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Abstract. The Birnbaum–Saunders distribution has been widely used to
model reliability and fatigue data. In this paper, we propose a regression of
generalized linear models type based on a new bivariate Birnbaum–Saunders
distribution. This is parameterized in terms of its means and allows data to be
described in their original scale. We estimate the model parameters and carry
out inference with the maximum likelihood method. A case study with real-
world reliability data is conducted for motivating our investigation, illustrat-
ing the potential applications of the proposed results. We obtain a predictive
model which can be a useful addition to the tool-kit of diverse practitioners,
reliability engineers, applied statisticians, and data scientists.

1 Introduction and bibliographical review

The fatigue-life distribution was proposed by Birnbaum and Saunders (1969) in a reliability
setting motivated by problems of vibration in commercial aircrafts that caused fatigue in ma-
terials. The fatigue-life or Birnbaum–Saunders (BS) distribution is right-skewed, continuous
and unimodal, with two parameters modifying its shape and scale. Therefore, it has been used
quite effectively to model data with positive support which follow distributions skewed to the
right. The BS distribution is particularly useful for describing fatigue, lifetime and reliability
data, as well as crack growth data.

A number of authors have presented applications of the BS distribution to reliability prob-
lems; see Villegas, Paula and Leiva (2011), Barros et al. (2014), Marchant, Leiva and Cys-
neiros (2016), and Vila et al. (2020). The distribution has appealing features and properties,
being one of them its relationship with the normal distribution. The study of methodological
and theoretical aspects of the BS distribution has received increasing interest and a consid-
erable amount of work is available; see Ferreira (2013), Leiva and Saunders (2015), Leiva
(2016, 2019), Aykroyd, Leiva and Marchant (2018), Balakrishnan and Kundu (2019), Leiva,
Aykroyd and Marchant (2019), Dasilva et al. (2020) and references therein, which summarize
the works to the date.

Reparameterizations of statistical distributions are useful for several purposes; see for ex-
ample Santos-Neto et al. (2012), where eleven parameterizations were proposed with differ-
ent justifications. In particular, one of such parameterizations is indexed by two parameters
related to the mean and precision of the data distribution. This reparameterized BS (RBS)
distribution allows us to mimic the standard parameterization employed for the well-known
normal or Gaussian distribution, but in an asymmetric framework, which is useful for mod-
eling lifetime and reliability data, among others.
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Analyzing data for correlated variables separately with marginal distributions can be a
problem because valuable information is not being considered. In addition, explanatory vari-
ables (covariates hereafter), which can improve the accuracy in estimation for the mean of the
response variable (response hereafter) and its prediction, must be considered as well. Ignoring
these two issues related to correlation between responses and incorporation of covariates may
conduct to inaccurate decisions, which has been reported in a reliability setting by Marchant,
Leiva and Cysneiros (2016). Therefore, bivariate versions of statistical distributions, as well
as their associated regression models, are needed and useful for solving such issues. More-
over, regression modeling in its standard framework is often inadequate when describing
lifetime and reliability data because of asymmetry and non-linearity. Then, wider classes of
models considering asymmetry and non-linearity are of interest in reliability, for example,
in the line of generalized linear models (GLM). Leiva et al. (2014a) and Santos-Neto et al.
(2016) used the univariate RBS distribution for constructing GLM type RBS regressions.

A bivariate BS distribution based on the original parameterization proposed by Birnbaum
and Saunders (1969) was studied by Kundu, Balakrishnan and Jamalizadeh (2010), where
maximum likelihood (ML) and modified moment (MM) estimation of the model parameters
was discussed; see Ng, Kundu and Balakrishnan (2003) for details about MM estimation in
univariate BS models. Khosravi, Kundu and Jamalizadeh (2015) observed that the bivariate
BS model proposed by Kundu, Balakrishnan and Jamalizadeh (2010) may be written as the
weighted mixture of a bivariate inverse Gaussian distribution (Kocherlakota (1986)) and its
reciprocal. They also introduced a mixture of two bivariate BS distributions and discussed
its properties. Other bivariate distributions related to the BS model can be found in Vilca,
Balakrishnan and Zeller (2014a, 2014b) and Kundu (2015a, 2015b). The readers are also
referred to Vilca (2019) for a discussion of multivariate extensions of the BS model.

Saulo et al. (2020) proposed the bivariate RBS (BRBS) distribution. In this context, the
primary objective of this paper is to introduce a regression model of GLM type based on the
BRBS distribution. An important point of the proposed BRBS regression is that it does not
require the logarithmic transformation of the responses, as it is the case of usual bivariate BS
regression models; see, for example, Vilca, Romeiro and Balakrishnan (2016).

The rest of the paper proceeds as follows. In Section 2, we provide a motivating example
for our study. Section 3 introduces the BRBS regression model as well as the ML estimators
of the unknown parameters, their corresponding asymptotic results and model checking. In
Section 4, we carry out two Monte Carlo simulation studies to evaluate the performance of
the estimators and of a model checking tool. An illustrative example by using the real-world
data presented in the case study is analyzed at the end of this section. In Section 5, we sketch
some concluding remarks and also point out some problems worthy of further research. Some
mathematical derivations are given in the Appendix.

2 Motivating example

In this section, we provide a motivating example for our investigation based on fatigue-life
data with application to fracture of metallic tools.

2.1 Fatigue-life

Fatigue is concerning with the failure of materials, which occurs after a long time of service,
caused by tension and stress; see Leiva and Vivanco (2017). Fatigue of metals is the increase
of a crack, produced by stress, provoking their fracture. Then, fatigue is a process containing
the initiation of a crack and its increase, until the material is finally fractured; see Leiva and
Saunders (2015). Prediction of fatigue-life is relevant in determining the reliability of systems
and components exposed to fatigue.
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Improvement of productivity, manufacturing and quality of metallic tools may be consid-
ered as part of a process cycle. Then, fracture of these tools might be predicted by studying
jointly random variables (RVs) associated with this process considering a random vector.
Such a vector can include, for example, manufacturing force, stress, die lifetime and defor-
mation. Due to the correlation often present in these RVs, fracture might be predicted by
multivariate models. Therefore, engineers could make decisions based on these models after
specifying technical priorities of such RVs assigning target values for each of them.

