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Abstract

The Krein condition has been used as a qualitative result to show the M-indeterminacy
of some kind of densities. In this work we use results from the theory of the Hilbert
transform to construct families of densities having all the same finite moment sequence
as a density f with finite logarithmic integral. Actually, our approach explicitly gives
Stieltjes classes with center at f and perturbations involving the Hilbert transform of
ln f . We consider densities supported on the whole real line or the positive half line.
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1 Introduction

Let F be a distribution supported on I = R+ or R such that∫
I

|xn|dF (x) <∞ for all n ≥ 1.

Under this assumption we say that F has a finite moment sequence on I. A distribu-
tion F with finite moment sequence on I is called M -indeterminate if there are other
distributions supported on I having the same moments as F .

In 1945 Krein proved that if F is an absolutely continuous distribution on R with
finite moment sequence whose density f has finite logarithmic integral, i.e.∫

R

− log f (x)

1 + x2
dx <∞, (1.1)

then F is M -indeterminate. This is the so-called Krein criterion.
About the Krein criterion, in [7] the authors say that it “is a qualitative result; there

is no indication of how to write other distributions with the same moments as F”. In [6,
Theorem 1] the author used the theory of the Hardy space on the upper half plane H1

to get a simple proof of the Krein criterion. In fact, if f is a density satisfying the Krein
condition (1.1), the author proved the existence of a density g having the same moment
sequence as f . In this work we go a step further, we combine the ideas in the proof of
Theorem 1 in [6] with some results of the Hilbert transform and the space H1, to obtain
an explicit description of the latter density g.
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Krein condition and the Hilbert transform

Actually, in this setting, we get a family of densities having the same moment sequence
as f . To do this, we consider a construction introduced in [9] to exhibit some densities
with the same moment sequence.

Let f be a density with finite moment sequence on I. Assume that there exists a
bounded measurable function h with supx∈I |h (x)| ≤ 1, such that∫

I

xnf (x)h (x) dx = 0 for all n ≥ 0

and the function fh is not identically zero, then the Stieltjes class SI (f, h) with center at
f and perturbation h is given by

SI (f, h) = {f (x) [1 + εh (x)] : x ∈ I, ε ∈ [−1, 1]} .

Clearly, SI (f, h) is an infinite familiy of densities all having the same moment sequence
as f .

Thus, our main results can be written in terms of Stieltjes classes involving the
Hilbert transform of ln f .

Theorem 1.1. Let f be a density on R with finite moment sequence. If f has finite
logarithmic integral, then SR (f, cos(H ln f)) and SR (f, sin(H ln f)) are Stieltjes classes,
where

Hu(t) = 1

π
P

∫ ∞
−∞

(
1

t− x
+

x

1 + x2

)
u(x)dx, t ∈ R.

When I = R+ we have a similar result.

Theorem 1.2. Let f be a density on R+ with finite moment sequence. If f satisfies the
condition ∫ ∞

0

− ln f(x2)

1 + x2
dx <∞, (1.2)

then SR+(f, sin(He ln f)) is a Stieltjes class, where

Heu(t) =
2t1/2

π
P

∫ ∞
0

u(x2)

t− x2
dx, t > 0.

This work is organized as follows. In the next section we give some facts about the
Hilbert transform and compute the Hilbert transform of two important cases. In the last
section we prove the results and analyze two examples to show the usefulness of our
approach.

2 Preliminaries

The following results can be found in [5, pages 60–65]. Suppose that the function
u : R→ R satisfies ∫ ∞

−∞

|u(t)|
1 + t2

dt <∞. (2.1)

Hence the following integral

U(z) + iŨ(z) :=
i

π

∫ ∞
−∞

(
1

z − t
+

t

1 + t2

)
u(t)dt

=
1

π

∫ ∞
−∞

=z
|z − t|2

u(t)dt+ i
1

π

∫ ∞
−∞

(
<z − t
|z − t|2

+
t

1 + t2

)
u(t)dt

converges absolutely on H := {z ∈ C : =z > 0} and defines an analytic function on H.
Notice that U is the Poisson integral of u and is the unique harmonic extension of u to H.
Moreover, Ũ is the unique conjugate harmonic function of U such that Ũ(i) = 0.
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Krein condition and the Hilbert transform

It is known the existence of the non-tangential limits of U and Ũ at almost t ∈ R;
the non-tangential limit of U is u, and the non-tangential limit of Ũ is called the Hilbert
transform of u and is denoted by Hu. The Hilbert transform of u can be written as the
principal value of a singular integral:

Hu(t) = 1

π
lim
ε→0

∫
|x−t|>ε

(
1

t− x
+

x

1 + x2

)
u(x)dx, a.e. t ∈ R.

