
Electron. Commun. Probab. 25 (2020), article no. 76, 1–8.
https://doi.org/10.1214/20-ECP350
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Hydrodynamic limit for a d-dimensional open symmetric

exclusion process

Zhengye Zhou*

Abstract

In this paper we focus on the open symmetric exclusion process with parameter m

(open SEP(m/2)), which allows m particles each site and has an open boundary. We
generalize the result about hydrodynamic limit for the open SEP(m/2) originally raised
in Theorem 4.12 of [8]. We prove that the hydrodynamic limit of the density profile
for a d-dimensional open SEP(m/2) solves the (d+ 1)-dimensional heat equation with
certain initial condition and boundary condition.
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1 Introduction

Different types of interacting processes with open boundary condition have been
studied in last few decades [4] [9] [10], where the boundaries were seen as particle
reservoirs and sinks. The systems conserve particle number away from boundaries and
exchange particles across their boundaries. The symmetric exclusion process with an
open boundary that allows up to m particles each site except for the boundary (open
SEP(m/2)) enjoys duality [5] [8]. In [8], duality between open SEP(m/2) with different
types of boundaries was used to get the hydrodynamic limit for density profile and height
function of a one-dimensional open SEP(m/2) on Z. In this paper, we start from the
duality result given in [8] and look into results about hydrodynamic limits in d dimension.
We use the method of Laplace transform to show that the hydrodynamic limits are
solutions of certain partial differential equations. To the best of the author’s knowledge,
this method has not occurred in proving the hydrodynamics of interacting processes.

We start by defining open SEP(m/2) and two types of boundaries.

Definition 1.1 (Open SEP(m/2)). Suppose G is a countable set, ∂G is a subset of G,
and p is a symmetric stochastic matrix on G. The symmetric exclusion process with
parameter m ∈ N and open boundary ∂G is a continuous time Markov process on particle
configurations on G. And m is the maximum number of particles allowed for each site
in the interior G◦ := G − ∂G, ky ∈ {0, 1, · · · ,m} is the occupation number at site y ∈ G◦,
αx ∈ [0, 1] is the boundary parameter for each x ∈ ∂G. The jump rate for a particle from
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Hydrodynamic limit for a d-dimensional open symmetric exclusion process

x ∈ G to y ∈ G is defined by
p(x, y)αx

m−ky
m , if x ∈ ∂G and y ∈ G◦.

p(x, y)(1− αy)kxm , if x ∈ G◦ and y ∈ ∂G.
p(x, y)kxm

m−ky
m , if x ∈ G◦ and y ∈ G◦.

0, if x ∈ ∂G and y ∈ ∂G.

(1.1)

Definition 1.2. (a). If αx = 0 for all x ∈ ∂G, the boundary for open SEP(m/2) is a sink
boundary. Each site x ∈ ∂G is a sink that absorbs particles from G◦.

(b). If 0 < αx ≤ 1 for all x ∈ ∂G, the boundary for open SEP(m/2) is a reservoir
boundary. Each site x ∈ ∂G is a reservoir with infinitely many particles.

Remark 1.3. In the case αx = 0, the jump rate from site x ∈ ∂G is 0. Thus the boundary
site x is absorbing, once a particle jumps there, it stays there forever. When 0 < αx ≤ 1,
the jump rate from x ∈ ∂G is independent of the occupation number at x.

In order to lighten the notation, we omit the dependence on the dimension d in
definitions. For example, the hitting time τr and τa,b, the functions ρt, φ and N are
defined in d-dimension. Throughout this paper, || · || denotes the Euclidean norm in the
corresponding dimension. Let B(0, r) be the open ball with radius r centered at 0 in Rd,
and B(0, r)c be the complement of B(0, r).

Define the interior of GL as G◦L := Zd∩B(0,
√
L)c, the boundary of GL as ∂GL := {z|z ∈

Zd, ||z|| ≤
√
L, z is adjacent to a vertex in G◦L}, and GL := G◦L∪∂GL. Let p (x, x± ek) = 1

2d ,
where {ek}1≤k≤d is the standard orthonormal basis for Rd.

Our main result is about the hydrodynamic limit of an open SEP(m/2).

Theorem 1.4. Let st evolve as an open SEP(m/2) on GL ⊂ Zd, with αx = α for all
x ∈ ∂GL, where 0 < α ≤ 1. Set s0(x) = 0 for all x ∈ G◦L. Let ρt(x) be the density profile of
st, i.e.

