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Gradient estimates and maximal dissipativity for the
Kolmogorov operator in &3
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Abstract
We consider the transition semigroup P; of the ®3 stochastic quantisation on the torus
T? and prove the following new estimate (Theorem 3.10)
|DPp(@) - b| < et [hlc—slello (1 + [|c-a),

for some «, 3, 7, s positive. Thanks to this estimate, we show that cylindrical functions
are a core for the corresponding Kolmogorov equation. Some consequences of this
fact are discussed in a final remark.
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1 Introduction

We consider the equation of the ®3 stochastic quantisation on the torus T?:

dX = (AX—: X3 )dt +dW,
(1.1)
X(0) ==z,

where
Az = Az —z, D(A) = H*(T?).

This equation has been the object of several studies. In particular, in [3] existence and
uniqueness of a mild solution to (1.1) has been proved for almost all initial datas x with
respect to the Gibbs measure v defined below; later in [12] well-posedness was proved
for all x in a negative Besov space. Moreover, in [10] the strong Feller property of the
corresponding transition semigroup (P;):>o was proved. This latter result is improved
in [14] where it is proved that, for ¢ > 0, P, maps bounded Borel functions to a-Holder
functions for some « € (0,1).

The main result of the present paper (Theorem 3.10 below) goes further in this
direction: we prove that P, maps bounded borelian functions to Lipschitz functions and
give an estimate of the gradient of P;p. We use a method similar to the one used in [2]
and [4] as well as similar estimates as in [14]. In the second part we use this result for
showing that cylindrical functions are a core for the infinitesimal generator X of P, and
present some consequences of this fact.
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Gradient estimates for the Kolmogorov operator in ®3

2 Notations

We use the classical L? = LP(T?) spaces for p € [1,00]. For p = 2, we write H = L?.
We use also the L? based Sobolev spaces H® = H*(T?) for s € R and the Besov spaces
By, = B;q(TQ), for s € R, p,q € [1,0]. These are defined in terms of Fourier series
and Littlewood-Paley theory (see [1]). Note that H* = B3 ,. When p = ¢ = oo, we write
B3, - = C° and for s > 0 non integer these spaces coincide with the classical Holder
spaces.

Besov spaces are convenient when multiplying two functions when one has negative
regularity. Recall that for pq, p2 € [1,00] and a3, as € R with a3 + as > 0 we have for

1

Oé:Oél/\Oég/\(Oél—FOQ),Ezp%‘Fp%'ﬁ:pl\/pQ

levllzg, < Cllullsgy,, I0l55,,

and for any x > 0

luvl g~ < Cllullgos, [0l ssz,. -

We use the eigenprojectors of A corresponding to the eigenvalues |k|>+1 < N, k € Z2,
and denote it by IIy.

Define the Gaussian measure

1 >
- N(0o — H =R%.
p=11 (’1+Ik2>’°n

ke7z?

Note that all Besov spaces are embedded in H thanks to the Fourier series, the injection
being simply u > (uj)rezz where (ug)rez2 are the Fourier coefficients of u.
For xy € IIyH, we set

cp2 2 2 ..3 . .3 2
TN =Ty — PN, TN =Ty — 3PNTN,

where
1/2

1 1
o | 2T BE
II<N

More generally, the n** Wick power of z is defined by : 2%, := \/mp?{,Hn(piNa:N) where
H, is the n*" Hermite polynomial.
As well known, there exists the limit
A}i_l)noo c(Myx)" :=:2":, in L"(3, u; By ), (2.1)

for any r € [1,00), p,q € [1,0], s < 0.
Then, we define for ¢t € R,

t
Zoolt) = / AW (s).
Since Z.(t) has law y, we know that : TIy Z%, (¢) : converges to : ZZ (t) : in L" (3, u; B, )
for any r € [1,00), p,q € [1,00], s <0, t € R.

We set moreover X =Y, + Zo =Y + Z where

Z(t) = /0 t =AW (5) = Zoo (t) — e Zo0(0).

ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
Page 2/16


https://doi.org/10.1214/20-ECP294
http://www.imstat.org/ecp/

Gradient estimates for the Kolmogorov operator in ®3

Clearly:
C(MNX)? = (MnYeo)® + 3TN Yao)*TIN Zoo + 3(TINYoo) : (InZoo)? : +: (TInZo)? - .
It is therefore natural to consider the following definition for : X3 : in (1.1):
C X = Y2 4 3Y2 2 4+ 3Y e 1 22+ 23

We also have
X3 =Y 43Y2Z4+3Y 2% 4. 23
if we set

173 = —(eMZ50(0))3 + 3(e 250 (0))2 Zoo — 3(eM 200 (0)) : Z2 4 73 -

We will see that Y and Y., have positive regularity whereas Z has the same smoothness
as Z... Using the product rules above, it can be seen that all products above make sense.
Finally, we define Zy = IIxyZ and introduce the following approximation of (1.1):

dy,
=AYy — (YR 4 3YRZx 4+ 3Yn: ZR o2 2R ),
(2.2)

Equivalently, setting Xy = Yy + Zn, we may write with a slight abuse of notation
:X]?{,::Y]?\’,—I—BY]%ZN—FBYN:ZJQV:+:Z]3V:

and
dXn = (AX N+ : X3 )dt + T ndW,
(2.3)

Note that this is not a Galerkin approximation. However, since : X3, : = X% — 3p3 Xn
and IIydW is a finite dimensional white noise, it is classical to prove that X exists
and is unique. Moreover, it is smooth in space when the initial datum is smooth; in
this case Yy is also spatially smooth and has moreover regularity 3/27 in time. All the
computations done in the sections below are rigorous when the initial datum is smooth,
for initial data in a negative Besov space, they are obtained thanks to a preliminary
smoothing of the initial datum.

It is not difficult to prove that (X, ) converges to the unique solution of (1.1) (see
[14]) in convenient topologies. For instance, if for some « > 0 not too large, z € C~%,
the convergence holds in C([0,T];C~%).

Let us define the Gibbs measure v on H

v(dr) = 27 e 2V @) y(dx), (2.4)
where )
Uz) = Z/ cat s (€)de (2.5)
H
and
Z::/He_QU(“')u(dx).
Then

672U(z) c LT(J'C,u),
for any r € [1,00) thanks to the Nelson inequality (see [13], Chapter V2).
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We can write equation (1.1) as

CfTY:AY—Y?’—?,Y?Z—?,Y;22:—:Zi‘";,
t (2.6)
Y(0) =z,

or, in mild form,
t
Y(t) = et — / A= Y3 (s) + 3Y2(s)Z(s) + 3Y (s) : Z2(s) : +: Z3(s) :Jds.  (2.7)
0

We define the transition semigroups P; and PtN associated to (1.1) and (2.3) respec-
tively. If we try to obtain estimates on the differential of these semigroups with respect
to the initial data, we are lead to use Gronwall’s lemma and obtain exponentials of the
solution which we do not know how to estimate. To remedy this, introduce the following
modified semigroup:

SNo(z) = E (e—KfJ V(XN () ds o Xy (4, x))) 2.8)
where the potential V' is given by
VXN) = |- X% [0 = [XR = 2R [

for some K > 0, p > 0, a > 0 to be chosen. This quantity is well defined for ¢ € B,(C~%),
the space of borelian bounded functions on C'~¢.

The following relation formally follows from Duhamel formula since Py satisfies the
Kolmogorov equation associated to (2.3) and Sy satisfies the same equation with an
extra term due to the potential V:

t
P ola) =S¥ o(a) + K [ Y (VPp) @i, 2.9)
0
It can be proved rigorously by an approximation argument.

3 Estimates

Let us consider the equation:

d77h’N h,N 2 h,N
L = (AN =35 X ),
(3.1)
n"N(0) = h.

It is classical that 77’"“N = D, Xy - h is the differential of X with respect to the initial
data x € C~“ in the direction h € C~°.