2.2 The data set

The motivation for our study came from a real-world reliability data set corresponding to
die fracture proposed by Lepadatu et al. (2005). Die fracture is a type of metal fatigue pro-
duced by cyclic stress during the service life of dies (die lifetime). Although this fatigue may
be mainly explained by die lifetime, other RVs correlated with it could be considered as re-
sponses to such a fatigue, which implies a multivariate problem. This case study is focused on
a data analysis to model fatigue in a metal forming process. The responses to be considered
are:

T1: von Mises stress (in N/mm2); and
T2: die lifetime (in number of cycles).

The covariates which might explain T1 and T2 are:

X1: friction coefficient (dimensionless);
X2: angle of die (in °); and
X3: work temperature (in °C).

As mentioned, the advantage of a multivariate regression over marginal models is that it con-
siders the statistical correlation of the responses. Note that several responses about metal
fatigue can be related during the process. Thus, this relationship must be studied using a cor-
relation analysis, which should provide information with respect to whether the correlation
must be incorporated in the modeling by a multivariate regression. Otherwise, marginal mod-
els, one for each response, should be used. Nevertheless, studying these variables separately,
when correlations exist, can conduct to inaccurate prediction; see more details in Lepadatu
et al. (2005). Recall that the data were collected by these authors and are detailed in Table 1.

2.3 An exploratory data analysis

A correlation analysis is conducted for each pair of variables from T1, T2, X1, X2 and X3. We
report some non-linear relationships between the responses T1, T2 and covariates X1, X2, X3,
as usual in reliability data. Figure 1 provides the scatterplots and correlation coefficients for
all responses and covariates. From this figure, we have that: (i) X1, X2, X3 are uncorrelated,
discarding multicollinearity problems for the regression; (ii) T1 and T2 have a high negative
correlation, being die lifetime a target variable; and (iii) high, moderate and low correlations
between responses T1, T2 and covariates X1, X2, X3 are detected. This exploratory data
analysis allows us to support the use of a bivariate regression model of GLM type. The kind
of distribution used for the parametric model depends on the characteristics of the marginal
distributions of the responses T1, T2, as well as of the theoretical arguments for the fatigue
data to be presented.

Figure 2 shows the theoretical probability versus empirical probability (PP) plot with ac-
ceptance bands for detecting if the the marginal BS distributions can be suitable in modeling
the data related to T1 and T2. From this figure, note that both data sets seem to be adequately
modeled by BS distributions. The total time on test (TTT) plot is often used for identifying
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Table 1 Fatigue data for the indicated variable

X1 X2 X3 T1 T2

0.07 23.00 581.08 1850 6420
0.07 23.00 818.92 470 33,700
0.07 31.96 581.08 1830 9430
0.07 31.96 818.92 523 36,600
0.13 23.00 581.08 2030 12,100
0.13 23.00 818.92 581 32,000
0.13 31.96 581.08 2230 13,200
0.13 31.96 818.92 632 32,100
0.05 27.50 700.00 889 19,900
0.15 27.50 700.00 1410 15,000
0.10 20.00 700.00 1060 20,900
0.10 35.00 700.00 1390 21,200
0.10 27.50 500.00 2430 9170
0.10 27.50 900.00 243 74,800
0.10 27.50 700.00 1130 19,900

Figure 1 Scatterplots with their correlations for the indicated variables.

the shape of the failure rate (FR), and consequently, of the corresponding reliability func-
tion (RF). Based on the shape of the FR, we are able to propose lifetime distributions which
may be suitable to model the associated reliability data; for details about theoretical TTT
plot, see Figure 3 and Athayde (2017). We conduct a study for identifying the shape of the
marginal FRs of T1 and T2. Figure 2 suggests some curvatures on the TTT plots that make
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Figure 2 PP plots with acceptance bands and TTT plots for the fatigue data.

Figure 3 Scaled TTT function W for distributions with the indicated FR shape, according to increas-
ing/decreasing FR (IFR/DRF), inverse bathtub/bathtub (IBT/BT) and constant (exponential distribution) cases.

us to suspect lightly increasing FRs for the data sets associated with T1 and T2. In order to
confirm this identification, we carry out a small simulation generating BS data with a similar
setting to that found in the real-world data. That is, estimating the univariate BS parameters
with such data and then obtaining simulated BS data using these estimates as true values of
the BS parameters. Thus, with the simulated BS data, once again we plot the marginal TTT
curves, which show similar shapes to those identified with the TTT plots obtained from the
real-world data related to T1 and T2.

In summary, based on the bivariate exploratory data analysis, the fatigue principles of the
BS distribution detailed in Leiva (2016, pp. 5–11), as well as the PP and TTT plots displayed
in Figure 2, we conjecture that a BRBS regression model can be suitable to describe these
data. Therefore, this example serves as a motivation for the joint modeling of von Mises stress
and die lifetime in terms of the friction coefficient, angle of die and work temperature, when
predicting fatigue-life of metal tools.
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3 BRBS regression model

In this section, the BRBS distribution and its associated regression model are presented. The
interested reader on the BRBS distribution is referred to Saulo et al. (2020).

