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The snap, crackle and pop of solar flares explained
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Abstract. The irregular fluctuations of solar flare emissions, as determined
from terrestrial neutron monitors, remains poorly understood. These records
empirically revealed a temporally-related variance to mean power law, 1/f

noise and a non-Gaussian distribution, all features indicative of self-organized
criticality, a theory of how derministic dynamical systems can spontaneously
evolve to unstable states that express erratic changes. The non-Gaussian dis-
tribution found here approximated a Tweedie compound Poisson exponential
dispersion model, a statistical distribution characterized by a variance to mean
power law that itself can imply 1/f noise. Tweedie exponential dispersion
models serve a primary role in statistical theory as foci for weak convergence
for a wide range of random distributions, a role which supports an alternative
conjecture to explain the solar flare fluctuations as being based on random
processes rather than a deterministic system.

1 Introduction

The Neutron Monitor Database (NMDB) provides records of cosmic ray activity associated
with solar flares from a worldwide network of monitors, Usoskin et al. (1997). These records
fluctuate irregularly over time and mirror the numbers of sunspots, Takahashi (1989); they
also have been reported to express flicker (1/f ) and Brownian (1/f 2) noise, Garcia Canal,
Hojvat and Taritina (2012). The mechanisms that shape these fluctuations, though, remain
unclear. 1/f noise is conventionally explained by Self-Organized Criticality (SOC), a theory
where complex and deterministic dynamical systems are postulated to naturally evolve to
express 1/f noise, Bak and Chen (1991).

The JUNG1 monitor of NMDB is shown here to yield data that approximated a 1/f 1.8

(Brownian) spectrum, it was also accompanied by irregular peaks and troughs similar to
those found with multifractals. Wavelet analysis was used to confirm multifractality within
these data. The normed data also approximated a Tweedie compound Poisson exponential
dispersion model (EDM), Jørgensen (1997), a statistical model characterized by a variance
to mean power law that implied a component of 1/f 0.9 (flicker) noise within these data.

In what follows, a mathematical background will be provided to introduce self-similar
stochastic processes, Tweedie EDMs, the related geometric Tweedie models, as well as
wavelet analysis. This theory was applied in an exploratory analysis of the solar neutron
data. On the basis of this analysis an explanation for the origin of 1/f noise and multifractal-
ity within these solar data was conjectured, based on the mathematical convergence effects of
random data. These convergence effects, being related to the central limit theorem of statis-
tics, provided a stochastic explanation for 1/f noise that was distinct from the conventional
explanation for SOC, which has been predicated on the behavior of derministic dynamical
systems.
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2 Mathematical background

2.1 Self-similar stochastic processes

This subsection follows the definitions of Leland et al. (1994), and Tsybakov and Georganas
(1997): Consider the numerical sequence Y = (Yi : i = 0,1,2, . . . ,N), its sample mean μ̂ =
E[Y i], deviations yi = Yi − μ̂, variance

var[Y ] = var[y] = σ̂ 2 = E
[
y2
i

]
,

and autocorrelation function

r(k) = E[yiyi+k]/E
[
y2
i

]
(as described for the lag k). We follow the conventional definition for self-similar stochastic
processes, which characterizes these processes by virtue of their long-range correlations

r(k) ∼ k−βL(k), k → ∞,

where β is a real-valued, dimensionless, exponent bounded by 0 < β < 1. The function L(k)

is assumed to vary slowly over large values of k.
Provided a set of non-overlapping enumerative bins of size m, one can construct a set of

reproductive sequences Y (m) using expanding enumerative bins such that

Y
(m)
i = 1

m
(Yim−m+1 + · · · + Yim), i > 1.

The integer value m is selected to keep N/m, itself, integer-valued. The mean μ̂ and variance
σ̂ 2 of the primary sequence Y can be considered here as being essentially constants. The
variance of Y (m) then would behave as a power law function of the bin size,

var
[
Y (m)] = σ̂ 2m−β, (2.1)

if and only if the correlation of the primary sequence has the form, Tsybakov and Georganas
(1997),

r(k) = 1

2

[
(k + 1)2−β − 2k2−β + (k − 1)2−β]

. (2.2)

We find that the limit

lim
k→∞

r(k)

k−β
= 1

2
(2 − β)(1 − β).

The correlation exponent β is related to the Hurst parameter H , where H is real-valued
and confined to the interval (0,1), Mandelbrot and van Ness (1968),

β = 2(1 − H).

A Hurst parameter within the range 1/2 < H < 1 indicates correlation; H = 1/2, Brown-
ian motion; and 0 < H < 1/2, anti-correlation. H also relates to the fractal dimension D,
Gneiting and Schlather (2004),

D = 2 − H. (2.3)

The range 1/2 < H < 1 corresponds to 0 < β < 1, the bounds for self-similar stochastic
processes.

A set of additive sequences Z(m) can be specified on the basis of expanding enumerative
bins,

Z
(m)
i = Yim−m+1 + · · · + Yim. (2.4)
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The reproductive and additive sequences correspond to each other by Z
(m)
i = mY

(m)
i ; their

sample means and variances similarly correspond by E[Z(m)] = mE[Y (m)]; and var[Z(m)] =
m2 var[Y (m)]. Additive sequences, derived from Eq. (2.4), obey a variance to mean power
law,

var
[
Z

(m)
i

] = m2 var
[
Y (m)] = (

σ̂ 2/μ̂2−β)
E

[
Z

(m)
i

]2−β
.

We follow Jørgensen (1997) to designate this power law exponent by the letter p,

p = 2 − β,

and then,

H = p/2. (2.5)

From Eqs. (2.3) and (2.5), we also have

p = 4 − 2D.

