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Abstract. A common assumption in the standard tobit model is the normal-
ity for the error distribution. However, asymmetry and bimodality may be
present and alternative tobit models must be used in such cases. In this pa-
per, we propose a tobit model based on the class of log-symmetric distri-
butions, which includes as special cases heavy/light tailed distributions and
bimodal distributions. We implement a likelihood-based approach for param-
eter estimation and consider a type of residual. We then discuss the problem
of performing hypothesis tests within the proposed class by using the likeli-
hood ratio and gradient statistics, which are particularly convenient for tobit
models, as they do not require the information matrix. An elaborate Monte
Carlo study is carried out for evaluating the performance of the maximum
likelihood estimates, the likelihood ratio and gradient tests and the empirical
distribution of the residuals. Finally, we illustrate the proposed methodology
with the use of a real data set.

1 Introduction

After its introduction by Tobin (1958), the tobit model has been used extensively in several
applied areas including economics, environmental sciences, engineering, biology, medicine
and sociology; see, for example, Barros, Paula and Leiva (2008), Leiva et al. (2007), Villegas,
Paula and Leiva (2011), Amemiya (1984), Thorarinsdottir and Gneiting (2010), Helsel (2011)
and Martínez-Flores, Bolfarine and Gómez (2013a, 2013b). The tobit model is used to de-
scribe censored responses and gained its motivation based on a study intended to analyze the
relationship between household expenditure on a durable good and household incomes. In
that study, Tobin (1958) faced the existence of many cases wherein the expenditure was zero,
which violated the linearity assumption of common regression approaches. Tobin (1958) in-
troduced a regression model whose response was censored at a prefixed limiting value; see
Amemiya (1984).

A strong assumption of the tobit model is that the error term is normally distributed, but
it is not always the case in many applications; see, for example, Barros et al., Barros et al.
(2010, 2018). The normality assumption may not be appropriate to describe the behavior
of strictly positive data, as well as bimodal and/or light- and heavy-tailed data. The use of
flexible distributions is very important as often real-world data are better modeled by non-
normal distributions, especially with regard to the robustness of results. In the context of
censored responses, some authors have emphasized the importance of using more flexible
distributions; see, for example, Arellano et al. (2012), Martínez-Flores, Bolfarine and Gómez
(2013a, 2013b), Garay et al. (2015), Massuia et al. (2015) and Barros et al. (2010, 2018).
The reader is also referred to Yenilmez, Mert Kantar and Acitaş (2018) and the references
therein for more work on robust and flexible models as well as nonparametric approaches in
this regard.
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The log-symmetric distribution class, investigated by Jones (2008), arises when a random
variable (RV) has the same distribution as its reciprocal, or when the distribution of the loga-
rithm of the RV is symmetrical. This class is very useful for modeling strictly positive, asym-
metric, bimodal and light- and heavy-tailed data. The class of log-symmetric distributions is a
generalization of the log-normal distribution, which provides more flexible alternatives; see,
for example, Vanegas and Paula (2016b). Vanegas and Paula (2015) proposed a semiparamet-
ric regression model by allowing both median and shape to be modeled, Vanegas and Paula
(2016b) discussed some statistical properties of the log-symmetric class of distributions,
Vanegas and Paula (2016a) proposed an extension of the log-symmetric regression models
used by Vanegas and Paula (2015) by considering an arbitrary number of non-parametric
additive components to describe the median and shape, Vanegas and Paula (2017) proposed
log-symmetric regression models with non-informative left- or right-censored observations
being allowed, while Medeiros and Ferrari (2017) considered hypothesis testing procedures
in symmetric and log-symmetric linear regression models.

A prominent procedure for hypothesis testing in parametric models is the gradient (GR)
test, which was proposed by Terrell (2002). This procedure is simple to compute and only
involves the score vector and the maximum likelihood (ML) estimates of the parameter vector
under the unrestricted and restricted models. Similar to the generalized likelihood ratio (LR)
statistic discussed by Wilks (1938), the GR statistic is also attractive for censored samples,
as is the case with tobit models, since no computation of the information matrix (neither
observed nor expected) is required; see, for example, Lemonte and Ferrari (2011).

In this context, the primary objective of this paper is to propose a class of tobit models
based on the log-symmetric distribution. The secondary objectives are: (i) to obtain the ML
estimates of the model parameters; (ii) to deal with the issue of performing hypothesis tests
concerning the parameters of the proposed tobit-log-symmetric model, for which LR and GR
tests are developed; (iii) to carry out Monte Carlo simulations to evaluate the performance of
the ML estimates and the LR and GR tests; and (iv) to discuss a real data application of the
proposed methodology. The tobit-Birnbaum–Saunders model introduced recently by Desousa
et al. (2018) is a special case of the proposed tobit-log-symmetric models. In general, the
proposed models are expected to be more flexible options as compared to the normal-based
tobit model. As the proposed tobit-log-symmetric models involve a logarithmic transforma-
tion, their main advantage lies in the possibility of obtaining symmetric models with greater
flexibility in terms of bimodality and/or light- and heavy-tails. The present paper has three
main differences as compared to the work of Vanegas and Paula (2017): (a) a new class of
tobit models, namely, novel left-censored regression models is proposed here. On the other
hand, the work of Vanegas and Paula (2017) assumes non-informative censoring, that is, the
censoring times are statistically independent of the event times; (b) unlike is the work of
Vanegas and Paula (2017), the proposed tobit-log-symmetric models focus on the problem
of performing hypothesis testing based on the LR and GR tests, which is of great practical
interest since they do not require the information matrix information; and (c) the present
work does not consider nonparametric components and estimates the model parameters by
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method, whereas the
work of Vanegas and Paula (2017) applies a backfitting iterative process for obtaining the es-
timates in the nonparametric component and a Newton-Raphson algorithm for obtaining the
estimates in the parametric component. The quasi-Newton class of methods class provides
very efficient algorithms that eliminate the need for calculating second derivatives and also
typically perform very well.

The rest of this paper proceeds as follows. In Section 2, we briefly describe the class of log-
symmetric distributions and some properties. In Section 3, we formulate the tobit model based
on the log-symmetric class, and then detail the associated estimation, inference and residual
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analysis based on the ML method. In Section 4, we carry out Monte Carlo simulations, and an
illustration with a real data is done in Section 5. Finally, in Section 6, we discuss conclusions
and some possible future research in this topic.

2 Log-symmetric distributions

Consider a continuous RV Y having a symmetric distribution with location parameter μ ∈ R,
dispersion parameter φ > 0, density generator g(·) and probability density function (PDF)

fY (y;μ,φ,g) = 1

φ
g

(
(y − μ)2

φ2

)
, y ∈ R,

with g(u) > 0 for u > 0, and
∫ ∞

0 u−1/2g(u)du = 1; see Fang, Kotz and Ng (1990). In this
case, the notation Y ∼ S(μ,φ2, g) is used. The class of log-symmetric distributions arises
when we set T = exp(Y ), that is, we obtain a continuous and positive RV T such that the
distribution of its logarithm belongs to the symmetric family. The PDF of T can be expressed
as

fT (t;η,φ,g) = 1

φt
g
(̃
t2)

, t > 0,

where t̃ = log([t/η]1/φ) and η = exp(μ) > 0 is a scale parameter. In this case, we write
T ∼ LS(η,φ2, g). The density generator g may contain an extra parameter ξ (or an extra
parameter vector ξ ). The cumulative distribution function (CDF) of T is given by

FT (t;η,φ,g) = FZ(̃t;0,1, g),

where FZ(·) is the CDF of a symmetric random variable Z = (Y − μ)/φ ∼ S(0,1, g).
Note that the density generator g leads to different log-symmetric distributions. Some
members of log-symmetric distributions are the log-normal (Crow and Shimizu, 1988,
Johnson, Kotz and Balakrishnan, 1994), log-logistic (Marshall and Olkin, 2007), log-Laplace
(Johnson, Kotz and Balakrishnan, 1995), log-Cauchy (Marshall and Olkin, 2007), log-power-
exponential (Vanegas and Paula, 2016b), log-Student-t (Vanegas and Paula, 2016b), log-
power-exponential (Vanegas and Paula, 2016b), log-slash (Vanegas and Paula, 2016b), har-
monic law (Podlaski, 2008), Birnbaum–Saunders (Birnbaum and Saunders, 1969, Rieck and
Nedelman, 1991, Balakrishnan and Kundu, 2019), generalized Birnbaum–Saunders (Díaz-
García and Leiva, 2005, 2007, Balakrishnan and Kundu, 2019), and F (Johnson, Kotz and
Balakrishnan, 1995) distributions; see Table 1.

Let T ∼ LS(η,φ2, g); we then readily have the following properties: (P1) cT ∼
LS(cη,φ2, g), with c > 0; (P2) T c ∼ LS(ηc, c2φ2, g), with c �= 0; and (P3) the median of
the distribution of T is η. The properties (P1) and (P2) say that the log-symmetric distribu-
tion holds the proportionality and reciprocation properties, respectively. Moreover, (P2) is

Table 1 Density generator g(u) for some log-symmetric distributions

Distribution g(u)

Log-normal(η,φ) ∝ exp(− 1
2u)

Log-Student-t (η,φ, ξ) ∝ (1 + u
ξ )−

ξ+1
2 , ξ > 0

Log-power-exponential(η,φ, ξ) ∝ exp(− 1
2u

1
1+ξ ), −1 < ξ ≤ 1

Birnbaum–Saunders(η,φ = 2, ξ) ∝ cosh(u1/2) exp(− 2
ξ2 sinh2(u1/2)), ξ > 0

Birnbaum–Saunders-t (η,φ = 2, ξ = (ξ1, ξ2)�) ∝ cosh(u1/2)(ξ2ξ2
1 + 4 sinh2(u1/2))−

ξ2+1
2 , ξ1, ξ2 > 0
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useful to propose modified moment estimators; see Ng, Kundu and Balakrishnan (2003) for
the Birnbaum–Saunders case. Finally, (P3) can be used to specify a dynamic point process
model in terms of the conditional median; see Saulo et al. (2019).

