(t)BH(s)] = 1

2 [s2H + t2H − |t − s|2H ]. It turns out that FBM is the only continu-
ous Gaussian process which is self-similar with stationary increments. There are many
applications of FBM in sciences, including Physics, Biology, Hydrology, network research,
Finance; see Biagini et al. [2] and other references therein. In Probability theory, FBM
is the canonical model of Gaussian process which exhibits non-trivial increment correla-
tions (for H 6= 1

2 ) and it is still amenable to rigorous modelling by means of Malliavin
calculus and rough path techniques. The goal of this note is to present Lp uniform
approximations for the FBM with Hurst exponent 0 < H < 1

2 by means of a family of
continuous time random walks.

The study of approximations of FBM (in the sense of weak convergence) dates back
from 1970s with the pioneering works of Davydov [5] and Taqqu [22]. Since then,
many authors have been proposed alternative weak approximation methods based on
correlated random walks, random wavelet series, Poisson processes, etc. In this direction,
we refer the reader to Bardina et al [1], Delgado and Jolis [7], Enriquez [9], Klüppelberg
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and Kühn [13] and Li and Dai [17] and other references therein. Almost sure uniform
approximations for FBM have been studied by many authors in different contexts via
transport processes, series representations, etc. In this direction, we refer the reader
to Garzon et al [10], Hong et al [11], Dzhaparidze and Van Zanten [8], Chen and Dong
[4], Igloi [12] and other references therein. Other approximations in Lp(Ω× [0, T ]) were
proposed by Decreusefond and Ustunel [6] and Lp-estimates (not uniform in time) by
Mishura [20].

In this work, we present an Lp-approximation for a given FBM with Hurst exponent
H ∈ (0, 1

2 ) in the supremum norm over a given time interval [0, T ]. Motivated by the
stochastic analysis of non-Markovian phenomena in the rough regime, we restrict our
analysis to the most delicate case 0 < H < 1

2 . An important step in our analysis is a
pathwise representation BH = ΛH(B) of the FBM with respect to Brownian motion B,
where ΛH is a suitable bounded linear operator from the space of λ-Hölder continuous
functions (with 1

2 − H < λ < 1
2 ) to the space of continuous functions equipped with

the sup norm. The representation (see Theorem 2.2) is a simple consequence of the
classical Volterra-type representation. Our approximation is a functional of ΛH applied
to a skeletal continuous-time random walk Ak (previously suggested by F. Knight [14])
imbedded on a given Brownian motion B which satisfies

sup
0≤t≤T

|Ak(t)−B(t)| ≤ εk a.s (1.1)

for a given sequence {εk; k ≥ 1} such that εk ↓ 0 as k → +∞.

For a given sequence {εk; k ≥ 1} realizing (1.1), our approximation scheme admits

a rate of convergence of order O(ε
p(1−2λ)+2(δ−1)
k ) whenever max{0, 1 − pH

2 } < δ < 1,
λ ∈

(
1−H

2 , 1
2 + δ−1

p

)
. From the perspective of numerical analysis, one advantage of our

approximation scheme is the possibility to simulate FBM by only simulating the first
time Brownian motion hits ±1 (see e.g [3, 19]) and a Bernoulli random variable which
must be composed with suitable singular deterministic integrals. From a theoretical
perspective, such type of approximation plays a key role in the stochastic analysis of
processes adapted to FBM via the methodology presented in Leão, Ohashi and Simas
[15] in the context of functional stochastic calculus. In particular, the main result of this
short note (Theorem 3.5) is one of the key arguments to tackle non-Markovian optimal
stochastic control problems driven by FBM in the rough regime 0 < H < 1

2 as showed in
Theorems 6.2 and 6.3 in Leão, Ohashi and Souza [16].

We stress that a random walk-type (almost sure) approximation based on Mandelbrot-
van Ness representation was studied by Szabados [21]. He gave an approximation
of FBM for H ∈ ( 1

4 , 1) with convergence rate O(n−min(H− 1
4 ,

1
4 ) 2log2log n) at the nth

approximation step. Moreover, his convergence is established with respect to some
FBM. In contrast, we study the problem with respect to a given FBM with H ∈ (0, 1

2 ) and
we are interested in Lp estimates in the supremum norm. Finally, we remark that the
scheme introduced in this article is expected to work for approximations of the FBM in
the p-variation topology for p > 1

H > 2. We leave this investigation to a future project.