The inequality 1 < p < 2 expresses the range of p within self-similar stochastic processes.
The biconditional relationship between Eqs. (2.1) and (2.2) implies that self-similar

stochastic sequences, which express the variance to mean power law (by means of expanding
bins), will express correlation functions that approximate

r(k) ∼ c1k
−β,

where c1 is a constant.
A biconditional relationship between Eq. (2.1) and the spectral density S(f ) can also be

derived by Fourier analysis, Tsybakov and Georganas (1997),

S(f ) = c2
∣∣e2πif − 1

∣∣2 ∞∑
l=−∞

1/|f + l|3−β, −1/2 ≤ f ≤ 1/2,

where the normalization constant c2 is given by
∫ 1/2
−1/2 S(f )df = σ̂ 2. This spectral density

exhibits a singularity at f = 0 that approximates,

S(f ) ∼ c3f
β−1,

where c3 is a constant. The spectral density S(f ) also can be related to the correlation func-
tion by Fourier transformation S(f ) = ∫ ∞

−∞ r(k)e−2πif k dk, through the Wiener–Khintchine
theorem, McQuarrie (1976). Spectral densities of the form S(f ) ∝ f β−1, where −1 < β < 1,
are considered to represent 1/f noise.

2.2 The Tweedie exponential dispersion models

In this subsection, the notation and definitions of Jørgensen (1997) will be followed. EDMs
are based on the natural exponential family of distributions used to describe the error distribu-
tions of generalized linear models. We describe the distribution corresponding to the additive
random variable Z, defined on the measureable set A, by

Pλ,θ (Z ∈ A) =
∫
A

exp
[
zθ − λκ(θ)

]
νλ(dz);

νλ represents the interrelated measures; θ the canonical parameter; λ the index parameter;
κ(θ) = 1/λ log

∫
eθzνλ(dz) the cumulant function and z the canonical statistic. The cumulant

generating function (CGF) for the additive EDMs ED∗(θ, λ) is

K∗(s; θ, λ) ≡ log E
(
esz) = λ

[
κ(θ + s) − κ(θ)

]
,
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with s being the generating function variable. The function τ(θ) = κ ′(θ) is the mean value
mapping that can be used to define the variance function V (μ) ≡ τ ′[τ−1(μ)] as a function
of the mean value parameter μ. Note that τ−1(μ) indicates the inverse function, not the
reciprocal.

Pλ,θ , specified for the range of θ , represents the family ED∗(θ, λ) that is completely de-
termined by θ , λ and κ(θ). For the n independent additive random variables Zi ∼ ED∗(θ, λi)

with fixed θ and various values of λ we can specify that the distribution of the sum
Z+ = Z1 + · · · + Zn belongs to the family with the same θ , Z+ ∼ ED∗(θ, λ1 + · · · + λn).
This property is called closure under additive convolution.

We designate the family of reproductive EDMs by ED(μ,σ 2), specified with the mean
value and dispersion parameters μ and σ , and where σ 2 = 1/λ. We can further specify that
the n independent reproductive random variables Yi ∼ ED(μ,σ 2/wi) with weighting factors
wi , summed w = ∑n

i=1 wi , under weighted averaging gives 1/w
∑n

i=1 wiYi ∼ ED(μ,σ 2/w).
The weighted averaging of independent variables with fixed μ and σ 2, as well as various
values of wi , thus belongs to the family of EDMs with the same μ and σ 2. This property is
called closure under reproductive convolution.

A third property that EDMs may possess is scale invariance. In such cases the reproductive
EDMs ED(μ,σ 2) obeys the transformation rule, Jørgensen (1997),

c · ED
(
μ,σ 2) = ED

(
cμ, c2−pσ 2)

,

where c is a positive constant and p is a real-valued and unitless constant. With closure
under these scale transformations the transformed random variable Ŷ = cY will belong to the
same family of EDMs with fixed μ and σ 2 but different values of c. The variance function
correspondingly is transformed V (cμ) = g(c)V (μ). This scale invariance then implies that
g(c) = V (c), and so V (μ) = μp , Jørgensen (1997).

The Tweedie EDMs are a subclass of EDMs characterized by the properties of closure un-
der additive and reproductive convolution as well as under scale transformation. They are fur-
ther subclassified into the additive Tw∗

p(θ, λ) and reproductive Twp(μ,σ 2) Tweedie EDMs.
The additive random variables Z ∼ Tw∗

p(θ, λ) are related to the reproductive random vari-
ables Y ∼ Twp(μ,σ 2) by the duality transformation, Y �→ Z = Y/σ 2. The additive Tweedie
variables have the population variance Var(Z) = λV (μ) and mean E(Z) = λμ, and obey the
variance to mean power law

Var(Z) = aE(Z)p,

where a = λ1/(α−1). We introduce the dimensional exponent α, which relates to the power
law exponent p by

α = (p − 2)/(p − 1),

p = (α − 2)/(α − 1).

Given Eq. (2.4), α also relates to the fractal dimension D by

α = (2D − 2)/(2D − 3). (2.6)

The interval for α that corresponds to self-similar stochastic processes is thus (−∞,0). Par-
enthetically, the domain for α is (−∞,1) ∪ (1,∞), and for θ it is R. Note also that given the
limiting case α = −∞, there exists a one-to-one correspondence between α and p.

Additive Tweedie EDMs have CGFs determined by the exponent p, Jørgensen (1997),

K∗
p(s; θ, λ) =

⎧⎪⎪⎨
⎪⎪⎩

λeθ (
es − 1

)
p = 1,

λκp(θ)
{
(1 + s/θ)α − 1

}
p = 1,2,

−λ log(1 + s/θ) p = 2.

(2.7)
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The cumulant function κp(θ) for the Tweedie EDMs is given by Jørgensen (1997),

κp(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eθ p = 1,
α − 1

α

(
θ

α − 1

)α

p = 1,2,

− log(−θ) p = 2.

The Tweedie EDMs are classified by their exponents p, and include the extreme stable
distribution (p < 0), Gaussian distribution (p = 0), Poisson distribution (p = 1), gamma
distribution (p = 2), positive stable distributions (2 < p < 3 and p > 3), inverse Gaussian
distribution (p = 3), as well as the Tweedie compound Poisson distribution for which 1 <

p < 2, Jørgensen (1997). By virtue of the range of p associated with self-similar stochastic
processes, the Tweedie compound Poisson distribution could be considered as a candidate
distribution to model these processes.