3.1 The BRBS distribution

If a bivariate random vector T = (T1, T2)
� follows a BRBS distribution with parameters (μ1,

μ2, δ1, δ2, ρ), this is denoted by T ∼ BRBS(μ1,μ2, δ1, δ2, ρ).
The joint cumulative distribution function (CDF) of (T1, T2) is given by

F(t1, t2) = �2

[√
δ1

2
(a1 − b1),

√
δ2

2
(a2 − b2);ρ

]
, t1 > 0, t2 > 0, (3.1)

with

ak =
√

(δk + 1)tk

δkμk

, bk =
√

δkμk

(δk + 1)tk
, k = 1,2,

where μ1 > 0, δ1 > 0, μ2 > 0, δ2 > 0, |ρ| < 1, and �2 is the bivariate standard normal CDF
with correlation coefficient ρ. The joint probability density function (PDF) associated with
(3.1) is expressed as

f (t1, t2) = φ2

[√
δ1

2
(a1 − b1),

√
δ2

2
(a2 − b2);ρ

] 2∏
k=1

√
δk

2
√

2tk
(ak + bk), (3.2)

where t1, t2 > 0 and φ2 is the bivariate standard normal PDF defined as

φ2(u, v;ρ) = 1

2π

√
1 − ρ2

exp
[
− 1

2(1 − ρ2)

(
u2 − 2ρuv + v2)]

, u, v ∈ R.

3.2 Model formulation

Let T = (T1, T2)
� ∼ BRBS(μ1,μ2, δ1, δ2, ρ). Assume that there are p and q covariates,

X(1) = (X
(1)
1 , . . . ,X

(1)
p )� and X(2) = (X

(2)
1 , . . . ,X

(2)
q )� namely, associated with the RVs T1

and T2, respectively. Then, we can establish the relationship among covariates and the mean
of Tk , μk = E(Tk) namely, as

g(μk) = β�
k x(k) = βk0 + βk1x

(k)
1 + · · · + βklx

(k)
l , k = 1,2,

where βk = (βk0, βk1, . . . , βkl) is a vector of l unknown regression coefficients to be es-
timated, with l = p or q , x(k) are the values of the covariate X(k) and g is an invertible
function with positive support and at least twice differentiable, such that μk = g−1(β�

k x(k)),
with g−1 being the inverse function of g. In this work, g(μk) = log(μk) based on the case
study, but other link functions can also be assumed. Then, we have

μk = exp
(
β�

k x(k)) = exp
(
βk0 + βk1x

(k)
1 + · · · + βklx

(k)
l

)
. (3.3)

Note that the precision parameter δk of the BRBS distribution is assumed to be independent
of the covariates X(k). In addition, since Var[Tk] = μk/φk , where φk = (δk + 1)2/(2δk + 5),
note that the BRBS variances are a function of μk , and consequently, of the covariates. Thus,
we can analyze situations where a non-constant variance (but proportional to the mean) is
present by using the structure defined in (3.3). This BRBS regression formulation allows us
to describe the means of the bivariate data in their original scale. Hence, we avoid the power
reduction when testing statistical hypotheses and the difficulties of interpretation from the
information obtained using the BRBS regression model. These are consequences of the use
of a logarithmic transformation of the data; see Leiva et al. (2014a).
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3.3 Estimation

Let {(T1i
, T2i

), i = 1, . . . , n} be a bivariate sample of size n with observations (t1i
, t2i

), for
i = 1, . . . , n, from the BRBS distribution. In addition, consider values of covariates corre-
sponding to t1i

as x
(1)
i = (x

(1)
1i

, . . . , x
(1)
pi ) and to t2i

as x
(2)
i = (x

(2)
1i

, . . . , x
(2)
qi ), for i = 1, . . . , n.

The problem of interest is to estimate the unknown parameter θ = (β1,β2, δ1, δ2, ρ)�. Let
L = L(θ) be the likelihood function of these observations. From the BRBS PDF defined in
(3.2), the log-likelihood function for θ can be written as

� = log(L)

= constant − n
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log
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where
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= exp(βk0 + βk1x

(k)
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(k)
li

), for k = 1,2, i = 1, . . . , n and l = p,q . If a

maximum for θ , denoted by ̂θ , exists, it must satisfy the likelihood equations given by

∂ log(L)

∂βkr

= 0,
∂ log(L)

∂δk

= 0,
∂ log(L)

∂ρ
= 0,

for k = 1,2, r = 0,1, . . . , l and l = p,q . In the case that ̂θ provides the global maximum of
log(L), it is called an ML estimate for θ . Under regularity conditions, the information matrix,
denoted by U , is stated as

U = −
{

E
[
∂2 log(L)

∂ϑ∂ϑ ′
]}

, ϑ,ϑ ′ ∈ {βkr, δk, ρ},

for k = 1,2, r = 0,1, . . . , l and l = p,q . Expressions for the second-order partial derivatives
∂2 log(L)/∂ϑ∂ϑ ′ are given in the Appendix. Similarly to the case with no covariates, note
that, for fixed values of β1, β2, δ1 and δ2, the ML estimate of ρ can be obtained as

ρ̂(β1,β2, δ1, δ2) =
∑n

i=1
∏2

k=1

√
δ̂k

2 (âki
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.
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Therefore, the ML estimate of θ1 = (β1,β2, δ1, δ2)
� may be obtained by maximizing the

profile log-likelihood function generated from (3.4), denoted by �p(θ1), and given by

�p(θ1) = constant − n

2
log

[
1 − ρ̂(θ1)

2]
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n∑

i=1

2∏
k=1

√
δk(aki

− bki
)

− 1

2[1 − ρ̂(θ1)2]
n∑

i=1

2∑
k=1

[
δ2
kμki

(δk + 1)tki

− 2δkaki
bki

+ (δk + 1)tki

μki

]

+
2∑

k=1

[
n

2
log(δk) +

n∑
i=1

log(aki
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)

]
. (3.6)

The estimation of the parameters can be performed by numerical optimization of the pro-
file log-likelihood function defined in (3.6). Initial values in the numerical procedure for
estimation of δ1 and δ2 may be obtained by the MM method, that is, δ

