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Abstract

Let n, k ≥ 1 and let G be the n× n random matrix with i.i.d. standard real Gaussian
entries. We show that there are constants ck, Ck > 0 depending only on k such that
the smallest singular value of Gk satisfies

ck t ≤ P
{
smin(G

k) ≤ tk n−1/2} ≤ Ck t, t ∈ (0, 1],

and, furthermore,

ck/t ≤ P
{
‖G−k‖HS ≥ tk n1/2} ≤ Ck/t, t ∈ [1,∞),

where ‖ · ‖HS denotes the Hilbert–Schmidt norm.
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1 Introduction

Everywhere in the paper, G denotes an n× n random matrix with i.i.d. real valued
standard Gaussian entries. The smallest singular value and the condition number of
standard square Gaussian matrices (and other random matrix models) are classical
objects of interest within the random matrix theory. The condition number κ(A) =

smax(A)/smin(A) of a matrix A is of importance as a simple estimator of the relative error
when solving the linear system Ax = b with the coefficient vector b known up to some
additive error (see, for example, [7]).

In 1940-es, von Neumann and Goldstine [4] conjectured that the “typical” value
of smin(G) is of order n−1/2, while the condition number κ(G) = smax(G)/smin(G) is of
order n. The conjecture was rigorously established by Edelman [2] and, independently,
by Szarek [8]. The proofs in [2, 8] use as the central element a formula for the joint
distribution of singular values of G. In particular, the following estimate for the smallest
singular value of G was obtained in [2, 8]:

P
{
smin(G) ≤ t n−1/2

}
= Θ(t), t ∈ (0, 1]. (1.1)

Here, we adopt the “big theta” notation: given two non-negative functions f(t) and g(t)

defined on the same domain, we write f(t) = Θ(g(t)) if C−1f(t) ≤ g(t) ≤ Cg(t) for all
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t and some universal constant C ≥ 1. When the constant is allowed to depend on a
parameter, we add the parameter as a subscript for Θ. Numerous results dealing with
invertibility of non-Gaussian random models have appeared in literature. We prefer to
avoid discussion of that (very active) research direction in this note. Let us refer to
surveys [6] and [5] which give some (partial) account of the subject.

Returning to linear systems with random coefficients, it seems natural to consider
the situation when we are given a linear system of the form Gkx = b, where k ≥ 1 is
fixed, and would like to estimate the relative error of the obtained solution when b is
known up to some additive error. In this case, we could ask what is the typical value of
the condition number of Gk and, moreover, what are optimal large deviation estimates
for κ(Gk)? Since the largest singular value of Gk is of order Θk(nk/2) with a very large
probability, the question essentially amounts to computing small ball probabilities for
smin(Gk). Obviously, the trivial relation smin(Gk) ≥ (smin(G))k and the known estimates
for smin(G) immediately imply probabilistic estimates for smin(Gk), which, however, turn
out to be suboptimal. In this note, we are interested in non-asymptotic estimates which
are sharp up to multiplicative constants. To authors’ best knowledge no such results
have been previously noted in the literature. The main statement of the note is

Theorem 1.1. Let n, k ≥ 1 and let G be the n× n matrix with i.i.d. standard Gaussian
entries. Then

P
{
‖G−k‖HS ≥ tk

√
n
}

= Θk(1/t), t ∈ [1,∞), and

P
{
smin(Gk) ≤ tk n−1/2

}
= Θk(t), t ∈ (0, 1].

Here, ‖ · ‖HS denotes the Hilbert–Schmidt norm of a matrix.

Acknowledgments. The second named author is partially supported by the Sloan
Research Fellowship. Both authors are grateful to Mark Rudelson for interesting discus-
sions.

2 Proof

Our proof relies on the following simple observation. Let

G = UΣV >

be the singular value decomposition of G, so that Σ is the (random) diagonal matrix with
the singular values of G arranged in the non-increasing order on the main diagonal, and
U, V are (random) orthogonal matrices. Further, let W be an n× n random orthogonal
matrix uniformly distributed on On(R) (with respect to the Haar measure), which is
independent from {U,Σ, V }. Then, in view of the invariance of the Gaussian distribution
under orthogonal transformations, the matrix WG is equidistributed with G, whence∥∥G−k∥∥