The middle CGF in Eq. (2.7) indicates that the compound Poisson distribution represents
a summation of a random (Poisson distributed) number of independent and identically dis-
tributed (i.i.d.) gamma distributed variables. It is applied to positive valued sequences, only.
In terms of its representation of solar neutron data these would correspond to the sum of
a Poisson-distributed number of gamma-distributed bursts; the value −α would specify the
(fractional) number of exponential distributions convolved together to construct the gamma
distribution. This exponent α from Eq. (2.7) is also related to the shape parameter of the
gamma distribution.

The additive compound Poisson probability density

p∗(z; θ, λ,α) = c∗(z;λ) exp
[
θ · z − λκ(θ)

]
(2.8)

does not exist in closed form but can be specified by the equations, Jørgensen (1997),

c∗(z;λ) =

⎧⎪⎪⎨
⎪⎪⎩

1

z

∞∑
n=1

λnκn(−1/z)/�(−α · n)n! for z > 0,

1 for z = 0.

The parameter −α assumes a positive non-integer value that is related to the fractal dimen-
sion D. Inversion of Eq. (2.6) gives

D = (3α − 2)/
[
2(α − 1)

]
.

We also have,

D = 2 − p/2.

The fractal dimensions associated with self-similar stochastic processes is therefore 1 < D <

1.5.
The Tweedie EDMs have a fundamental role in statistical theory as foci of convergence

for a broad range of distribution functions, similar to the role that the Gaussian distribution
has in the central limit theorem, Jørgensen (1997). This convergence theorem is primarily
directed towards the variance function of the EDMs whereas in the central limit theorem the
focus is towards the Gaussian distribution itself.

Jørgensen, Martínez and Tsao (1994) have proven that for EDMs ED(μ,σ 2) with variance
functions that approximate V (μ) ∼ μp as either μ → 0 or μ → ∞ then c−1 ED(cμ,σ 2c2−p)

will converge towards a Tweedie EDMs as c ↓ 0 or c → ∞. Indeed the variance functions
of many EDMs will approximate V (μ) ∝ μp as μ → 0 or μ → ∞. Since EDMs can be
used to represent a broad range of probability distributions this theorem has a similarly broad
range of application. It relates to stable generalizations of the central limit theorem, and
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consequently the Tweedie EDMs can be considered to have a role analogous to the Gaussian
distribution, Jørgensen (1997). For the particular cases where p = 0 and p = 1 this Tweedie
convergence theorem has as its focus the Gaussian and Poisson distributions, suggesting that
the convergence theorem acts to unify the central limit and Poisson convergence theorems,
Jørgensen (1997).

2.3 The geometric Tweedie models

A second family of Tweedie models exists called the geometric Tweedie models, which gov-
ern geometric sums of random variables. Jørgensen and Kokonendji (2011) have described
the theory for geometric Tweedie models in detail; this section will provide only a brief in-
troduction.

We define the geometric sum S(q̄) is on the probability parameter q̄ ∈ (0,1] for the i.i.d.
random variables X1,X2, . . . , independent of the geometric random variable N(q̄),

S(q̄) =
N(q̄)∑
k=1

Xk.

N(q̄) has a probability mass function Pr[N(q̄) = k] = q̄(1 − q̄)k−1 for k = 1,2, . . . with
N(1) ≡ 1. If the CGF for X is defined as K(s) = K(s;X) = log E(esX) the geometric cumu-
lant function (GCF) is,

C(s) = C(s;X) = 1 − e−K(s) for s ∈ D̄(C),

with a domain D̄(C) = {s ∈ R : C(s) < 1} = dom(K).
The geometric random variable N(q̄) has the moment generating function (MGF)

E
[
esN(q̄)] = [

1 − q̄−1(
1 − e−s)]−1 for s < − log(1 − q̄).

Its GCF is

C
(
s;N(q̄)

) = q̄−1(
1 − e−s) for s < − log(1 − q̄).

The geometric sum has the MGF, Jørgensen (1997, Jørgensen and Kokonendji (2011)

E
[
esS(q̄)] = E

[
eN(q̄)K(s)] = {

1− q̄−1[
1−e−K(s)]}−1 = [

1− q̄−1C(s)
]−1 for s ∈ D

(
q̄−1C

)
.

The GCF of the geometric sum S(q̄) is further represented by C(s;S(q̄)) = q̄−1C(s) for
s ∈ D̄(q̄−1C).

The additive geometric dispersion models GD∗(μ, γ̂ ) are closed under geometric com-
pounding. For a sequence of i.i.d. random variables {Xk} with distribution GD∗(μ, γ̂ ), their
geometric sum will be distributed in accord with

N(q̄)∑
k=1

Xk ∼ GD∗(μ, γ̂ q̄) for q̄ ∈ (0,1].

Jørgensen and Kokonendji (2011) defined the v-function, in analogy to the variance func-
tion V (μ) introduced earlier. The family of geometric Tweedie models GD(μ, γ̂ ), with mean
μ and dispersion parameter γ̂ , is thus characterized by a power law v-function v(μ) = λμp ,
where the constant λ > 0. These models obey the scaling rule

c−1 GD
(
cμ, c2−pγ̂

) = GD(μ, γ̂ ).