The remainder of this note is organized as follows. Section 2 presents a pathwise
representation of FBM with H ∈ (0, 1

2 ) which is an important step in our approximation.
Section 3 presents the proof of the main result of this note, namely Theorem 3.5.

2 A pathwise representation of FBM with H ∈ (0, 1
2
)

Throughout this note, (Ω,F,P) denotes a filtered probability space equipped with
a one-dimensional standard Brownian motion B where F := (Ft)t≥0 is the usual P-
augmentation of the filtration generated by B under a fixed probability measure P. For

ECP 25 (2020), paper 88.
Page 2/13

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP367
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Lp uniform random walk-type approximation for FBM with 0 < H < 1
2

a real-valued function f : [0, T ]→ R, we denote

‖f‖∞ := sup
0≤t≤T

|f(t)|,

where 0 < T < +∞ is a fixed terminal time.
In the sequel, we derive a pathwise FBM representation for 0 < H < 1

2 which will
play a key role in constructing our approximation scheme for FBM. It is a well-known
fact that the FBM can be represented w.r.t a Brownian motion B as follows∫ t

0

KH(t, s)dB(s); 0 ≤ t ≤ T,

where KH is a deterministic kernel described by

KH(t, s) := cH

[
tH−

1
2 s

1
2−H(t−s)H− 1

2 −
(
H − 1

2

)
s

1
2−H

∫ t

s

uH−
3
2 (u−s)H− 1

2 du

]
; 0 < s < t,

for a positive constant cH . Let us define

KH,1(t, s) := cHt
H− 1

2 s
1
2−H(t− s)H− 1

2 ,

KH,2(t, s) := cH

(
1

2
−H

)
s

1
2−H

∫ t

s

uH−
3
2 (u− s)H− 1

2 du,

for 0 < s < t. By definition, KH(t, s) = KH,1(t, s) + KH,2(t, s); 0 < s < t. By making
change of variables v = u

s , we can write∫ t

s

uH−
3
2 (u− s)H− 1

2 du = θH(t, s)s2H−1, (2.1)

where θH(t, s) :=
∫ t
s

1
vH−

3
2 (v − 1)H−

1
2 dv, for 0 < s ≤ t. We observe∫ +∞

1

vH−
3
2 (v − 1)H−

1
2 dv <∞, (2.2)

for 0 < H < 1
2 . Therefore,

KH,2(t, s) = cH

(
1

2
−H

)
sH−

1
2

∫ t
s

1

vH−
3
2 (v − 1)H−

1
2 dv

and

∂sKH,1(t, s) = cH

(
1

2
−H

)[
tH−

1
2 s−

1
2−H(t− s)H− 1

2 + tH−
1
2 s

1
2−H(t− s)H− 3

2

]
,

∂sKH,2(t, s) = cH

(
1

2
−H

)[
− tH− 1

2 s−
1
2−H(t− s)H− 1

2 +

(
H − 1

2

)
sH−

3
2 θH(t, s)

]
,

(2.3)

for 0 < s < t. In the sequel, if f : [0, T ]→ R, we denote

‖f‖λ := sup
0<s<r≤T

|f(r)− f(s)|
|r − s|λ

,

for 0 < λ ≤ 1. Let Cλ
0 be the space of all Hölder continuous functions f : [0, T ]→ R with

f(0) = 0 equipped with the norm ‖ · ‖λ. For each f ∈ Cλ
0 , we define

(ΛHf)(t) :=

∫ t

0

[f(t)− f(s)]∂sKH,1(t, s)ds−
∫ t

0

∂sKH,2(t, s)f(s)ds; 0 ≤ t ≤ T.
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Lemma 2.1. If 1
2 −H < λ < 1

2 , there exists a constant C which depends on H such that

sup
0≤t≤T

|(ΛHf)(t)| ≤ CTH− 1
2 +λ‖f‖λ,

for every f ∈ Cλ
0 .

Proof. Just observe there exists a constant C (which only depends on H) such that the
following estimates hold:

sup
0≤t≤T

∫ t

0

|∂sKH,1(t, s)||f(t)− f(s)|ds ≤ C‖f‖λTH+λ− 1
2

and

sup
0≤t≤T

∫ t

0

|∂sKH,2(t, s)(t, s)||f(s)|ds ≤ C‖f‖λTH+λ− 1
2 ,

whenever 1
2 −H < λ < 1

2 .

We are now able to prove a pathwise representation for the FBM with 0 < H < 1
2

with respect to a given standard Brownian motion.

Theorem 2.2. Any FBM with exponent 0 < H < 1
2 on a time interval [0, T ] can be

represented by (ΛHB) for a real-valued standard Brownian motion B.

