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Abstract. In this article we study a small random perturbation of a linear re-
currence equation. If all the roots of its corresponding characteristic equation
have modulus strictly less than one, the random linear recurrence goes expo-
nentially fast to its limiting distribution in the total variation distance as time
increases. By assuming that all the roots of its corresponding characteristic
equation have modulus strictly less than one and rather mild conditions, we
prove that this convergence happens as a switch-type, i.e., there is a sharp
transition in the convergence to its limiting distribution. This fact is known as
a cut-off phenomenon in the context of stochastic processes.

1 Introduction

Linear recurrence equations have been widely used in several areas of applied mathematics
and computer science. In applied science, they can be used to model the future of a process
that depends linearly on a finite string, for instance: in population dynamics to model pop-
ulation size and structure [Allen and Nowak (2015), Dubeau (1993), Smale and Williams
(1976)]; in economics to model the interest rate, the amortization of a loan and price fluctu-
ations [Ferguson (1960), Flannery and James (1984), Klee (1986)]; in computer science for
analysis of algorithms [Cormen et al. (2009), Ouaknine and Worrell (2014)]; in statistics for
the autoregressive linear model [Akaike (1969), Dahlhaus (1997)]. In theoretical mathemat-
ics, for instance: in differential equations to find the coefficients of series solutions [Chap-
ters 4-5 in Coddington and Levinson (1987)]; in the proof of Hilbert’s tenth problem over Z
by Matiyasevich (1993); and in approximation theory to provide expansions of some second
order operators by Spigler and Vianello (1992). For a complete understanding of applica-
tions of the linear recurrence equations, we recommend the Introduction of the monograph
by Everest et al. (2003) and the references therein.

We consider a random dynamics that arises from a linear homogeneous recurrence equa-
tion with control term given by independent and identically distributed (i.i.d. for short) ran-
dom variables with Gaussian distribution. To be precise, given p € N, ¢1,¢2,...,¢p € R
with ¢, # 0, we define the linear homogeneous recurrence of degree p as follows:

Xitp =P1Xr4p—1 + P2Xs4p—2+ -+ Ppx; foranyr € No, (L)

where Ny denotes the set of non-negative integers. To single out a unique solution of (L) one
should assign initial conditions xo, x1, ..., x,—1 € R. Recurrence (L) is called a recurrence
with p-history since it only depends on a p-number of earlier values.

We consider a small perturbation of (L) by adding Gaussian noise as follows: given € > 0
fixed, consider the random dynamics

Xt(i)p = ¢1Xt(—6|-)p—1 + ¢2Xt(j_)p_2 4.4 (prt(e) + €&y, foranyt e Ny, (SL)
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with initial conditions X((f) =Xx0,..., X;fll =xp—1, and (& :t > p) is a sequence of i.i.d.
random variables with Gaussian distribution with zero mean and variance one. Since the ran-
dom linear recurrence (SL) depends on its p-string past, it is not Markovian. However, it is
straightforward to convert as a linear first-order random matrix recurrence, which is Marko-
vian. Denote by (€2, F, IP) the probability space where the sequence (& : ¢ > p) is defined,
then the random dynamics (SL) can be defined as a stochastic process in the probability space
(2, F,P).

Notice that € > 0 is a parameter that controls the magnitude of the noise. When € =0
the deterministic model (L) is recovered from the stochastic model (SL). Since (& : ¢ > p)
is a sequence of i.i.d. random variables with Gaussian distribution, the model (SL) could be
understood as a regularization of (L).

Up to our knowledge, this type of model was originally used by Yule (1927) (p =2) to
model the presence of random disturbances of a harmonic oscillator for investigating hidden
periodicities and their relation to the observations of sunspots.

In this article, we obtain a nearly-complete characterization of the convergence in the total

variation distance between the distribution of X t(e) and its limiting distribution as ¢ increases.
Under general conditions, that we state in Section 2, when the intensity of the control € is
fixed, as the time goes by, the random linear recurrence goes to a limiting distribution in the
total variation distance. We show that this convergence is actually abrupt in the following
sense: the total variation distance between the distribution of the random linear recurrence
and its limiting distribution drops abruptly over a negligible time (time window) around a
threshold time (cut-off time) from near one to near zero. It means that if we run the random
linear recurrence before a time window around the cut-off time the process is not well mixed
and after a time window around the cut-off time becomes well mixed. This fact is known as
a cut-off phenomenon in the context of stochastic processes.