Geometric dispersion models with v-functions asymptotic to v(μ) = μp are required to con-
verge towards the geometric Tweedie models as their domains of attraction, Jørgensen and
Kokonendji (2011).
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The geometric Tweedie dispersion models are similarly categorized by their power law ex-
ponent p. They include the geometric extreme stable models, p < 0; the asymmetric Laplace
model, p = 0; the geometric Poisson model, p = 1; the geometric compound Poisson model,
1 < p < 2; the geometric gamma model, p = 2; the geometric Mittag-Leffler models, p > 2;
and models with exponential v-functions, p = ∞. The asymmetric Laplace model can be
represented by the probability density function,

f (x; μ̂, γ̂ , m̂) = 1√
2γ̂ + μ̂2

exp
{

1

γ̂

[
(x − m̂)μ̂ − |x − m̂|

√
2γ̂ + μ̂2

]}
,

where m̂ is its mode, and μ̂ and γ̂ are its mean and variance respectively, Jørgensen and
Kokonendji (2011). Note that, because of its value p = 0, this distribution is analogous to the
Gaussian distribution, where as a Tweedie EDM it also assumes the value p = 0.

2.4 Wavelet analysis

Self-similar stochastic processes may demonstrate local variations in the fractal dimension
along their sequence. Wavelet analysis may be used to construct a singularity spectrum from
such data, Muzy, Bacry and Arnedo (1993b), Goldberger et al. (2000). A wavelet transform
Tψ [f ](b̃, ã) of a function f is typically constructed by decomposition into contributions
from an analyzing wavelet ψ by means of translations and dilations specified through the
real-valued scale and shape parameters ã ∈ R+ and b̃ ∈ R,

Tψ [f ](b, a) = 1

ã

∫ +∞
−∞

ψ

(
x − b̃

ã

)
f (x) dx.

Wavelets may be formed from repeated derivatives of the Gaussian function,

ψ(N)(x) = dN (
e−x2/2)

/dxN .

The local Hölder exponent h(x0) is then used to characterize singularities of a function f

at specified point x0, and represents the largest exponent for which a polynomial Pn(x) of
order n exists to satisfy the relation,∣∣f (x) − Pn(x − x0)

∣∣ = O
(|x − x0|h)

,

in some neighborhood of x0.
From this analysis a D(h) singularity spectrum can be constructed to represent the Haus-

dorff dimension for which the Hölder exponent attains the value h, Muzy, Bacry and Arnedo
(1993a),

D(h) = dimH

[
x | h(x) = h

]
.

This analysis is essentially qualitative: For monofractal data D(h) would yield only a single
point; for multifractal data D(h) would yield an inverted curve.

2.5 Self-organized criticality and 1/f noise

1/f noise has been loosely defined to include frequency spectra of the form S(f ) ∝ 1/f 1−β ,
with 0 < 1 − β < 2; more stringently, it is defined with 0.5 < 1 − β < 1.5, Press (1978).
These definitions overlap the range 0 < 1−β < 1 for self-similar stochastic processes and the
compound Poisson EDM. Traditionally, 1/f (pink) noise has been considered to be bounded
by white noise 1 − β = 0 and Brownian (random walk) noise 1 − β = 2.

1/f noise has been reported from a wide variety of physical and biological processes,
including electrical currents, oceanic currents, sea levels, the intensity and pitch of music,
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the luminosity of stars, Press (1978), fluctuations in neuronal activity, blood pressure, heart
rate, and electroencephalogram measurements, Musha and Yamamoto (1997). In fact, some
authorities have labeled 1/f noise as being ubiquitous, Bak, Tang and Wiesenfeld (1987).
Many explanations for 1/f noise have been proposed, Dutta and Horn (1981) and Szendro,
Vincze and Szasz (2001); the most notable of these explanations being SOC, Bak, Tang and
Wiesenfeld (1987).

SOC is a hypothesis, based on the behavior of deterministic dynamical systems. Dynamical
systems, in mathematical terms, consist of coupled first order ordinary differential equations,
Abraham (1996); in physical terms these systems are focused on physical situations like those
described by Hamilton’s equations of motion, Susskind and Hrabovsky (2013). Such systems
yield deterministic trajectories in phase space. There is, however, also a class of stochastic
dynamical systems for which both the trajectory of the process and the initial conditions are
not predictable, Eubank and Farmer (1996).

Bak, Tang and Wiesenfeld (1988) postulated 1/f noise as being a deterministic response
of the system to what they termed the self-organized critical state. In this hypothesis, dynam-
ical systems with multiple degrees of freedom were postulated to assume unstable states that
could express 1/f noise, without the necessity of adjustments from external influences. This
description of SOC was semi-quantitative, and it was supported by simulations devised to rep-
resent the growth and collapse of sandpiles that yielded 1/f noise, Bak, Tang and Wiesenfeld
(1988).

SOC is identified empirically in natural processes through the demonstration of long-
range correlations and 1/f noise associated with a non-Gaussian distribution, Nurujjaman
and Sekar Iyengar (2007). To this date no complete mathematical description for SOC has
found general acceptance, although the dynamical mean-field model has been considered
promising in this accord, Vespignani and Zapperi (1998).

The dynamical systems postulated within SOC are called organized for reason of the long-
range correlations that have been interpreted as non-random effects, Frigg (2003). Similarly
the variance to mean power law, by virtue of its over-dispersed clustering, has also been
interpreted as a non-random effect, and could be considered to represent an emergent effect
of self-organization.

These dynamical systems are termed critical on the basis of unpredictable changes that
can be precipitated by a single local event, Frigg (2003), and by analogy to critical point
effects associated with phase transitions, Bak, Tang and Wiesenfeld (1987). This criticality
appears to manifest spontaneously without apparent external influence, justifying the claim
of self-organization, Frigg (2003).

Central to this hypothesis is the analogy to phase transitions in equilibrium statistical me-
chanics, Bak, Tang and Wiesenfeld (1988). Similar transitions have been found to occur
within the Ising model of ferromagnetism, Pathria (1972). Shan et al. (2014), in a related
analysis of quantum phase transitions, identified sharp peaks in the derivative of a quan-
tity they referred to as geometric quantum discord; this occurred close to a critical point for
a phase transition. The sharp peak, itself, was used to substantiate the presence of critical
changes in their dynamical system. Such critical points are central to the concept of SOC.

