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Abstract

When a Brownian motion is scaled according to the law of the iterated logarithm,
its supremum converges to one as time tends to zero. Upper large deviations of the
supremum process can be quantified by writing the problem in terms of hitting times
and applying a result of Strassen (1967) on hitting time densities. We extend this to a
small-time large deviations principle for the supremum of scaled Itô diffusions, using
as our main tool a refinement of Strassen’s result due to Lerche (1986).
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1 Introduction and main results

For a standard Brownian motion W and

h(u) :=

√
2u log log

1

u
,

we have

lim sup
t↘0

Wt

h(t)
= lim
t↘0

sup
0<u<t

Wu

h(u)
= 1 a.s.,

by Khinchin’s law of the iterated logarithm, and there are extensions to the diffusion
case; see the proof of Proposition 1.2 below for some references. In this note we are
not interested in a.s. convergence, but rather in small-time large deviations of the
process sup0<u<tXu/h(u) for an Itô diffusion X. For Brownian motion, a large deviations
estimate follows from a result of Strassen [8], which gives precise tail asymptotics for
the last (or, by time inversion, first) time at which a Brownian motion hits a smooth curve.
For fixed ε > 0, it yields

P

(
sup

0<u<t

Wu

h(u)
≥
√

1 + ε

)
= e−ε(log log 1

t )(1+o(1)), t↘ 0. (1.1)

See Section 2 for details. In Theorem 2.1 below, we cite an extension of Strassen’s result
due to Lerche [5], which we will use when extending the estimate (1.1) to Itô diffusions.
We make the following assumptions on our diffusion process. Simple sufficient conditions,
just concerning smoothness and growth of b and σ, are given in Proposition 1.2.
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Large deviations related to the law of the iterated logarithm

Assumption 1.1. (i) The continuous one-dimensional stochastic process X = (Xt)t≥0
satisfies the SDE

Xt =

∫ t

0

b(Xu, u) du+

∫ t

0

σ(Xu, u) dWu, t > 0,

X0 = 0.

(1.2)

(ii) The coefficients b and σ are continuous functions from R× [0,∞) to R with

σ0 := σ(X0, 0) = σ(0, 0) > 0.

(iii) The process X satisfies a small-time sample path moderate deviations principle
in Hölder space. More explicitly, for 1 ≤ λ(ε) = o(ε−1/2) and α ∈ [0, 12 ), the family
of processes (

√
ελ(ε))−1(Xεt)t∈[0,1] satisfies the LDP (large deviations principle) in

Cα0 ([0, 1],R) as ε↘ 0 with speed λ2(ε) and good rate function

ψ 7→

{
‖ψ‖2H/(2σ2

0) ψ ∈ H,
∞ ψ /∈ H,

where H is the one-dimensional Cameron–Martin space (see p. 260f in [3] for
definitions of Cα0 and H).

(iv) The process X satisfies the small-time law of the iterated logarithm, i.e.,

lim sup
t↘0

Xt

h(t)
= lim
t↘0

sup
0<u<t

Xu

h(u)
= σ0, a.s.

By inspecting our proofs (see Lemma 3.2 and (3.9)), it is not hard to see that the
continuity assumption (ii) can be slightly weakened. We do not make this explicit, since
the available sufficient conditions implying the moderate deviations principle (iii) require
much smoother coefficients. In part (iv), the second equality could be replaced by ≥.
The following proposition gives sufficient conditions for Assumption 1.1.

Proposition 1.2. Suppose that the coefficients of the SDE (1.2) satisfy

(i) b : R× [0,∞)→ R is continuous, continuously differentiable on the interior of its
domain, and has at most linear growth, i.e. there is some M > 0 such that

b2(x, t) ≤M(1 + x2 + t2), for all (x, t) ∈ R× [0,∞),

(ii) σ : R × [0,∞) → R is locally Lipschitz continuous and of at most linear growth.
Furthermore, σ0 := σ(0, 0) > 0.

Then, the diffusion equation (1.2) admits a unique strong solution, and all parts of
Assumption 1.1 are satisfied.