HS

d
=
∥∥(WG)−k

∥∥
HS

=
∥∥(V Σ−1U>W>

)k∥∥
HS

=
∥∥V (Σ−1U>W>V

)k−1
Σ−1U>W>

∥∥
HS

=
∥∥(Σ−1U>W>V

)k−1
Σ−1

∥∥
HS

=
∥∥(Σ−1Q

)k−1
Σ−1

∥∥
HS
,

where the random orthogonal matrix Q := U>W>V is uniformly distributed on On(R)

and is independent from Σ, G. Similarly, we have

s−1
min(Gk) = ‖G−k‖ d

=
∥∥(WG)−k

∥∥ =
∥∥(Σ−1Q

)k−1
Σ−1

∥∥,
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where ‖ · ‖ denotes the spectral norm. Thus, the problem of estimating the right tail of
the distribution of ‖G−k‖HS (and of ‖G−k‖) can be viewed as a particular case of a more
general question of studying the distribution of the matrix product (TW )

k−1
T , where T

is a fixed diagonal matrix and W is uniformly distributed on On(R).

Proposition 2.1. Let T = diag(τ1, . . . , τn) be an n × n fixed diagonal matrix with non-
negative entries, and let W be a uniform random orthogonal matrix. Take any k ∈ N.
Then

• For any even positive integer m and any i, j ∈ [n] we have

E
((

(TW )
k
T
)
ij

)m
≤ Ck,mτmi τmj

∑
β∈[n]m(k−1)/2

m(k−1)/2∏
`=1

τ2
β`

n−km/2

= Ck,mτ
m
i τ

m
j ‖T‖

m(k−1)
HS n−km/2,

where Ck,m > 0 depends only on k and m.

• The expectation of the squared Hilbert–Schmidt norm of (TW )
k
T satisfies

EW
∥∥(TW )kT∥∥2

HS
≤ Ckn−k ‖T‖2(k+1)

HS ,

where Ck > 0 only depends on k.

• For any i ≤ n, denoting by T (i, s) the diagonal matrix with the i-th diagonal entry
equal to s and all other entries equal to the corresponding entries of T , we have∣∣{s ∈ [τi/2, τi] : E

((
(T (i, s)W )

k
T (i, s)

)
ii

)2 ≥ ckn−kτ2k+2
i

}∣∣ ≥ τi/4,
where ck > 0 may only depend on k.

Let us postpone the proof of the proposition till the end of the section, and complete
the proof of the main result of the paper.

2.1 Proof of Theorem 1.1

With the matrices Σ and Q defined as above, application of Proposition 2.1 with
T := Σ−1 and with Q in place of W gives

EW
∥∥(WG)−k

∥∥2

HS
= EQ

∥∥(Σ−1Q
)k−1

Σ−1
∥∥2

HS
≤ Ckn1−k∥∥Σ−1

∥∥2k

HS
= Ckn

1−k∥∥G−1
∥∥2k

HS
.

(2.1)

It is clear that non-asymptotic estimates for the Hilbert–Schmidt norm of the inverse
of the standard Gaussian matrix can be obtained by analysis of the joint distribution
of its singular values, similar to [2, 8]. However, we were not able to locate a “ready-
to-reference” result of this kind in the literature, and instead will use a more general
statement about the Hilbert–Schmidt norm of the inverse of a random matrix with i.i.d.
entries with a continuous distribution [9, Theorem 1.1], which implies, in particular, that

P
{∥∥G−1

∥∥
HS
≥ tn1/2

}
≤ C2.2

t
, t > 0, (2.2)

for a universal constant C2.2 ≥ 1. Now, using (2.1) and (2.2), it is easy to obtain the
required upper bound on the right tail of ‖G−k‖HS .

For t > 0 and i ∈ Z, let Ei(t) be the event that 2itn1/2 ≤
∥∥G−1

∥∥
HS
≤ 2i+1tn1/2. Clearly,

P
{∥∥(WG)−k

∥∥
HS
≥ tkn1/2

}
=
∑
i∈Z

P
{∥∥(WG)−k

∥∥
HS
≥ tkn1/2 | Ei(t)

}
P (Ei(t)) .
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For i ≥ 0, by (2.2) we have P (Ei(t)) ≤ C2.2

2it and thus

∞∑
i=0

P
{∥∥(WG)−k

∥∥
HS
≥ tkn1/2 | Ei(t)

}
P (Ei(t)) ≤

2C2.2

t
. (2.3)

For i < 0, everywhere on Ei(t) we have
∥∥G−1

∥∥2k

HS
≤ 22k(i+1)t2knk. Hence, conditioning

on Ei(t) and applying Markov’s inequality together with (2.1), we obtain

PW
{∥∥(WG)−k

∥∥
HS
≥ tkn1/2 | Ei(t)

}
≤t−2kn−1Ckn

1−k · 22k(i+1)t2knk = Ck22k(i+1),

whence, again applying (2.2),

−1∑
i=−∞

P
{∥∥(WG)−k

∥∥
HS
≥ tkn1/2 | Ei(t)

}
P (Ei(t)) ≤

−1∑
i=−∞

Ck22k(i+1) · C2.2

2it
≤ C2.2 Ck 22k

t
.