3 The tobit-log-symmetric model

Consider a censored response variable to the left Yi for case i, which is observable for values
greater than γ and censored for values less than or equal to γ . Then, in the tobit formulation

Yi =
{
γ, Y ∗

i ≤ γ, i = 1, . . . ,m,

x�
i β + εi, Y ∗

i > γ, i = m + 1, . . . , n,
(3.1)

where γ is a known quantity, Y ∗
i = x�

i β + εi , m is the number of cases censored to the
left, n is the total number of cases, xi = (xi1, . . . , xip)� is an n × 1 vector of covariates
fixed and known, β = (β1, . . . , βp)� is a p × 1 vector of regression coefficients, and {εi}
are independent and identically distributed (IID) RVs. The tobit-normal (tobit-NO) model is
obtained from (3.1) when εi follows a normal distribution with mean zero and variance ς2,

that is, εi
IID∼ N(0, ς2).

Consider the log-symmetric regression model (Vanegas and Paula, 2015)

Ti = ηiε
φi

i , i = 1, . . . , n, (3.2)

where ηi is the median of Ti , φi is a shape parameter associated with the skewness or relative

dispersion, and {εi} are standard log-symmetrically distributed IID RVs denoted by εi
IID∼

LS(1,1, g). Consequently, Ti
IND∼ LS(ηi, φ

2
i , g). The structures for ηi and φi are expressed as

ηi = exp
(
x�

i β
)
, i = 1, . . . , n,

log(φi) = w�
i ζ , i = 1, . . . , n,

where xi and β are as in (3.1), wi = (wik, . . . ,wik) is an n × 1 vector of covariates for φi ,
and ζ = (ζ1, . . . , ζk)

� is a p × 1 parameter vector. For the sake of ease and simplicity, we
shall hereafter assume that φi = φ, for i = 1, . . . , n.

By taking logarithm in Equation (3.2), we obtain

log(Ti)︸ ︷︷ ︸
Yi

= log(ηi)︸ ︷︷ ︸
μi

+φ log(εi)︸ ︷︷ ︸
εi

, i = 1, . . . , n, (3.3)

where εi is a standard symmetrically distributed RV, εi
IID∼ S(0,1, g), and Yi

IND∼ S(μi, φ
2, g).

Then, based on Equations (3.1) and (3.3), we propose a tobit model based on the log-
symmetric distribution, denoted by tobit-LS, as

Yi =
{
γ, Y ∗

i ≤ γ, i = 1, . . . ,m,

x�
i β + εi, Y ∗

i > γ, i = m + 1, . . . , n,
(3.4)

where Y ∗
i = log(T ∗

i ) = x�
i β + εi , β and xi are as in (3.1), and εi is as in (3.3).

Consider a sample of size n, Y = (Y1, . . . , Ym,Ym+1, . . . , Yn)
� say, from a tobit-LS model

that contains m left-censored data, that is, the values of Y less than a threshold point γ , and
n − m complete or uncensored data, namely, values of Y greater than γ . Then, the corre-
sponding likelihood function for θ = (β�, φ)� is

L(θ) =
m∏

i=1

FZ

(
ζ c
i ;0,1, g

) n∏
i=m+1

1

φ
g
(
ζ 2
i

)
, (3.5)
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where FZ is the CDF of the symmetric distribution and

ζ c
i =

(
γ − x�

i β

φ

)
and ζi =

(
yi − x�

i β

φ

)
.

By taking the logarithm in (3.5), we obtain the log-likelihood function for θ = (β�, φ)�
as

�(θ) = ∑
i

�i(θ), (3.6)

where

�i(θ) =
{

log
(
FZ

(
ζ c
i ;0,1, g

))
, i = 1, . . . ,m,

− log(φ) + log
(
g
(
ζ 2
i

))
, i = m + 1, . . . , n.

The score vector for β and φ are given by

�̇(θ) = ∂�(θ)

∂θ
=

n∑
i=1

�̇i(θ), where �̇i (θ) = (
�̇
�
iβ(θ), �̇iφ(θ)

)�
, (3.7)

with

�̇iβ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

φ

ixi , i = 1, . . . ,m,

− 2

φ
Wiζixi , i = m + 1, . . . , n,

�̇iφ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

φ

iζ

c
i , i = 1, . . . ,m,

− 1

φ
− 2

φ
Wiζ

2
i , i = m + 1, . . . , n,

with 
i = dFZ(u;0,1,g)/du|u=ζc
i

FZ(ζ c
i ;0,1,g)

and Wi =
dg(u)/du|

u=ζ2
i

g(ζ 2
i )

. To obtain the ML estimate of θ , it is

necessary to maximize the expression in (3.6) by equating the score vector �̇(θ) in (3.7)
to zero, providing the likelihood equations. They are solved using the BFGS quasi-Newton
method; see Mittelhammer, Judge and Miller (2000), p. 199. The corresponding standard
errors (SEs) can be approximated by computing the square roots of the diagonal elements of
the inverse of the observed Fisher information matrix (Efron and Hinkley, 1978), which is
obtained as J (θ) = −�̈(θ), where �̈(θ) denotes the Hessian matrix, that is,

�̈(θ) = ∂2�(θ)

∂θ∂θ� =
n∑

i=1

�̈i (θ), where �̈i (θ) =
[
�̈iββ(θ) �̈iβφ(θ)

�̈iφβ(θ) �̈iφφ(θ)

]
,

with

�̈iββ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

φ

′

ixi , i = 1, . . . ,m,

− 2

φ

[
−Wi

xi

φ
+ W ′

i ζi

]
xi , i = m + 1, . . . , n,

�̈iβφ(θ) = �̈iφβ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

[
1

φ

′

i − 1

φ2 
i

]
xi , i = 1, . . . ,m,

−2ζi

φ

{[
−Wi

φ
+ W ′

i

]
− 1

φ
Wi

}
xi , i = m + 1, . . . , n,
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�̇iφφ(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

φ2

[
2
i − φ
′

i

]
ζ c
i , i = 1, . . . ,m,

1

φ2 + 2

φ2

[
3Wi − φW ′

i

]
ζ 2
i , i = m + 1, . . . , n.

Note that from (3.7), we can define the quantity

νi = −2Wi, (3.8)

which can be interpreted as a weight. In general, νi gives smaller weights for outlying obser-
vations under heavy-tailed error models; see Vanegas and Paula (2016b) and Medeiros and
Ferrari (2017).

The extra parameter ξ is estimated by using the profile log-likelihood. The motivation
to leave the extra parameter fixed in the estimation process comes from the work of Lucas
(1997), in which it has been shown that robustness to outlying observations under Student-
t models holds only if the degree of freedom is fixed, rather than directly estimated in the
ML method. Moreover, some difficulties in computing the extra parameter in the power-
exponential model have also been reported by Kano, Berkane and Bentler (1993); see
Vanegas and Paula (2016b) for more details. The following two steps are necessary to ob-
tain the estimates of the model parameters:

(1) Let ξk = k and for each k = a, . . . , b, where a and b are predefined limits, compute
the ML estimates of θ by using the above procedures; compute also the log-likelihood
function;

(2) The final estimate of ξ is the one that maximizes the log-likelihood function and the
associated estimate of θ is then the final one.

3.1 Statistical tests

We consider here the LR and GR statistical tests for the tobit-log-symmetric regression
model. We choose these tests because they do not require the information matrix, as men-
tioned earlier. Let θ be a p-vector of parameters that index a tobit-log-symmetric model.
Suppose our interest lies in testing the hypothesis H0 : θ1 = θ

(0)
1 against H1 : θ1 �= θ

(0)
1 ,

where θ = (θ�
1 , θ�

2 )�, θ1 is an r × 1 vector of parameters of interest and θ2 is a (p − r) × 1
vector of nuisance parameters.

Two popular methods for testing these linear hypotheses are by the use of LR and GR test
statistics, which are given by

�LR = 2
{
�(̂θ) − �(̃θ)

}
,

�GR = �̇
�
(̃θ)(̂θ − θ̃),

where �(·) is the log-likelihood function defined in (3.6), and θ̂ = (̂θ
�
1 , θ̂

�
2 )� and θ̃ =

(θ
(0)�
1 , θ̃

�
2 )� are unrestricted and restricted ML estimators of θ , respectively. Moreover, �̇(·)

is the score vector defined in (3.7). In regular cases, we have, under H0 and as n → ∞, both
statistical tests converging in distribution to χ2

r . Then, H0 is rejected at nominal level δ if the
test statistic is larger than χ2

1−δ,r , the upper δ quantile of the χ2
r distribution.

3.2 Model checking

Residuals analysis are frequently used to evaluate the validity of the assumptions of the
model, presence of outliers and also as tools for model selection. In the context of regression
models, usually Pearson and studentized residuals are often used. Nevertheless, in a tobit sce-
nario, these two types of residuals, even under normality, are not suitable; see, for example,
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Barros et al. (2010). Moreover, Saulo et al. (2020) have studied, in the log-symmetric context,
the empirical distribution of the generalized Cox-Snell (GCS) and quantile (Dunn and Smyth,
1996) residuals under misspecification. These authors found that the former is more sensitive
to misspecification and also to be suitable for assessing the adjustment. For this reason, we
opt to work only with the generalized Cox-Snell residuals. In the log-symmetric tobit case,
the GCS residual is given by

rGCS
i = − log

(
ŜY

(
yi; μ̂i, φ̂

2, g
)) = − log

(
1 − F̂Y

(
yi; μ̂i, φ̂

2, g
))

,

where ŜY denotes survival function fitted to the data. The GCS residual is asymptotically
standard exponential, EXP(1) in short, if the model is correctly specified whatever the speci-
fication of the model is.

4 Monte Carlo simulation studies

Three Monte Carlo simulation studies are carried out to evaluate the performances of the ML
estimates, the statistical tests and the empirical distribution of the residuals. The R software
has been used to do all numerical calculations; see R-Team (2016).