Proof. It is well-known that Lipschitz and linear growth conditions (w.r.t. the space vari-
able) imply strong existence and uniqueness, see e.g. Section 5.2 in [4]. The coefficients
b and σ satisfy (A.1)–(A.3) from [3], and so (iii) follows from Corollary 4.1 in [3]. Part (iv)
is a special case of the functional law of the iterated logarithm in Theorem 4.3 in [3].
See also p. 57 in [6] and p. 11 in [1].

Theorem 1.3. Under Assumption 1.1, the process sup0<u<tXu/h(u) satisfies a small-
time large deviations principle with speed log log(1/t) and rate function

J(x) :=

{
(x/σ0)2 − 1 x ≥ σ0,
∞ x < σ0.
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Large deviations related to the law of the iterated logarithm

This means that

lim inf
t↘0

1

log log 1
t

logP

(
sup

0<u<t

Xu

h(u)
∈ O

)
≥ −J(O) (1.3)

for any open set O and

lim sup
t↘0

1

log log 1
t

logP

(
sup

0<u<t

Xu

h(u)
∈ C

)
≤ −J(C) (1.4)

for any closed set C, where J(M) := infx∈M J(x).

Obviously, J is a good rate function in the sense of [2], i.e. the level sets {J ≤ c},
c ∈ R, are compact. The main estimate needed to prove Theorem 1.3 is contained in the
following result.

Theorem 1.4. Under parts (i)–(iii) of Assumption 1.1, for ε > 0 we have

P

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
1 + ε

)
= e−ε(log log 1

t )(1+o(1))

=
(

log
1

t

)−ε+o(1)

, t↘ 0.

After some preparations, the proofs of Theorems 1.3 and 1.4 are given at the end
of Section 3. We note that part (iv) of Assumption 1.1 is not needed to prove the lower
bound (1.3). Moreover, note that our approach does not easily extend to the case of a
multi-dimensional diffusion, and so we leave this for future research. Even the case
of two correlated Brownian motions is not trivial. Let B, W be independent standard
Brownian motions and ρ ∈ (0, 1). While a joint LDP for the independent processes
supB/h and supW/h clearly holds, it is not obvious how to treat(

sup
u≤t

Bu
h(u)

, sup
u≤t

ρBu +
√

1− ρ2Wu

h(u)

)
.

2 Brownian motion

We can quickly see that there are positive constants γ1, γ2 (depending on ε) such that

e−γ1(log log 1
t )(1+o(1)) ≤ P

(
sup

0<u<t

Wu

h(u)
≥
√

1 + ε

)
≤ e−γ2(log log 1

t )(1+o(1)), t↘ 0. (2.1)

As for the lower estimate, note that h(u) increases for small u > 0, and thus

P

(
sup

0<u<t

|Wu|
h(u)

≥
√

1 + ε

)
≥ P

(
sup

0<u<t
|Wu| ≥

√
1 + ε h(t)

)
, t small.

From this and the reflection principle, it is very easy to see that we can take γ1 =

ε + 1 in (2.1). The upper estimate in (2.1) follows from applying the Borell inequality
(Theorem D.1 in [7]) to the centered Gaussian process (Wu/h(u))0<u<t, but neither of
these estimates is sharp. To get the optimal constants γ1 = γ2 = ε, we use a result of
Strassen [8] on boundary crossings (which is not directly related to Strassen’s well-
known functional law of the iterated logarithm). By time inversion, we have

P

(
sup

0<u<t

Wu

h(u)
≥
√

1 + ε

)
= P

(
inf{u : Wu ≥

√
1 + ε h(u)} ≤ t

)
= P

(
sup{v : Wv ≥

√
1 + ε vh(1/v)} ≥ 1

t

)
.
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Large deviations related to the law of the iterated logarithm

Define ϕ(v) =
√

1 + ε vh(1/v). Then, by Theorem 1.2 of [8], the random variable sup{v :

Wv ≥ ϕ(v)} has a density Dϕ(s) (except possibly for some mass at zero, which is
irrelevant for our asymptotic estimates), which satisfies

Dϕ(s) ∼ ϕ′(s)(2πs)−1/2 exp
(
−ϕ(s)2/2s

)
, s↗∞.