In this section, we derive several estimates on 7y and X . These hold only on finite
time intervals and we restrict to ¢ € [0, 1].
Lemma 3.1. Leta < %, e > Osuchthat a+e < 3 andp > 1, s > 0 such that a+e+%+§ <
% then there exists ¢ depending on «, €, p such that forallt € (0,1], 2 € C~* he C™*®

N s < et @2 IR

and - p
[N ()| e < ct™/?|h| - Sl XR ()] ds
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Remark 3.2. The potential V chosen to define the auxiliary semigroup S} has been
chosen to compensate the exponential factors appearing in the estimate of Lemma
3.1. There clearly are other possibilities for this potential. In the proof below, we
could do the estimates differently and use another Besov norm for : X% :. This would
change the singularity in time in the integrals and decrease the power p but not yield
simpler computations. We chose to use the simple H ~* norm because below we need to
differentiate V' and the differential is easier to write with a norm of a Hilbert space.

Proof. Write (3.1) in mild form
t
N (t) = eAth—S/ eAt=9) (: XX (s): nh’N(s)) ds.
0

Below we omit the dependence on N. By the smoothing of the heat semigroup e?, the
product rule in Besov spaces and ¢ € [0, 1], we have

t
1" ()| gae < ct™CFHI IR ooy + C/O Il I Gl (R (3 P

t
<ctm@red) 2| p . 4 C/o |t — |~ (aFerl/2) | X3(r) :|H70‘ |77h(7')|ca+6 dr.
Let A(t) = t(eFer)/2 |ph(t)| ,,., then since t € [0,1],
t
A(t) < ¢|h|o-- +c/ |t — | loter /2 pmlaketa)/2 | X2 () 2| A(r)dr
0

1 1 _
Let5+5—1and

1 1 1

(3a+362+ +8)q<1’ e 3a+3€2+ ts _,_1

p

Then

. p/a ¢
N(t) < c|h|p 4 </ It — r‘fq(a+e+1/2) p—d(atets)/2 dr) / |: X2(r) :|Zia NP (r)dr
0 0

t
< c|hlf_, —|—c/ |- X2(r) : ZI;,Q AP (r)dr.
0

The first inequality follows by Gronwall’s lemma.
For the second inequality, we write:

t
0" ()|~ < ct™*/|hlo- +C/O [t =[O X2 0) " ()] e dr

t
et Plhlo +e [ R0 0 g dr
0
and with p, g as above:

t
Ol < et PR +0/0 PO X2 () e [0 ()] e dr

IN

¢
ct*5p/2|h|’é,s + c/o |: X2(r) :|I;I_Q P Jo xR ()]} o ds\h|g,sdr

.|P

< c|h|’é_s (tfsp/z 4 ecpf(}|:va(s) r ds) '

The conclusion follows. O

ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
Page 5/16


https://doi.org/10.1214/20-ECP294
http://www.imstat.org/ecp/

Gradient estimates for the Kolmogorov operator in ®3

We now estimate moments of Y solution of (2.2). We estimate Yy in LT(']I‘Q), r>2,
using similar arguments as in [14] and [12], but in a simplified way since we do not need
such refined estimates for large times.

Lemma 3.3. Let « € [0,1) and r > 2, there exist ¢ > 0 depending on « and r such that

1d r—1 N 1
= Yl + = |V ()| + 5 Yl < e La(Zn),

2
where &k, = IL and

—
La(ZN) =|ZN|c-o +1: Z% i |lc=o + | : ZX ¢ |c-a + 1.

Proof. Again we omit the dependence on N. Multiplying equation (2.2) by Y"~! and
integrating on T? we obtain:

ﬂ47

1d . .
*%|Y|Lr+ ‘VY/Q)‘ +Y

T = / (BY™ Z43Y" . Z2 . 4y L 723 )de.
T2

We estimate each of the three terms in the right hand side. By Proposition A.8 and
Proposition A.9 in [14], we have

3 / YT“de‘ <3Y"™ o [Z]o-a < c (YL IVY ™G + Y 1) | Z] o
T2
Clearly
Y7 = YL < Yyt
Moreover

2(1"—!- 1)

VY™ = (r+D)|YTVY |1 < (r+ )Y 2 [V T VY2 = V1,20 VY2,
It follows that

3

/2 yr+l ng’ <ec <|Y|(1 a)(r+1)+a(r+2)/2 ‘VYT/2|%2 + |Y|2—H2) | Z| e
T

l1—a/2)r+1 r T
= c (VIS Ay g YL 12l

1 " r—
~ Y42, + |VY’"/2|LZ +e(lZB. +1Z122.)