Proof. We fix 0 < a < b < t. We recall that any FBM BH with exponent 0 < H < 1
2 can

be represented by BH(t) =
∫ t

0
KH(t, s)dB(s) for some Brownian motion B. It is sufficient

to check the following identity

E

[
(B(b)−B(a))

∫ t

0

KH(t, s)dB(s)

]
= E

[
(B(b)−B(a))(ΛHB)(t)

]
. (2.4)

In one hand, by Itô’s isometry, the left hand side of (2.4) equals to
∫ b
a
KH(t, s)ds =∫ b

a
KH,1(t, s)ds+

∫ b
a
KH,2(t, s)ds and integration by parts yields

∫ b

a

KH(t, s)ds = (b− a)KH,1(t, a) +

∫ b

a

(b− s)∂sKH,1(t, s)ds

+ (b− a)KH,2(t, b)−
∫ b

a

(s− a)∂sKH,2(t, s)ds. (2.5)

On the other hand, by using integration by parts (in the sense of Malliavin calculus), we
observe the right-hand side of (2.4) equals to

E

∫ b

a

Dr(ΛHB)(t)dr =

∫ t

0

∫ b

a

1(s,t](r)∂sKH,1(t, s)drds

−
∫ t

0

∫ b

a

∂sKH,2(t, s)1[0,s](r)drds, (2.6)

where D denotes the Gross-Sobolev-Malliavin derivative. Lastly, we observe the right-
hand side of (2.6) equals to (2.5). This concludes the proof.
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3 An Lp uniform approximation for FBM in terms of a continuous-
time random walk

In this section, we present the rate of convergence of our approximation scheme w.r.t
a given FBM BH with exponent 0 < H < 1

2 . For this purpose, we make use of Theorem
2.2 as follows. For a Brownian motion B realizing BH = ΛHB via Theorem 2.2, we
construct a class of pure jump processes driven by suitable waiting times which describe
its local behavior: we set T k0 := 0 and

T kn := inf{T kn−1 < t <∞; |B(t)−B(T kn−1)| = εk}, n ≥ 1, (3.1)

where {εk; k ≥ 1} is an arbitrary sequence such that εk ↓ 0 as k → +∞. The strong
Markov property yields the family (T kn )n≥0 is a sequence of stopping times where the
increments {∆T kn := T kn − T kn−1;n ≥ 1} is an i.i.d sequence with the same distribution as
T k1 . By the Brownian scaling property, ∆T k1 = ε2kτ (in law) where τ = inf{t > 0; |Y (t)| = 1}
(Y is a standard Brownian motion) is an absolutely continuous variable with mean
equals one and with all finite moments (see Section 5.3.2 in [19]). Then, we define the
continuous-time random walk Ak

Ak(t) :=

∞∑
n=1

(
B(T kn )−B(T kn−1)

)
11{Tkn≤t}; t ≥ 0.

By construction
sup
t≥0
|Ak(t)−B(t)| ≤ εk a.s (3.2)

for every k ≥ 1. In the sequel, we set

t̄k := max{T kn ;T kn ≤ t},

and we define

t̄+k := min{T kn ; t̄k < T kn} ∧ T and t̄−k := max{T kn ;T kn < t̄k} ∨ 0, (3.3)

where we set max ∅ = −∞. By construction, t̄k ≤ t < t̄+k a.s for each t ≥ 0. Let us define

BkH(t) :=

∫ t̄k

0

∂sKH,1(t̄k, s)
[
Ak(t̄k)−Ak(s̄+

k )
]
ds−

∫ t̄k

0

∂sKH,2(t̄k, s)A
k(s)ds; 0 ≤ t ≤ T.

Clearly, BkH is a pure jump process of the form

BkH(t) =

∞∑
n=0

BkH(T kn )1{Tkn≤t<Tkn+1}; 0 ≤ t ≤ T.

Let us define

‖Ak −B‖−,λ := sup
0≤s≤t̄−k <t̄k≤t≤T

|Ak(s̄+
k )−B(s)|

(t̄k − s)λ
,

‖Ak −B‖Tk1 ,λ := sup
Tk1 ∧T<s≤T

|Ak(s)−B(s)|
sλ

.