ρt(x) =
1

m
(P(st(x) = 1) + 2 · P(st(x) = 2) + · · ·+m · P(st(x) = m)) . (1.2)

Then the hydrodynamic limit φ(χ, τ) := limL→∞ ρ2dmτL

(
bχL1/2c

)
solves the heat equa-

tion
∂φ(χ, τ)

∂τ
=

1

2
∆φ(χ, τ), (1.3)

on {Rd − B(0, 1)} × [0,∞) with initial condition φ(χ, 0) = 0, and Dirichlet boundary

condition φ(χ, τ)|||χ||=1 = α. Here χ = (x1, x2 · · · , xd) ∈ Rd − B(0, 1), and ∆ =
∑d
i=1

∂2

∂x2
i

is the d-dimensional Laplacian.

2 Proof of Theorem 1.4

First, let us recall the definition of stochastic duality and the duality result given by
Theorem 4.11 in [8].

Definition 2.1 (Stochastic duality). Two Markov processes st and s′t on state spaces S

and S′ are dual with duality function D on S×S′ if

Es[D(st, s
′)] = Es′ [D(s, s′t)] for all s ∈ S, s′ ∈ S′, and t > 0. (2.1)

On the left hand side, Es means s0 = s and on the right hand side, Es′ means s′0 = s′.

Theorem 2.2. Let st evolve as an open SEP(m/2) on G with a reservoir boundary ∂G,
and s′t evolve as an open SEP(m/2) with a sink boundary ∂G and finitely many particles.
Then st and s′t are dual with respect to the function

D(s, s′) =
∏
y∈∂G

αs′(y)
y

∏
x∈G◦

(
s(x)
s′(x)

)(
m

s′(x)

)1{s(x)≥s′(x)}. (2.2)
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Now we consider the special case of s′t that only consists of a single particle starting
from site x. By observation, s′t is a simple random walk with jump rate 1

2dm that stops at
the boundary ∂GL. Apply the duality relation, we have:

ρt(x) = Es[D(st, s
′)] = Es′ [D(s, s′t)] = α · Px( inf

0≤s≤t
||s′s|| ≤

√
L). (2.3)

Next, rescale time by 2dm, so that the jump rate becomes 1, we have

ρt(x) = α · Px( inf
0≤s≤t

||s′s|| ≤
√
L). = α · Px( inf

0≤s≤ t
2dm

||Ss|| ≤
√
L), (2.4)

where St is the d-dimensional continuous time random walks with jump rate 1, and initial
condition S0 = x.

Now recall functional central limit theorem, which says 1√
L
StL =⇒ Bt, with S0 =

b
√
Lχc and B0 = χ, where Bt is the standard d-dimensional Brownian motion. Thus, let

t = 2dmτL, and x = b
√
Lχc, with ||χ|| ≥ 1,

φ(χ, τ) = lim
L→∞

ρ2dmτL(b
√
Lχc) = lim

L→∞
αPb

√
Lχc( inf

0≤s≤ t
2dm

||Ss|| ≤
√
L)

= αPχ( inf
0≤s≤τ

||Bs|| ≤ 1) = αPχ(τ1 ≤ τ),
(2.5)

where τr is the hitting time of B(0, r) by Bt.
From equation (2.5), the initial condition and boundary condition for φ follow easily

by taking τ = 0 and ||χ|| = 1.

Next, we introduce Bessel process with index v. When v = d−2
2 ∈ {N+/2− 1}, Bessel

process with index v is identical in law with the Euclidean norm of the d-dimensional
Brownian motion. Now define τa,b as the first hitting time to b of the Bessel process
starting at a. With this notation, we have

φ(χ, τ) = αPχ(τ1 ≤ τ) = αP(τ||χ||,1 ≤ τ). (2.6)

Also, from [7], we know the Laplace transformation of P(τ||χ||,1 ≤ τ) with respect to τ
is

L[P(τ||χ||,1 ≤ τ)](λ) = ||χ||−vKv(||χ||
√

2λ)

λKv(
√

2λ)
, (2.7)

where Kv(z) is the second kind modified Bessel function of index v, which has integral
form

Kv(z) = π−1/2Γ(v + 1/2)(2z)v
∫ ∞

0

cos(t)dt

(t2 + z2)v+1/2
. (2.8)

It is a solution of the modified Bessel differential equation

z2 d
2f

dz2
+ z

df

dz
− (z2 + v2)f = 0. (2.9)

Then, apply Laplace transform to the function

g(||χ||, τ) :=
∂φ(χ, τ)