[=p}

with
(1—a/2)r+1 g_’_i

=1
r+2 2 m

. + 2
and ps = r + 2. Note that since « € (0, 1), p; exists and is equal to I . We proceed
—

similarly for the second one and obtain:

3 YT:ZQ:d§‘<6Y2Tf otc(|: 22 B+ 272 B
T2
with ) ) )
a,rl-a0/2) 1 _,
2 r—+2 D3
and ps = “£2 and for the third one
/ Yy 1 Z3 dg‘ r42 (| Z3 +| Z3 |P6 )
T2
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with ) 5y _ 1 )
a 7rl-« -
— + # + — = 1
2 r+2 s
and pg = 2.
Using these three inequalities in the energy equality and noting that p; = %2 >

l-a —
pi, t = 2,...,5 we obtain

1 d r T — 1 r 2 1 r4-2
5 W+ [V 45 VIR < e (Zlome +1: 225 ome +15 2% ome + 1)
This gives the result with k, = p;. O

Lemma 3.4. Let a < %, k > 1 there exists C, ;, > 0 and k,, > 0 such that
E ( sup YN(t)I’éa> < Co (Jz]o-a +1)""
te0,1]

Proof. Since

YN [7E2 < eYn])t2,

it follows from Lemma 3.3 that
d
2 YN (@O + YN () < cLa(Zn (1)

and by [14, Lemma 3.8] it follows for ¢ € [0, 1]

[Yn(t)]z- < cmax (t_r/Q, sup LQ(ZN(t))lra> .
te[0,1]

We choose r > % and use the embedding L™ C C~ to deduce

[V (t)|c—a < cmax (wﬂ, sup LQ(ZN(t))r"a> . (3.2)
t€[0,1]

It remain to obtain a bound for |Yy(t)|o-~ for small time. Write the mild form for the
equation satisfied by Yy :

V() = et /0 A=) (VB (5) + 3Y2(5) Zn () + 3V (s) : Z2(s) : + : Z3(s) )ds

Leta < %, B > « such that

and define

M(t) = s?op](lYN(S)lc—a + 7Y (s)|c-2)-
se|0,t

Then similar computations as in the proof of Theorem 3.3 in [14] give for ¢ € [0, 1]:

M(t) < er]z]a—a + et 3T M (1) + c3t'™ sup Lo (Zn(1))3,
teo,1]

for some constants ci, co which can be chosen larger than 1.
Therefore if we set

; e 1
t' = min ( sup LQ<ZN<t>>3> (Bea(erfalo-n + 1)?) T 1
t€[0,1]
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we have

sup M(t) < 2(ci|z|g-o + 1). (3.3)
te(0,t*]

It follows from (3.2) and (3.3):
sup [Yn(t)lc-« < sup [Yn(t)|lc-« + sup [Yn(t)[o-a
t€[0,1] te(0,t*] telt*,1]
< 2(cq]z|g-o + 1) + max ((t*)Q/T, sup La(ZN(t)):iE>
t€[0,1]

The result follows taking the expectation and using finiteness of the moments of

sup Lo(Zn(1))- O
t€0,1]
We set .
Zn(t) = etz + HN/ A=) qW (s) = e + Zn(t),
0
and

Yn(t) = Xn(t) — Zn(t).
Then f’N satisfies the same equation as Yy, see (2.2), with Zy replaced by ZN and 0
initial datum.
Lemma 3.5. Let a € (0,1/9), k > 1 then

k

t
E(Sup \YN\%2+/ V¥ (s)l72 ds> < Cor (ol 4 1)
te[0,1] 0

for any ¢t > 0.