Lemma 3.1. If 1
2 −H < λ < 1

2 and 0 < ε < H, then there exists a constant C which only
depends on H such that

‖BkH −BH‖∞ ≤ C‖Ak −B‖−,λTH−
1
2 +λ + C‖B‖λ(max

m≥1
∆T kn )H−

1
2 +λ1{Tkn≤T}

+ C
(
‖B‖λ

(
T k1 ∧ T

)λ+H− 1
2 + ‖Ak −B‖Tk1 ,λT

λ+H− 1
2

)
+ ‖BH‖H−ε(max

n≥1
∆T kn1{Tkn≤T})

H−ε a.s,

for every k ≥ 1.
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Proof. In the sequel, C is a constant which may differ from line to line and we fix
1
2 −H < λ < 1

2 , 0 < ε < H. First of all, we observe

|BkH(t)−BH(t)| ≤ |BkH(t)−BH(t̄k)|+ ‖BH‖H−ε(max
n≥1

∆T kn1{Tkn≤T})
H−ε a.s.

Then,

‖BkH −BH‖∞ ≤ sup
0≤t≤T

|BkH(t)−BH(t̄k)|+ ‖BH‖H−ε(max
n≥1

∆T kn1{Tkn≤T})
H−ε a.s. (3.4)

To keep notation simple, we denote

ϕk(t, s) := Ak(t)−Ak(s̄+
k )− (B(t)−B(s)), ϕk(s) := Ak(s)−B(s)

‖Ak −B‖+,λ := sup
t̄−k <s<t̄k≤t≤T

|B(t̄k)−Ak(t)−B(s) +Ak(s̄+
k )|

(t̄k − s)λ
= sup

t̄−k <s<t̄k≤t≤T

|Ak(s̄+
k )−B(s)|

(t̄k − s)λ

‖Ak −B‖Tk1 −,λ := sup
0≤s≤Tk1 ∧T

|Ak(s)−B(s)|
sλ

.

At first, we observe ‖Ak − B‖+,λ ≤ ‖B‖λ a.s and ‖Ak − B‖Tk1 −,λ ≤ ‖B‖λ a.s for every
k ≥ 1. Furthermore, we have

sup
0≤t≤T

|BkH(t)−BH(t̄k)| ≤ sup
Tk1 ≤t≤T

∫ t̄k

0

∣∣∂sKH,1(t̄k, s)
∣∣∣∣ϕk(t̄k, s)

∣∣ds (3.5)

+ sup
Tk1 ≤t≤T

∫ t̄k

0

∣∣∂sKH,2(t̄k, s)
∣∣∣∣ϕk(s)

∣∣ds a.s.
We observe∫ t̄k

0

|∂sKH,1(t̄k, s)|ϕk(t̄k, s)|ds ≤ C‖Ak −B‖−,λ(t̄k)H−
1
2

∫ t̄−k

0

s−
1
2−H(t̄k − s)H−

1
2 +λds

+ C‖Ak −B‖+,λ(t̄k)H−
1
2

∫ t̄k

t̄−k

s−
1
2−H(t̄k − s)H−

1
2 +λds

+ C‖Ak −B‖−,λ(t̄k)H−
1
2

∫ t̄−k

0

s
1
2−H(t̄k − s)H−

3
2 +λds

+ C‖Ak −B‖+,λ(t̄k)H−
1
2

∫ t̄k

t̄−k

s
1
2−H(t̄k − s)H−

3
2 +λds

=: Ik1 (t̄k, s) + Ik2 (t̄k, s) + Ik3 (t̄k, s) + Ik4 (t̄k, s) a.s.

The following estimates hold true a.s

Ik1 (t̄k, s) ≤ C‖Ak −B‖−,λ(t̄k)H−
1
2

∫ t̄k

0

s−
1
2−H(t̄k − s)H−

1
2 +λds

≤ C‖Ak −B‖−,λTH−
1
2 +λ, (3.6)

Ik3 (t̄k, s) ≤ C‖Ak −B‖−,λ(t̄k)H−
1
2

∫ t̄k

0

s
1
2−H(t̄k − s)H−

3
2 +λds ≤ C‖Ak −B‖−,λTH−

1
2 +λ,

(3.7)
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and

Ik2 (t̄k, s) + Ik4 (t̄k, s) ≤ C‖Ak −B‖+,λ(t̄k)H−
1
2

(∫ t̄k

t̄−k

s
1
2−H(t̄k − s)H−

3
2 +λds

+

∫ t̄k

t̄−k

(s− t̄−k )−
1
2−H(t̄k − s)H−

1
2 +λds

)

= C‖Ak −B‖+,λ(t̄k)H−
1
2

(
(t̄k)