∂τ
− 1

2

∂2φ(χ, τ)

∂||χ||2
− d− 1

2||χ||
∂φ(χ, τ)

∂||χ||
. (2.10)

Use the fact that for a differentiable function f(t),

L[f ′](s) = sL[f ](s)− f(0−), (2.11)
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and the modified Bessel differential equation (2.9), we get

L[g(||χ||, τ)](λ) =
||χ||−v−2

2λKv(
√

2λ)

(
−2λ||χ||2K ′′v (

√
2λ||χ||)

−
√

2λ||χ||K ′v(
√

2λ||χ||) + (2λ||χ||2 + v2)Kv(
√

2λ||χ||)
)

= 0.

(2.12)

Thus, g(||χ||, τ) = 0, i.e.

∂φ(χ, τ)

∂τ
=

1

2

∂2φ(χ, τ)

∂||χ||2
+
d− 1

2||χ||
∂φ(χ, τ)

∂||χ||
. (2.13)

Recall the d-dimensional Laplacian ∆ in polar coordinates, write χ ∈ Rd as ||χ||θχ,

∆f(χ) =
∂2f(χ)

∂||χ||2
+
d− 1

||χ||
∂f(χ)

∂||χ||
+

1

||χ||2
∆Sd−1f(χ). (2.14)

Here ∆Sd−1 is the Laplace-Beltrami operator on the (d−1)-sphere. When f is independent
of θ, ∆Sd−1f = 0. From equation (2.6), it’s clear that function φ is radial in χ, thus ∆Sd−1φ

is zero. Then, equation (1.3) follows.

3 Some applications

In one-dimensional case, the hydrodynamic limit of the height function of the process
st is of great interest. The height function is usually defined as the number of particles
to the right of a site on Z at a given time. In higher dimension, we can generalize it as
the number of particles outside B(0, r) at time t.

Corollary 3.1. Define

Nr(st) =
∑
||y||≥r

(
1{st(y)=1} + 2 · 1{st(y)=2} · · ·+m · 1{st(y)=m}

)
, (3.1)

and
N (r, τ) = lim

L→∞
E[m−1N√Lr(s2dmτL)]. (3.2)

There exists a M ∈ (0,∞) such that N (r, τ) solves the partial differential equation

∂N (r, τ)

∂τ
=

1

2

∂2N (r, τ)

∂r2
− d− 1

2r

∂N (r, τ)

∂r
(3.3)

on (1,∞) × [0,M ] with initial condition N (r, 0) = 0 and Neumann boundary condition
∂N (r,τ)
∂r |r=1 = − dπd/2

Γ(d/2+1)α when d > 1, and ∂N (r,τ)
∂r |r=1 = −α when d = 1.

3.1 Preliminaries

Before proving Corollary 3.1, we state some useful facts about functions P(τr,1 ≤ τ),
erfc(z) and Kv(z) that will be used in subsequent proof.

1. We have uniform estimates for ∂P(τr,1≤τ)
∂τ when r > 1 [3]:

(a) For d ≥ 3,

∂P(τr,1 ≤ τ)

∂τ
≈ r − 1

r

e−(r−1)2/2τ

τ3/2

1

τ (d−3)/2 + r(d−3)/2
. (3.4)

(b) For d = 2,

∂P(τr,1 ≤ τ)

∂τ
≈ r − 1

r
e−(r−1)2/2τ (r + τ)1/2

τ3/2

1 + log r

(1 + log(1 + τ
r ))(1 + log(τ + r))

. (3.5)

Here f ≈ g means that there exists strictly positive c1 and c2 depending only on d
such that c1g ≤ f ≤ c2g.
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2. When d = 2, there is another bound for P when 0 < τ < 2r2 [6]. There exists
positive constant c1, c2 such that

P(τr,1 ≤ τ) ≤ c1
log r

e−
c2r

2

τ . (3.6)

3. The complementary function erfc(z) is defined by

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt. (3.7)

When ||z|| → ∞, it has asymptotic expansion [1]

erfc(z) =
e−z

2

√
πz

(
1− 1

2z2
+ · · ·+ (−1)n

(2n− 1)!!

(2z2)n
+ · · ·

)
∼ 1−

√
z2

z
+
e−z

2

√
πz

(
1 +O

(
1

z2

))
.