One additional feature of SOC warrants mention: Bak, Tang and Wiesenfeld (1988)
claimed that at the site of these critical points “spatial self-similarity can occur, and that the
dynamical response functions at those sites manifest a characteristic power-law, 1/f noise,
behavior”. These frequency spectra obey the equation S(f ) ∝ 1/f 1−β with 1−β being “only
roughly equal to 1.0”, and thereby indicating a fractal (self-similar) structure. For the expo-
nent 1−β to fall within the same range as for the Tweedie compound Poisson EDM and self-
similar stochastic processes we could anticipate the fractal dimensions to range 1 < D < 1.5.
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3 Data analysis

Neutron data were available from NMDB (http://www.nmdb.eu/nest/search.php) and their
consortium of monitoring sites: AATB, APTY, ARNM, ATHN, CALM, DJON, DRBS,
HRMS, INVK, JUNG, JUNG1, KERG, KIEL, LMKS, MCRL, MOSC, MXCO, NAIN,
NAMN, NEWK, OULU, PSNM, THUL, and TIBT. Sunspot data were provided by the
World Data Center for the Sunspot Index and the Royal Observatory of Belgium (http:
//sidc.be/silso/datafiles). Daily records for the JUNG1 neutron monitor MN64 from Jan. 1,
1988 to Dec. 31, 2017) were plotted (Figure 1a, bottom line) and compared to the correspond-
ing sunspot counts (top line). The neutron counts correlated negatively with the sunspot cycle
(r = −0.679, 95% CI −0.689 to −0.669, N = 10,925). They also exhibited irregular peaks
and troughs that were repeated over multiple measurement scales, a feature suggestive of
fractals and multifractals, Stanley and Meakin (1988).

The JUNG1 data were resolved into sinusoidal components by Fourier analysis, and an
intensity spectrum of these components was plotted against the respective frequencies (Fig-
ure 1b). In order for the discrete Fourier transform (DFT) to be applied, the mean had to be
subtracted from these data, the data detrended, and the sequence padded with zeros at its end
to raise the number of data points to next largest power of 2 (Npacked = 16,384). A Ham-
ming window 5 data points long was applied to smooth the spectrum from additional random
effects and the DFT calculated. A power spectrum was constructed by multiplying the trans-
formed data sequence with its complex conjugate. Linear regression was conducted between
the logarithms of the spectral density and frequency over a region of apparent linearity to
yield a 1/f 1.8 spectrum.

Whereas the exponent came within the broader range for 1/f noise, it was close to that of
1/f 2 (Brownian) noise. The overall spectrum had a flat region on its left side, attributable to

Figure 1 a. Sequential counts from the JUNG1 neutron monitor (bottom line) and daily sunspot counts (top line).
b. Frequency spectrum for JUNG1 fluctuations. A frequency spectrum was constructed to provide the intensity of
neutron count fluctuations as a function of frequency. The log–log plot revealed an approximately linear pattern
(solid line inserted for comparison). c. Singularity spectrum of the JUNG1 fluctuations.

http://www.nmdb.eu/nest/search.php
http://sidc.be/silso/datafiles
http://sidc.be/silso/datafiles
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the finite size of the data set and the packing with zeros. This was interpreted as an artifact of
the discrete Fourier transform.

The maximal peak of the frequency spectrum occurred at about 2 × 10−4 days−1, which
corresponded to the 11-year sunspot cycle. A superimposed straight line represented a hypo-
thetical 1/f 1.8 spectrum, and was derived by linear regression of a portion of these data that
had been selected subjectively. Additional regression parameters such as the standard error
and 95% CI were not calculated for reason that the packing with zeros would have biased
such estimates and because of the subjectivity associated with choice of the data points for
regression.

There was a slight inflection in the middle of this portion of the spectrum. Other investi-
gators, from a different analysis of the Auger observatory data, reported a similar inflection
they attributed to a mixture of 1/f and 1/f 2 noise, Garcia Canal, Hojvat and Taritina (2012).
In the present analysis for reason of the inflated value for Npacked, the apparent finite size
effects, the subjective choice of data for regression, and the use of the Hamming window to
smooth the data, statistical comparison of regression parameters between different regions of
the linear spectrum was not deemed practical.

Wavelet analysis was conducted next in order to resolve the JUNG1 data into wavelet com-
ponents, Goldberger et al. (2000). These were used to construct a singularity spectrum D(h)

by plotting the fractal (Hausdorff) dimension D against a scaling (Hölder) exponent h (Fig-
ure 1c), Muzy, Bacry and Arnedo (1993b). Monofractal data treated this way would typically
be represented by a single point; multifractal data by an inverted curve that reflected a range
of fractal dimensions. The JUNG1 data revealed an inverted curve indicative of multifractal-
ity. A qualitative demonstration of an inverted D(h) curve was considered to be the endpoint
of this analysis; in conventional practice there would be no role for statistical inferences to
be derived from the D(h) curve.

The analysis then shifted to a time domain study of the JUNG1 data, in order to better de-
termine whether or not 1/f noise might be detectable within the detrended data of Figure 1a,
Tsybakov and Georganas (1997). The absolute values of the detrended data were divided
into a sequence of equal-sized and non-overlapping enumerative bins; data within each bin
were summed; and the sample mean μ and sample variance σ 2 of these sums were estimated.
These calculations were repeated for expanding enumerative bins, Eq. (2.4), and the resultant
means and variances plotted against each other on a log–log scale (Figure 2a).

Figure 2a indicated a linear relationship. An underlying power law σ 2 ∝ μp was evident,
with the exponent p = 1.9, derived by linear regression. Since the variance and mean assess-
ments were obtained from expanding enumerative bins that reused data, additional regression
assessments like the standard error and 95% confidence interval for the slope would have been
biased and thus were not calculated.