Proof. Lemma 3.3 clearly also holds for ?N provided Zy is replaced by ZN. We use it
with 7 = 2 and again omit to indicate the dependency on N:

1d ~ Ti_~2 1~)4 ~
-2y, 7‘ Y‘ 7‘1/( <cLo(2),
2@Vl 7 [VY], 5[] S elal?)
_4
-«
the smoothing effect of e to prove:

cand ky = are given in Lemma 3.3. We use the product rules in Besov spaces and

La(Z(s)) < Cae ((s*<2a+6> +1) 2 + 1) Lo(Z(5))

the result follows by integrating on [0, 7] and taking expectation of the k' power. Note
that since oo < 1/9, it is possible to choose € > 0 small enough (2« + €)ks < 1. O

Lemma 3.6. Let a € (0,1/9), k > 1, and € € (0, 15'®), there exists Ya,c,i, Ca,e,x Such that

E ( sup |3~/N(t)’;,a+ﬁ> < Coek (|T]g-a +1)T>k.
te(0,1]

Proof. We write, omitting again N

Y(t) = /0 t A=) (Y3 (s) + 3Y2(5) Z(s) +3Y (s) : Z2(s) : 4 : Z3(s) ) ds
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and get

t
IV (£)] ose < c/ (t—s)~(@te/2) (|y3|H7a V22 e + |V 22 |gee + | 25 \Hw) ds.
0

We have
Voo < oV?|gare [V]o-o <Y [Gare [Vie-o < eV [faresss [V]o—«
B4,4
< (VRS OV L L) (Vo
Similarly

V2Zlpe < elV?lgese | Zlo-a < o ([T IWTE ) 4 7L ) 2o
and

IV :Z%: |g-a < c|Y|gote

22 e < c(|57|2;<“+6>|v17\gj€ ¥ |17\L2) 1122 |gma.
Gathering these results gives
Y ()| gro-e
t
< [(t- o) @t [ (PR IRTEL 0 4 T (o +[Zlo-)
0
+ (V1T NVTEE 4 [Vle) |2 2% oma + 15 2% |oma ] ds =i (a) + (B) + (o).
The first term is bounded thanks to Holder’s inequality

t
(@)=c / (t—5)~ /D [(ITRS WY RL2F) 1P (P o + [ Z]o-o)ds
<ec <|}"}‘2(1/2—a—6) (|v}7|i(1/2+a+e) + D?|LT’2 (07t,L2)>

Lr1(0,t,L?) 2(0,¢,L?)

% (I |ppaoce) + 7lc—e +1Z11ms0.0.0-0))

with 0(1/9 )
— QX — € €
M+(l/2+a+e)+a+f <14 —
D1 2 D3
and
2 € 1
~+a+-+—<L
D2 2 p3
Since € < 15 and, p1,p2, ps can be chosen such this is satisfied. Then
t
(b) < C/ (t _ s)*(a+6/2) (|Y|2;(a+€)|vy|%;‘re + ‘Y|L2>
0
X [s-<a+6/2> (121w + |lc—a|Z]c—a) + | : 2% |C_a} ds
v 11— (a+te v |ate v
< ¢ (|Y|Lp4((o,t’)Lz)|VY|L;F(0,t,L2) + Y Les (vawLZ))
X (\x%—a + \$|c—a|Z\Lps(o,t,c—a) +1: z: |LPe(o,t,c—a))
ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
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with
e l—(a+e a+e e 1
a+ -+ + ta+o+—<1
2 P4 2 2 pe
and ) .
€
20+ )+ —+—<1
( 2) Ps  De

1=da  Similarly

which again is possible since € <
t >
(c) < c/o (t— )~ (/2 (s*<2a+6>(|x|g_(, + |28 alZ| o)

+5 T g|omal 1 Z2 1 gma + |1 23 |C*a) ds

Taking expectation we find thanks to Lemma 3.4, Lemma 3.5, Holder’s inequality and
finiteness of the moments of sup;¢(o 1) |Z]c—«, Supejoq) | : 2% 1 |c-= and sup;epo | = Z2°
|C—a1

E ( sup |§7'(t)|’;{a+> <c(lzlguet +1)
t€[0,1]
for some K, ¢, which could be written explicitly. O

Lemma 3.7. Let « € (0,1/9), for any k > 1, there exists 7, ;, Ca x such that for ¢ € (0, 1]
E(]: Xn)?: % 0 ds) < Copt™ (J2|gma +1)Tk.