From this, the estimate (1.1) easily follows, very similarly as in the proof of Theorem 2.2
below. That theorem strengthens (1.1), replacing ε by some quantity that converges to ε.
To prove it, we apply the following theorem due to Lerche:

Theorem 2.1 (Theorem 4.1 in [5], p. 60). Let Ta := inf{u > 0 : Wu ≥ ψa(u)} for some
positive, increasing, continuously differentiable function u 7→ ψa(u), which depends on a
positive parameter a. Assume that there are 0 < t1 ≤ ∞ and 0 < α < 1 such that

(i) P (Ta < t1)→ 0 as a↗∞,

(ii) ψa(u)/uα is monotone decreasing in u for each a,

(iii) for every ε > 0 there exists a δ > 0 such that for all a∣∣∣∣ψ′a(s)

ψ′a(u)
− 1

∣∣∣∣ < ε if
∣∣∣ s
u
− 1
∣∣∣ < δ,

for s, u ∈ (0, t1).

Then the density of Ta satisfies

pa(u) =
Λa(u)

u3/2
n
(ψa(u)√

u

)
(1 + o(1)) (2.2)

uniformly on (0, t1) as a↗∞. Here, n is the Gaussian density

n(x) =
1√
2π
e−x

2/2,

and Λa is defined by

Λa(u) := ψa(u)− uψ′a(u).

We can now prove the following variant of Theorem 1.4, where X is specialized to
Brownian motion, but ε is generalized to ε+ o(1).

Theorem 2.2. Let d(t) be a deterministic function with d(t) = o(1) as t↘ 0. Then, for
ε > 0,

P

(
sup

0<u<t

Wu

h(u)
≥
√

1 + ε+ d(t)

)
= e−ε(log log 1

t )(1+o(1)), t↘ 0. (2.3)

Proof. We put
q(t) :=

√
1 + ε+ d(t) (2.4)

and a = 1/t, to make the notation similar to [5]. We can write the probability in (2.3) as
a boundary crossing probability,

P

(
sup

0<u<t

Wu

h(u)
≥ q(t)

)
= P

(
inf {u > 0 : Wu ≥ q(1/a)h(u)} < 1

a

)
= P (inf {au > 0 : Wu ≥ q(1/a)h(u)} < 1)

= P
(
inf
{
s > 0 : Ws/a ≥ q(1/a)h(s/a)

}
< 1
)

= P
(
inf
{
s > 0 :

√
aWs/a ≥ q(1/a)

√
ah(s/a)

}
< 1
)

= P
(
inf
{
s > 0 : W ′s ≥ q(1/a)

√
ah(s/a)

}
< 1
)
, (2.5)
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Large deviations related to the law of the iterated logarithm

where W ′ is again a Brownian motion, using the scaling property. We will verify in
Lemma 2.3 below that the function

ψa(u) := q(1/a)
√
ah(u/a) (2.6)

satisfies the assumptions of Theorem 2.1. By (2.5) and the uniform estimate (2.2), we
thus obtain

P

(
sup

0<u<t

Wu

h(u)
≥ q(t)

)
∼
∫ 1

0

Λa(u)

u3/2
n
(ψa(u)√

u

)
du, a =

1

t
↗∞.

An easy calculation shows that

Λa(u) ∼ const ·
√
u log log

a

u
,

uniformly in u ∈ (0, 1), and so∫ 1

0

Λa(u)

u3/2
n
(ψa(u)√

u

)
du ∼ const ·

∫ 1

0

1

u

√
log log

a

u

(
log

a

u

)−(1+ε+d(t))
du

= const ·
∫ ∞
a

1

x

√
log log x (log x)−(1+ε+d(t))dx

= const ·
∫ ∞
a

1

x
(log x)−(1+ε+o(1))dx

= const · (log a)−ε+o(1) = e−ε(log log 1
t )(1+o(1)).

As for the third line, note that

log log x = (log x)
log log log x

log log x ,

and that the exponent is o(1) for x ≥ a and a↗∞.

Lemma 2.3. The function ψa defined in (2.6), with q defined in (2.4), satisfies the
assumptions of Theorem 2.1.

Proof. To verify condition (ii) of Theorem 2.1, it suffices to note that h(u)/uα decreases
for small u and α ∈ ( 1

2 , 1). The continuity condition (iii) easily follows from

log(t) ∼ log(T ), t/T ↗ 1, t, T ↗∞.