The method of expanding enumerative bins, though, was employed because this method
leads to a biconditional relationship between 1/f 1−β noise and the variance to mean power
law (Eqs. (2.1) and (2.2)), Tsybakov and Georganas (1997). This method is also related to
a procedure called detrended fluctuation analysis, that has been employed for similar pur-
poses, Kantelhardt et al. (2001)). The power law exponents of the frequency spectrum and
the variance to mean power law, determined from Figures 1b and 2a, can be linked by the
relationship p ∼ 2 − β . On this basis a component of 1/f 0.9 noise could be surmised from
Figure 2a.

Since the JUNG1 data yielded p = 1.9, the Tweedie compound Poisson distribution was
selected as a candidate model to be evaluated against an empirical frequency distribution de-
rived from these data. A candidate theoretical cumulative distribution function (CDF) was
obtained by numerical integration over z in Eq. (2.8) using arbitrary initial estimates for the
adjustable parameters θ , λ, and α. This theoretical CDF was iteratively fitted to an empirical
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Figure 2 a. Variance to mean power law. b. Probability-probability plot. The adjustable parameters were,
θ = −0.19, λ = 1.4, and p = 1.5.

CDF derived from the normed detrended neutron data using the Levenberg–Marquardt algo-
rithm for minimization of the summed least square differences. By this means, successively
improved estimates for these parameters were obtained. A probability-probability plot on the
basis of the optimized parameters was then constructed; the linear relationship indicated a
qualitative agreement between the theoretical CDF and empirical CDF (Figure 2b).

This analysis served as a visual means to evaluate the proposed model. Since the choice of
plotting positions in such an analysis was subjective, this probability-probability plot should
not be expected to provide quantitative inferences, Bury (1999). With this caveat in mind,
though, the value of p determined from the iterative fit was p = 1.5, consistent with both
the theoretical range of p from the Tweedie compound Poisson EDM and the analysis from
Figure 2a.

The exponent p from the variance to mean power law was related to the fractal dimension
D of the data sequence by the equation p = 4 − 2D (Section 2.1). This analysis from Fig-
ure 2a provided a global assessment of the power law exponent p from the JUNG1 data, and
was not designed to demonstrate whether or not local variations might occur within the data
sequence. The singularity spectrum (Figure 1c), thought, indicated that D (and consequently
both α and p) should vary locally within these data.

To further investigate for local variations, the normed and detrended data from Figure 1a
were divided into sequential non-overlapping segments of 100 days in length. Local values
for α were then estimated for each segment using the expanding bin method from Eq. (2.4). In
order to increase the sample size, data from 23 other NDMB neutron monitors were included
in this analysis.

Figure 3 provided a frequency histogram derived from the combined analysis. A unimodal
histogram was obtained with its mode at α = −0.15 (p = 1.86), located just below the tran-
sition point α = 0 (p = 2) where the compound Poisson distribution would be replaced by
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Figure 3 Frequency histogram for local values of α. An asymmetrical Laplace distribution was fitted to the
histogram (solid black line).

the gamma distribution. The solid black line denoted the best fit of an asymmetric Laplace
distribution, Kozubowski and Podgórski (2001), explored here to model the histogram.

The asymmetric Laplace distribution is a member of the family of geometric Tweedie mod-
els, which represent geometric sums of random variables and are analogous to the Tweedie
EDMs mentioned earlier, Jørgensen and Kokonendji (2011). As noted above, the asymmet-
ric Laplace distribution is the geometric random equivalent to the Gaussian distribution. The
derivative of the asymmetric Laplace distribution with respect to α does not exist at its peak;
hence this peak represents a mathematical critical point, which notably was located just below
the transition point α = 0.

Even with the added data from the other neutron monitors the sample size used to con-
struct this histogram was relatively small. A chi-squared goodness of fit analysis confirmed a
statistically significant difference (probability value <0.001) between the histogram and the
fitted asymmetric Laplace distribution. This difference was not surprising given that the 11
year sunspot cycle as well as spurious influences in the measurements had been included in
this analysis (Figure 1a). The application of the asymmetric Laplace to this histogram would
have some theoretical justification given the mathematical convergence theorem that governs
geometric dispersion models (Section 2.3), and the analogous role that the mathematical crit-
ical point from the asymmetric distribution has to critical points in SOC. For these reasons
and for reason of the qualitative correspondence of the histogram to the asymmetric Laplace
distribution, this distribution could nevertheless be considered to represent an exploratory
model with which to conjecture processes that might be at play in the development of SOC
and multifractality.

4 Discussion

4.1 Convergence towards a Tweedie compound Poisson distribution yields 1/f noise

In Section 3, the sequential measurements of solar radiation from the JUNG1 neutron obser-
vatory conformed to a variance to mean power law σ 2 = aμ1.9; for this reason a Tweedie
compound Poisson EDM (which inherently expresses a variance to mean power law with
exponent 1 < p < 2) was used to describe these measurements.

The Tweedie convergence theorem (Section 2.2) showed that for EDMs with variance
functions that approximate a power law for either large or small values of μ will be required
to converge towards the variance functions of the Tweedie EDMs, Jørgensen (1997). Since
probability distribution functions that possesses a finite CGF will belong to an EDM, and
there exist many probability distributions that have variance functions approximating V (μ) ∼
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μp , a wide variety of random data would be expected to come within the domain of attraction
of the Tweedie EDMs, Kendal and Jørgensen (2011).

Variance to mean power laws, mathematically identical to the power law that character-
izes the Tweedie EDMs have been reported from the spatial aggregation of animal and plant
species (where they are referred to as Taylor’s power law), Taylor et al. (1983), the clustering
of Human Immunodeficiency Virus (HIV) cases, Anderson and May (1988) and Petterle et
al. (2019), regional organ blood flow, Kendal (2001), the temporal clustering of measles cases
in epidemics, Keeling and Grenfell (1999), the spatial clustering of leukemia cases, Philippe
(1999), and a wide range of physical and econometric processes that manifest fluctuation
scaling, Eisler, Bartos and Kertesz (2008). A wide range of ad hoc population dynamic mod-
els as well as physical and mathematical models have been proposed to explain this variance
to mean power law, notwithstanding the family of statistical models discovered by Tweedie
(1984) and now called the Tweedie EDMs by Jørgensen (1997).