4.1 ML estimates

A Monte Carlo simulation study is carried out to evaluate the performance of the ML es-
timates. We focus on three tobit-log-symmetric models: tobit-log-normal (tobit-LN), tobit-
log-Student-t (tobit-Lt) and tobit-log-power-exponential (tobit-LPE). The study considers
simulated data generated from each one of the above-mentioned models according to

Yi =
{
γ, Y ∗

i ≤ γ, i = 1, . . . ,m,

Y ∗
i = β0 + β1xi + εi, Y ∗

i > γ, i = m + 1, . . . , n,

where εi is as in (3.4), xi is a covariate obtained from a uniform distribution in the in-
terval (0,1), and the true parameter values are taken as β0 = 0.2 β1 = 0.5. Moreover,
the simulation scenario considers sample size n ∈ {50,100,300,500}, scale parameter φ ∈
{1.00,3.00,5.00}, extra parameter ξ1 = 0.5 (tobit-LPE), ξ1 = 4 (tobit-Lt), censoring propor-
tion � = m/n ∈ {0.20,0.50}, with 5000 Monte Carlo replications for each combination of
above given parameters, censoring proportion and sample size. The γ value is defined as
the � quantile of the generated values of the dependent variable, where � is the censoring
proportion.

The ML estimation results for the considered tobit-log-symmetric models are presented in
Tables 2–4. The empirical bias and mean squared error (MSE) are reported. A look at the re-
sults in Tables 2–4 allows us to conclude that, for φ ∈ {1.00,3.00,5.00} and � ∈ {0.20,0.50},
as the sample size increases, the empirical bias and MSE both decrease, as expected. More-
over, we note that, as the value of the parameter φ increases, the performance of the estimate
of this parameter deteriorates. In general, the performances of the estimates decrease when
the censoring proportion increases.

4.2 Statistical tests

We now present Monte Carlo simulation studies to evaluate the performance of the LR and
GR tests. We consider again the following models: tobit-LN, tobit-Lt and tobit-LPE. The sim-
ulation scenario considers the following setting: sample size n ∈ {50,100,300,500}, scale
parameter φ = 3.00, extra parameter ξ1 = 0.5 (tobit-LPE), ξ1 = 5 (tobit-Lt), censoring pro-
portion � = m/n ∈ {0.3,0.5}, with 5000 Monte Carlo replications for each combination of
parameters, censoring proportion and sample size. The value γ is as defined in Section 4.1.
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Table 2 Empirical bias and MSE (in parentheses) from simulated data for the indicated ML estimates of the tobit-LN model parameters, n and �

� = 0.20 � = 0.50

n φ φ̂ β̂0 β̂1 φ̂ β̂0 β̂1

50 1.00 −0.0099 (0.0141) −0.0147 (0.0918) 0.0086 (0.2715) −0.0132 (0.0249) −0.0212 (0.1218) 0.0087 (0.3263)
3.00 −0.0297 (0.1269) −0.0367 (0.8167) 0.0114 (2.4409) −0.0394 (0.2250) −0.0589 (1.0393) 0.0169 (2.9163)
5.00 −0.0491 (0.3526) −0.0589 (2.2629) 0.0144 (6.7631) −0.0652 (0.6263) −0.0951 (2.8684) 0.0210 (8.1019)

100 1.00 −0.0045 (0.0068) −0.0092 (0.0441) 0.0072 (0.1308) −0.0084 (0.0125) −0.0094 (0.0573) 0.0060 (0.1518)
3.00 −0.0138 (0.0610) −0.0239 (0.3924) 0.0148 (1.1741) −0.0257 (0.1122) −0.0267 (0.4887) 0.0158 (1.3546)
5.00 −0.0228 (0.1695) −0.0370 (1.0831) 0.0191 (3.2483) −0.0426 (0.3112) −0.0428 (1.3439) 0.0225 (3.7660)

300 1.00 −0.0006 (0.0023) −0.0048 (0.0147) 0.0043 (0.0428) −0.0014 (0.0040) −0.0053 (0.0187) 0.0040 (0.0498)
3.00 −0.0017 (0.0209) −0.0137 (0.1302) 0.0110 (0.3834) −0.0041 (0.0365) −0.0166 (0.1602) 0.0123 (0.4428)
5.00 −0.0028 (0.0578) −0.0222 (0.3609) 0.0171 (1.0650) −0.0068 (0.1007) −0.0283 (0.4382) 0.0215 (1.2277)

500 1.00 −0.0003 (0.0014) −0.0025 (0.0088) 0.0028 (0.0258) −0.0007 (0.0024) −0.0016 (0.0113) 0.0003 (0.0309)
3.00 −0.0006 (0.0127) −0.0064 (0.0778) 0.0061 (0.2309) −0.0011 (0.0221) −0.0064 (0.0981) 0.0018 (0.2770)
5.00 −0.0011 (0.0354) −0.0105 (0.2159) 0.0104 (0.6406) −0.0012 (0.0617) −0.0108 (0.2697) 0.0023 (0.7681)
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Table 3 Empirical bias and MSE (in parentheses) from simulated data for the indicated ML estimates of the tobit-Lt model parameters, n and �

� = 0.20 � = 0.50

n φ φ̂ β̂0 β̂1 φ̂ β̂0 β̂1

50 1.00 −0.0038 (0.0190) −0.0058 (0.1148) 0.0085 (0.3473) 0.0056 (0.0347) −0.0217 (0.1471) −0.0181 (0.4173)
3.00 −0.0118 (0.1706) −0.0113 (1.0352) 0.0098 (3.1385) 0.0149 (0.3147) −0.0464 (1.2505) −0.0961 (3.6955)
5.00 −0.0202 (0.4739) −0.0196 (2.8732) 0.0287 (8.7144) 0.0252 (0.8749) −0.0715 (3.4329) −0.0308 (9.2639)

100 1.00 0.0011 (0.0102) −0.0051 (0.0560) 0.0050 (0.1668) 0.0031 (0.0185) −0.0154 (0.0719) 0.0115 (0.1958)
3.00 0.0023 (0.0911) −0.0111 (0.5021) 0.0079 (1.4986) 0.0107 (0.1682) −0.0409 (0.6101) 0.0218 (1.7335)
5.00 0.0037 (0.2529) −0.0173 (1.3919) 0.0197 (4.1527) 0.0176 (0.4673) −0.0640 (1.6827) 0.0286 (4.8195)

300 1.00 −0.0005 (0.0033) −0.0027 (0.0181) 0.0047 (0.0547) 0.0003 (0.0059) −0.0069 (0.0229) 0.0083 (0.0636)
3.00 −0.0018 (0.0294) −0.0073 (0.1622) 0.0123 (0.4910) 0.0007 (0.0536) −0.0168 (0.1941) 0.0180 (0.5621)
5.00 −0.0027 (0.0814) −0.0117 (0.4497) 0.0109 (1.3623) 0.0022 (0.1494) −0.0285 (0.5374) 0.0292 (1.5663)

500 1.00 −0.0004 (0.0019) −0.0010 (0.0108) 0.0011 (0.0331) 0.0001 (0.0035) −0.0024 (0.0134) 0.0013 (0.0379)
3.00 −0.0010 (0.0173) −0.0023 (0.0972) 0.0019 (0.2977) 0.0005 (0.0316) −0.0037 (0.1155) 0.0021 (0.3394)
5.00 −0.0018 (0.0482) −0.0038 (0.2699) 0.0031 (0.8267) 0.0002 (0.0882) −0.0067 (0.3167) 0.0037 (0.9394)
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Table 4 Empirical bias and MSE (in parentheses) from simulated data for the indicated ML estimates of the tobit-LPE model parameters, n and �

� = 0.20 � = 0.50

n φ φ̂ β̂0 β̂1 φ̂ β̂0 β̂1

50 1.00 −0.0090 (0.0194) −0.0064 (0.1903) 0.0087 (0.5807) −0.0109 (0.0314) −0.0282 (0.2277) 0.0228 (0.6642)
3.00 −0.0272 (0.1742) −0.0151 (1.7096) 0.0187 (5.2207) −0.0312 (0.2793) −0.0653 (1.9717) 0.0269 (5.9557)
5.00 −0.0456 (0.4837) −0.0237 (4.7496) 0.0285 (9.5076) −0.0728 (1.5164) −0.1393 (5.5873) 0.0391 (9.4605)

100 1.00 −0.0047 (0.0099) −0.0028 (0.0910) 0.0002 (0.2815) −0.0037 (0.0159) −0.0149 (0.1077) 0.0106 (0.3170)
3.00 −0.0061 (0.0888) −0.0081 (0.8171) 0.0142 (2.5290) −0.0122 (0.1427) −0.0339 (0.9188) 0.0174 (2.7931)
5.00 −0.0102 (0.2469) −0.0135 (2.2718) 0.0048 (7.0339) −0.0205 (0.3969) −0.0537 (2.5311) 0.0170 (7.7414)

300 1.00 −0.0021 (0.0032) −0.0019 (0.0295) 0.0002 (0.0865) −0.0010 (0.0052) −0.0063 (0.0341) 0.0043 (0.0956)
3.00 −0.0026 (0.0287) −0.0051 (0.2653) 0.0030 (0.7783) −0.0069 (0.0468) −0.0172 (0.2901) 0.0130 (0.8346)
5.00 −0.0047 (0.0798) −0.0078 (0.7366) 0.0021 (2.1619) −0.0097 (0.1299) −0.0253 (0.7998) 0.0047 (2.3190)

500 1.00 −0.0008 (0.0019) −0.0017 (0.0177) 0.0001 (0.0525) −0.0003 (0.0031) −0.0005 (0.0204) 0.0033 (0.0574)
3.00 −0.0021 (0.0176) −0.0047 (0.1593) 0.0018 (0.4733) −0.0017 (0.0280) −0.0033 (0.1730) 0.0030 (0.5050)
5.00 −0.0011 (0.0176) −0.0051 (0.1593) 0.0014 (0.4733) −0.0079 (0.0775) −0.0162 (0.4754) 0.0031 (1.3952)
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This simulation study assesses the performance of the LR and GR tests under two data gen-
erating models.

4.2.1 Model 1. The first data generating model has one covariate and is given by

Yi =
{
γ, Y ∗

i ≤ γ, i = 1, . . . ,m,

Y ∗
i = β0 + β1xi + εi, Y ∗

i > γ, i = m + 1, . . . , n,

where εi is as in (3.4), with β0 = 1.0 and β1 ∈ {−1.00,−0.75,−0.25, 0.00,0.25,0.75,1.00}.
The covariate values were obtained as U(0,1) random draws. The interest lies in testing
H0 : β1 = 0 against H1 : β1 �= 0.