(2.4)

Combining (2.3) and (2.4), we obtain

P
{
‖G−k‖HS ≥ tk

√
n
}

= Ok(1/t), t ∈ [1,∞). (2.5)

Next, we consider lower bounds for P{‖G−k‖ ≥ tk
√
n}. From now on we fix t ≥ 1.

Let us start by recalling the formula for the joint distribution density of eigenvalues of
GG> (see, for example, [3, formula (4.5)] or [1, formula (9)]):

ρ(λ1, . . . , λn) := c(n) exp
(
− 1

2

n∑
i=1

λi

) ∏
i<j

(λi − λj)
n∏
i=1

λ
−1/2
i , λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

(2.6)
where c(n) is a normalizing factor. Denote

L′ :=
{

(a1, . . . , an−1) ∈ Rn−1 : a1 ≥ · · · ≥ an−1 ≥ 0,

n−1∑
i=1

a−1
i ≤ 4C2.2Ct

2 n
}
,

where C > 0 is the implicit constant from (1.1), and C2.2 is taken from (2.2). Further, for
any vector a′ = (a1, . . . , an−1) ∈ L′, let u(a′) ≥ 0 be the smallest non-negative integer
such that

ρ
(
a1, . . . , an−1, 4

−u(a′)−1/(16C2
2.2C

4t2 n)
)
≤ 4ρ

(
a1, . . . , an−1, 4

−u(a′)/(16C2
2.2C

4t2 n)
)
. (2.7)

A simple analysis of formula (2.6) shows that u(a′) is well defined for any a′ ∈ L′. Note
that the definition of u(a′) implies that

4−u(a′)/(16C2
2.2C

4t2 n)∫
an=4−u(a′)−1/(16C2

2.2C
4t2 n)

ρ(a1, a2, . . . , an) dan ≥
1

4

1/(16C2
2.2C

4t2 n)∫
an=4−1/(16C2

2.2C
4t2 n)

ρ(a1, a2, . . . , an) dan.

(2.8)
Now, we set

L :=
{

(a1, . . . , an) ∈ Rn : a′ = (a1, . . . , an−1) ∈ L′,

an ∈ [4−u(a′)−1/(16C2
2.2C

4t2 n), 4−u(a′)/(16C2
2.2C

4t2 n)]
}
.

It can be checked that L is a Borel set. Further, we clearly have∫
(a1,...,an)∈L

ρ(a1, . . . , an) da1 . . . dan = P
{

(s2
1(G), . . . , s2

n(G)) ∈ L
}
.
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Let us show that the above quantity is bounded from below by c̃/t for a universal constant
c̃ > 0. By combining (1.1) with (2.2), we get that the event{

‖G−1‖2HS ≤ 16C2
2.2C

2t2 n and ‖G−1‖ ∈ [t n1/2, 4C2t n1/2]
}

has probability at least 1
Ct −

C
4C2t −

C2.2

4C2.2Ct
≥ 1

2Ct . On the other hand, everywhere on

that event we have
∑n−1
i=1 s

−2
i (G) ≤ 16C2

2.2C
2t2n and 1

16C4t2n ≤ s2
n(G) ≤ 1

t2n . For any
fixed a1 ≥ · · · ≥ an−1 ≥ 0, the density ρ(a1, a2, . . . , an−1, an), viewed as a function of
an ∈ [0, an−1], is non-increasing. Hence, with u(a′) defined as above and in view of (2.8),
we have for every a′ = (a1, . . . , an−1) ∈ L′:

4−u(a′)/(16C2
2.2C

4t2 n)∫
an=4−u(a′)−1/(16C2

2.2C
4t2 n)

ρ(a1, a2, . . . , an) dan ≥ c
1/(t2n)∫

an=1/(16C4t2n)

ρ(a1, a2, . . . , an)1{an≤an−1} dan

for some c > 0, whence∫
(a1,...,an)∈L

ρ(a1, . . . , an) da1 . . . dan ≥
c/(2C)

t
=:

c̃

t
.