(0)
k = (

√
tk/tkh − 1)−1,

where tk = (1/n)
∑n

i=1 tki
and tkh = [(1/n)

∑n
i=1 1/tki

]−1, with k = 1,2; see Santos-Neto
et al. (2014) for details. Moreover, the initial values for the regression coefficients might
be generated from the least squares (LS) estimate of βk , that is, by minimizing the sum of
squares defined as

S(βk) =
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i=1
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log(tki

) − βk0 − βk1x
(k)
1i

− · · · − βklx
(k)
li

]2
,

for k = 1,2, i = 1, . . . , n and l = p,q . Then, the initial value for the ML estimate of βk ,
based on the LS estimate, β

(0)
k namely, is established as

β
(0)
k = [

x(k)�x(k)]−1
x(k)� log(tk),

where
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The asymptotic distribution of θ̂ = (̂δ1, δ̂2, β̂1, β̂2, ρ̂), as n → ∞, under some regularity
conditions (Cox and Hinkley (1974)), is stated as

√
n(̂θ − θ)

D−→ Np+q+5
(
0,R−1

p+q+5

)
,

where
D−→ denotes convergence in distribution, Np+q+5(0p+q+5,R

−1
p+q+5) stands for a

(p + q + 5)-variate normal distribution with (p + q + 5) × 1 vector of mean 0p+q+5 and co-
variance matrix R−1

p+q+5. This covariance matrix may be obtained from the observed Fisher
information, whose elements are presented in the Appendix.
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3.4 Model checking

Model checking for the BRBS regression can be conducted by using the Mahalanobis dis-
tance (MD) expressed as

Di(θ) = ξ�
i �−1ξ i , i = 1, . . . , n, (3.7)

where

� =
(

1 ρ

ρ 1

)
and

ξ i =
[
(a1i

− b1i
)

√
δ1

2
, (a2i

− b2i
)

√
δ2

2

]�
,

with a1i
, b1i

, a2i
, and b2i

defined as in (3.5). Based on Marchant, Leiva and Cysneiros
(2016), it follows that the MD established in (3.7), with θ substituted by its ML estimator
θ̂ , has asymptotically a χ2

4 distribution. We use the Wilson–Hilferty (WH) approximation
for transforming to normality this distance; see Ibacache-Pulgar, Paula and Galea (2014) and
references therein. Then, we check normality of the transformed distances with the WH ap-
proximation using theoretical quantile versus empirical quantile (QQ) plots.

4 Numerical studies

In this section, we report the results of two simulation studies carried out to assess (i) the
statistical performance of the ML estimators in small and large samples, and (ii) the normality
transformation of the MD, in both cases (i)–(ii) for the BRBS regression model. In addition,
we illustrate the proposed methodology by applying it to a real-world reliability data set.

4.1 Simulation I: Evaluating performance of ML estimators

In order to assess the performance of the ML estimators for the BRBS model parameters, we
assume that

μ1i
= exp(β01 + β11x11i

), μ2i
= exp(β02 + β12x12i

), i = 1, . . . , n.

The sample sizes and true values of the parameters considered are n = 50,100,300,500,
δ1 = 0.5,2.0, δ2 = 0.5,2.0 and ρ = −0.90, −0.50, −0.25, 0.25, 0.50, 0.90. The regression
coefficients to be considered are β01 = 1.0, β11 = 0.5, β02 = 2.0 and β12 = 1.5, with 5000
Monte Carlo replications for each sample size. The statistical indicators to evaluate the per-
formance of the ML estimators are the empirical bias and mean square error (MSE), which
are presented in Tables 2 (δk = 0.5, for k = 1,2) and 3 (δk = 2.0, for k = 1,2). From these
tables, we observe that the bias and MSE become smaller as the sample size n increases,
as expected. Furthermore, we note that, as the values of the correlation increase negatively
or positively, the performance of the estimators of the intercepts β0k , for k = 1,2, improve.
For example, when n = 50, ρ = −0.25 and δk = 0.50, with k = 1,2, the bias of β̂01 and β̂02

are −0.0477 and −0.0508, as well as −0.0308 and −0.0302, respectively, when ρ = −0.95.
A similar behavior is detected when the correlation is positive. Nevertheless, the performance
of the remaining estimators does not seem to depend on ρ.



128
H

.Saulo
etal.

Table 2 Empirical bias and MSE (in parenthesis) of the ML estimators (δk = 0.50, for k = 1,2), for the BRBS regression

ML estimator

ρ n β̂01 β̂11 δ̂1 β̂02 β̂22 δ̂2 ρ̂

−0.90 50 −0.0308 (0.1775) 0.0058 (0.1978) 0.0354 (0.0137) −0.0302 (0.1885) 0.0086 (0.2165) 0.0365 (0.0151) −0.0025 (0.0008)
100 −0.0198 (0.1472) 0.0078 (0.1624) 0.0189 (0.0060) −0.0117 (0.1556) 0.0058 (0.1778) 0.0184 (0.0061) −0.0010 (0.0003)
300 −0.0061 (0.1316) 0.0018 (0.1388) 0.0054 (0.0017) −0.0027 (0.1349) 0.0030 (0.1395) 0.0051 (0.0017) −0.0005 (0.0001)
500 −0.0033 (0.1299) 0.0008 (0.1336) 0.0031 (0.0010) −0.0021 (0.1311) 0.0003 (0.1312) 0.0030 (0.0010) −0.0004 (0.0001)