Tables 5–7 present the simulation results of powers of the LR and GR tests, namely, their
capacity to identify a false null hypothesis. We also consider the case when the null hypoth-
esis is true (β1 = 0.00 in the data generation). From Tables 5–7, we observe that the power
associated with the LR and GR tests increases as a function of the sample size, as expected.
We also observe that the power of the tests increase when the true parameter deviates from the
value 0. Finally, we note that the power of the tests decrease when the censoring proportion
increases. In general, the results show that both tests have similar power.

Table 5 Power study (%) for different values of β1 and models (nominal level = 1%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β1 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 3.50 2.74 2.92 2.28 3.80 2.90 3.10 2.48 4.38 3.22 3.58 2.86
−0.75 2.32 1.86 2.04 1.64 2.60 2.10 2.22 1.86 2.96 2.20 2.56 2.20
−0.25 1.34 1.08 1.16 0.94 1.52 1.20 1.52 1.18 1.58 1.28 1.52 1.30

0.00 1.20 0.98 1.14 0.88 1.30 0.98 1.40 1.08 1.54 1.12 1.38 1.32
0.25 1.38 1.00 1.28 0.96 1.28 1.04 1.26 1.08 1.56 1.16 1.40 1.30
0.75 2.00 1.70 1.88 1.40 2.18 1.58 2.14 1.64 2.54 2.04 2.20 2.04
1.00 3.12 2.42 2.74 2.02 3.56 2.72 3.14 2.56 3.88 2.92 3.30 2.88

100 −1.00 5.86 5.22 4.80 4.38 6.08 5.60 5.18 4.78 6.70 5.88 5.50 5.24
−0.75 3.58 3.04 3.22 2.92 3.66 3.24 3.58 3.06 4.28 3.62 3.62 3.50
−0.25 1.12 1.04 1.42 1.26 1.32 1.18 1.64 1.32 1.58 1.24 1.68 1.54

0.00 1.10 0.98 1.06 0.80 1.10 1.00 1.12 1.00 1.28 1.14 1.26 1.24
0.25 1.26 1.10 1.40 1.20 1.60 1.30 1.48 1.36 1.62 1.36 1.54 1.46
0.75 3.44 3.24 3.02 2.72 4.24 3.94 3.52 3.32 4.68 4.00 4.02 3.72
1.00 5.92 5.28 4.98 4.54 6.42 5.90 5.74 5.18 6.88 6.14 6.24 6.04

300 −1.00 17.82 17.44 14.90 14.26 18.26 18.02 14.86 14.52 18.50 18.06 15.56 15.40
−0.75 9.80 9.52 7.94 7.76 9.72 9.44 8.16 8.00 10.68 10.02 8.88 8.66
−0.25 2.00 1.94 1.96 1.86 2.26 2.18 2.24 2.12 2.58 2.44 2.30 2.36

0.00 1.16 1.06 1.22 1.12 1.30 1.26 1.34 1.26 1.72 1.56 1.62 1.52
0.25 1.76 1.64 1.64 1.60 1.96 1.86 1.82 1.76 2.18 2.08 2.00 2.00
0.75 9.28 8.98 7.50 7.22 9.82 9.72 8.00 7.72 10.42 9.84 8.30 8.20
1.00 17.88 17.68 14.34 14.02 18.24 17.84 14.50 14.24 18.36 18.20 15.50 15.52

500 −1.00 32.58 31.90 27.24 26.92 32.48 32.28 27.36 27.04 32.82 32.74 27.80 27.68
−0.75 16.22 16.00 14.08 13.76 17.10 16.92 14.44 14.28 17.50 17.22 14.94 14.66
−0.25 2.22 2.14 2.44 2.40 2.72 2.70 2.88 2.80 3.28 3.16 2.98 3.02

0.00 1.22 1.22 0.94 0.94 1.16 1.16 1.18 1.18 1.50 1.42 1.42 1.34
0.25 1.94 1.86 1.74 1.70 2.30 2.28 2.06 2.04 2.78 2.66 2.24 2.22
0.75 15.38 15.22 12.84 12.58 16.52 16.30 13.68 13.50 17.06 16.70 14.38 14.30
1.00 32.16 31.90 26.62 26.38 31.80 31.42 27.44 27.04 32.48 32.14 27.94 27.94
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Table 6 Power study (%) for different values of β1 and models (nominal level = 5%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β1 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 12.44 11.64 11.10 10.18 12.70 12.06 11.72 10.94 13.50 12.44 12.52 12.02
−0.75 9.24 8.58 8.46 7.90 9.84 9.16 8.78 8.16 10.54 9.60 9.50 9.12
−0.25 5.64 5.22 5.34 4.78 5.76 5.26 5.76 5.18 6.90 6.00 6.20 5.90

0.00 4.90 4.50 4.90 4.36 5.38 4.80 5.26 4.88 6.12 5.52 5.78 5.28
0.25 5.20 4.70 5.36 4.84 5.48 5.24 5.54 5.28 6.48 5.60 6.06 5.62
0.75 8.70 8.02 7.62 7.04 9.22 8.46 8.18 7.78 9.78 8.80 9.34 8.54
1.00 11.94 11.12 10.02 9.20 12.50 11.62 10.80 9.88 13.98 12.02 11.72 11.14

100 −1.00 17.60 17.02 15.84 15.26 18.42 17.88 16.40 15.86 19.20 18.20 17.10 16.64
−0.75 11.90 11.60 10.82 10.24 12.36 12.04 11.44 11.18 13.28 12.72 11.86 11.72
−0.25 5.84 5.50 5.84 5.62 6.44 6.00 6.44 6.18 6.90 6.50 6.88 6.74

0.00 5.08 4.96 5.26 5.00 5.54 5.10 5.68 5.50 6.66 6.24 6.30 6.08
0.25 5.60 5.24 5.92 5.60 6.60 6.26 6.30 6.14 7.28 6.84 7.04 6.84
0.75 11.54 11.10 10.72 10.48 12.28 11.92 11.40 11.10 13.26 12.90 11.98 11.94
1.00 17.02 16.72 15.18 14.48 17.56 17.02 16.20 15.82 18.56 17.80 17.08 16.90

300 −1.00 38.22 37.96 32.64 32.46 37.96 37.72 33.26 33.08 38.82 38.34 34.04 33.96
−0.75 23.40 23.14 21.30 21.12 23.86 23.64 21.48 21.30 24.80 24.42 21.80 21.50
−0.25 7.28 7.14 7.26 7.18 8.02 7.82 7.42 7.40 8.54 8.34 8.16 8.06

0.00 5.44 5.40 5.72 5.60 6.00 5.94 6.12 6.04 7.12 7.00 6.48 6.48
0.25 7.90 7.88 7.06 6.96 8.56 8.36 7.36 7.24 8.92 5.52 7.88 7.82
0.75 23.96 23.88 20.50 20.24 24.06 23.84 20.96 20.78 24.54 24.32 21.58 21.42
1.00 37.74 37.56 32.80 32.60 38.28 38.04 33.36 33.14 38.10 37.84 33.72 33.60

500 −1.00 56.50 56.32 49.84 49.68 56.40 56.20 50.48 50.40 55.96 55.80 50.48 50.20
−0.75 35.52 35.42 31.84 31.60 35.60 35.52 31.78 31.72 36.00 35.66 32.50 32.26
−0.25 9.12 9.04 8.24 8.20 9.68 9.60 8.80 8.76 10.22 10.16 9.58 9.40

0.00 4.96 4.90 5.28 5.20 5.66 5.66 6.04 6.02 6.72 6.56 6.60 6.52
0.25 8.06 8.06 7.30 7.24 8.44 8.32 7.94 7.80 9.36 9.34 8.50 8.36
0.75 35.40 35.18 30.98 30.78 35.56 35.36 31.42 31.26 35.78 35.48 31.84 31.76
1.00 56.28 56.26 49.86 49.64 56.18 55.96 50.04 49.94 55.84 55.58 50.16 49.98

4.2.2 Model 2. We consider as data generating process the following four-covariate model:

Yi =
{
γ, Y ∗

i ≤ γ, i = 1, . . . ,m,

Y ∗
i = β0 + β1x1i + β2x2i + β3x3i + β4x4i + εi, Y ∗

i > γ, i = m + 1, . . . , n,

where εi is as in (3.4), with β0 = 1.0, β1 = 1.5, β2 = 0.5, β3 = 0.8 and β4 ∈ {−1.00,−0.75,

−0.25,0.00,0.25,0.75,1.00}. The covariate values were taken as random draws from the
U(0,1) distribution. The interest lies in testing H0 : β4 = 0 against H1 : β4 �= 0.

Tables 8–10 present the simulation results of powers of the tests, which also include the
case when the null hypothesis is true (β4 = 0.00 in the data generation). From these tables, we
observe that the power of the LR and GR tests increases as a function of the sample size, that
is, the nonnull rejection rates of the tests converge to 100% as the sample size increases, as
expected. We also observe that the power of the tests decrease (increase) when the censoring
proportion increases (the true parameter deviates from the value 0). The results also show
that both tests have similar power.