1
2−H(∆t̄k)H−

1
2 +λ

+ (∆t̄k)
1
2−H(∆t̄k)H−

1
2 +λ

)
≤ C‖B‖λ(max

m≥1
∆T kn )H−

1
2 +λ1{Tkn≤T}, (3.8)

where ∆t̄k := t̄k − t̄−k . Summing up (3.6), (3.7) and (3.8), we arrive at the following
estimate

sup
Tk1 ≤t≤T

∫ t̄k

0

|∂sKH,1(t̄k, s)|ϕk(t̄k, s)|ds ≤ C‖Ak −B‖−,λTH−
1
2 +λ (3.9)

+ C‖B‖λ(max
m≥1

∆T kn )H−
1
2 +λ1{Tkn≤T},

almost surely for every k ≥ 1. Let us now estimate the second term in the right-hand
side of (3.5). At first, we notice

sup
Tk1 ≤t≤T

∫ t̄k

0

∣∣∂sKH,2(t̄k, s)
∣∣|ϕk(s)|ds ≤ C sup

Tk1 ≤t≤T
(t̄k)H−

1
2

∫ t̄k

0

s−
1
2−H(t̄k − s)H−

1
2 |ϕk(s)|ds

+ C sup
Tk1 ≤t≤T

∫ t̄k

0

s−
1
2−H

∫ t

s

uH−
3
2 (u− s)H− 1

2 du|ϕk(s)|ds

=: Jk,1 + Jk,2 a.s,

(3.10)

where

Jk,1 ≤ sup
Tk1 ≤t≤T

[
(t̄k)H−

1
2 ‖Ak −B‖Tk1 −,λ

∫ Tk1 ∧T

0

sλ−
1
2−H(t̄k − s)H−

1
2 ds
]

+ sup
Tk1 ≤t≤T

[
(t̄k)H−

1
2 ‖Ak −B‖Tk1 ,λ

∫ t̄k

Tk1 ∧T
(s− T k1 )λ−

1
2−H(t̄k − s)H−

1
2 ds
]

≤ sup
Tk1 ≤t≤T

(t̄k)H−
1
2 ‖Ak −B‖Tk1 −,λ

(
T k1 ∧ T

)λ
+ sup
Tk1 ≤t≤T

[
(t̄k)H−

1
2

(
t̄k − T k1 ∧ T

)λ ‖Ak −B‖Tk1 ,λ]
≤ C

(
‖Ak −B‖Tk1 −,λ

(
T k1 ∧ T

)λ+H− 1
2 + ‖Ak −B‖Tk1 ,λT

λ+H− 1
2

)
a.s.

(3.11)

By using (2.1) and (2.2), we have∫ t

s

uH−
3
2 (u− s)H− 1

2 du ≤ s2H−1 sup
0<r<x≤T

θH(x, r) <∞,

ECP 25 (2020), paper 88.
Page 7/13

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP367
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Lp uniform random walk-type approximation for FBM with 0 < H < 1
2

for every (s, t); 0 < s < t ≤ T . Then, there exists a constant C which depends on H such
that

Jk,2 ≤ C

(
‖Ak −B‖Tk1 −,λ

∫ Tk1 ∧T

0

sλ+H− 3
2 ds+ ‖Ak −B‖Tk1 ,λ sup

Tk1 ≤t≤T

∫ t̄k∧T

Tk1 ∧T
sλ+H− 3

2 ds

)
(3.12)

≤ C

(
‖Ak −B‖Tk1 −,λ

(
T k1 ∧ T

)λ+H− 1
2 + ‖Ak −B‖Tk1 ,λ sup

Tk1 ≤t≤T

(
t̄k − T k1 ∧ T

)λ+H− 1
2

)
.

By the estimates (3.10), (3.11) and (3.12) and using the fact ‖Ak −B‖Tk1 −,λ ≤ ‖B‖λ a.s
for every k ≥ 1, we arrive at the inequality

sup
Tk1 ≤t≤T

∫ t̄k

0

∣∣∂sKH,2(t̄k, s)
∣∣|ϕk(s)|ds ≤ C

(
‖B‖λ

(
T k1 ∧ T

)λ+H− 1
2 +‖Ak−B‖Tk1 ,λT

λ+H− 1
2

)
a.s.

(3.13)
Summing up (3.4), (3.5), (3.13) and (3.9), we conclude the proof.