−0.50 50 −0.0446 (0.2250) 0.0128 (0.3978) 0.0454 (0.0153) −0.0460 (0.2541) 0.0144 (0.4701) 0.0467 (0.0166) −0.0050 (0.0129)
100 −0.0279 (0.1738) 0.0101 (0.2683) 0.0237 (0.0064) −0.0148 (0.1858) 0.0103 (0.3058) 0.0220 (0.0062) −0.0023 (0.0061)
300 −0.0087 (0.1398) 0.0038 (0.1763) 0.0069 (0.0017) −0.0050 (0.1433) 0.0003 (0.1777) 0.0068 (0.0017) −0.0017 (0.0019)
500 −0.0041 (0.1357) 0.0013 (0.1560) 0.0039 (0.0010) −0.0049 (0.1362) 0.0041 (0.1525) 0.0044 (0.0011) −0.0013 (0.0011)

−0.25 50 −0.0477 (0.2400) 0.0091 (0.4603) 0.0484 (0.0157) −0.0508 (0.2714) 0.0146 (0.5479) 0.0499 (0.0169) −0.0034 (0.0201)
100 −0.0293 (0.1824) 0.0120 (0.3015) 0.0251 (0.0064) −0.0160 (0.1952) 0.0118 (0.3449) 0.0233 (0.0062) −0.0020 (0.0094)
300 −0.0095 (0.1423) 0.0040 (0.1879) 0.0073 (0.0017) −0.0059 (0.1457) 0.0010 (0.1891) 0.0076 (0.0018) −0.0016 (0.0029)
500 −0.0044 (0.1374) 0.0011 (0.1628) 0.0042 (0.0010) −0.0062 (0.1374) 0.0046 (0.1589) 0.0050 (0.0011) −0.0011 (0.0018)

0.25 50 −0.0455 (0.2421) 0.0045 (0.4652) 0.0484 (0.0156) −0.0526 (0.2649) 0.0148 (0.5439) 0.0509 (0.0172) −0.0025 (0.0195)
100 −0.0267 (0.1834) 0.0064 (0.3034) 0.0251 (0.0064) −0.0164 (0.1959) 0.0132 (0.3494) 0.0243 (0.0065) −0.0005 (0.0093)
300 −0.0091 (0.1428) 0.0028 (0.1886) 0.0073 (0.0017) −0.0071 (0.1448) 0.0013 (0.1888) 0.0082 (0.0018) −0.0004 (0.0029)
500 −0.0045 (0.1374) 0.0006 (0.1628) 0.0042 (0.0010) −0.0078 (0.1367) 0.0056 (0.1586) 0.0054 (0.0011) −0.0001 (0.0017)

0.50 50 −0.0405 (0.2288) 0.0020 (0.4058) 0.0455 (0.0153) −0.0484 (0.2433) 0.0137 (0.4677) 0.0478 (0.0166) 0.0048 (0.0122)
100 −0.0229 (0.1757) 0.0024 (0.271) 0.0237 (0.0063) −0.0157 (0.1860) 0.0123 (0.3118) 0.0236 (0.0065) 0.0010 (0.0059)
300 −0.0082 (0.1406) 0.0018 (0.1775) 0.0069 (0.0017) −0.0077 (0.1418) 0.0009 (0.1773) 0.0079 (0.0018) 0.0003 (0.0018)
500 −0.0044 (0.1356) 0.0002 (0.1558) 0.0040 (0.0010) −0.0072 (0.1349) 0.0055 (0.1521) 0.0051 (0.0011) 0.0002 (0.0011)

0.90 50 −0.0267 (0.1800) 0.0019 (0.2018) 0.0357 (0.0138) −0.0321 (0.1792) 0.0071 (0.2185) 0.0361 (0.0137) 0.0026 (0.0008)
100 −0.0139 (0.1491) 0.0034 (0.1669) 0.0189 (0.0060) −0.0130 (0.1519) 0.0065 (0.1783) 0.0192 (0.0060) 0.0010 (0.0004)
300 −0.0053 (0.1325) 0.0002 (0.1397) 0.0054 (0.0017) −0.0058 (0.1324) 0.0003 (0.1395) 0.0060 (0.0017) 0.0004 (0.0002)
500 −0.0036 (0.1298) 0.0002 (0.1331) 0.0031 (0.0010) −0.0056 (0.1294) 0.0033 (0.1310) 0.0036 (0.0011) 0.0003 (0.0001)
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Table 3 Empirical bias and MSE (in parenthesis) of the ML estimators (δk = 2.0, for k = 1,2), for the BRBS regression

ML estimator

ρ n β̂01 β̂11 δ̂1 β̂02 β̂22 δ̂2 ρ̂

−0.90 50 −0.0140 (0.1442) 0.0038 (0.1524) 0.1410 (0.2161) −0.0130 (0.1495) 0.0054 (0.1599) 0.1453 (0.2361) −0.0021 (0.0009)
100 −0.0097 (0.1322) 0.0044 (0.1394) 0.0760 (0.0958) −0.0039 (0.1384) 0.0034 (0.1467) 0.0738 (0.0974) −0.0008 (0.0007)
300 −0.0029 (0.1272) 0.0014 (0.1303) 0.0218 (0.0271) −0.0020 (0.1294) 0.0022 (0.1307) 0.0205 (0.0270) −0.0005 (0.0003)
500 −0.0015 (0.1271) 0.0006 (0.1284) 0.0124 (0.0161) −0.0012 (0.1274) 0.0011 (0.1268) 0.0121 (0.0163) −0.0004 (0.0001)

−0.50 50 −0.0201 (0.1623) 0.0081 (0.2363) 0.1718 (0.2353) −0.0209 (0.1736) 0.0104 (0.2648) 0.1774 (0.2551) −0.0042 (0.0129)
100 −0.0134 (0.1428) 0.0073 (0.1845) 0.0907 (0.1002) −0.0147 (0.1515) 0.0065 (0.2041) 0.0842 (0.0986) −0.0020 (0.0060)
300 −0.0044 (0.1303) 0.0030 (0.1471) 0.0264 (0.0275) −0.0031 (0.1327) 0.0042 (0.1476) 0.0262 (0.0284) −0.0015 (0.0019)
500 −0.0020 (0.1296) 0.0002 (0.1381) 0.0153 (0.0163) −0.0049 (0.1294) 0.0009 (0.1355) 0.0172 (0.0172) −0.0012 (0.0011)