4.3 Empirical distribution of the residuals

We now present a Monte Carlo simulation study for evaluating the performance of GCS
residuals. The sample generation, as well as the simulation scenario, are almost the same as
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Table 7 Power study (%) for different values of β1 and models (nominal level = 10%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β1 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 20.16 19.46 19.30 18.50 20.48 19.84 19.46 18.74 21.48 20.42 20.88 19.86
−0.75 16.14 15.62 15.20 14.46 16.34 15.78 15.90 15.20 17.18 16.20 16.90 16.14
−0.25 11.00 10.32 11.04 10.48 11.78 11.18 11.18 10.66 12.86 11.96 12.38 11.96

0.00 9.98 9.60 9.84 9.28 11.02 10.42 10.46 10.00 12.34 11.48 11.80 11.18
0.25 10.48 9.92 10.26 9.62 11.38 10.74 11.02 10.64 12.38 11.50 12.54 12.02
0.75 15.60 14.90 13.92 13.40 16.54 15.90 14.96 14.52 17.52 16.54 16.12 15.60
1.00 19.82 19.18 17.56 16.74 20.52 19.90 18.44 17.76 21.66 20.44 19.96 19.28

100 −1.00 27.52 27.18 25.28 24.80 28.08 27.78 25.52 25.08 28.34 27.68 26.86 26.62
−0.75 20.10 19.68 18.80 18.42 20.82 20.36 19.16 18.90 21.72 21.08 20.14 19.78
−0.25 11.36 11.12 11.20 11.06 12.02 11.80 11.96 11.80 13.58 13.22 13.00 12.36

0.00 10.38 10.02 10.12 9.84 11.34 11.00 11.20 11.08 12.14 11.54 11.98 11.78
0.25 11.36 11.10 11.32 11.12 11.80 11.52 11.94 11.76 13.34 12.70 12.88 12.54
0.75 19.68 19.40 18.32 18.02 19.94 19.68 18.66 18.40 20.96 20.16 19.88 19.62
1.00 26.76 26.30 24.54 24.14 26.60 26.24 24.46 24.14 27.38 26.54 25.62 25.48

300 −1.00 50.70 50.66 45.36 45.24 50.12 50.00 45.18 45.10 50.28 50.04 45.94 45.64
−0.75 34.68 34.50 30.78 30.68 35.08 34.98 31.58 31.36 35.28 35.10 31.80 31.74
−0.25 13.56 13.46 12.74 12.66 14.02 13.96 13.48 13.42 15.04 14.76 14.16 13.92

0.00 10.82 10.78 10.82 10.70 11.76 11.64 10.80 10.76 12.36 12.12 11.78 11.64
0.25 13.52 13.46 12.68 12.56 14.32 14.16 13.42 13.38 15.28 15.14 14.34 14.38
0.75 34.84 34.66 30.68 30.50 34.80 34.68 31.34 31.26 35.04 34.74 31.64 31.68
1.00 49.92 49.78 44.98 44.86 50.52 50.36 45.36 45.22 50.18 50.22 45.28 45.14

500 −1.00 68.34 68.30 62.70 62.56 68.28 68.20 62.32 62.26 67.56 67.42 62.28 62.16
−0.75 47.74 47.66 43.04 42.94 47.98 47.86 44.18 44.04 48.30 48.14 43.88 43.84
−0.25 14.94 14.90 14.44 14.44 15.68 15.60 14.84 14.76 16.80 16.66 15.62 15.28

0.00 10.56 10.50 10.14 10.10 11.26 11.16 10.84 10.82 12.56 12.36 11.90 11.80
0.25 14.30 14.26 13.52 13.48 15.42 15.34 14.58 14.56 16.74 16.54 15.60 15.56
0.75 47.60 47.52 14.88 42.78 47.56 47.50 42.88 42.84 47.22 47.28 43.20 42.88
1.00 68.60 68.52 62.18 62.04 67.68 67.60 62.20 62.10 66.88 66.92 61.84 61.74

in Section 4.1 with the difference that in this case we use � = 0.2. In addition to the following
tobit-log-symmetric models, tobit-LN, tobit-Lt and tobit-LPE, we further consider the tobit-
Birnbaum–Saunders (tobit-BS) and tobit-Birnbaum–Saunders-t (tobit-BS-t) models.

Table 11 presents the empirical mean, standard deviation (SD), coefficient of skewness
(CS) and coefficient of (excess) kurtosis (CK), whose values are expected to be 1, 1, 2 and 6,
respectively, for the GCS residuals. From this table, note that, as the sample size increases, the
values of the empirical mean, SD, CS and CK approach these values of the reference EXP(1)
distribution. Therefore, the considered residuals conform well with the reference distribution.

5 Application to real data

Tobit-log-symmetric models are now used to analyze a data set from a case-study of measles
vaccine, corresponding to antibody concentration levels (response variable, Ti) collected
from 330 children at 12 months of age; see Moulton and Halsey (1995). A natural assumption
that can be made is that this response variable follows a log-normal distribution. According
to Ott (1990), the log-normal distribution has been used to model concentrations of several
substances. In other words, concentration data are usually modeled by the log-normal distri-
bution. As mentioned earlier, the class of log-symmetric distributions is a generalization of
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Table 8 Power study (%) for different values of β4 and models (nominal level = 1%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β4 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 4.04 3.18 3.38 2.62 4.00 3.16 3.54 2.92 4.26 3.38 3.66 3.18
−0.75 2.90 2.38 2.56 1.94 2.88 2.48 2.82 2.28 3.24 2.48 2.82 2.52
−0.25 1.86 1.34 1.58 1.20 2.28 1.60 2.12 1.62 2.44 1.72 2.28 1.92

0.00 1.60 1.24 1.46 1.16 1.88 1.40 1.86 1.48 2.04 1.62 2.08 1.60
0.25 1.76 1.42 1.74 1.24 2.02 1.62 1.92 1.50 2.36 1.82 2.20 1.78
0.75 2.74 2.06 2.56 2.06 3.00 2.14 2.58 2.28 3.16 2.44 2.84 2.38
1.00 3.48 2.80 3.36 2.78 3.62 3.06 3.40 2.96 3.98 3.10 4.06 3.20

100 −1.00 5.60 5.08 4.84 4.34 5.82 5.36 5.28 4.80 6.50 5.60 5.60 5.08
−0.75 3.52 3.30 3.28 2.96 3.62 3.30 3.58 3.28 4.58 3.84 3.84 3.50
−0.25 1.42 1.24 1.44 1.26 1.76 1.54 1.72 1.62 1.96 1.70 1.98 1.84

0.00 1.12 1.02 1.34 1.14 1.38 1.26 1.54 1.44 1.68 1.42 1.78 1.64
0.25 1.40 1.24 1.46 1.36 1.82 1.50 1.72 1.54 1.98 1.56 1.84 1.64
0.75 2.90 2.60 2.84 2.50 3.58 3.16 3.14 2.84 3.82 3.40 3.40 3.30
1.00 4.72 4.18 4.20 3.82 4.98 4.62 4.62 4.36 5.80 5.26 4.98 4.62

300 −1.00 15.52 15.20 12.90 12.52 16.54 16.20 13.78 13.66 17.34 16.90 14.62 14.50
−0.75 7.90 7.60 6.56 6.44 8.48 8.22 7.24 7.00 9.62 9.18 7.84 7.62
−0.25 1.64 1.60 1.52 1.42 1.84 1.76 1.82 1.72 2.16 2.04 1.84 1.84

0.00 1.10 0.98 1.18 1.12 1.44 1.38 1.41 1.40 1.70 1.62 1.80 1.64
0.25 1.78 1.74 1.80 1.78 1.88 1.74 2.08 1.98 2.14 2.02 2.20 2.18
0.75 8.54 8.14 7.42 7.24 9.00 8.70 8.12 7.84 9.84 9.32 8.32 7.92
1.00 16.34 16.06 13.68 13.14 16.88 16.46 14.08 13.78 17.54 16.96 14.74 14.30

500 −1.00 29.58 29.12 23.40 23.04 29.34 29.16 23.74 23.46 29.90 29.50 24.28 24.04
−0.75 13.72 13.56 11.30 11.12 14.08 13.74 11.90 11.72 15.20 14.94 12.74 12.42
−0.25 2.00 1.94 1.94 1.86 2.44 2.40 2.34 2.32 3.00 3.02 2.62 2.60

0.00 1.08 1.08 1.04 1.02 1.30 1.22 1.16 1.10 1.86 1.80 1.64 1.62
0.25 2.02 1.98 1.90 1.82 2.46 2.36 2.24 2.22 2.80 2.60 2.38 2.40
0.75 15.24 15.16 12.82 12.52 15.44 15.32 12.84 12.80 16.38 16.04 13.46 13.20
1.00 29.84 29.52 24.56 24.20 30.26 29.98 25.12 24.88 30.90 30.16 25.12 25.00

the log-normal model, and so it is natural to extend the range of distributions that the response
variable, that is, the antibody concentration level, can follow.

In the measurement of antibody concentration by quantitative assays, there is always a
concentration value, γ say, below which an exact measurement cannot be made, indepen-
dently of the employed technique. Then, this value γ can be used to substitute a value for the
censored observation. In the measles vaccine data, the value of γ was 0.1 international units
(IU) or −2.306 in the logarithmic scale. It was verified that 86 (26.1%) of the observations
fell below γ and then were recorded as 0.1. The covariates considered in the study were: xi1
is the type of vaccine used (0 if Schwarz and 1 if Edmonston-Zagreb); xi2 is the level of the
dosage (0 if medium and 1 if high); and xi3 is the gender where 0 is male and 1 is female.

Table 12 reports descriptive statistics of the observed antibody concentration levels, in-
cluding the median (MD), mean (t), SD, coefficient of variation (CV), CS and CK (excess),
and minimum (t(1)) and maximum (t(n)) values. From this table, we observe a skewed and
high kurtosis features in the data.