Suppose that we model a system by a random process (X ,(6) :t > 0), where the parameter

€ denotes the intensity of the noise and assume that X 5;3 is its equilibrium. A natural question
that arises is the following: with a fixed € and an error n > 0, how much time t (€, n) do we

need to run the model (X t(e) 1t > 0) in order to be close to its equilibrium X c(,? with an error
at most 1 in a suitable distance? The latter is known as a mixing time in the context of random
processes. In general, it is hard to compute and/or estimate t (¢, n). The cut-off phenomenon
provides a strong answer in a small regime €. Roughly speaking, as € goes to zero, it means
that after a deterministic time 7*(¢) the system is “almost” in its equilibrium within any error
n. We provide a precise definition in Section 2.

The cut-off phenomenon was extensively studied in the eighties to describe the phe-
nomenon of abrupt convergence which appears for example, in models of cards’ shuffling,
Ehrenfests’ urn and random transpositions, see for instance Diaconis (1996). In general, it
is a challenging problem to prove that a specific model exhibits a cut-off phenomenon. It
requires a complete understanding of the dynamics of the specific random process. For an
introduction to this concept, we recommend Chapter 18 in Levin and Peres (2017) for dis-
crete Markov chains in a finite state, Martinez and Ycart (2001) for discrete Markov chains
with infinite countable state space and [Barrera and Jara (2016, 2020), Barrera (2018)] for
Stochastic Differential Equations in a continuous state space.

This article is organized as follows: In Section 2, we state the main result and its con-
sequences. In Section 3, we give the proof of Theorem 2.1 which is the main result of this
article. Also, we give conditions to verify the hypothesis of Theorem 2.1. In Section 4, we
provide a complete understanding how to verify the conditions of Theorem 2.1 for a dis-
cretization of the celebrated Brownian oscillator. Lastly, some results about the distribution
of the random linear recurrence and its limiting behavior present in Appendix A, Appendix B
which summarizes some properties about the total variation distance between Gaussian dis-
tributions, and Appendix C which states some elementary limit behaviors.
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2 Main theorem

One of the most important problems in dynamical systems is the study of the limit behavior
of their evolution for forward times. To the linear recurrence (L), we can associate a charac-
teristic polynomial

fO)=AP —p1aP~' —...—¢, forany reC. 2.1)

From now on to the end of this article, we assume
all the roots of (2.1) have modulus strictly less than one. (H)
From (H), we can prove that for any string of initial values xo, ..., x,_1 € R, x; goes expo-

nentially fast to zero as ¢ goes to infinity. For more details, see Theorem 1 in Lueker (1980). In
the stochastic model (SL), (H) implies that the process (X ,(6), t € Np) is strongly ergodic, that
is, for any initial data xo, ..., x,_1, the random recurrence X t(e) converges in the so-called

total variation distance as ¢ goes to infinity to a random variable X é?. For further details see
Lemma A.2 in Appendix A.

Given m € R and o2 € (0, +00), denote by N (m, o2) the Gaussian distribution with mean
m and variance o2. Later on, we see that for 7 > p the random variable X ,(é) has distribution
N (x;, 620,2), where x; is given by (L) and 0,2 € (0, +00). Moreover, the random variable
X% has distribution (0, €252 with 62, € (0, +00).

Since the random recurrence (SL) is linear in the inputs which are independent Gaussian
random variables, the distribution of X ,(6) (for ¢t > p) and its limiting distribution X éé) are
also Gaussian. For details, see Lemma A.1 and Lemma A.2. Then a natural way to measure
its discrepancy is by the total variation distance. Given two probability measures P; and [P,
on the measure space (2, F), the total variation distance between the probabilities P and P>
is given by

drv(P1, P2) = sup [Py (F) — P2 (F)|.
FeF

When X, Y are random variables defined on the probability space (€2, F,[P) we write
drv(X,Y) instead of dpy(P(X € -), P(Y € +)), where P(X € -) and P(Y € -) denote the dis-
tribution of X and Y under PP, respectively. Then we define

A1) ==dry(X©, X)) = dry(N (x;, €267), N (0, €252))

for any > p. Notice that the above distance depends on the initial conditions xq, ..., X, €
R. To make the notation more fluid, we avoid its dependence from our notation. For a com-
plete understanding of the total variation distance between two arbitrary probabilities with
densities, we recommend Section 3.3 in Reiss (2012) and Section 2.2 in DasGupta (2008).
Nevertheless, for the sake of completeness, we provide an Appendix B that contains the prop-
erties and bounds for the total variation distance between Gaussian distributions that we used
to prove Theorem 2.1, which is the main theorem of this article.