It remains to show condition (i), i.e., that

P (Ta < 1) = P
(
inf
{
s > 0 : W ′s ≥ q(1/a)

√
ah(s/a)

}
< 1
)

= P

(
sup

0<s≤1

W ′s√
2s log log a

s

≥ q(1/a)

)
(2.7)

converges to zero as a↗∞. Choose a0 > 0 such that

q(1/a) ≥
√

1 +
2

3
ε, a ≥ a0. (2.8)

By the law of the iterated logarithm for Brownian motion, we have

lim
s0↘0

sup
0<s≤s0

|W ′s|√
2s log log a0

s

= 1 a.s.
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Large deviations related to the law of the iterated logarithm

From this we get that there exists an s0 > 0 such that

sup
0<s≤s0

|W ′s|√
2s log log a0

s

≤
√

1 +
1

2
ε a.s.

By monotonicity w.r.t. a, we obtain

|W ′s|√
2s log log a

s

≤ |W ′s|√
2s log log a0

s

≤
√

1 +
1

2
ε, a ≥ a0, s ∈ (0, s0] a.s. (2.9)

For s ∈ [s0, 1], note that the first factor of

W ′s√
2s
· 1√

log log a
s

is bounded pathwise, and that the second factor satisfies

1√
log log a

s

=
1√

log log a+ o(1)
→ 0, a↗∞,

uniformly on [s0, 1]. From this and (2.9), we get

lim sup
a↗∞

sup
0<s≤1

W ′s√
2s log log a

s

≤
√

1 +
1

2
ε,

and together with (2.8) this implies that (2.7) converges to zero.

3 Itô diffusions

We now show that our results about Itô diffusions can be reduced to the case of
Brownian motion, which was handled in the preceding section. The following easy
consequence of the sample path moderate deviations principle will be used repeatedly.

Lemma 3.1. Suppose that parts (i) and (iii) of Assumption 1.1 hold. Define

At := {|Xu| ≤ u1/4, u ≤ t}.

Then there is c > 0 such that for t > 0 sufficiently small

P (Ac
t) ≤ exp(−c/

√
t).

Proof. For 1
4 < α < 1

2 , it is easy to see that the map Φ : Cα0 → [0,∞) defined by

Φ(f) := sup
0<u≤1

|f(u)|u−1/4

is continuous. Using part (iii) of Assumption 1.1 with λ(ε) = ε−1/4 and the contraction
principle, we get that the family of random variables

sup
0<u≤1

|Xεu|
(εu)1/4

, ε > 0,

satisfies an LDP with speed ε−1/2. The assertion now follows from

P (Ac
t) ≤ P

(
sup
u≤t

|Xu|
u1/4

≥ 1

)
= P

(
sup
u≤1

|Xεu|
(εu)1/4

≥ 1

) ∣∣∣∣
ε=t

.
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Large deviations related to the law of the iterated logarithm

The drift of X can be easily controlled by continuity and the preceding lemma. Define

Dt := sup
0<u<t

|
∫ u
0
b(Xv, v) dv|
h(u)

. (3.1)

Lemma 3.2. Under parts (i)–(iii) of Assumption 1.1, there is c > 0 such that for t > 0

sufficiently small

P
(
Dt >

√
t
)
≤ exp(−c/

√
t). (3.2)

Proof. By the continuity of b,

c1 := sup
{
|b(x, v)| : |x| ≤ 1, v ≤ 1

}
<∞.

Therefore, for small t we have∣∣∣ ∫ u

0

b(Xv, v) dv
∣∣∣ ≤ c1u, u ≤ t, on At.

This implies

Dt ≤ sup
0<u<t

c1u

h(u)
= c1

√
t

2 log log 1
t

on At,

and thus
P
(
Dt >

√
t, At

)
= 0, t small.

Then Lemma 3.1 implies the result.

Note that the decay rate in (3.2) is clearly negligible in comparison to (1.1). The next
step in the proof of Theorem 1.4 is contained in Lemma 3.4, which allows us to deal with
the local martingale part, after expressing it as a time-changed Brownian motion. We
will require the following well-known result.