In order to establish the main result of this paper (namely Theorem 3.5), we make a
fundamental use of Lemma 2.2 in [15] but in a slightly different way. In [15], the authors
establish an upper bound

E

∣∣∣max
n≥1

∆T kn

∣∣∣q1{Tkn≤T} . ε2qk dε
−2
k T e1−α; k ≥ 1, (3.14)

where q ≥ 1, d·e denotes the ceiling function and α ∈ (0, 1) is a constant. Here, we will
establish an upper bound for

E

∣∣∣max
n≥1

1

∆T kn

∣∣∣q1{Tkn≤T}; k ≥ 1, (3.15)

which obviously blows up as k → +∞. In the present context, we need to know precisely
how fast (3.15) blows up. Since maxn≥1(∆T kn )−11{Tkn≤T} is an unbounded sequence, the
proof of Lemma 2.2 in [15] does not apply directly to the case (3.15). In the sequel, we
give the details of the obtention of the upper bound for (3.15). At first, we recall the
following elementary result.

Lemma 3.2. Let Z1, . . . , Zn be a sequence of positive random variables on a probability
space. Then, for every q ≥ 1, r > 1, we have

E
(

max
m≤i≤n

Zi
)q ≤ { n∑

`=m

E|Z`|qr
} 1
r

.

Proof. Just apply Hölder’s inequality as follows

E
(

max
m≤i≤n

Zi
)q

= E max
m≤i≤n

|Zi|q = E
{

max
m≤i≤n

|Zi|qr
} 1
r

≤
{
E max
m≤i≤n

|Zi|qr
} 1
r

≤
{
E

n∑
i=m

|Zi|qr
} 1
r

.

Lemma 3.3. For every q ≥ 1 and α ∈ (0, 1), there exists a constant C which depends on
q and α such that

E

∣∣∣max
n≥1

1

∆T kn

∣∣∣q1{Tkn≤T} ≤ Cε−2q
k dε−2

k T e1−α,

for every k ≥ 1.
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Proof. Let τ = inf{t > 0; |Bt| = 1}. We recall (see e.g Lemmas 2 and 3 in [3]) that, for
every q > 0, we have Eτ−q < ∞ and E[τ ] = 1. Let Nk

T be the number of jumps of Ak

along the time interval [0, T ]. In other words,

Nk
T =

∑
n≥1

1{Tkn≤T}.

We observe Nk
T = ε−2

k [Ak, Ak]T , where [·, ·]T denotes the quadratic variation of the
martingale Ak computed w.r.t its own filtration. Moreover, {Nk

T = n} = {T kn < T <

T kn+1} a.s for every k, n ≥ 1. Recall {∆T ki ; i ≥ 1} is an iid sequence with absolutely
continuous distribution and ∆T k1 = ε2kτ (in law). Since T kn =

∑n
j=1 ∆T kj , T

k
n+1 = T kn +

∆T kn+1 and ∆T kn+1 is independent from T kn , then {Nk
T = n} has strictly positive probability

for every k, n ≥ 1. Let Ek,n be the expectation computed w.r.t the probability measure
P[·|Nk

T = n] for integers n, k ≥ 1. We observe ∆T ki ; 1 ≤ i ≤ n is an identically distributed
sequence conditioned on the event {Nk

T = n}, i.e.,

P
{

∆T ki ∈ dx|Nk
T = n

}
= P

{
∆T k1 ∈ dx|Nk

T = n
}

= P{ε2kτ ∈ dx|Nk
T = n} (3.16)

for each i ∈ {1, . . . , n}.
By Lemma 3.2, we know that for a given α ∈ (0, 1) and 1 ≤ m < n

E max
m≤i≤n

( 1

∆T ki

)q
≤

{
n∑

i=m

E
( 1

∆T ki

) q
1−α

}1−α

= ε−2q
k (n−m+ 1)1−α(E[τ

−q
1−α ])1−α. (3.17)

In addition, property (3.16) and Lemma 3.2 yield

E
[∣∣∣ max
m≤i≤n

1

∆T ki

∣∣∣q∣∣∣Nk
T = n

]
= Ek,n

∣∣∣ max
m≤i≤n

1

∆T ki

∣∣∣q ≤ { n∑
i=m

Ek,n

( 1

∆T ki

) q
1−α

}1−α

(3.18)

≤

(
Ek,n

[
(T k1 )

−q
1−α
])1−α

(n−m+ 1)1−α

= ε−2q
k

(
Ek,n[τ

−q
1−α ]

)1−α
(n−m+ 1)1−α.