Proof. We have, omitting the dependence in N, for e > 0

X0 g < c(V2Ola-« + [YO)lgarc ZB)|o-o +1: Z(#)? : |o-«)
< (YOl (Y Dlo-a +1Z(O)]c-a) +1: Z()* : |c-)
< c((tolalow + IV O)lmese) (YOlo-w +1Z2@)lo-e) +1: 20t o)
The result follows by Lemma 3.4 and Lemma 3.6 choosing ¢ sufficiently small. O

3.1 Estimates on S}V

We have
SN () = B (e I VNN EG(Xy (1, 2)))

where the potential V' is given by
Viz) = ’: x

2.|P
oo

Lemma 3.8. Leta € (0,5), s > 0,p > 1suchthata+ 5 + § < yand a(2p — 1) + s < 2.
Then there exists v such that for any ¢ € B,(C~*) we have fort € [0,1], 2 € C~* he€ H

DS p(x) - | < ct= (o202 |

¢llo (1 + |z[c-a)”

and
IDSN (Vi) () - h| < et™(HsF200)/2 |,

¢llo (14 [zlc—e).

Remark 3.9. V¢ is not bounded but it is clear from Lemma 3.7 that S} can be extended
to borelian functions with polynomial growth.

ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
Page 10/16


https://doi.org/10.1214/20-ECP294
http://www.imstat.org/ecp/

Gradient estimates for the Kolmogorov operator in ®3

Proof. We only prove the second inequality, the first one is similar.
We omit to mention the dependence of N. From [8] we know that SV ¢ is differentiable
in any direction h € H and we have the following modified Bismut-Elworthy-Li formula:

DSIV)a) = (KB (e a)ol(X(0,0) [ (5 W)

+2KE <erJ VX s2Ddsy (X (¢ 2)) (X (t, x)) /Ot(l - HV(X(s,2)) n"(s) ds))

= (a) + (b).
Clearly

@ < Tl [Bovocwa?]”

X

Ik

{E(V(X(t,x)))Q}lﬂ < etTOP(1 + |z|gma)T2e /2,

/ (n(s), dW (s))

0

E (eQK JS V(X (s,z)ds

By Lemma 3.7 we have for K large enough and ¢ € (0, 1]

To estimate the second factor, we proceed as in the proof of [3, Lemma 4.1]. Writing

1t6’s formula for )

2) 1/2

1/2

t
ilo—x v<x<s,x>ds/ (" (s), AW (s))

0

we deduce for K large enough

/0 (" (5), AW (5))

E (6_2K fof V(X (s,x)ds

t
<E (/ o 2K [7 V(X(r,z)dr|nh(8)‘2 ds)
0

t 1/2
<cE (/ o *? ds) |h|c-s
0

thanks to Lemma 3.1 and the embedding L> C L?. In Lemma 3.1, we choose ¢ > 0 such
1 s 1
thata—i—e—i-@—i—g < 3.
It follows that

(a) < et=0F)/272 |h] ol pllg (14 fefma) 720 .

Similarly, the other term is bounded by

/ V(X (5,2)) - 1" (5) ds

) <ol [BEXEN)?] " E (e“ Ji V(X (o

0
We have
V(X (s, ) -n"(s)| = 2p|(: X2(s) : [0 | X2(8) 5, X ()0 (5)) | o
< 2p]: X3(s) 1 1 X ()0 (8) | e
< 2 X2(s) s [l 1X(9) e 0" (5)]gate
ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
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By Lemma 3.1, Minkowski inequality, Lemma 3.4 and Lemma 3.6, we thus can write for

K large enough:
¢ 2\ 1/2
[ v ot (s)ds )
0

. o\ 1/2
<ck ((/ |2 X2(s) s [ | X ()| groas™(@Fete)/2 ds) ) |h| s
0

t ) 2 1/2
<o [B((1s 220 1 X)) s e

t
<e < —(atets+2a(p-1))/2 ds) (1 + (2] ) Tarzo/ 2 Tasto 0 +50.a) 4| .
0

E <6—2K JE V(X (s,x)ds

We deduce for € > 0 small enough so that o + € + s + 2a(p — 1)) < 2:
(0) < clipllot™*P (1 + |z|g-a) Tosw-nFratlAp|

The conclusion follows when gathering the estimates on (a) and (b). O

3.2 Estimate on P
Recall that

t
PNo(x) = SNo(x) + K / SN (VPN p)ds.