Power laws like the variance to mean power law are commonly expressed by dynamical
systems that exhibit chaotic behavior. The term chaos refers to an apparently random (pseu-
dorandom) behavior accompanied by a sensitive dependence upon initial parameters, Werndl
(2009). Such chaotic behavior, even though being deterministic, may manifest a probability
distribution and variance function that comes within the domain of attraction of the Tweedie
EDMs.

The solar neutron data, analysed in Section 3, were shown through Fourier analysis to
approximate a 1/f 1.8 frequency spectrum, itself a power law. Further, time domain, analy-
sis revealed that there was a component of 1/f 0.9 noise within these data, which would fall
within a more restrictive description of 1/f noise. We noted within Section 2.5 that there
are many explanations for 1/f noise. One of the most popular of these explanations is SOC,
where it is postulated that deterministic dynamical systems can spontaneously evolve to ex-
press chaotic (power law) behavior, particularly that of 1/f noise.

In Sections 2.1 and 2.2, it was mentioned that a wide variety of random and pseudoran-
dom data may express variance to mean power laws with 1 < p < 2. Such sequential data
could potentially be described by self-similar stochastic processes as well as the Tweedie
compound Poisson EDM. The solar neutron data was conjectured to have a major compo-
nent that behaved this way. A biconditional relationship between the variance to mean power
law and 1/f frequency spectra provided a mechanistic explanation for the origin of the 1/f

noise apparent to these data, being based on the Tweedie convergence theorem, Kendal and
Jørgensen (2011).

The Tweedie convergence theorem has been proven for i.i.d. random variables, Jørgensen
(1997), whereas the variance to mean power law σ 2 ∝ μ1.9 (Figure 2a) apparent to the so-
lar neutron data indicated long-range correlations and 1/f 0.9 noise. This finding might seem
inconsistent with the specification for i.i.d. random variables in the Tweedie convergence
theorem. It is conceivable, though, that this specification might be more restrictive than nec-
essary, Kendal (2017). Consider, for example, the development of the central limit theorem:
Its initial proofs required i.i.d. random variables; later proofs, though, allowed for correlated
and dissimilar variables, Fischer (2011).

Section 2.5 provided a brief description of 1/f noise, an arguably ubiquitous noise pat-
tern considered by some to represent deterministic behavior originating from SOC. There
have been many other explanations for 1/f noise proposed (see, for example, Dutta and
Horn (1981), Press (1978), and Musha and Yamamoto (1997)), but these have largely repre-
sented ad hoc models. Whereas SOC gives a general explanation for 1/f noise, it remains a
qualitative hypothesis justified primarily by simulations designed, in the first place, to yield
1/f noise, Frigg (2003). As well, this hypothesis lacks a generally accepted mathematical
description.
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The exploratory analyses presented here indicated that 1/f noise might represent a ma-
jor component of the solar flare data and that self-similar random processes as well as the
Tweedie compound Poisson EDM could provide a mathematical description for this compo-
nent. In this context, the origin of 1/f noise could be explained by the convergence behavior
of random (or pseudorandom) data, as governed by the Tweedie convergence theorem, Kendal
and Jørgensen (2011).

As such, it was not necessary to postulate the existence of a deterministic dynamical sys-
tem to explain the origins of 1/f noise. The apparent correspondence of these data to the
Tweedie compound Poisson distribution would indicate that solar neutron data could be mod-
eled by a random (Poisson)-distributed number of radiative bursts that occur within a given
time period, where the intensity of the bursts is distributed in accordance with a gamma dis-
tribution. The gamma distribution would be further subject to variations in its dimensional
parameter α that would cause these data to have multifractal properties.

A mechanistic explanation for the origin of 1/f noise based on the Tweedie convergence
theorem would provide a fundamental and general basis to explain this noise, similar to how
the central limit theorem provides fundamental understanding of normally-distributed ran-
dom processes that arise within nature. Since chaotic (pseudorandom) data may, in some
situations, manifest with probability distribution functions that come within the domain of at-
traction of the Tweedie models, a hypothesis for the origin of 1/f noise based on the Tweedie
convergence theorem would not necessarily exclude the role of deterministic dynamical sys-
tems in this matter.

4.2 Convergence towards an asymmetric Laplace distribution may contribute to
multifractality

The solar neutron data also revealed a pattern of irregular peaks and troughs, comprised
of numerous low amplitude high-frequency oscillations modified by larger amplitude low-
frequency oscillations, consistent with multifractality (Figure 1a). A singularity spectrum
constructed from these data yielded an inverted curve that confirmed multifractality (Fig-
ure 1c). This multifractality implied that the fractal dimension of the data sequence, and
consequently the Tweedie parameters p and α, would vary over the length of the data se-
quence. An analysis of sequential, non-overlapping, segments from these data confirmed the
presence of such variations in α throughout the sequence (Figure 3).

The resultant frequency histogram for the values of α was unimodal, with the mode placed
just below the transition point where the Tweedie compound Poisson EDM (α < 0) is re-
placed by another Tweedie EDM, the gamma distribution (α = 0). Had this histogram con-
sisted of a single point, the solar neutron data would have been monofractal; the range of
values that was evident with α was instead consistent with multifractality.

Section 2.3 provided an introduction to the geometric Tweedie models, Jørgensen and
Kokonendji (2011). These models describe geometric sums of random variables; they act as
domains of attraction for random geometric sums. One particular geometric Tweedie model,
the asymmetric Laplace distribution, was fitted to the histogram of the Tweedie dimensional
parameter α (Figure 3).