By (3.17), we get

E

∣∣∣ max
1≤m≤dε−2

k Te

1

∆T km

∣∣∣q ≤ ε−2q
k

(
E[τ

−q
1−α ]

)1−αdε−2
k T e1−α, (3.19)

for every k ≥ 1. Then, (3.19) yields

E

∣∣∣max
m≥1

1

∆T km

∣∣∣q1{Tkm≤T} ≤ Emax

{∣∣∣ max
1≤m≤dε−2

k Te

1

∆T km

∣∣∣q, ∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣q}

≤ E

∣∣∣ max
1≤m≤dε−2

k Te

1

∆T km

∣∣∣q + E
∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣q
≤ ε−2q

k

(
E[τ

−q
1−α ]

)1−αdε−2
k T e1−α

+ E

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣q, (3.20)
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for every k ≥ 1. By using (3.19) again, we observe

E

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣q
=

∫
{NkT≤dε

−2
k Te}

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP
+

∫
{dε−2

k Te<NkT≤2dε−2
k Te}

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP
+

∫
{NkT>2dε−2

k Te}

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP
≤ ε−2q

k

(
E[τ

−q
1−α ]

)1−αdε−2
k T e1−α + E

∣∣∣ max
dε−2
k Te≤m≤2dε−2

k Te

1

∆T km

∣∣∣q
+

∫
{NkT>2dε−2

k Te}

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP
≤ 2ε−2q

k

(
E[τ

−q
1−α ]

)1−αdε−2
k T e1−α

+

∫
{NkT>2dε−2

k Te}

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP, (3.21)

for every k ≥ 1. By (3.18), we observe∫
NkT>2dε−2

k Te

∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨NkT

1

∆T km

∣∣∣qdP
=

∫
2dε−2

k Te+1

E
[∣∣∣ max
dε−2
k Te≤m≤dε−2

k Te∨i

1

∆T km

∣∣∣q ∣∣∣Nk
T = i

]
dPNkT (di)

≤ ε−2q
k

∑
i≥2dε−2

k Te+1

(
Ek,i

[
τ

−q
1−α
])1−α

(i− dε−2
k T e+ 1)1−αP{Nk

T = i}

= ε−2q
k

∑
i≥2dε−2

k Te+1

(∫ ∞
0

x
−q
1−αP{τ ∈ dx,Nk

T = i}

)1−α

(i− dε−2
k T e+ 1)1−α(P{Nk

T = i})α

≤ ε−2q
k (E[τ

−q
1−α ])1−α

∑
j≥1

(dε−2
k T e+ j + 1)1−α(P{Nk

T = 2dε−2
k T e+ j})α, (3.22)

for every k ≥ 1. Now, by applying a standard Large Deviation estimate, we know that

P{Nk
T = 2dε−2

k T e+ j} ≤ P
{
Nk
T ≥ 2dε−2

k T e+ j}
= P{T k

2dε−2
k Te+j ≤ T

}
= P

{
1

2dε−2
k T e+ j

2dε−2
k Te+j∑
i=1

τi ≤
T

ε2k(2dε−2
k T e+ j)

}

≤ P

{
1

2dε−2
k T e+ j

2dε−2
k Te+j∑
i=1

τi ≤
T

ε2k2dε−2
k T e

}

≤ P

{
1

2dε−2
k T e+ j

2dε−2
k Te+j∑
i=1

τi ≤
1

2

}
≤ exp

(
− (2dε−2

k T e+ j)w(0.5)
)
, (3.23)
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where (τi)
∞
i=1 is an iid sequence such that τ1 = τ (in law), w(0.5) is the Cramer transform

of τ evaluated at the point 0.5. For each α ∈ (0, 1), there exists C = C(α) such that

∞∑
j=1

exp
(
− α(2dε−2

k T e+ j)w(0.5)
)
j1−α ≤ C, (3.24)

for every k ≥ 1. For instance, notice that

exp
(
− α(2dε−2

k T e+ j)w(0.5)
)
≤ 1

j2
α−2,

for every k, j ≥ 1. Summing up (3.20), (3.21), (3.22), (3.23) and (3.24), we conclude the
proof.

Lemma 3.4. Fix p ≥ 1. For each pair (λ, δ) satisfying 0 < λ < 1
2 + 2δ−2

2p ,max{0, 1− p
2} <

δ < 1, there exists a constant C > 0 which depends on p, λ and δ, such that

E
∥∥Ak −B∥∥p−,λ ≤ Cεp(1−2λ)

k

⌈
ε−2
k T

⌉1−δ
(3.25)

and
E
∥∥Ak −B∥∥p

Tk1 ,λ
≤ Cεp(1−2λ)

k , (3.26)

for every k ≥ 1.