(3.8)

4. When |ph z| ≤ π
2 , as ||z|| → ∞, Kv(z) has asymptotic expansion [2]

Kv(z) =

√
π

2z
e−z

( ∞∑
k=0

ak(v)

zk

)
=

√
π

2z
e−z (1 +R1(v, z)) (3.9)

with error bound ||R1(v, z)|| ≤ 2|| 4v
2−5
z ||e

∣∣∣∣∣∣∣∣ v2− 1
4

z

∣∣∣∣∣∣∣∣
.

5. The derivative of Kv(z) has the expression

K ′v(z) =
v

z
Kv(z)−Kv+1(z). (3.10)

3.2 Proof of Corollary 3.1

Since the result for d = 1 is already given by Theorem 4.12 in [8], we omit its proof.
Next, we assume that the interchange of limits is justified in the following steps, some of
which will be shown at the end of this section.

By definition of N and equation (2.5), for d > 1,

N (r, τ) =

∫
||u||≥r

α · P(τ||u||,1 ≤ τ)du =
dπd/2

Γ(d/2 + 1)

∫ ∞
r

wd−1α · P(τw,1 ≤ τ)dw. (3.11)

The second equation is obtained by changing variables to polar coordinates. Then the
boundary condition and initial condition follow easily.

Next, we can write the partial derivatives of N in integral form as

∂N (r, τ)

∂τ
=

dπd/2

Γ(d/2 + 1)
α

∫ ∞
r

∂wd−1P(τw,1 ≤ τ)

∂τ
dw; (3.12)

∂N (r, τ)

∂r
= − dπd/2

Γ(d/2 + 1)
αrd−1P(τr,1 ≤ τ) =

dπd/2

Γ(d/2 + 1)
α

∫ ∞
r

∂wd−1P(τw,1 ≤ τ)

∂w
dw;

(3.13)

∂2N (r, τ)

∂r2
= − dπd/2

Γ(d/2 + 1)
α
∂rd−1P(τr,1 ≤ τ)

∂r
=

dπd/2

Γ(d/2 + 1)
α

∫ ∞
r

∂2wd−1P(τw,1 ≤ τ)

∂w2
dw.

(3.14)

Remark 3.2. Equations (3.12)-(3.14) are derived using the fundamental theorem of
calculus, where some boundary terms are omitted in the above equations because they
are zero, which will be shown later on.
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Now, define function g̃(w, t) = wd−1P(τw,1 ≤ t). Then apply Laplace transformation to

H(w, t) :=
∂g̃(w, t)

∂t
− 1

2

∂2g̃(w, t)

∂w2
+
d− 1

2w

∂g̃(w, t)

∂w
− d− 1

2w2
g̃(w, t), (3.15)

we have

L[H(w, t)](λ) =
wv−1

2λKv(
√

2λ)

(
(2w2λ+ v2)Kv(w

√
2λ)

−2w2λK ′′v (w
√

2λ)− w
√

2λK ′v(w
√

2λ)
)
.

(3.16)

The modified Bessel equation (2.9) again yields that

L[H(w, t)] = 0. (3.17)

Thus, g̃(w, t) satisfies the partial differential equation

∂g̃(w, t)

∂t
=

1

2

∂2g̃(w, t)

∂w2
− d− 1

2w

∂g̃(w, t)

∂w
+
d− 1

2w2
g̃(w, t). (3.18)

Integrate with respect to w on both sides from r to infinity, the result for N follows.
To complete the proof, we need to show that the interchange of the integral and

partial differential operators in equation (3.12) is valid, and

lim
r→∞

rd−1P(τr,1 ≤ τ) = 0, (3.19)

lim
r→∞

∂rd−1P(τr,1 ≤ τ)

∂r
= 0. (3.20)

First, since P(τr,1 ≤ τ) is monotone and continuous in τ , we can pick 0 < M <∞ such

that N (r,M) <∞. Then it suffices to show that for any fixed r > 1,
∫∞
r

∂wd−1P(τw,1≤τ)
∂τ dw

is uniformly convergent in τ on the region [0,M ]. We aim to use dominated convergence
theorem to show the uniform convergence. First, we need to find a dominated function

for ∂wd−1P(τw,1≤τ)
∂τ .