Remark 2.1. a) In [3] the Hilbert transform is defined as

Hf(t) =
1

π
P

∫ ∞
−∞

f(x)

t− x
dx, a.e. t ∈ R.

In [3, Section 4.2] the author also consider the operator

Hef(t) =
2t

π
P

∫ ∞
0

f(x)

t2 − x2
dx, a.e. t ∈ R.

When f is an even function then Hf = Hef , this justifies the subscript e and motivates
the definition of He.

b) If u is an even function satisfying (2.1) then

Hu(t) = 2t

π
P

∫ ∞
0

u(x)

t2 − x2
dx, a.e. t ∈ R.

In this case Hu = Heu. Notice that Hu is an odd function on R. We also can see that
Hc = 0 where c is a constant function.

c) Let u : R+ → R be such that∫ ∞
0

|u(t2)|
1 + t2

dt <∞.

The function u∗(x) := u(x2), x 6= 0, satisfies the condition (2.1) and, by definition of He,
we have

Heu(t) = Heu
∗(t1/2) = Hu∗(t1/2) = Hu∗(t1/2), t > 0.

The following formula can be proved using the same tecnique as in Lemma 2.3, here
we provide a short proof.

Lemma 2.2. Let 0 < |µ| < 1. The function hµ(x) = |x|µ satisfies (2.1) and

Hhµ(t) = − tan(µπ/2)sgn(t)|t|µ, t 6= 0. (2.2)

In particular, He(xµ)(t) = − tan(µπ)tµ, t > 0.

Proof. Let µ ∈ (−1, 0). From [4, Table 1.2, page 464] and Remark 2.1 we have

− tan(µπ/2)sgn(t)|t|µ =
1

π
P

∫ ∞
−∞

|x|µ

t− x
dx

=
2t

π
P

∫ ∞
0

xµ

t2 − x2
dx = Hhµ(t), t 6= 0.

Let µ ∈ (0, 1). From Remark 2.1 and the previous case we obtain

Hhµ(t) =
2t

π
P

∫ ∞
0

xµ

t2 − x2
dx

= − 2

πt
P

∫ ∞
0

x−µ

t−2 − x2
dx

= − tan(µπ/2)sgn(t)|t|µ, t 6= 0.
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Krein condition and the Hilbert transform

Lemma 2.3. H(ln |x|)(t) = −π/2 sgn(t) for t 6= 0. In particular, He(lnx) ≡ −π.

Proof. From Remark 2.1 we have

H(ln |x|)(t) = 2t

π
P

∫ ∞
0

lnx

t2 − x2
dx,

and it is sufficient to consider t > 0. Now, from the identity∫
xa lnxdx =

xa+1 lnx

a+ 1
− xa+1

(a+ 1)2
, a 6= −1.

we get for ε > 0 small enough that

1

t2

∫ t−ε

0

lnx

1− (x/t)2
dx =

∞∑
n=0

1

t2n+2

∫ t−ε

0

x2n lnxdx

=

∞∑
n=0

1

t2n+2

[
x2n+1 lnx

2n+ 1
− x2n+1

(2n+ 1)2

∣∣∣∣x=t−ε
x=0

]

=

∞∑
n=0

(t− ε)2n+1 ln(t− ε)
(2n+ 1)t2n+2

− (t− ε)2n+1

(2n+ 1)2t2n+2

= t−1 ln(t− ε) arctanh((t− ε)/t)−
∞∑
n=0

(t− ε)2n+1

(2n+ 1)2t2n+2

Similarly, we get

−
∫ ∞
t+ε

1

x2
lnx

1− (t/x)2
dx =

∞∑
n=0

−t2n ln(t+ ε)