The asymmetric Laplace distribution only qualitatively corresponded to the frequency his-
togram for values of α; there was a statistically significant difference in the fit between this
distribution and the histogram. This difference could perhaps be attributed to the superimpo-
sition of the sunspot periodicity as well as random artifact. In other published studies, related
analyses derived from the eigenvalue deviations of the Gaussian Unitary Ensemble (GUE),
the deviations of the Chebyshev prime counting function Kendal (2014), as well as the growth
fluctuations of bristlecone pine trees Kendal (2017) revealed multifractality associated with
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a similar unimodal histogram for the Tweedie parameter α that similarly centered just be-
low the transitional point α = 0. It would be conjectured here that this resemblance is not
an artifact or an accident, but rather reflects a particular behavior of certain types of random
data.

Curiously, Wigner (1967) proposed that the eigenvalues of the GUE could model the en-
ergy levels of large nuclei, and Dyson and Montgomery (unpublished communication, 1972)
conjectured that these eigenvalues could be linked to the Riemann hypothesis that the non-
trivial zeros of the Riemann zeta function are located in the complex plane on a vertical line
with real value of 1/2, Hayes (2003). One might then conjecture that the Tweedie conver-
gence theorems might also have a role in the distribution of the prime numbers and nuclear
energy levels, Kendal (2014) and Kendal and Jørgensen (2015), as well as solar neutron fluc-
tuations and the growth of bristlecone pine trees.

Granted the conjecture that an asymmetric Laplace distribution might describe the dis-
tribution of the Tweedie dimensional parameter α with the peak of this distribution located
just below α = 0, there would be another implication worth consideration. The peak of the
Laplace distribution is non-differentiable and so represents a mathematical critical point. The
associated multifractality might then be attributed to a critical balance in the distribution of
the values of α.

The significance of such a critical balance is made more apparent within the hypothesis of
SOC, which was based on an analogy to critical phenomena occurring with phase transitions,
Bak, Tang and Wiesenfeld (1988). At the transition point between phases the dynamical
variables are postulated to become unstable and manifest 1/f behavior. In the present study,
and the cases from the literature mentioned above, the mathematical critical point of the
Laplace distribution was conjectured to lie just below the transition point between adjacent
Tweedie EDMs. Again, this appears not to be an artifact or an accident of nature but rather
a fundamental property of certain types of random data that manifest within natural and
mathematical systems.

5 Conclusion

Terrestrial neutron detectors have demonstrated a periodicity in solar neutron radiation that
correlates with the 11-year sunspot cycle and is superimposed upon an irregular pattern of
high-frequency fluctuations modulated by larger low-frequency fluctuations. An exploratory
analysis of these solar emissions was presented here that indicated the presence of an overall
1/f 1.8 noise spectrum as well as a singularity spectrum indicative of multifractality.

A conjecture was presented that these solar neutron fluctuations could be modelled by
a self-similar stochastic process, more specifically by a compound Poisson Tweedie EDM,
which manifested a variance to mean power law σ 2 ∝ μ1.9. This power law inferred a com-
ponent of 1/f 0.9 noise within these fluctuations.

Similar to the role the Gaussian distribution has in statistical theory as an attractor for
the central limit theorem, the variance functions of the Tweedie EDMs serve as attractors
for variance functions of other random variables in a related convergence effect, Jørgensen
(1997). The power law σ 2 ∝ μ1.9 (and thereby 1/f 0.9 noise) construed from the JUNG1
fluctuations could be attributed to Tweedie convergence.

The power law exponent p = 1.9 (α = −0.11), obtained globally from the JUNG1 data,
suggested that these data possessed an approximate fractal dimension of D = 1.05. Local
analysis, though, indicated that these data were multifractal, expressing a range of values for
D (as well as for p and α). This multifractality was then conjectured to be modeled by a
geometric Tweedie models, the asymmetric Laplace distribution.
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A second and related Tweedie convergence theorem has as its attractor these geometric
Tweedie models, Jørgensen and Kokonendji (2011). It was for this reason that the asymmetric
Laplace distribution was chosen as a candidate distribution to represent the histogram of α.
It had a peak at α = −0.15 indicative of a critical point attractor for the expression of this
multifractality, and similar to critical points found within other natural and mathematical
systems.

Much as how the central limit theorem explains why the Gaussian distribution may mani-
fest from diverse random systems, the Tweedie convergence theorems explain how the vari-
ance to mean power law, 1/f noise, and multifractality can emerge within certain, scale
invariant, random systems. These theorems provide a mechanistic hypothesis to explain the
snaps, crackles and pops apparent within solar flare fluctuations.

Bak, Tang and Wiesenfeld (1987), however, proposed SOC as a universal explanation for
the origin of 1/f noise; they did not include the expression of multifractality in this expla-
nation. According to their theory, deterministic dynamical systems with multiple degrees of
freedom could evolve towards unstable states that manifested 1/f noise; this 1/f noise was
assumed to reflect non-random self-organization. Their hypothesis was based on an analogy
to critical point effects associated with phase transitions in physics. In statistical physics these
critical points are associated with strongly peaked functions representative of dynamical pa-
rameters; at such points such parameters can express power law behavior.

The Tweedie convergence theorems allow for an alternative explanation for the emergence
of 1/f noise, multifractality, and criticality within the solar neutron data. Since these the-
orems were derived for random processes they might be considered inconsistent with the
premise of SOC, Eubank and Farmer (1996). The distinction between random and non-
random systems, however, can be ambiguous. Nonlinear systems may manifest chaotic dy-
namics that, although being non-random, can be practically impossible to predict (and hence
appear random), Eubank and Farmer (1996). If an empirical CDF, derived from a chaotic pro-
cess, can be approximated by an EDM that asymptotically yields a variance to mean power
law then that EDM would be also mathematically required to converge towards one of the
Tweedie EDMs, Jørgensen (1997). Hence, the Tweedie EDMs might represent such a chaotic
process and SOC, Kendal (2015).

Parsimony, though, would seem to indicate that the emergence of 1/f noise, multifractal-
ity, and criticality within solar flare fluctuations could be more simply explained by mathe-
matical convergence effects alone, rather than having to postulate a particular behaviour of
derministic dynamical systems.
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