The goal is to study of the so-called cut-off phenomenon in the total variation distance
when € goes to zero for the family of the stochastic processes

(X©:= (X :1eNp):e > 0)

for fixed initial conditions xq, ..., xp_1.

In the sequel, we introduce the formal definition of cut-off phenomenon. Recall that for
any z € R, |z] denotes the greatest integer less than or equal to z. Consider the family of
stochastic processes (X© : ¢ > 0). According to Barrera and Ycart (2014), the cut-off phe-
nomenon can be expressed in three increasingly sharp levels as follows.
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Definition 2.1. The family (X©) : € > 0) has

(i) cut-off at () : € > 0) with cut-off time ) if () goes to infinity as € goes to zero and

1 if0<s<1
lim d©([sr@])=" TO=o=L
€—~>0T 0 ifs>1.

(ii) window cut-off at ((t'©, w®) : € > 0) with cut-off time #©) and time cut-off w® if (€
goes to infinity as € goes to zero, w'® = o(¢'©) and

lim liminfd© (¢ 4+ bw© |) =1

b——00 e—0t

and

lim limsupd© (|1 +bw@ |) =0.
b—>+00 o+
(iii) profile cut-off at ((t©, w®) : € > 0) with cut-off time (€, time cut-off w© and profile
function G : R — [0, 1] if 7© goes to infinity as € goes to zero, w© = o(+(©),

lim d© (€ +bw'@|)=: G(b) exists for any b € R
e—0t
together with limy,_, _ o, G(b) =1 and limp_ 4+ oo G (D) = 0.

Bearing all this in mind, we can analyze how this convergence happens which is exactly
the statement of the following theorem.

Theorem 2.1 (Main theorem). Assume that (H) holds. For a given initial data x =
(x0, ..., xp—1) € RP\ {0,} assume that there exist r =r(x) € (0,1), I =1l(x) € {1,..., p}
and v, = v(t, x) € R such that
(1)
Xt _ 0’

_vt

m ||
tﬁ+oo’ tl=1pt

(i) sup,¢ |ve| < 400,
(iii) liminf;_, 4o |vf| > O.

Then the family of random linear recurrences
(X©:=(X9():reNg): e >0)

has window cut-off as € goes to zero with cut-off time

In(1)
In(4 In( 5
L2 P
In(;) In(;)

and time window
w@ =C +oe(l),
where C is any positive constant and lim,_, o+ 0 (1) = 0. In other words,

lim liminfd© (|#© +bw@ |) =1

b—>—00 e—0t

and

lim limsupd® ([ +bw' |) =0,

b—+oo o+

where d'€ (1) = dTV(X,(S), X((,Z))for anyt > p.
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Roughly speaking, the argument of the proof consists in fairly intricate calculations of the
distributions of X t(e), t > p and its limiting distribution X C(,Z) whose distributions are Gaus-
sian. Then the cut-off phenomenon is proved from a refined analysis of their means and
variances, and “explicit calculations and bounds” for the total variation distance between
Gaussian distributions. This analysis also provides a delicate case in which the cut-off phe-

nomenon does not occur.

Remark 2.1. Notice that sup, [v/| < +00 and limsup,_, | o, [v¢| < +00 are actually equiv-
alent. However, liminf;_, ; » |v;| > 0 does not always imply inf;>¢ |v¢| > O.

Remark 2.2. Roughly speaking, the number r corresponds to the absolute value of some
roots of (2.1) and [/ is related to their multiplicities.

Remark 2.3. Under the conditions of Theorem 2.1, the total variation distance between the
distribution of X t(e) and its limiting distribution X ((,Z) changes abruptly from one to zero in a
time window w®) of constant order around the cut-off time ‘€ of logarithmic order in e.

We introduce the definition of maximal set. We say that a set A C R? is a maximal set that
satisfies the property P if and only if any set B C R that satisfies the property P is a subset
of A.