Theorem 3.10. Let s € (0,1) and a € (0,1/9) such that 2% < 1— 5 —3a. Let p > 1 such
that 12‘1 < % < 1 — s — 3a, then there exists v > 0, and ¢ > 0 depending on s, a and p

—S

such that for any ¢ € B,(C~*) we have for¢t >0,z € C~*, h € H:
IDPN(x) - h| < (=202 1) |h| o

ello (1 +[z]c-a).
Remark 3.11. It is easy to find «, s satisfying the assumptions of Theorem 3.10. For

instance, choose any s € (0,1), § € (0,15%) and o < min{ 53:32);3}. Then

%<1—3—30¢.

Moreover
« 2

- > .

6 1-—s

It follows that one may choose p such that % <5< % < 1—s—3a and Theorem 3.10
implies

IDPNp(a) - bl < e(t=U 2 L 1) le- o (1 + [a]o-«)

Remark 3.12. Since H is dense in C~%, this result shows that D P} p(z) belongs to the
dual of C'~* and the bound extends to h € C~%.

Proof. Since fort > 1, |Py¢|lo < ||¢|lo, it suffices to prove the result for ¢ € (0, 1] and use
the Markov property.
Since £% > 22—, we have ;22— < % < 1— s — 3« and this is equivalent to the

assumptions of Lemma 3.8, therefore we may write:

t
DPYp(@)-h| < IDSNp(a) b+ K [ |DSY (VPg)(@)ds
0
< etmUHRRAD2 R ool (14 [a]c—a)
t
+K/ c(t —s)~UHsT29P)/2 B o lollo (14 |2]c—a) ds.
0
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This implies the result since 1 + s + 2ap < 2. O

Letting N — oo in Theorem 3.10, we deduce:

Corollary 3.13. Let s € (0,1) and « € (0,1/9) such that 2% < 1—s—3a. Let p > 1 such
that 2% < % < 1— 5 — 3a, then there exists v > 0, and ¢ > 0 depending on s, o and p

S

such that for any ¢ € B,(H) we have fort > 0, z, y € C~*:

|Pep(a) = Prp(y)] < c(t™ 72002 1 1) |2 — ylo-s

¢llo (1 + |z[c—o + lylc-=)"-

4 The Kolmogorov operator

Given IV € IN, we denote by FnyC}° the set of all functions ¢ : H — R of the form
p(x) = g(x;, [7] < N), (4.1)

where g : ReNTD* 5 R, (&5, |j| < N) = g(&;, |j| < N) is of class Cg°. Moreover, we set
FC° = () FnCse.
N=1

Note that if ¢ € FyCy° is of the form (4.1) we have

De(x) = > Dig(&, il < N)ex (4.2)
K|I<N
and
D’p(x)= Y. DpDig(&, il < N)en @ ex. (4.3)
|K|<N,|h|<N

Let us introduce the Kolmogorov operator on FC°, setting

1 -
Kep = 5Tr [ngp} + (Az—: z° 5 Do), e FCe. (4.4)

This definition is meaningful because if ¢ is given by (4.2) we have
(2% Do) = Y (Drg(&, lj] < N)e,: 2 2).
k|<N

We set
plz) = Z1e 2V,

so that
Dlogp(z) = —2DU(z) = -2 : 2% ;. (4.5)

We also consider the approximate measure vy in H

vy (dz) = Z;,le_UN(z)uN(dx), (4.6)
where )
Un(z) = Z/ cay s (€)de (4.7)
H
and
ZN = / e U@y (da).
H
Note that
K(p?) = 20K + |Dgl?, ¥ € FNC®. (4.8)
ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
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Integrating with respect to v over H, yields