−0.25 50 −0.0213 (0.1688) 0.0067 (0.2652) 0.1816 (0.2392) −0.0233 (0.1809) 0.0174 (0.2996) 0.1878 (0.2572) −0.0029 (0.0201)
100 −0.0139 (0.1469) 0.0064 (0.2001) 0.0953 (0.1012) −0.0053 (0.1556) 0.0112 (0.2227) 0.0881 (0.0982) −0.0018 (0.0095)
300 −0.0046 (0.1314) 0.0034 (0.1528) 0.0279 (0.0276) −0.0024 (0.1338) 0.0009 (0.1532) 0.0290 (0.0287) −0.0015 (0.0030)
500 −0.0021 (0.1304) 0.0005 (0.1413) 0.0161 (0.0163) −0.0038 (0.1299) 0.0004 (0.1385) 0.0194 (0.0174) −0.0011 (0.0018)

0.25 50 −0.0172 (0.1705) 0.0016 (0.2683) 0.1720 (0.2389) −0.0223 (0.1785) 0.0098 (0.2995) 0.1813 (0.2624) −0.0041 (0.0194)
100 −0.0101 (0.1480) 0.0014 (0.2016) 0.0907 (0.1012) −0.0061 (0.1551) 0.0069 (0.2233) 0.0898 (0.1019) −0.0006 (0.0093)
300 −0.0037 (0.1316) 0.0013 (0.1533) 0.0264 (0.0276) −0.0043 (0.1333) 0.0018 (0.1532) 0.0305 (0.0297) −0.0008 (0.0029)
500 −0.0021 (0.1304) 0.0004 (0.1413) 0.0153 (0.0163) −0.0033 (0.1297) 0.0013 (0.1384) 0.0197 (0.0175) −0.0003 (0.0017)

0.50 50 −0.0116 (0.1650) 0.0022 (0.2411) 0.1420 (0.2349) −0.0152 (0.1694) 0.0049 (0.2650) 0.1436 (0.2546) −0.0022 (0.0122)
100 −0.0065 (0.1449) 0.0020 (0.1872) 0.0760 (0.1001) −0.0061 (0.1502) 0.0035 (0.2048) 0.0769 (0.1029) −0.0007 (0.0058)
300 −0.0022 (0.1307) 0.0003 (0.1479) 0.0218 (0.0275) −0.0028 (0.1319) 0.0023 (0.1477) 0.0242 (0.0298) −0.0003 (0.0018)
500 −0.0017 (0.1295) 0.0002 (0.1379) 0.0125 (0.0163) −0.0024 (0.1288) 0.0003 (0.1353) 0.0145 (0.0175) −0.0003 (0.0011)

0.90 50 −0.0195 (0.1459) 0.0027 (0.1552) 0.1815 (0.2165) −0.0241 (0.1445) 0.0109 (0.16039) 0.1913 (0.2158) −0.0022 (0.0074)
100 −0.0120 (0.1339) 0.0029 (0.1419) 0.0953 (0.0955) −0.0060 (0.1352) 0.0076 (0.1466) 0.0917 (0.0957) −0.0003 (0.0036)
300 −0.0043 (0.1276) 0.0022 (0.1312) 0.0279 (0.0271) −0.0048 (0.1277) 0.0021 (0.1308) 0.0314 (0.0281) −0.0005 (0.0012)
500 −0.0022 (0.1270) 0.0003 (0.1281) 0.0231 (0.0161) −0.0025 (0.1263) 0.0006 (0.1267) 0.0208 (0.0168) −0.0002 (0.0007)
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Table 4 Summary statistics from simulation analysis of the transformed MD (δk = 0.5, for k = 1,2) for the
BRBS regression

ρ n Mean SD CS CK

−0.90 50 0.0350 0.9503 0.0531 2.4654
100 0.0232 0.9628 0.1111 2.5861
300 0.0156 0.9707 0.1453 2.6761
500 0.0142 0.9719 0.1548 2.6985

−0.50 50 0.0376 0.9469 0.0411 2.4588
100 0.0245 0.9612 0.1042 2.5822
300 0.0161 0.9701 0.1432 2.6734
500 0.0145 0.9716 0.1534 2.6965

−0.25 50 0.0384 0.9458 0.0378 2.4557
100 0.0249 0.9606 0.1024 2.5804
300 0.0162 0.9698 0.1426 2.6730
500 0.0146 0.9715 0.1529 2.6961

0.25 50 0.0383 0.9459 0.0379 2.4544
100 0.0250 0.9605 0.1025 2.5790
300 0.0162 0.9698 0.1428 2.6739
500 0.0145 0.9715 0.1528 2.6964

0.50 50 0.0376 0.9468 0.0424 2.4566
100 0.0246 0.9610 0.1046 2.5803
300 0.0162 0.9700 0.1436 2.6750
500 0.0145 0.9716 0.1532 2.6972

0.90 50 0.0353 0.9498 0.0551 2.4621
100 0.0234 0.9626 0.1110 2.5844
300 0.0156 0.9706 0.1456 2.6773
500 0.0142 0.9719 0.1547 2.6990

4.2 Simulation II: Assessing normality of the transformed MD

In order to evaluate the normality transformation of the MD for the BRBS regression model,
we consider the empirical distributions of this transformed MD under the same scenario of
the simulation study I. The results are reported in Tables 4 (δk = 0.5, for k = 1,2) and 5
(δk = 2.0, for k = 1,2). These tables present the empirical mean, standard deviation (SD),
coefficient of skewness (CS) and coefficient of kurtosis (CK), whose values are expected to
be zero, one, zero, and three, respectively. The results reported into Tables 4 and 5 indicate
that the MD transformation conforms well with the normal distribution, which is an important
result since it allows us to use the MD transformation as a measure of model adjustment. In
general, the results do not seem to depend on ρ.