Using equations (3.4) and (3.5), we obtain upper bounds listed below.
There exists positive constants Cd and C ′d depending only on d such that when d ≥ 3,

∂P(τw,1 ≤ τ)

∂τ
≤ Cd

w − 1

w(d−1)/2

e−(w−1)2/2τ

τ3/2

≤ C ′d

{
1

w(d−1)/2(w−1)2
, when w <

√
3M + 1

w−1
w(d−1)/2

e−(w−1)2/2M

M3/2 , when w ≥
√

3M + 1
;

(3.21)

And when d = 2,

∂P(τw,1 ≤ τ)

∂τ
≤ Cd

(w − 1)(w +M)
1
2

w

e−(w−1)2/2τ

τ3/2

≤ C ′d

 (w+M)
1
2

w(w−1)2 , when w <
√

3M + 1

(w +M)
1
2
e−(w−1)2/2M

M3/2 , when w ≥
√

3M + 1
.

(3.22)

Since the right most functions in inequalities (3.21) and (3.22) are integrable, we use

them as dominate functions. Thus, for any fixed r > 1,
∫∞
r

∂wd−1P(τw,1≤τ)
∂τ dw is uniformly

convergent.
Next, we proceed to prove equation (3.19). When d = 2, we can apply the bound in

inequality (3.6) directly. When d ≥ 3, we use inequality (3.21) again,

P(τr,1 ≤ τ) ≤
∫ τ

0

Cd
r − 1

r(d−1)/2

e−(r−1)2/2t

t3/2
dt ≤ Cd

∫ τ

0

(r − 1)
e−(r−1)2/2t

t3/2
dt

= C ′d · erfc(
r − 1√

2τ
).

(3.23)
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Use the expansion of function erfc(z) in equation (3.8), we have that for any finite k ≥ 0

and fixed τ > 0,
lim
r→∞

rkP(τr,1 ≤ τ) = 0. (3.24)

As for ∂P(τr,1≤τ)
∂r , we begin by investigating its Laplace transform

L
[
∂P(τr,1 ≤ τ)

∂r

]
(λ) =

√
2

rv
K ′v(r

√
2λ)√

λKv(
√

2λ)
− v

rv+1

Kv(r
√

2λ)

λKv(
√

2λ)
. (3.25)

Next, write K ′v(z) as in equation (3.10), by observation, it suffices to show

lim
r→∞

rv+1L−1

[
Kv+1(r

√
2λ)√

λKv(
√

2λ)

]
= 0. (3.26)

Since all the zeros of Kv(z) have negative real part [11], the inverse Laplace transform
could be written as

L−1

[
Kv+1(r

√
2λ)√

λKv(
√

2λ)

]
=

1

2πi

∫ 1+i∞

1−i∞
etλ

Kv+1(r
√

2λ)√
λKv(

√
2λ)

dλ. (3.27)

For any fixed λ ∈ 1 + iR, using the asymptotic expansion (3.8), we have

lim
r→∞

rv+1Kv+1(r
√

2λ)√
λKv(

√
2λ)

= 0. (3.28)

Last, we can bound
∣∣∣∣∣∣Kv+1(r

√
2λ)√

λKv(
√

2λ)

∣∣∣∣∣∣ by the module of e−(r−1)
√

2λ, then apply dominated

convergence theorem again, equation (3.26) is proved by taking the limit inside the
integral.

Left to show that
∣∣∣∣∣∣Kv+1(r

√
2λ)√

λKv(
√

2λ)

∣∣∣∣∣∣ is bounded by
∣∣∣∣∣∣e−(r−1)

√
2λ
∣∣∣∣∣∣. Let λ = 1 + iy, y ∈ R

and define

f(y) :=

∣∣∣∣∣∣
∣∣∣∣∣∣
Kv+1(r

√
2λ)√

λKv(
√

2λ)

e−(r−1)
√

2λ

∣∣∣∣∣∣
∣∣∣∣∣∣ = r−

1
2

∣∣∣∣∣
∣∣∣∣∣1 +R1(v + 1, r

√
2λ)

λ
1
2 (1 +R1(v,

√
2λ))

∣∣∣∣∣
∣∣∣∣∣ , (3.29)

where in second equation, equation (3.9) is used. Also, with the upper bound listed
below equation (3.9) for ||R1(v, z)||, we know that as ||z|| → ∞, ||R1(v, z)|| → 0. So, for
any fixed r, f(y) is a continuous function from R to R with

lim
y→−∞

f(y) = lim
y→∞

f(y) = 0. (3.30)

Thus, for each fixed r, there exists a finite Mr such that 0 < f(y) ≤ Mr. Moreover,
this upper bound Mr could be chosen such that it is decreasing in r. The fact that∣∣∣∣∣∣etλe−(r−1)

√
2λ
∣∣∣∣∣∣ is integrable finishes the proof.
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