In the case when all the roots of (2.1) are real numbers, we will see in Lemma 3.3 that
there exists a maximal set C C R” such that any initial datum x := (xo, ..., xp—1) € C ful-
fills Condition (i), Condition (ii) and Condition (iii) of Theorem 2.1. Moreover, C has full
measure with respect to the Lebesgue measure on R”. If we only assume (H) and no further
assumptions, we will see in Corollary 3.1 that Condition (iii) of Theorem 2.1 may not hold.
We conjecture that cut-off phenomenon does not hold when condition (iii) fails.

Remark 2.4. If (H) does not hold, then it is not hard to prove that the variance of X t(e) tends
to 400 as t — 4+00. As a consequence, the random linear recurrence (SL) does not converge
in distribution. Therefore the cut-off phenomenon problem is not well-posed.

3 Proof

Observe that for any t > p, X,(G) has Gaussian distribution with mean x; and variance
oz(t, €,X0,...,Xp—1) € (0,+00). By Lemma A.l in Appendix A, under assumption (H),
we obtain az(t, €,X0, s Xp_1) = ezatz, where atz € [1, +00) and it does not depend on the
initial data xq, x1,...,Xp—_1.

The following lemma asserts that the random dynamics (SL) is strongly ergodic when (H)
holds.

Lemma 3.1. Assume that (H) holds. As t goes to infinity, X ,(E) converges in the total varia-

tion distance to a random variable X C(fo) that has Gaussian distribution with zero mean and
variance ezago € [€2, +00).

For the sake of brevity, the proof of the last lemma is given in Lemma A.2 in Appendix A.
Recall that
d9t) =drv(N (x;, €202), N(0,€%02)) forany > p.

In order to analyze the cut-off phenomenon for the distance d(€)(¢), for the convenience of
computations, we first study another distance as the following lemma states.
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Lemma 3.2. Foranyt > p we have
|d) = D) < R®)

where

DO (1) :dTv(N< al ,1),/\/(0, 1))
€T

o0

and

R(1) = drv(N(0,07), N(0,02)).

Proof. Notice that the expressions d ©(t) and D© (1) depend on the parameter € and the
initial data xg, x1, ..., x,—1. Nevertheless, the term R(¢) does not depend on € and on the
initial data xo, x1, ..., x,—1. Letr > p. By the triangle inequality, we obtain

dO) <drv(N(xi, €207), N (x1, €262)) + drv(N (x1, €202)), N (0, €262.)).
By item (i) and item (ii) of Lemma B.1 we have
dt) < R(t) + D).
On the other hand, by item (ii) of Lemma B.1 we notice
DOt) = dry(N (x/, €202), N(0, €262)).
By the triangle inequality, we obtain
D) <drv(N(x/, €202), N(x1, €267)) + drv(N (x1, €267), N(0, €262)).
Again, by item (i) and item (ii) of Lemma B.1 we have
D'O(1) < R(1) +d ).
Gluing all pieces together we deduce
|d9t) — D) <R(t) foranyt> p. O

Now, we have all the tools to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 3.1 and Lemma B.4, we have

lim R(t) =0.

t——400
In order to analyze D€ (), we observe that

X; =t x, e
= — v )+ vy, (3.1

€000  €0oo \tIlpt €00

where [ € {1, ..., p}, r € (0, 1), and v; are given by Condition (i). By Lemma C.2 in Ap-
pendix C we have

(t(e))1—1rt<f)

Iim —— =1.
e—071 €
=1t =1t
For any 1 > 0, define p; = "=~ (2 — v) and ¢; = ";~v;. Then for any b € R we have
o0 o0

1© 4 bw(e)>l—1 (t(e))lflrt(e)erw(le

€ € <
|le( ) +-bw )J| = ( 1© P

% ’ X1 +puw @ |
(1t© + bw(é)J)l—lrLt(é)-f-bw(e)J

— V@ 4pw@ |-
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By Condition (i) we have

lim Plr@ypw© ] = 0 forany b eR. 3.2)
e—0t

Now, we analyze an upper bound for |th(€> +bw© | |. Notice that

M,

1 4 p© =1 ()= 1,1 +bw© -1
|qu(€)+bw(€)J| =< ( l(e) ) €00
where M = sup,- |v;|. By Condition (ii) we know M < +o00. Then
MrbC—l
lim Slip |th<f>+bw(f>J| < 0 for any b € R. (3.3)

e—>0 00

From equality (3.1), relation (3.2), inequality (3.3) and item (ii) of Lemma C.1 we get

|th(6>+bw<€>J| MrbC-1
p <

lim su
e—0t €00 Oo0

for any b € R.