(2n+ 1)(t+ ε)2n+1
− t2n

(2n+ 1)2(t+ ε)2n+1
,

= −t−1 ln(t+ ε) arctanh(t/(t+ ε))−
∞∑
n=0

t2n/(t+ ε)2n+1

(2n+ 1)2
,

then we use that arctanh(x) = 2−1 ln 1+x
1−x , |x| < 1, and apply the Weierstrass M-test

considering ε ∈ [0, ε0) with ε0 small enough, to obtain

H(ln |x|)(t) =
1

π
lim
ε→0+

[
ln(t− ε) ln 2t− ε

ε
− ln(t+ ε) ln

2t+ ε

ε

]
− 2

π
lim
ε→0+

∞∑
n=0

1

(2n+ 1)2

(
((t− ε)/t)2n+1

+ (t/(t+ ε))2n+1
)

= lim
ε→0+

[ln(t− ε) ln(2t− ε)− ln(t+ ε) ln(2t+ ε)] + lim
ε→0+

(ln ε) ln
t+ ε

t− ε

− 4

π

∞∑
n=0

1

(2n+ 1)2

= −π
2
, for all t > 0.

3 Proof of the results

Proof of Theorem 1.1. Since ln f ≤ f , condition (1.1) is equivalent to ln f ∈ L1(dt/(1 +

t2)), so we can set u = ln f and proceed as at the beginning of Section 2: consider the
holomorphic function F (z) = U(z) + iŨ(z) on H, where U is the harmonic extension of u
to H, and Ũ is the unique conjugate harmonic function of U satisfying Ũ(i) = 0.
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Now we introduce the function G ∈ hol(H) given by

G (z) = exp ◦F (z), z ∈ H.

By using Jensen’s inequality we get that

|G (z)| = expU (z) ≤ 1

π

∫ ∞
−∞

=z
|z − t|2

f (t) dt, z ∈ H,

therefore ∫ ∞
−∞
|G (x, y)| dx ≤

∫ ∞
−∞

f (t) dt = 1 for all y > 0.

Thus G ∈ H1 and Theorem 3.1 in [2, page 55] implies that there exists a function
g ∈ L1(R) such that

g(x) = lim
y→0+

G (x, y) , a.e. x ∈ R.

By the other hand, we have

lim
y→0+

G (x, y) = exp

(
lim
y→0+

U(x, y)

)
exp

(
i lim
y→0+

Ũ(x, y)

)
= f (x) exp (i(H ln f)(x)) , a.e. x ∈ R,

therefore
g(x) = f (x) exp (i(H ln f)(x)) a.e on R. (3.1)

In particular, we notice that g has finite moments of all nonnegative orders.
By Lemma 3.7 in [2, page 59] we have∫ ∞

−∞
g(x)eitxdx = 0 for all t ≥ 0,

which implies that ∫ ∞
−∞

(ix)kg(x)eitxdx = 0 for all t ≥ 0.

We set t = 0 to get∫ ∞
−∞

xk<g(x)dx =

∫ ∞
−∞

xk=g(x)dx = 0 for all k ≥ 0. (3.2)

Since f is a density and |g| = f a.e. on R, it follows that at least one of the functions
<g,=g is a nonzero function. From (3.1) and (3.2) we get that cos(H ln f) and sin(H ln f)

are perturbations for Stieltjes classes with center at f .

Example 3.1. Odd powers of the normal distribution. Let X be a random variable with
X ∼ N(0, 12 ), then X2n+1, n ≥ 1, has the density

fn(x) :=
1

(2n+ 1)
√
π
|x|−2n/(2n+1) exp(−|x|2/(2n+1)), x ∈ R.