Figure 1 presents the histogram and boxplots for the measles vaccine data. Note that the
skewness observed in Table 12 is confirmed by the histogram presented in Figure 1(a). The
adjusted boxplot for the measles vaccine data indicates that some potential outliers identified
by the usual boxplot are not outliers; see Figure 1(b). The adjusted boxplot is used when the
data is skew distributed; see Hubert and Vandervieren (2008).
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Table 9 Power study (%) for different values of β4 and models (nominal level = 5%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β4 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 11.58 10.76 10.98 10.06 12.82 11.96 11.76 10.92 13.66 12.46 12.40 11.52
−0.75 9.84 9.14 9.22 8.54 10.52 9.94 9.92 9.30 11.50 10.24 10.58 9.82
−0.25 7.58 6.84 7.06 6.48 7.74 7.12 7.90 6.92 8.56 7.60 8.38 7.86

0.00 7.08 6.66 6.78 6.00 7.60 6.74 7.12 6.44 8.04 7.16 7.82 7.14
0.25 7.42 6.76 6.74 6.16 7.72 7.22 7.22 6.80 8.48 7.42 8.16 7.30
0.75 8.90 8.26 8.60 7.82 9.60 8.84 9.04 8.48 10.94 9.66 10.08 9.30
1.00 10.66 9.92 9.90 9.30 11.50 10.42 10.76 10.04 12.28 11.44 11.72 10.88

100 −1.00 16.30 15.76 14.32 14.02 16.88 16.30 15.06 14.68 17.78 17.28 15.44 15.18
−0.75 11.36 11.04 10.94 10.64 12.44 11.82 11.52 11.12 13.34 12.54 12.36 11.86
−0.25 6.72 6.66 6.64 6.28 7.22 6.74 6.92 6.58 8.02 7.56 7.44 7.20

0.00 5.36 5.14 5.56 5.30 6.30 5.90 6.30 5.98 7.36 6.68 6.26 6.18
0.25 5.70 5.42 5.78 5.54 6.50 6.26 6.72 6.32 7.44 7.00 7.10 6.70
0.75 10.94 10.54 10.06 9.60 11.84 11.28 10.72 10.48 12.64 11.82 11.70 11.30
1.00 15.42 14.86 13.46 13.02 16.32 15.64 14.14 13.78 16.82 15.92 14.98 14.54

300 −1.00 34.22 33.94 30.08 29.80 35.06 34.84 30.84 30.64 34.98 34.70 31.30 31.30
−0.75 21.94 21.78 19.16 18.90 22.56 22.40 20.20 20.12 23.38 23.14 20.68 20.72
−0.25 6.46 6.22 6.74 6.66 7.40 7.28 7.18 7.12 8.62 8.50 7.80 7.70

0.00 5.30 5.28 5.28 5.22 5.62 5.54 5.68 5.58 6.18 6.10 6.18 6.12
0.25 6.78 6.70 7.06 6.92 7.60 7.40 7.68 7.54 8.60 8.50 8.08 8.00
0.75 22.56 22.46 19.96 19.62 22.80 22.58 20.12 19.90 24.04 23.70 20.80 20.42
1.00 35.04 34.60 31.22 30.92 35.38 35.22 31.24 31.02 36.12 36.08 32.18 32.08

500 −1.00 53.32 53.18 47.88 47.68 52.94 52.74 47.68 47.60 52.50 52.36 47.38 47.38
−0.75 33.12 32.96 28.62 28.50 33.08 32.96 28.70 28.46 33.64 33.38 29.34 29.14
−0.25 7.82 7.78 7.36 7.30 8.64 8.54 8.24 8.14 9.46 9.42 8.58 8.60

0.00 5.40 5.40 5.22 5.10 5.72 5.64 5.72 5.62 6.68 6.50 6.26 6.22
0.25 8.16 8.12 7.98 7.78 8.90 8.86 8.52 8.42 9.54 9.36 9.16 9.04
0.75 33.86 33.78 29.16 29.02 34.42 34.26 30.10 29.94 34.48 34.54 29.90 29.88
1.00 53.10 53.06 46.98 46.78 52.96 52.94 47.24 47.08 52.70 52.58 47.44 47.26

Figure 2 shows normal QQ plots for each covariate combination of the observed antibody
concentration levels. Note that for the three covariates each at 0 or 1, we have 23 = 8 possibil-
ities. From this figure, we observe that a normal or symmetric distribution is not a reasonable
assumption, since we have to accommodate skewness. We then analyze the measles vaccine
data using the tobit-log-symmetric model, expressed as

Yi =
{−2.306, Y ∗

i ≤ −2.306, i = 1, . . . ,85,

Y ∗
i = β0 + β1xi1 + β2x2i + β3x3i + εi, Y ∗

i > −2.306, i = 86, . . . ,330,

where εi
IID∼ S(0,1, g).

Table 13 reports the ML estimates, computed by the BFGS quasi-Newton method, SEs and
Akaike (AIC) and Bayesian information (BIC) criteria values. For comparison, the results of
the classical tobit-NO model (Tobin, 1958) showed in Equation (3.1), are presented as well.
The two-step procedure presented in Section 3 is used to get the estimates of ξ1 in the tobit-Lt

and tobit-LPE models, and the estimate of ξ2 in the tobit-BS-t model. The extra parameter ξ1

in the tobit-BS and tobit-BS-t models is the shape parameter, and it is estimated directly.
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Table 10 Power study (%) for different values of β4 and models (nominal level = 10%)

tobit-LN tobit-Lt tobit-LPE

� = 0.20 � = 0.50 � = 0.20 � = 0.50 � = 0.20 � = 0.50

n β4 LR GR LR GR LR GR LR GR LR GR LR GR

50 −1.00 18.92 18.28 18.06 17.54 20.06 19.46 19.52 18.78 21.02 19.86 20.00 19.64
−0.75 16.50 16.00 16.24 15.52 17.46 16.76 17.40 16.68 18.40 17.44 17.98 17.30
−0.25 13.42 12.94 12.98 12.36 14.54 13.94 13.54 12.96 15.76 14.40 14.68 13.92

0.00 12.68 12.20 12.58 11.92 13.66 13.20 13.22 12.36 15.20 14.14 14.26 13.46
0.25 12.88 12.42 12.68 12.02 14.00 13.22 13.38 12.84 14.88 14.28 14.42 13.54
0.75 15.54 14.88 14.48 13.76 16.50 15.68 15.72 15.18 17.40 16.18 16.76 16.20
1.00 18.06 17.44 16.66 16.02 19.18 18.56 17.92 17.24 20.20 18.90 18.60 17.88

100 −1.00 24.26 23.70 22.84 22.54 25.08 24.90 23.10 22.86 25.98 25.12 23.62 23.40
−0.75 19.06 18.82 17.86 17.28 20.10 19.80 18.50 18.32 20.80 20.24 18.74 18.76
−0.25 11.98 11.80 11.90 11.62 13.00 12.74 12.68 12.48 14.46 13.76 13.84 13.32

0.00 11.22 10.90 11.50 11.20 11.70 11.52 12.14 12.00 12.88 12.62 12.82 12.58
0.25 11.80 11.50 11.88 11.52 12.40 12.16 12.66 12.36 14.10 13.42 13.78 13.58
0.75 18.36 17.94 17.56 17.04 19.94 19.48 18.06 17.90 20.94 20.18 18.82 18.52
1.00 24.56 24.02 22.48 21.92 25.38 25.00 23.06 22.64 26.48 26.00 23.70 23.20

300 −1.00 46.70 46.66 42.04 41.90 46.56 46.48 42.02 41.98 46.52 46.50 42.78 42.64
−0.75 32.12 31.98 29.26 29.06 32.90 32.74 30.24 30.16 33.34 32.94 30.60 30.52
−0.25 12.76 12.68 11.78 11.76 13.80 13.66 13.68 13.62 15.06 14.66 14.62 14.54

0.00 9.58 9.54 10.34 10.26 10.74 10.68 11.28 11.20 12.62 12.62 12.82 12.58
0.25 13.26 13.22 12.68 12.58 13.76 13.62 13.28 13.26 14.60 14.48 14.48 14.22
0.75 32.60 32.46 29.94 29.74 33.40 33.30 30.38 30.18 34.14 33.68 31.04 30.70
1.00 47.20 47.08 43.34 43.04 47.40 47.28 43.36 43.24 47.16 47.04 43.86 43.54

500 −1.00 64.84 64.78 59.90 59.82 65.06 65.02 59.90 59.78 64.18 63.96 59.92 59.88
−0.75 45.82 45.74 41.26 41.12 45.40 45.30 41.22 41.14 46.02 45.92 41.28 41.20
−0.25 13.62 13.56 13.04 12.92 14.26 14.24 14.14 13.98 15.78 15.58 14.92 14.76

0.00 10.66 10.04 10.76 10.68 10.84 10.84 10.97 10.90 12.32 12.22 12.04 11.90
0.25 14.80 14.68 14.12 14.04 15.34 15.30 15.12 15.08 16.66 16.46 15.70 15.70
0.75 45.98 45.90 41.46 41.40 45.46 45.36 41.16 41.08 45.82 45.86 41.84 41.84
1.00 65.68 65.66 60.16 60.12 65.58 65.54 60.14 60.00 65.64 65.24 59.74 59.86

From Table 13, we observe that all the tobit-log-symmetric models provide better adjust-
ments compared to the tobit-NO model based on the values of AIC and BIC. Particularly, the
tobit-LN has the lowest AIC and BIC values.

Figure 3 displays the quantile versus quantile (QQ) plots with simulated envelope of the
GCS residuals for the tobit-NO, tobit-LN, tobit-Lt , tobit-LPE, tobit-BS and tobit-BS-t mod-
els. This figure indicates that the GCS residuals in the tobit-log-symmetric models show
better agreements with the expected EXP(1) distribution. In particular, we observe quite a
good agreement in the tobit-BS case and a poor agreement in the tobit-NO case. The results
of these plots are corroborated by the histograms of the GCS residuals for the tobit-NO, tobit-
LN, tobit-Lt , tobit-LPE, tobit-BS and tobit-BS-t models, superimposed with the true EXP(1)
density; see Figure 4.

Figure 5(a)–(e) plots the quantity νi defined in (3.8) for the tobit-log-symmetric models.
Note that for the tobit-Lt and tobit-LPE models, νi gives smaller weights for observations
with larger values. In the tobit-BS-t case, Figure 5(e), we initially observe a fall followed by a
rise in weights, which later, after a certain point, starts to fall again. To confirm that the weight
drop behavior is sustainable, we plot νi by considering a simulated sequence, Figure 5(f).
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Table 11 Summary statistics for the GCS residuals

Model n Mean SD CV CK

tobit-LN 50 1.1734 0.8648 2.0313 4.5596
100 1.1662 0.8749 2.2664 6.2262
300 1.1620 0.8822 2.4677 7.9836
500 1.1601 0.8842 2.5111 8.4318

tobit-Lt 50 1.1063 0.9039 1.8481 3.9135
100 1.1047 0.9143 2.0597 5.3346
300 1.1048 0.9218 2.2355 6.7793
500 1.1040 0.9227 2.2765 7.1839

tobit-LPE 50 1.1913 0.8569 2.0821 4.8415
100 1.1822 0.8642 2.2964 6.3818
300 1.1767 0.8730 2.5060 8.2183
500 1.1747 0.8750 2.5427 8.5601

tobit-BS 50 1.0692 0.9291 1.7526 3.3923
100 1.0655 0.9402 1.9567 4.7599
300 1.0630 0.9480 2.1356 6.1950
500 1.0613 0.9503 2.1728 6.5470

tobit-BS-t 50 1.7853 2.3409 1.9194 3.8142
100 1.7691 2.3438 2.0925 4.9781
300 1.7607 2.3527 2.2418 6.1481
500 1.7583 2.3567 2.2720 6.4136

Table 12 Summary statistics for the measles vaccine data

t MD SD CV CS CK t(1) t(n) n

1.20 0.40 2.10 174.74% 3.46 14.37 0.10 15.47 330

Figure 1 Histogram and boxplots for the measles vaccine data.