Using item (i) of Lemma B.5, we have
X 4(e €
limsupdry <J\/’<M, 1),/\/(0, 1))
e—~>0F €000
Ml’bc_l

< dTV<N<7

0o

, 1),]\/(0, 1)>

for any b € R. Since r € (0, 1), by Lemma B.4 we have

X|+(e €
lim limsupdTv(N(M,l),N(O, 1)):0. (3.4)

b—>+o00 o+ €0

In order to analyze a lower bound for |th(€) +bw© | |, note

1© 4 pw© — 1>1—1 (t(e))z—lrz<f>+bw<f>

|th(5>+bw(€)J| = ( © |sz(f)+bw(€)J|

€050
for any b € R. By Condition (iii) and item (iii) of Lemma C.1 we have

rbC mrbc
minflq o 4o | 2 o Eminf v 4o | 2

(3.5)
o

where m = liminf,_, | « |v;| € (0, 400). From equality (3.1), relation (3.2), inequality (3.5)
and item (ii) of Lemma C.1 we get

liminf 1X 1@ 4pwi@ | - mrb€
e—0T €000 T 0o

for any b € R.
From item (ii) of Lemma B.5 we have

Xi4+(e €
liminfdpy (N(M 1),/\/(0, 1))
e—>0t

€000

rbC
> dTv(/\/<—m, 1),]\/(0, 1))

Oco

for any b € R. Since r € (0, 1), by item (iii) Lemma B.2 we have

X 4(e €
lim limindeV<N<M,l),N(0, 1)):1. (3.6)

b——00 e—0F €00
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From (3.4) and (3.6), we have
lim limsup D'([+© +bpw@|)=0 and lim hmlnfD(G)(Lt(E) +bhw @) =1,

b—>+00 o+ b——00 e—>0t
Recall that lim;_, ; oo R(#) = 0. By Lemma 3.2 and item (i) of Lemma C.1 we obtain
limsupd(e)(Lt(e) + bw(g)J) < 1imsupD(€)(Lt(€) + bw(e)J).
€e—>0F e—~>0t

Now, sending b — +00 we get
lim limsupd@(|#© +bw'® |) =

b—>too ot
Similarly, by Lemma 3.2 and item (ii) of Lemma C.1 we obtain
liminf D€ (|+© + bw© |) < lim(i)rlfd(é)([t(e) +bw®©]).
€—

e—~>0t
Now, sending b — —oo we get
lim liminfd @ ([+© 4+ bw'@ |) = 1. 0

b——00 e—0F

3.1 Fulfilling the conditions of Theorem 2.1

Now, we provide a precise estimate of the rate of the convergence to zero of (L). Let us
recall some well-known facts about p-linear recurrences. By the celebrated Fundamental
Theorem of Algebra we have at most p roots in the complex numbers for (2.1). Denote by
A1, ..., Aq € C the different roots of (2.1) with multiplicity m, ..., m, respectively, where
1<g < p.Then

Z et I+ Z 2t 4+ Z cq. gt AL 3.7)
Jl 1 ]2:1 qul
for any # € Ny, where the coefficients ¢y 1,...,¢c1,m, ..., Cq.15 -, Cq,m, are uniquely ob-
tained from the initial data xo, ..., x,—1. For more details see Theorem 1 in Lueker (1980).
Moreover, for any initial conditions (xo, ..., x,—1) € R” \ {0,} we have
(01,1,...,C17m1,...,Cq,l,...,cq’mq) (S (Cp \ {Op}.

Notice that the right-hand side of (3.7) may have complex numbers. When all the roots of
(2.1) are real numbers we can establish the precise exponential behavior of x; as ¢ goes by.

Lemma 3.3 (Real roots). Assume that all the roots of (2.1) are real numbers. Then
there exists a non-empty maximal set C C RP that satisfies the following: for any x =

(x0,...,xp—1) €C there exist r :=r(x) >0, :=1(x) € {l,...,p} and v; :=v(t,x) €R
such that
. Xt
t—1>lr+noo fd=1pt ! =0

Moreover, we have sup,~q |v;| < +00 and liminf;_, |« |v;| > 0.