1
/fK@cpdV:—f/ |Dp|?dv, V@€ FCe. (4.9)
H 2 H

We also introduce an approximating operator Ky on FC{° setting, for ¢(z) =

1
Ky = §Tr [y D?¢] + (Ax—: 2% &, Do)

1 2 . .
=3 > D&, il < M) = Y (an— pn)znDug(&, i < M) (4.10)
|h|<NAM |h|<M
=D > TuTShgnri D& 3] < M),
[RISM [j1l,152],158| <M
where ay, = (1 + |h|?).
Similarly as above, we have
1
/ Knepp dl/NZ—*/ |Do|*dvy, V@€ FnCEe. (4.11)
3 2 Jac

4.1 m-Dissipativity of X

Recall that X is m-dissipative if it is dissipative and, for all A > 0, (A — X) is surjective.
In this section we use Lumer-Philips Theorem to prove that X has an m-dissipative
extension and provide a core for this extension. This has several applications. We explain
one of these.

Fix Ny € IN and let f € Fyn,Cp°. For N € IN we consider the solution ¢y of the
approximating equation

1
Apn — §Tr [D*Nyen] + (Azy—: 23 1, Don) = f. (4.12)

Then, taking into account (4.11) we find the estimate

2
/ |Don | dvy < 7/ fPdvy. (4.13)
H AJu
Theorem 4.1. X is extendible to an m-dissipative operator in L'(3(, ) whose extension
we denote by X(V). Moreover, FC° is a core for X(1).

Proof. We have only to show

lim (a3 :—:2%: Doy)dv = 0. (4.14)
N—oo Jq¢

This implies that the range of A — X is dense and we apply the Lumer-Phillips theorem
in some Besov spaces (see [11]).
We take «, s and p satisfying the assumptions of Theorem 3.10 and write

IDPN f(2) - h| < ct=0F+e2 4 1) |h) -

f||0 (1 + ‘xlcf"‘)’yv t >0,

for some a < %, € > 0 and ¢,y depending on s, a, €. Moreover, we can choose 1+a+e+s <
2.
We write

on(z) = /000 e_’\tPth(x)dS

ECP 25 (2020), paper 9. http://www.imstat.org/ecp/
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and deduce
|Don(z) - h| < c|h|c-s

fllo(L+ [z|c-a)7.
It then suffices to write

‘/ <::v§’v:—::c3:>D<pN’dl/<c/ |:ad =2 |os
H H

By the Holder inequality this converges to 0. O

flo( + [zfc-e)” dv

Remark 4.2. Arguing as in [4] one can show that the closure K of X in LP(3(,v), p > 1
is m-dissipative. Moreover the gradient operator

D:FCL C LP(H,v) — LP(H,v; H)

is closable. We denote by D, its closure and by W'?(H,v) its domain.
Finally,
D(K®)) c Wh2(3, v)

and it results ]
/ KPppdv = —7/ |Do|?dv, Ve D(KP). (4.15)
¥ 2 Ja

Moreover since, as easily checked
1
[ %@pviv=—3 [ (Dg.Dvjv, ¥ v esCi)
H H
it results

/ 9<<2>sowdv=—1/ (D, DY)y, ¥ ¢, 1 € D(XKP), (4.16)
H 2 H

so that K is symmetric.
Finally, let us recall the classical integration by parts formula for the Gaussian
measure p

/<D<p,z>z/}duz—/ (D¢,z>god,u+/ W, odu, heZ? ¢, o € FOLHH), (4.17)
H H H
where

W (z) = (Q Y%z, 2) = Z V1+ k2?2 2z, d€H

kez?
and @ is the covariance of . Since v(dz) = p(x)u(dz), setting ¢ = p in (4.17) yields

/ <Dw,Z>pdu=—/ <Dp72><pdu+/ W.ppdu, heZ? ¢ € FCHH),
H X H
which is equivalent to
/ (Dp, z) dv = f/ (Dlogp,z)gpdVJr/ W, odv, heZ? ¢ e JFCHH).
K K o
Since (Dlogp,2) = —(: 2® :, 2) we have
/ (D, z) dv = / (: a3 :,z)apdu—i—/ W, odv, heZ? ¢ € FCHH).
H H H
Therefore, for any p > 1 and any z € Z? there is C,, > 0 such that

’ /}c (D, z) dv

This inequality is useful to develop a geometrical theory for the measure v, see [6], [5]
and [7].

< CpllellLe (e, 12]- (4.18)
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