From this figure, we observe the decay in the weights, indicating that increasingly large ob-
servations get penalized with increasingly small weights. Therefore, the tobit-Lt , tobit-LPE
and tobit-BS-t models tend to produce robust estimates against outlying observations, which
is an important advantage as compared to models based on the normal distribution.
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Figure 2 Normal QQ plots for each covariate combination of the observed antibody concentration levels.

Table 13 ML estimates (with SE in parentheses) and AIC and BIC values for the indicated models for the
measles vaccine data

Model AIC BIC φ ξ1 ξ2 β0 β1 β2 β3

tobit-NO 1299.27 1318.27 0.945 0.597 0.225 −0.228 0.271
(0.047) (0.288) (0.297) (0.295) (0.296)

tobit-LN 1122.28 1141.28 1.666 −1.239 0.315 0.138 0.087
(0.080) (0.184) (0.190) (0.189) (0.189)

tobit-Lt 1130.68 1153.47 1.474 5 −1.207 0.319 0.208 0.077
(0.081) (0.183) (0.189) (0.188) (0.189)

tobit-LPE 1123.67 1146.47 1.311 0.3 −1.182 0.260 0.178 0.070
(0.070) (0.173) (0.180) (0.175) (0.181)

tobit-BS 1168.38 1187.37 1.545 −0.910 0.178 0.073 0.121
(0.081) (0.105) (0.127) (0.126) (0.126)

tobit-BS-t 1126.16 1148.96 1.662 4 −1.241 0.305 0.086 0.113
(0.102) (0.186) (0.191) (0.190) (0.190)

Next, we test the null hypotheses (a) H0 : β1 = 0, (b) H0 : β2 = 0 and (c) H0 : β3 = 0,
using the LR and GR tests. For illustrative purposes, we consider only the tobit-LN model
as it has produced the lowest AIC and BIC values in the previously described results. The
corresponding p-values of LR and GR tests are: (a) 0.0971 (LR) and 0.0975 (GR); (b) 0.4657
(LR) and 0.4658 (GR); (c) 0.4657 (LR) and 0.5926 (GR). Thus, these results indicate that in
the tobit-LN model, only the EZ (type of vaccine) covariate should be used. Thus, the reduced
predictive tobit-LN model is given by

Ŷi =
⎧⎨⎩−2.306, Ŷ ∗

i ≤ −2.306, i = 1, . . . ,85,

Ŷ ∗
i = −1.1315

(0.1325)
+ 0.3242

(0.1898)
xi1, Ŷ ∗

i > −2.306, i = 86, . . . ,330.
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Figure 3 QQ plot and its envelope for the GCS residuals for the tobit-log-symmetric models for measles vaccine
data.

Figure 4 Histograms of the GCS residuals superimposed with the EXP(1) density for the tobit-log-symmetric
models for measles vaccine data.
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Figure 5 Weights νi for the indicated models with the measles vaccine data (a)–(e) and with simulated data (f).

6 Concluding remarks

We have proposed and analyzed a new class of tobit models for left-censored data. We have
considered a likelihood-based approach for parameter estimation. We have addressed hy-
pothesis testing within the proposed class of tobit models by using the likelihood ratio and
gradient statistics. Monte Carlo simulations were carried out to evaluate the behaviour of
the maximum likelihood estimates, the likelihood ratio and gradient tests and the empirical
distribution of the residuals. The simulation results (a) have shown good performaces of the
maximum likelihood estimates; (b) indicated that the likelihood ratio and gradient tests have
similar powers; and (c) indicated that the considered residuals conform well with the refer-
ence distribution. The result (c) demonstrates similar results with other models and scenarios;
see Lemonte (2016), p. 29. We have applied the proposed models to a real data set on measles
vaccine in Haiti. The application has favored the use of tobit-log-symmetric models over the
classical tobit-normal model. As part of future research, it will be of interest to apply Bartlett
and Bartlett-type corrections (Medeiros and Ferrari, 2017) to attenuate the size distortion of
the likelihood ratio and gradient tests. In addition, Monte Carlo simulations can evaluate the
behavior of the maximum likelihood estimates as well as residuals under misspecification.
Furthermore, influence diagnostic tools can be investigated and also multivariate models can
be studied. Finally, Monte Carlo simulations can be applied to evaluate the accuracy of how
some popular information criteria correctly choose log-symmetric regressions models; see
Ventura et al. (2019). Work on these problems is currently in progress and we hope to report
these findings in future papers.

Acknowledgment

Helton Saulo gratefully acknowledges financial support from FAP-DF.



82 Saulo, Leão, Nobre and Balakrishnan

References

Amemiya, T. (1984). Tobit models: A survey. Journal of Econometrics 24, 3–61. MR0739428 https://doi.org/10.
1016/0304-4076(84)90074-5

Arellano, R., Castro, L. M., Gonzalez, G. and Muñoz, K. A. (2012). Student-t censored regression model: Prop-
erties and inference. Statistical Methods and Applications 21, 453–473. MR2992913 https://doi.org/10.1007/
s10260-012-0199-y

Balakrishnan, N. and Kundu, D. (2019). Birnbaum–Saunders distribution: A review of models, analysis, and
applications. Applied Stochastic Models in Business and Industry 35, 4–132 (with discussions). MR3915800
https://doi.org/10.1002/asmb.2348

Barros, M., Galea, M., Gonzalez, M. and Leiva, V. (2010). Influence diagnostics in the tobit censored re-
sponse model. Statistical Methods and Applications 19, 379–397. MR2673350 https://doi.org/10.1007/
s10260-010-0135-y

Barros, M., Galea, M., Leiva, V. and Santos-Neto, M. (2018). Generalized tobit models: Diagnostics and ap-
plication in econometrics. Journal of Applied Statistics 45, 145–167. MR3736863 https://doi.org/10.1080/
02664763.2016.1268572

Barros, M., Paula, G. and Leiva, V. (2008). A new class of survival regression models with heavy-tailed er-
rors: Robustness and diagnostics. Lifetime Data Analysis 14, 316–332. MR2516848 https://doi.org/10.1007/
s10985-008-9085-1

Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. Journal of Applied Probability 6,
319–327. MR0253493 https://doi.org/10.2307/3212003

Crow, E. L. and Shimizu, K. (1988). Lognormal Distributions: Theory and Applications. New York: Marcel
Dekker. MR0939191

Desousa, M. F., Saulo, H., Leiva, V. and Scalco, P. (2018). On a tobit-Birnbaum–Saunders model with an applica-
tion to antibody response to vaccine. Journal of Applied Statistics 45, 932–955. MR3772119 https://doi.org/10.
1080/02664763.2017.1322559

Díaz-García, J. and Leiva, V. (2005). A new family of life distributions based on elliptically contoured distribu-
tions. Journal of Statistical Planning and Inference 128, 445–457. MR2102769 https://doi.org/10.1016/j.jspi.
2003.11.007

Díaz-García, J. and Leiva, V. (2007). Erratum to a new family of life distributions based on the elliptically con-
toured distributions [Journal of Statistical Planning and Inference 128(2) (2005) 445–457]. Journal of Statisti-
cal Planning and Inference 137, 1512–1513. MR2312807 https://doi.org/10.1016/j.jspi.2006.06.040

Dunn, P. and Smyth, G. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statis-
tics 5, 236–244.

Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed vs.
expected Fisher information. Biometrika 65, 457–487. MR0521817 https://doi.org/10.1093/biomet/65.3.457

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. London, UK:
Chapman and Hall. MR1071174 https://doi.org/10.1007/978-1-4899-2937-2

Garay, A., Bolfarine, H., Lachos, V. and Cabral, C. (2015). Bayesian analysis of censored linear regression mod-
els with scale mixtures of normal distributions. Journal of Applied Statistics 42, 2694–2714. MR3428840
https://doi.org/10.1080/02664763.2015.1048671

Helsel, D. R. (2011). Statistics for Censored Environmental Data Using Minitab and R. Hoboken, New Jersey:
John Wiley & Sons.