Now, fix any a′ = (a1, . . . , an−1) ∈ L′, and apply the third assertion of Proposition 2.1:

denoting by T (a′, s) the diagonal matrix with T (a′, s)jj = a
−1/2
j (for j < n) and the

(n, n)-th entry equal to s, we get∣∣∣{s : s−2 ∈ [4−u(a′)−1/(16C2
2.2C

4t2 n), 4−u(a′)/(16C2
2.2C

4t2 n)],

EW
((

(T (a′, s)W )
k−1

T (a′, s)
)
nn

)2 ≥ ck−1

(
4u(a′) · 16C2

2.2C
4t2 n

)k
n−k+1

}∣∣∣
≥ 2 · 2u(a′)C2.2C

2t n1/2.

In view of (2.7) and the lower bound for P
{

(s2
1(G), . . . , s2

n(G)) ∈ L
}
, the last inequality

implies that

PΣ

{
‖Σ−1‖2HS ≤ 4u(s21(Σ),...,s2n−1(Σ))+1 · 16C2

2.2C
4t2 n+ 4C2.2Ct

2 n and

EW
(( (

Σ−1W
)k−1

Σ−1
)
nn

)2 ≥ ck−1

(
4u(s21(Σ),...,s2n−1(Σ)) · 16C2

2.2C
4t2
)k
n
}
≥ c′′

t

for a universal constant c′′ > 0. The first assertion of Proposition 2.1 with m = 4 and the
last estimate yield

PΣ

{
EW

(( (
Σ−1W

)k−1
Σ−1

)
nn

)4 ≤ C ′′k (4u(s21(Σ),...,s2n−1(Σ))t2
)2k

n2 and

EW
(( (

Σ−1W
)k−1

Σ−1
)
nn

)2 ≥ ck−1

(
4u(s21(Σ),...,s2n−1(Σ)) · 16C2

2.2C
4t2
)k
n
}
≥ c′′

t

Applying the Paley–Zygmund inequality inside PΣ{. . . }, we get

PΣ

{
PW

{(( (
Σ−1W

)k−1
Σ−1

)
nn

)2 ≥ c′′kt2kn} ≥ c̃k} ≥ c′′

t

for some c′′k , c̃k > 0 depending only on k, whence

P
{
‖G−k‖2 ≥ c′′kt2kn

}
≥ c′′c̃k

t
.

It remains to note that, together with the deterministic relation ‖G−k‖HS ≥ ‖G−k‖, the
above inequality and (2.5) imply

P
{
‖G−k‖HS ≥ tk

√
n
}

= Θk(1/t) and P
{
‖G−k‖ ≥ tk

√
n
}

= Θk(1/t), t ∈ [1,∞),

and the theorem follows.
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2.2 Proof of Proposition 2.1

Note that for any deterministic n × n matrix B = (bij) and any k ∈ N, the (i, j)-th
entry of Bk can be expressed as(

Bk
)
ij

=
∑

α∈[n]k−1

biα1bα1α2 · · · bαk−1j . (2.9)

Here, for k = 1 we assume that [n]0 consists of a single “empty” index vector α.
Let P = diag(δ1, . . . , δn) be a random matrix such that δi are i.i.d. random signs ±1

jointly independent with W . Then PW and W (hence, (TW )
k
T and (TPW )

k
T ) have the

same distribution. Applying (2.9) to TPW in place of B, we get for any i, j ∈ [n]:(
(TPW )

k
T
)
ij

=
∑

α∈[n]k−1

(
τiτα1

· · · ταk−1

) (
δiδα1

· · · δαk−1

)
wiα1

wα1α2
· · ·wαk−1jτj

= τiτjδi
∑

α∈[n]k−1

(
τα1
· · · ταk−1

) (
δα1
· · · δαk−1

)
wiα1

wα1α2
· · ·wαk−1j ,

with the appropriate modification for the case k = 1. To simplify the formulas, for any
m ≥ 1 and any index vector α ∈ [n]m(k−1) we define

wi,j,α :=

m−1∏
`=0

(
wiα`(k−1)+1

· wα`(k−1)+1α`(k−1)+2
· · ·wα(`+1)(k−1)j

)
.

Then

((
(TPW )

k
T
)
ij

)m
= τmi τ

m
j

∑
α∈[n]m(k−1)

m(k−1)∏
`=1

τα`

m(k−1)∏
`=1

δα`

wi,j,α, m ≥ 1.

Note that form ≥ 1 and any given index vector α ∈ [n]m(k−1), we have EP
∏m(k−1)
`=1 δα`

= 0

if and only if there exists h ∈ [n] such that |{` : α` = h}| is odd. Let

Ωm :=
{
α ∈ [n]m(k−1) : ∀h ∈ [n], |{` : α` = h}| is even

}
.