Theorem 3.3 (Lévy modulus of continuity, Theorem 2.9.25 in [4]). For f(δ) :=√
2δ log(1/δ), we have

lim sup
δ↘0

1

f(δ)
max

0≤s<t≤1
|t−s|≤δ

|Wt −Ws| = 1 a.s.

Lemma 3.4. Suppose that parts (i)–(iii) of Assumption 1.1 hold. Let Ŵ be a standard
Brownian motion, and d(t) a deterministic function satisfying d(t) = o(1) as t↘ 0. Then

P

(
sup

0<u<t

∣∣Ŵ〈X〉u ∣∣
h(u)

≥ σ0
√

1 + ε+ d(t)

)
= e−ε(log log 1

t )(1+o(1)), (3.3)

P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+ d(t)

)
= e−ε(log log 1

t )(1+o(1)), t↘ 0. (3.4)

Proof. Define

g(u) := sup
|x|≤u1/4

s<u

∣∣σ2(x, s)− σ2
0

∣∣ = o(1), u↘ 0.

Since

〈X〉u =

∫ u

0

σ2(Xv, v) dv,
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Large deviations related to the law of the iterated logarithm

we conclude from the mean value theorem that∣∣〈X〉u − σ2
0u
∣∣ = û|σ2(Xû, û)− σ2

0 | ≤ ug(u), u ≤ t, (3.5)

on the event At from Lemma 3.1. The mean value theorem also implies

〈X〉u = ũσ2(Xũ, ũ) ≤ 2uσ2
0 . (3.6)

This estimate, and (3.7)–(3.9) below, hold for t sufficiently small and u ≤ t on the event
At. Putting (s, t) = (x, y)/(2σ2

0u) in Theorem 3.3, and using Brownian scaling, we obtain

max
0≤x<y≤2σ2

0u

|y−x|≤2σ2
0uδ

|Ŵy − Ŵx| ≤ σ0
√

2u

√
3δ log

(
1

δ

)
(3.7)

for δ > 0 sufficiently small. In particular, with δ := g(u)
2σ2

0
we get

max
0≤x<y≤2σ2

0u
|y−x|≤ug(u)

|Ŵy − Ŵx| ≤

√
3ug(u)

(
log

1

g(u)
+ log(2σ2

0)

)
. (3.8)

Together with (3.5) and (3.6), this estimate implies

sup
0<u<t

∣∣Ŵ〈X〉u − Ŵσ2
0u

∣∣
h(u)

≤ sup
0<u<t

√
3ug(u)

(
log
(

1
g(u)

)
+ log(2σ2

0)
)

h(u)
=: r(t) = o(1), t↘ 0, (3.9)

on the event At. We conclude that, for small t,

P

(
sup

0<u<t

∣∣Ŵ〈X〉u ∣∣
h(u)

≥ σ0
√

1 + ε+ d(t), At

)

≤ P

(
sup

0<u<t

∣∣Ŵσ2
0u

∣∣
h(u)

≥ σ0
√

1 + ε+ d(t)− r(t)

)

= P

(
sup

0<u<t

∣∣W̃u

∣∣
h(u)

≥
√

1 + ε+
d(t)− r(t)

σ0

)

≤ 2P

(
sup

0<u<t

W̃u

h(u)
≥
√

1 + ε+
d(t)− r(t)

σ0

)
,

where W̃ is again a Brownian motion. Now the upper estimate in (3.3) follows from
Theorem 2.2 and Lemma 3.1. To complete the proof of the lemma, a lower estimate for
the left-hand side of (3.4) is needed. We have

sup
0<u<t

Ŵ〈X〉u
h(u)

≥ sup
0<u<t

Ŵσ2
0u

h(u)
− sup

0<u<t

∣∣Ŵ〈X〉u − Ŵσ2
0u

∣∣
h(u)

,
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and thus, by (3.9),

P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+ d(t), At

)

≥ P

(
sup

0<u<t

Ŵσ2
0u

h(u)
≥ σ0

√
1 + ε+ d(t) + r(t), At

)

≥ P

(
sup

0<u<t

W̃u

h(u)
≥
√

1 + ε+
d(t) + r(t)

σ0

)
− P (Ac

t) , (3.10)

using P (A ∩ B) ≥ P (A) − P (Bc). The first probability in (3.10) can be estimated by
Theorem 2.2, and the second probability in (3.10) is asymptotically smaller by Lemma 3.1.