Proof. Recall that the constants ¢y 1,...,Cl,ms---Cq 15+ Cqm ‘ in representation (3.7)
depend on the initial data xo, x1, ..., x,—1. In order to avoid technicalities, without loss of
generality we assume that for each 1 < j < g there exists at least one 1 < k < m; such
that ¢; j, # 0. If the last assumption is not true for some 1 < j < ¢, then the root A ; does not
appear in representation (3.7) for an specific initial data xo, x1, ..., x,_1, then we can remove
it from representation (3.7) and apply the method described below.

Denote by r = maxj<;<4 |A;| > 0. Since all the roots of (2.1) are real numbers, after
multiplicity at most two roots of (2.1) have the same absolute value. The function sign(-) is
defined over the domain R \ {0} by sign(x) = Only one of the following cases can occur.
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(i) There exists a unique 1 < j < g such that | ;| =r. Let
q J
l=max{l <s <mj:cjy#0}.

Then

— ¢j.(sign(2))"| = 0.

t
160 =1yt
In this case C =R? \ {0,}.

(ii) There exist 1 < j < k < g such that [A | = |A¢| = r. Without loss of generality, we can
assume 0 < Ax = —A;. Let

lj=max{l <s <mj:cj; #0}
and

Iy =max{l <s <my :ck s #0}.
If [; <l or Iy <1;, then by taking / = max{l;, [;} we have

Xt
l»l—lrl‘ -
where » = j if [; =1 and x =k if [; = /. In this case, C = R” \ {0, }. If [; = I, then by
taking [ =1;, v; = (—1)'cj; + ck,; we have

lim
t—>+00

c*,l(sign(x*))" =0,

Notice that sup,.( [v/| < +00. By taking
C= {(X(), ...,xp_l) cR?: —Cjl+Ck, # 0 and Cjl+Ck,i ;éO}

we have liminf;_ 4o [v¢| > 0. O

Remark 3.1. From the proof of Lemma 3.3, we can state precisely C. Moreover, C has full
measure with respect to the Lebesgue measure on R”,

Rather than the real roots case, the following lemma provides a fine estimate about the
behavior of (L) as ¢ increases in general setting.

Lemma 3.4 (General case). For any x = (xq, ..., xp—1) € RP\{0,} there exist r :=r(x) >
0,l:=1l(x)e{l,..., p}and v :=v(t, x) € R such that

Am ey v =0
where

v =Y (ajcos(2mwb;r) + B sin(2m0;1))
j=1

with (aj, Bj) = (aj(x), Bj(x)) € R2 \{O,0}, m:=m(x) €{l,...,p},and 0 :=0(x) €
[0, 1) for any j € {1, ..., m}. Moreover, sup, |v;| < +00.

Proof. From (3.7), we have for any ¢ € Ny

nq my Mg
_ cpj1—1qt 2= 1g1 CtJg— 1yt
xt—ch’jlt )‘1+chjzt A2+---+Zcq,]qtq )\q.
J1=1 J2=1 Jg=1
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Without loss of generality, we assume that for any k € {1, ..., g} there exists j € {1, ..., my}
such that ¢ ; # 0. Let [y := max{l < j <my : ¢t j # 0}. Then x; can be rewritten as

l] 12 lq
j1—141¢ p—141 jg—141
b= Y e Y e Y e R
j1=1 j2=1 Jjg=1
where ¢y ;, # 0 for each k. For each k let ri := || A¢|| be its complex modulus. Without loss of
generality, we assume:

D) r=<---<rg

(ii) there exists an integer & such that rp=--=rgq,
(i) 1 <+ <1, )
(iv) there exists an integer & > h such that [, =---=1,.

S

Let r :=rq and [ :==1,. By taking v, =r~"(cp A}, + -+ + Cq,[)L;), we have

Jim [ v =0
where Aj, ..., A, have the same modulus r, but they have different arguments 6; € [0, 1).

Then
q
v = Z(aj cos(2md;t) + B sin(2wh;1)).
j=h

Since ¢y, # 0 for each h <k < ¢q, o; and B; are not both zero for any h < j < g. After
relabelling, we have the desired result. g

Remark 3.2. Under no further conditions on Lemma 3.4, we cannot guarantee that
liminf,, y » |v;| > 0. For instance, the following corollary provides sufficient conditions
for which liminf,_, { « |v;| = 0.