4.3 Application to real data

We illustrate the proposed methodology with a data set related to die fracture presented in
Lepadatu et al. (2005) and described in the case study of Section 2. We consider the regression
structure defined in (3.3) for establishing our statistical model with link functions for the
bivariate response, and i = 1, . . . ,15, given by

μ1i
= exp

(
β10 + β11x

(1)
1i

+ β12x
(1)
2i

+ β13x
(1)
3i

)
, (4.1)

μ2i
= exp

(
β20 + β21x

(2)
1i

+ β22x
(2)
2i

+ β23x
(2)
3i

)
, (4.2)

recalling that μ1i
= E(T1i

), with T1i
being the von Mises stress (in N/mm2), μ2i

= E(T2i
),

and T2i
being the die lifetime (in number of cycles), where x1i

is the value of the friction
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Table 5 Summary statistics from simulation analysis of the transformed MD (δk = 2.0, for k = 1,2) for the
BRBS regression

ρ n Mean SD CS CK

−0.90 50 0.0295 0.9574 0.0835 2.4877
100 0.0202 0.9665 0.1275 2.6050
300 0.0146 0.9719 0.1509 2.6834
500 0.0136 0.9726 0.1582 2.7032

−0.50 50 0.0306 0.9560 0.0765 2.4838
100 0.0208 0.9658 0.1238 2.6026
300 0.0148 0.9716 0.1500 2.6822
500 0.0138 0.9725 0.1575 2.7021

−0.25 50 0.0311 0.9554 0.0749 2.4816
100 0.0210 0.9656 0.1227 2.6018
300 0.0149 0.9715 0.1497 2.6823
500 0.0137 0.9725 0.1573 2.7020

0.25 50 0.0311 0.9554 0.0751 2.4804
100 0.0211 0.9655 0.1233 2.6010
300 0.0149 0.9714 0.1498 2.6832
500 0.0137 0.9725 0.1572 2.7023

0.50 50 0.0308 0.9558 0.0775 2.4813
100 0.0209 0.9656 0.1247 2.6012
300 0.0149 0.9715 0.1503 2.6837
500 0.0137 0.9725 0.1574 2.7028

0.90 50 0.0297 0.9570 0.0846 2.4842
100 0.0203 0.9663 0.1286 2.6029
300 0.0147 0.9718 0.1513 2.6847
500 0.0137 0.9727 0.1582 2.7037

Table 6 ML estimates, SEs and p-values for the indicated parameter with the fatigue data

Parameter Estimate SE p-value

δ1 4.301 1.538 –
δ2 4.763 1.882 –
β10 10.138 1.826 <0.001
β11 3.592 6.677 0.591
β12 0.010 0.044 0.819
β13 −0.005 0.001 0.002
β20 5.914 1.705 <0.001
β21 0.777 6.239 0.901
β22 0.008 0.042 0.848
β23 0.005 0.001 <0.001
ρ −0.657 0.134 –

coefficient (dimensionless), x2i
is the value of the die angle (in °) and x3i

is the work tem-
perature (in °C), for the specimen i. In addition, in the formulations given in (4.1) and (4.2),
β0, β1, β2 and β3 are the regression coefficients to be estimated for obtaining the predictive
model. Table 6 reports the ML estimates, standard errors (SEs) and p-values of the corre-
sponding t-test for the BRBS regression parameters. The results of this table reveal that only
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Figure 4 QQ plots with acceptance bands at 5% and p-value of the SW test for the transformed MD with the
fatigue data.

the predictor X3 is significant at 5%. Hence, the final predictive model is given by

μ̂1pred = exp(10.823 − 0.005x3pred),

μ̂2pred = exp(6.255 + 0.006x3pred).
(4.3)

In order to check whether the BRBS regression model describes the fatigue bivariate data
adequately, Figure 4 shows the QQ plot with acceptance bands of the transformed MD for
the final BRBS regression model defined in (4.3). From this figure, note that the model pro-
vides a good agreement with the considered data. Such an agreement is corroborated by the
associated p-value of 0.7891 corresponding to the Shapiro–Wilk (SW) test; see Yap and Sim
(2011).

5 Concluding remarks and future research

This paper reported the following findings:

(i) A new regression model of GLM type based on a bivariate Birnbaum–Saunders distri-
bution has been proposed.

(ii) The model parameters have been estimated with the maximum likelihood method and
inference has been performed using this method to detect the significance of the regres-
sion coefficients.

(iii) A numerical evaluation of the proposed methodology was considered by means of
Monte Carlo simulations.

(iv) By using a case study with real-world reliability data, we have motivated the develop-
ment of the new bivariate regression model.

In summary, the new bivariate regression model was parameterized by its means permitting
us to describe bivariate data in their original scale. The numerical evaluations of the proposed
methodology with simulated and real data sets allowed us to show its good performance and
its potential applications. We obtained a predictive model which can be a useful knowledge
addition to the tool-kit of diverse practitioners, reliability engineers, applied statisticians, and
data scientists.

Some open problems that arose from this study are the following:

(i) The developing of likelihood inferential methods by considering censored data and ran-
dom effects is of interest in this type of applications; see Villegas, Paula and Leiva (2011)
and Desousa et al. (2020).
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(ii) Extensions to the multivariate case is also of practical relevance; see Marchant, Leiva
and Cysneiros (2016) and Sánchez et al. (2021).