Hubert, M. and Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics
and Data Analysis 52, 5186–5201. MR2526585 https://doi.org/10.1016/j.csda.2007.11.008

Johnson, N., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed. New
York: John Wiley & Sons. MR1326603

Johnson, N., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 2, 2nd ed. New
York: John Wiley & Sons. MR1326603

Jones, M. C. (2008). On reciprocal symmetry. Journal of Statistical Planning and Inference 138, 3039–3043.
MR2526220 https://doi.org/10.1016/j.jspi.2007.11.006

Kano, Y., Berkane, M. and Bentler, P. M. (1993). Statistical inference based on pseudo-maximum likelihood
estimators in elliptical populations. Journal of the American Statistical Association 88, 135–143. MR1212483

Leiva, V., Barros, M., Paula, G. and Galea, M. (2007). Influence diagnostics in log-Birnbaum–Saunders regres-
sion models with censored data. Computational Statistics and Data Analysis 51, 5694–5707. MR2407671
https://doi.org/10.1016/j.csda.2006.09.020

Lemonte, A. (2016). The Gradient Test: Another Likelihood-Based Test. London, UK: Academic Press.
MR3618685

http://www.ams.org/mathscinet-getitem?mr=0739428
https://doi.org/10.1016/0304-4076(84)90074-5
http://www.ams.org/mathscinet-getitem?mr=2992913
https://doi.org/10.1007/s10260-012-0199-y
http://www.ams.org/mathscinet-getitem?mr=3915800
https://doi.org/10.1002/asmb.2348
http://www.ams.org/mathscinet-getitem?mr=2673350
https://doi.org/10.1007/s10260-010-0135-y
http://www.ams.org/mathscinet-getitem?mr=3736863
https://doi.org/10.1080/02664763.2016.1268572
http://www.ams.org/mathscinet-getitem?mr=2516848
https://doi.org/10.1007/s10985-008-9085-1
http://www.ams.org/mathscinet-getitem?mr=0253493
https://doi.org/10.2307/3212003
http://www.ams.org/mathscinet-getitem?mr=0939191
http://www.ams.org/mathscinet-getitem?mr=3772119
https://doi.org/10.1080/02664763.2017.1322559
http://www.ams.org/mathscinet-getitem?mr=2102769
https://doi.org/10.1016/j.jspi.2003.11.007
http://www.ams.org/mathscinet-getitem?mr=2312807
https://doi.org/10.1016/j.jspi.2006.06.040
http://www.ams.org/mathscinet-getitem?mr=0521817
https://doi.org/10.1093/biomet/65.3.457
http://www.ams.org/mathscinet-getitem?mr=1071174
https://doi.org/10.1007/978-1-4899-2937-2
http://www.ams.org/mathscinet-getitem?mr=3428840
https://doi.org/10.1080/02664763.2015.1048671
http://www.ams.org/mathscinet-getitem?mr=2526585
https://doi.org/10.1016/j.csda.2007.11.008
http://www.ams.org/mathscinet-getitem?mr=1326603
http://www.ams.org/mathscinet-getitem?mr=1326603
http://www.ams.org/mathscinet-getitem?mr=2526220
https://doi.org/10.1016/j.jspi.2007.11.006
http://www.ams.org/mathscinet-getitem?mr=1212483
http://www.ams.org/mathscinet-getitem?mr=2407671
https://doi.org/10.1016/j.csda.2006.09.020
http://www.ams.org/mathscinet-getitem?mr=3618685
https://doi.org/10.1016/0304-4076(84)90074-5
https://doi.org/10.1007/s10260-012-0199-y
https://doi.org/10.1007/s10260-010-0135-y
https://doi.org/10.1080/02664763.2016.1268572
https://doi.org/10.1007/s10985-008-9085-1
https://doi.org/10.1080/02664763.2017.1322559
https://doi.org/10.1016/j.jspi.2003.11.007


Asymmetric regression models 83

Lemonte, A. and Ferrari, S. (2011). Testing hypotheses in the Birnbaum–Saunders distribution under type-II
censored samples. Computational Statistics and Data Analysis 55, 2388–2399. MR2786997 https://doi.org/10.
1016/j.csda.2011.02.005

Lucas, A. (1997). Robustness of the student t based M-estimator. Communications in Statistics: Theory and
Methods 41, 1165–1182. MR1450228 https://doi.org/10.1080/03610929708831974

Marshall, A. and Olkin, I. (2007). Life Distributions. New York: Springer. MR2344835
Martínez-Flores, G., Bolfarine, H. and Gómez, H. W. (2013a). The alpha-power tobit model. Communications in

Statistics: Theory and Methods 42, 633–643. MR3211940 https://doi.org/10.1080/03610926.2011.630770
Martínez-Flores, G., Bolfarine, H. and Gómez, H. W. (2013b). Asymmetric regression models with limited re-

sponses with an application to antibody response to vaccine. Biometrical Journal 55, 156–172. MR3045838
https://doi.org/10.1002/bimj.201100116

Massuia, M. B., Cabral, C. R. B., Matos, L. A. and Lachos, V. H. (2015). Influence diagnostics for student-t
censored linear regression models. Statistics 49, 1074–1094. MR3378032 https://doi.org/10.1080/02331888.
2014.958489

Medeiros, M. C. and Ferrari, S. L. P. (2017). Small-sample testing inference in symmetric and log-symmetric
linear regression models. Statistica Neerlandica 71, 200–224. MR3680260 https://doi.org/10.1111/stan.12107

Mittelhammer, R. C., Judge, G. G. and Miller, D. J. (2000). Econometric Foundations. New York: Cambridge
University Press. MR1789434

Moulton, L. H. and Halsey, N. A. (1995). A mixture model with detection limits for regression analyses of
antibody response to vaccine. Biometrics 51, 1570–1578.

Ng, H. K. T., Kundu, D. and Balakrishnan, N. (2003). Modified moment estimation for the two-parameter
Birnbaum–Saunders distribution. Computational Statistics and Data Analysis 43, 283–298. MR1996813
https://doi.org/10.1016/S0167-9473(02)00254-2

Ott, W. R. (1990). A physical explanation of the lognormality of pollutant concentrations. Journal of the Air and
Waste Management Association 40, 1378–1383.

Podlaski, R. (2008). Characterization of diameter distribution data in near-natural forests using the Birnbaum–
Saunders distribution. Canadian Journal of Forest Research 18, 518–527.

R-Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing.

Rieck, J. and Nedelman, J. (1991). A log-linear model for the Birnbaum–Saunders distribution. Technometrics 3,
51–60.

Saulo, H., Leão, J., Leiva, V. and Aykroyd, R. G. (2019). Birnbaum–Saunders autoregressive conditional du-
ration models applied to high-frequency financial data. Statistical Papers 60, 1605–1629. MR4017025
https://doi.org/10.1007/s00362-017-0888-6

Saulo, H., Vila, R., Vilca, F. and Martínez, J. L. (2020). On asymmetric regression models with allowance for
temporal dependence. Journal of Statistical Theory and Practice 14, 40. MR4110661 https://doi.org/10.1007/
s42519-020-00104-9

Terrell, G. (2002). The gradient statistic. Computing Science and Statistics 34, 206–215.
Thorarinsdottir, T. L. and Gneiting, T. (2010). Probabilistic forecasts of wind speed: Ensemble model output

statistics by using heteroscedastic censored regression. Journal of the Royal Statistical Society, Series A 173,
371–388. MR2751882 https://doi.org/10.1111/j.1467-985X.2009.00616.x

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26, 24–36.
MR0090462 https://doi.org/10.2307/1907382

Vanegas, L. H. and Paula, G. A. (2015). A semiparametric approach for joint modeling of median and skewness.
Test 24, 110–135. MR3314576 https://doi.org/10.1007/s11749-014-0401-7

Vanegas, L. H. and Paula, G. A. (2016a). An extension of log-symmetric regression models: R codes and applica-
tions. Journal of Statistical Simulation and Computation 86, 1709–1735. MR3473841 https://doi.org/10.1080/
00949655.2015.1081689

Vanegas, L. H. and Paula, G. A. (2016b). Log-symmetric distributions: Statistical properties and parameter es-
timation. Brazilian Journal of Probability and Statistics 30, 196–220. MR3481101 https://doi.org/10.1214/
14-BJPS272

Vanegas, L. H. and Paula, G. A. (2017). Log-symmetric regression models under the presence of non-
informative left- or right-censored observations. Test 26, 405–428. MR3650533 https://doi.org/10.1007/
s11749-016-0517-z

Ventura, M., Saulo, H., Leiva, V. and Monsueto, S. E. (2019). Log-symmetric regression models: Information cri-
teria and application to movie business and industry data. Applied Stochastic Models in Business and Industry
35, 963–977. MR3994368 https://doi.org/10.1002/asmb.2433

Villegas, C., Paula, G. and Leiva, V. (2011). Birnbaum–Saunders mixed models for censored reliability data
analysis. IEEE Transactions on Reliability 60, 748–758.

http://www.ams.org/mathscinet-getitem?mr=2786997
https://doi.org/10.1016/j.csda.2011.02.005
http://www.ams.org/mathscinet-getitem?mr=1450228
https://doi.org/10.1080/03610929708831974
http://www.ams.org/mathscinet-getitem?mr=2344835
http://www.ams.org/mathscinet-getitem?mr=3211940
https://doi.org/10.1080/03610926.2011.630770
http://www.ams.org/mathscinet-getitem?mr=3045838
https://doi.org/10.1002/bimj.201100116
http://www.ams.org/mathscinet-getitem?mr=3378032
https://doi.org/10.1080/02331888.2014.958489
http://www.ams.org/mathscinet-getitem?mr=3680260
https://doi.org/10.1111/stan.12107
http://www.ams.org/mathscinet-getitem?mr=1789434
http://www.ams.org/mathscinet-getitem?mr=1996813
https://doi.org/10.1016/S0167-9473(02)00254-2
http://www.ams.org/mathscinet-getitem?mr=4017025
https://doi.org/10.1007/s00362-017-0888-6
http://www.ams.org/mathscinet-getitem?mr=4110661
https://doi.org/10.1007/s42519-020-00104-9
http://www.ams.org/mathscinet-getitem?mr=2751882
https://doi.org/10.1111/j.1467-985X.2009.00616.x
http://www.ams.org/mathscinet-getitem?mr=0090462
https://doi.org/10.2307/1907382
http://www.ams.org/mathscinet-getitem?mr=3314576
https://doi.org/10.1007/s11749-014-0401-7
http://www.ams.org/mathscinet-getitem?mr=3473841
https://doi.org/10.1080/00949655.2015.1081689
http://www.ams.org/mathscinet-getitem?mr=3481101
https://doi.org/10.1214/14-BJPS272
http://www.ams.org/mathscinet-getitem?mr=3650533
https://doi.org/10.1007/s11749-016-0517-z
http://www.ams.org/mathscinet-getitem?mr=3994368
https://doi.org/10.1002/asmb.2433
https://doi.org/10.1016/j.csda.2011.02.005
https://doi.org/10.1080/02331888.2014.958489
https://doi.org/10.1007/s42519-020-00104-9
https://doi.org/10.1080/00949655.2015.1081689
https://doi.org/10.1214/14-BJPS272
https://doi.org/10.1007/s11749-016-0517-z


84 Saulo, Leão, Nobre and Balakrishnan

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The
Annals of Mathematical Statistics 9, 60–62.
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