Proof. Fix p ≥ 1. Let (λ, δ) be a pair of numbers satisfying 0 < λ < 1
2 + 2δ−2

2p ,max{0, 1−
p
2} < δ < 1. Notice if 0 ≤ s ≤ t̄−k , then (t̄k − s) ≥ t̄k − t̄−k = ∆t̄k. By applying Lemma 3.3,
we have

E‖Ak −B‖p−,λ ≤ E

(
sup

0≤s≤t̄−k <t̄k≤t≤T

|B(s)−Ak(s̄+
k )|

(∆t̄k)λ

)p

≤ CεpkE
(

max
n≥1

(
1

∆T kn

)
1{Tkn≤T}

)λp
≤ C

(
εp−2λp
k

⌈
ε−2
k T

⌉1−δ
)
,

(3.27)

for a constant C which depends on δ, p, λ. This shows (3.25). Now, we observe(
sup

Tk1 <s≤T

|Ak(s)−B(s)|
sλ

)p
≤ εpk(T k1 )−λp a.s,

for every k ≥ 1. By definition, T k1 = inf{t > 0; |B(t)| = εk}
d
= ε2kτ , where τ is given in the

proof of Lemma 3.3. Then,
E(T k1 )−λp ≤ Cε−2λp

k ,

for a constant C which depends on λ and p. We then get

E‖Ak −B‖p
Tk1 ,λ

≤ Cεp(1−2λ)
k ,

for every k ≥ 1. This shows (3.26) and hence, we conclude the proof.

Theorem 3.5. Fix 0 < H < 1
2 and p ≥ 1. For every pair (δ, λ) such that max{0, 1− pH

2 } <
δ < 1, λ ∈

(
1−H

2 , 1
2 + 2δ−2

2p

)
, there exists a constant C which depends on p, δ,H, T, λ such

that
E‖BkH −BH‖p∞ ≤ C

(
ε
p(1−2λ)+2(δ−1)
k

)
,

for every k ≥ 1.
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Proof. In the sequel, C is a constant which may differ form line to line. Let us fix
0 < H < 1

2 , p ≥ 1 and 0 < ε < H. By Lemma 3.1, if 1
2 −H < λ < 1

2 , there exists a constant
C which depends on H,T and p ≥ 1 such that

‖BkH −BH‖p∞ ≤ C‖Ak −B‖p−,λ + C‖B‖pλ(max
m≥1

∆T kn )p(H−
1
2 +λ)1{Tkn≤T}

+ C‖B‖pλ
(
T k1 ∧ T

)p(λ+H− 1
2 )

+ C‖Ak −B‖p
Tk1 ,λ

+ ‖BH‖pH−ε(max
n≥1

∆T kn1{Tkn≤T})
p(H−ε) a.s,

for every k ≥ 1. Now, we notice (1−H)
2 < 1

2 + 2δ−2
2p if, only if, 1− pH

2 < δ < 1. For each λ, δ

satisfying (1−H)
2 < λ < 1

2 + 2δ−2
2p ,max{0, 1− pH

2 } < δ < 1, we make use of the Gaussian
tails of the Brownian motion and FBM jointly with Lemma 3.4 and (3.14) to get a constant
C > 0 which depends on H,T, p, λ, ε and δ such that

E‖BkH −BH‖p∞ ≤ Cε
p(1−2λ)
k

⌈
ε−2
k T

⌉1−δ
+ Cε

2p(H− 1
2 +λ)

k

⌈
ε−2
k T

⌉1−δ
+ Cε

2p(H−ε)
k

⌈
ε−2
k T

⌉1−δ
,

for every k ≥ 1. By noticing that dxe ≤ 1 + x for every x ≥ 0, we have

E‖BkH −BH‖p∞ ≤ C
(
ε
p(1−2λ)+2(δ−1)
k + ε

2p(H− 1
2 +λ)+2(δ−1)

k + ε
2p(H−ε)+2(δ−1)
k

)
,

for every k ≥ 1. In fact, whenever the pair (δ, λ) satisfies max{0, 1 − pH
2 } < δ < 1 and

1−H
2 < λ < 1

2 + 2(δ−1)
2p , there exists C such that

E‖BkH −BH‖p∞ ≤ C
(
ε
p(1−2λ)+2(δ−1)
k + ε

2p(H−ε)+2(δ−1)
k

)
,

for every k ≥ 1. Finally, by taking ε small enough, we conclude the proof.
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