Clearly fn has a finite moment sequence. In [8] was shown that fn has finite logarithmic
integral for all n ≥ 1. Lemmas 2.2 and 2.3 imply that

H ln fn(t) = sgn(t)
(
πn/(2n+ 1) + tan (π/(2n+ 1)) |t|2/(2n+1)

)
, t 6= 0,

therefore SR (fn, h
n
c ) and SR (fn, h

n
s ) are Stieltjes classes for all n ≥ 1, where

hnc (t) = cos(H ln fn(t)) = cos
(
πn/(2n+ 1) + tan (π/(2n+ 1)) |t|2/(2n+1)

)
= sin(π/(4n+ 2)) cos(βn|t|2/(2n+1))− cos(π/(4n+ 2)) sin(βn|t|2/(2n+1)),
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and

hns (t) = sin(H ln fn(t)) = sgn(t) sin
(
πn/(2n+ 1) + tan (π/(2n+ 1)) |t|2/(2n+1)

)
= sgn(t)

(
sin(π/(4n+ 2)) sin(βn|t|2/(2n+1)) + cos(π/(4n+ 2)) cos(βn|t|2/(2n+1))

)
,

with βn = tan (π/(2n+ 1)), t 6= 0. The perturbation hnc was obtained for the first time in
[1]. As far as we know hns is a new perturbation, we can proceed as in [1] to verify that
fnh

n
s has vanishing moments.

Proof of Theorem 1.2. We set f∗(x) = |x|f(x2), x 6= 0. Clearly f∗ is a density on R and
verifies ∫ ∞

−∞
− ln f∗ (x)

1 + x2
dx = −2

∫ ∞
0

lnx

1 + x2
dx− 2

∫ ∞
0

ln f
(
x2
)

1 + x2
dx <∞.

The hypothesis about f imply that f∗ has a finite moment sequence. Actually, since f∗ is
an even function, the moments of odd order of f∗ vanish.

Hence f∗ satisfies the hypothesis in Theorem 1.1 and we can proceed as in (3.2) to
get ∫ ∞

−∞
x2kf∗(x) cos (H ln f∗(x)) dx =

∫ ∞
−∞

x2k+1f∗(x) sin (H ln f∗(x)) dx = 0

for all k ≥ 0. Remark 2.1 implies that∫ ∞
−∞

x2kf∗(x) cos (H ln f∗(x)) dx = 2

∫ ∞
0

x2k+1f(x2) cos (H ln f∗(x)) dx

=

∫ ∞
0

xkf(x) cos
(
H ln f∗(x1/2)

)
dx = 0

for all k ≥ 0. Similarly,∫ ∞
−∞

x2k+1f∗(x) sin (H ln f∗(x)) dx =

∫ ∞
0

xk+1/2f(x) sin
(
H ln f∗(x1/2)

)
dx = 0

for all k ≥ 0. Unfortunaly, we notice the function x1/2 sin
(
H ln f∗(x1/2)

)
is not bounded

on R+.
Remark 2.1 and Lemma 2.3 imply that

H ln f∗(t) = H(ln |x|)(t) +H
(
ln f(x2)

)
(t)

= −π
2

sgn(t) +
2t

π
P

∫ ∞
0

ln f(x2)

t2 − x2
dx.

Finally, for t > 0 we have

H ln f∗(t1/2) = −π
2
+

2t1/2

π
P

∫ ∞
0

ln f(x2)

t− x2
dx,

therefore cos
(
H ln f∗(t1/2)

)
= sin(He(ln f)(t)) is a perturbation for the Stieltjes class

with center at f .

Example 3.2. Let X ∼ N(0, 12 ). For r > 0 the random variable |X|r has a density
supported on R+ given by

fr(x) :=
2

r
√
π
x1/r−1 exp(−x2/r), x > 0.
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Clearly fr has a finite moment sequence. In [8] was shown that fr satisfies the condition
(1.2) iff r > 4. In this case, Lemmas 2.2 and 2.3 imply that

He (ln fr) (t) = (1/r − 1)He(lnx)(t)−He
(
x2/r

)
(t)

= (1− 1/r)π + tan(2π/r)t2/r, t > 0.

Therefore SR+ (fr, hr) is a Stieltjes class for all r > 4 where

hr(t) = sin(He (ln fr) (t)) = sin((1− 1/r)π + tan(2π/r)t2/r)

= sin(π/r) cos(tan(2π/r)t2/r)− cos(π/r) sin(tan(2π/r)t2/r), t > 0.

This perturbation was also obtained in [1].

Conclusion The Krein condition is no longer just a qualitative result to show the
M -indeterminacy of a density f but provides families of densities having all the same
moment sequence as f .
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