We now conclude the paper by proving our main results, Theorem 1.4 and its conse-
quence, Theorem 1.3.

Proof of Theorem 1.4. Recalling the definition of Dt in (3.1), we have

P

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
1 + ε

)
≤ P

(
sup

0<u<t

∣∣∫ u
0
σ(Xv, v) dWv

∣∣
h(u)

+Dt ≥ σ0
√

1 + ε

)
. (3.11)

By the Dambis–Dubins–Schwarz theorem (Theorem 3.4.6 and Problem 3.4.7 in [4]), the
local martingale can be written as∫ u

0

σ(Xv, v) dWv = Ŵ〈X〉u (3.12)

with a Brownian motion Ŵ . The upper estimate thus follows from applying Lemma 3.2
and (3.3) to (3.11). We proceed with the lower estimate in Theorem 1.4. From

sup
0<u<t

Xu

h(u)
≥ sup

0<u<t

∫ u
0
σ(Xv, v) dWv

h(u)
− sup

0<u<t

∣∣∫ u
0
b(Xv, v) dv

∣∣
h(u)

and (3.12), we get

P

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
1 + ε

)
≥ P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+Dt

)
.

Since we need a lower bound, we can intersect with the event Dt ≤
√
t. Using P (A∩B) ≥

P (A)− P (Bc), we obtain

P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+Dt

)
≥ P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+
√
t, Dt ≤

√
t

)

≥ P

(
sup

0<u<t

Ŵ〈X〉u
h(u)

≥ σ0
√

1 + ε+
√
t

)
− P (Dt >

√
t).

The lower estimate now follows from Lemma 3.2 and (3.4).

Proof of Theorem 1.3. First, let C ⊆ R be a closed set. Then, the increasing process
sup0<u<tXu/h(u) converges to σ0 as t↘ 0 by part (iv) of Assumption 1.1, and hence its
values are ≥ σ0 a.s.; note that this is the only place where part (iv) is used. Moreover,
the rate function satisfies J(C) = J(C ∩ [σ0,∞)). We may thus assume C ⊆ [σ0,∞).
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If inf C = σ0, then J(C) = 0, and it suffices to estimate the probability in (1.4) by 1.
Otherwise, let σ0

√
1 + κ := inf C with κ > 0. Then, by Theorem 1.4,

lim sup
t↘0

1

log log 1
t

logP

(
sup

0<u<t

Xu

h(u)
∈ C

)
≤ lim sup

t↘0

1

log log 1
t

logP

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
1 + κ

)
= −κ = −J(C).

Now consider an open set O 6= ∅, and define Õ := O∩[σ0,∞). It is clear that J(O) = J(Õ).
If Õ = ∅, then J(O) = J(Õ) = ∞, and so the lower bound is trivial. Hence we may
suppose that Õ 6= ∅. For arbitrary λ > 0, we can pick x > 1 and δ > 0 such that

inf Õ < σ0
√
x− δ < σ0

√
x+ δ < inf Õ + λ

and (
σ0
√
x− δ, σ0

√
x+ δ

)
⊆ Õ.

Then,

P

(
sup

0<u<t

Xu

h(u)
∈ O

)
≥ P

(
sup

0<u<t

Xu

h(u)
∈
(
σ0
√
x− δ, σ0

√
x+ δ

))
= P

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
x− δ)

)
− P

(
sup

0<u<t

Xu

h(u)
≥ σ0

√
x+ δ

)
= e−(x−δ−1)(log log 1

t )(1+o(1)), t↘ 0,

by Theorem 1.4. Therefore,

lim inf
t↘0

1

log log 1
t

logP

(
sup

0<u<t

Xu

h(u)
∈ O

)
≥ −(x− δ − 1)

≥ −
( inf Õ + λ

σ0

)2
+ 1 = −J(Õ) + O(λ), λ↘ 0.

As J(O) = J(Õ), this yields (1.3).
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