Then

EP

((
(TPW )

k
T
)
ij

)m
= τmi τ

m
j

∑
α∈Ωm

m(k−1)∏
`=1

τα`

wi,j,α, m ≥ 1. (2.10)

Next, observe that for any collection of q non-negative random variables X1, . . . , Xq with
identical distributions we have

E
∏
`∈[q]

X` ≤ E
1

q!

(∑
`∈[q]

X`

)q
≤ 1

q!

(∑
`∈[q]

(
EX`

q
)1/q)q

=
qq

q!
EX1

q,

where we applied the triangle inequality for the Lq-norm in the second inequality.
Applying this relation to wi,j,α, we get

|Ewi,j,α| ≤
(mk)mk

(mk)!
E|w11|mk ≤ Ck,mn−km/2, m ≥ 1, α ∈ [n]m(k−1),

for some Ck,m > 0 depending only on k and m, where the last inequality follows by
a standard moment estimates for one-dimensional projections of a vector uniformly
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distributed on Sn−1. Combining the above estimates, we obtain

EWEP

((
(TPW )

k
T
)
ij

)m
= EW τmi τ

m
j

∑
α∈Ωm

m(k−1)∏
`=1

τα`

wi,j,α

≤ Ck,mτmi τmj
∑
α∈Ωm

m(k−1)∏
`=1

τα`

n−km/2.

Finally, for any even m we construct a mapping Fm from Ωm to [n]m(k−1)/2 as follows.
Take any α ∈ Ωm, and, at zeroth step, set γ := α. At step 1, we set β1 := γ1 and update
the vector γ by erasing both its first component and the component with the smallest
index which is equal to β1. Thus, after the first step the vector γ has length m(k − 1)− 2.
At the second step, we set β2 := γ1 and update γ by erasing γ1 and the first (other)
component equal to β2. Thus, the length of γ after the second step is m(k − 1)− 4. The
validity of the procedure is guaranteed by the condition α ∈ Ωm. After m(k − 1)/2 steps
we obtain a m(k − 1)/2-dimensional vector β = (β1, . . . , βm(k−1)/2) =: F (α). It is not
difficult to see that for every α ∈ Ωm,∏

`∈[m(k−1)]

τα`
=

∏
`∈[m(k−1)/2]

τ2
F (α)`

.

Therefore, for some C ′k,m > 0 depending only on k and m, we have

E
((

(TW )
k
T
)
ij

)m
= EWEP

((
(TPW )

k
T
)
ij

)m
≤ C ′k,mτmi τmj

∑
β∈[n]m(k−1)/2

m(k−1)/2∏
`=1

τ2
β`

n−km/2,

giving the first assertion of the proposition. Letting m = 2 and summing up over all
i ∈ [n] and j ∈ [n], we obtain

E
∥∥ (TW )

k
T
∥∥2

HS
≤ C ′′kn−k

∑
β∈[n]k+1

k+1∏
i=1

τ2
βi

= C ′′kn
−k ‖T‖2k+2

HS

for some C ′′k > 0 depending only on k, which gives the second assertion.
To prove the third assertion, we will use formula (2.10), which we will rewrite for

i = j, m = 2, and with the matrix T replaced with T (i, s). We get

E
((

(T (i, s)W )
k
T (i, s)

)
ii

)2

= s4
∑
α∈Ωm

2(k−1)∏
`=1

(τα`
1{α` 6=i} + s1{α`=i})

Ewi,i,α.
Note that the above expression, viewed as a function of s, is a polynomial of degree
2k + 2, and with the leading coefficient equal to Ew2k

ii = Θk(n−k). It follows immediately
that on the interval s ∈ [τi/2, τi], the polynomial is at least of order ckn−kτ

2k+2
i on a set

of Lebesgue measure τi/4 (of course, we could write (1− δ)τi/2 for any constant δ > 0,
at expense of decreasing ck). The result follows.

2.3 Further remarks

The corresponding problem for non-Gaussian matrices seems to be much more
complicated due to the lack of rotational invariance. It is natural to conjecture that for
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A remark on the smallest singular value of powers of Gaussian matrices

any n× n matrix A with i.i.d. entries equidistributed with a random variable ξ of zero
mean and unit variance,

ck t ≤ P
{
smin(Ak) ≤ tk n−1/2

}
≤ Ck t, 2e−ckn ≤ t ≤ 1,

where ck, Ck > 0 may only depend on k and the distribution of ξ (and not on n).
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