(iii) Incorporation of time series, spatial and quantile regression structures in the modeling,
as well as errors-in-variables, functional data analysis and PLS regression, based on
the proposed bivariate distribution, are also of interest; see Leiva et al. (2014b, 2021),
Vilca, Balakrishnan and Zeller (2014b), Garcia-Papani et al. (2017), Huerta et al. (2019),
Martinez, Giraldo and Leiva (2019), Saulo et al. (2019), and Carrasco et al. (2020).

(iv) The derivation of influence diagnostic techniques to detect potential influential cases are
needed, which are an important tool to be used in all statistical modeling; see Ibacache-
Pulgar, Paula and Galea (2014), Garcia-Papani et al. (2018), Carrasco et al. (2020), Leiva
et al. (2020), and Sánchez et al. (2021).

Therefore, the proposed methodology in this investigation promotes new challenges and of-
fers an open door to explore other theoretical and numerical issues. Research on these and
other issues are in progress and their findings will be reported in future articles.

Appendix

Consider observations (t1i
, t2i

), for i = 1, . . . , n, from the BRBS distribution defined in (3.2).
Note that the log-likelihood function for θ = (β1,β2, δ1, δ2, ρ)� stated in (3.4) based on
these observations can be written as

� = log(L) =
n∑

i=1

log
[
φ2

(
a(t1i

), a(t2i
);ρ)] +

n∑
i=1

2∑
k=1

log
[
a′(tki

)
]
,

where

a(tki
) =

√
δk

2

[√
(δk + 1)tki

δkμki

−
√

δkμki

(δk + 1)tki

]
,

a′(tki
) =

√
δk

2

[√
(δk + 1)tki

δkμki

+
√

δkμki

(δk + 1)tki

]
1

2tki

,

with μki
= exp(βk0 + βk1x

(k)
1i

+ · · · + βklx
(k)
li

), for k = 1,2, i = 1, . . . , n and l = p,q . Next,
we provide expressions for the first and second-order derivatives of log(L).

Let φ2 be the bivariate standard normal joint PDF given in (3.2). Since

∂φ2(u, v;ρ)

∂u
= 6 − φ2(u, v;ρ)

1 − ρ2 (u − ρv),

∂φ2(u, v;ρ)

∂v
= −φ2(u, v;ρ)

1 − ρ2 (v − ρu),

by applying the chain rule with two variables, we have

∂ log(L)

∂ϑ
=

n∑
i=1

∂φ2(a(t1i
),a(t2i

);ρ)

∂a(t1i
)

∂a(t1i
)

∂ϑ
+ ∂φ2(a(t1i

),a(t2i
);ρ)

∂a(t2i
)

∂a(t2i
)

∂ϑ

φ2(a(t1i
), a(t2i

);ρ)

+
n∑

i=1

2∑
k=1

1

a′(tki
)

∂a′(tki
)

∂ϑ
(1 − δϑ,ρ)
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= 1

1 − ρ2

n∑
i=1

2∑
k=1

[
ρa(tki

)
∂a(tki

)

∂ϑ
+ (1 − δϑ,ρ)

a′(tki
)

∂a′(tki
)

∂ϑ

]

− 1

1 − ρ2

n∑
i=1

[
a(t2i

)
∂a(t1i

)

∂ϑ
+ a(t1i

)
∂a(t2i

)

∂ϑ

]
, ϑ ∈ {βkr, δk, ρ},

for k = 1,2, r = 0,1, . . . , l and l = p,q , where δx,y is the Kronecker delta function, that is,
δx,y = 1 if x = y and δx,y = 0 in otherwise.

The second-order partial derivatives of log(L) may be obtained as

∂2 log(L)

∂ϑ ′∂ϑ
= ρ

1 − ρ2

n∑
i=1

2∑
k=1

[
∂a(tki

)

∂ϑ ′
∂a(tki

)

∂ϑ
+ a(tki

)
∂2a(tki

)
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]

+ 1
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1
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)]2

∂a′(tki
)
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)
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+ 1
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− 1
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)

∂ϑ ′∂ϑ

]
, ϑ ′ 	= ρ,

for each ϑ ′, ϑ ∈ {βkr, δk, ρ}, and

∂2 log(L)
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[
2ρ

∂ log(L)

∂ϑ
−

n∑
i=1

2∑
k=1

a(tki
)
∂a(tki

)

∂ϑ

]
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A straightforward computation shows that the above first-order partial derivatives of a(tki
)

and a′(tki
) are given by
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)
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where δr,0 is the Kronecker delta function.
The second-order partial derivatives of a(tki

) can be written as
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)

∂βkr

+ 1

4

√
2

δk

(δk + 1)

δkμki

∂a(tki
)

∂δk

][
x(k)
ri

(1 − δr,0) + δr,0
]
,
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∂2a(tki
)

∂δ2
k

= δk

8

√
2

δk

[√
(δk + 1)tki

δkμki

−
√

δkμki

(δk + 1)tki

]
,

∂2a(tki
)

∂δk∂βkr

= δk

4

[√
(δk + 1)tki

δkμki

+
√

δkμki

(δk + 1)tki

][
x(k)
ri

(1 − δr,0) + δr,0
]
.

Finally, the second-order partial derivatives of a′(tki
) are expressed as

∂2a′(tki
)

∂β2
kr

= −1

4

(δk + 1)

δkμki

[
∂a′(tki

)

∂βkr

+
√

2

δk

(δk + 1)

δkμki

∂a′(tki
)

∂δk

]
1

tki

[
x(k)
ri

(1 − δr,0) + δr,0
]
,

∂2a′(tki
)

∂δ2
k

= δk

32

√
2
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[√
(δk + 1)tki

δkμki

+
√

δkμki

(δk + 1)tki

]
1

t2
ki

,

∂2a′(tki
)

∂δk∂βkr

= δk

16

[√
(δk + 1)tki

δkμki

−
√

δkμki

(δk + 1)tki

]
1

tki

[
x(k)
ri

(1 − δr,0) + δr,0
]
.
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