Following Viana and Oliveira (2016), the numbers ¥, ..., ¥, are rationally independent
if

kiog+ -+ kmVpy ¢ Z forany (ki, ..., kp) € Z" \ {0y}

Corollary 3.1. Assume that 01, ..., 6, are rationally independent. Then

liminf|v,| = 0.
t——+00

Proof. For any j € {1,...,m} notice that d; := ,/otjz- +ﬁ12. > 0, and let cos(y;) = fli and

J
sin(y;) = g—j Then v, can be rewritten as

m
v = Zdj cos(2mhjt — y;).
j=1
Let y = —(&,..., ) be in the m-dimensional torus (R/Z)™. Then the set {(y +
O1t,...,0,1)) € (R/Z)",t € N} is dense in (R/Z)™, for more details see Corollary 4.2.3
in Viana and Oliveira (2016). Consequently, liminf,_, o |v;| = 0. O
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4 Example

In this section, we consider the celebrated Brownian oscillator
Xt + y X + kx; —eB, for any t >0, 4.1)

where x; denotes the position at time ¢ of the holding mass m with respect to its equilib-
rium position, y > 0 denotes the damping constant, x > 0 denotes the restoration constant
(Hooke’s constant) and (B; : t > 0) is a Brownian motion. For each initial displacement from
the equilibrium position xo = u and initial velocity X9 = v, we have a unique solution of
(4.1). For further details, see Chapter 8 in Mao (2008).

Without loss of generality, we can assume that the mass m is one. Using the classical
forward difference approximation with the step size & > 0 (fixed), we obtain

1 y €
ﬁ(x(n-ﬂ)h = 2X(nt-1)h + Xnpn) + E(x(n—f—l)h — Xpp) + KXpp = E(B(n+3)h — Buiy2)n)

for any n € Ny with the initial data xo = u and x; = xo + Xoh = u + vh. For consistency, let
X; = x4, for any t € Ny. The latter can be rewritten as

Xip2=Q =y Xp1 — (1= yh +ch?) X, + €h (B3 — Ba+2n) (4.2)

for any t € Ny. Notice that the sequence (B 43y, — B4+2)n : t € Np) are i.i.d. random vari-
ables with Gaussian distribution with zero mean and variance h. Therefore,

Xii2=Q—yh)Xip1 — (1 — yh+«h?)X, + ehi& 5 foranyt e Ny,

where (42 : t € Np) is a sequence of i.i.d. random variables with standard Gaussian distribu-

. .. . . 3
tion. This is exactly a linear recurrence of degree 2 with control sequence (eh2&;45 : t € Np),
and its characteristic polynomial is given by

A+ (yh=2)x+ (1 — yh 4 «ch?). (4.3)
To fulfill assumption (H) we deduce the following conditions.

1) If y2 — 4k > 0, then polynomial (4.3) has two distinct real roots. In this case a sufficient
condition to verify (H) is & € (0, %).
(1) If y2 — 4k = 0, then polynomial (4.3) has two repeated real roots. In this case (H) is
equivalent to i € (0, £).
(1) If )/2 — 4k < 0, then polynomial (4.3) has two complex conjugate roots. In this case (H)
is equivalent to & € (0, £).

In other words, there exists 2* € (0, 1) such that for each & € (0, h*) the characteristic poly-
nomial (4.3) satisfies assumption (H). From here to the end of this section, we assume that
h € (0, h*).

Now, we compute 7, [, v; and C which appear in Lemma 3.3. Let 1| and A, be roots of
(4.3). Denote r; = ||A1]| and o = ||A2||. Recall the function sign(-) is defined over the domain
R\ {0} by sign(x) = |jc‘—| We assume that (xg, x1) # (0, 0). We analyze as far as possible when
the conditions of Theorem 2.1 are fulfilled for the model (4.2).

(1) Real roots with different absolute values. A1 and A, are real and r{ # r. In this case,
x; =c1A + 21y, forany t € N,

where c¢; and ¢, are unique real constants given by initial data xg, x;. Since (xg, x1) #
(0, 0), we have (c1, c2) # (0, 0). Without loss of generality, assume that r; > r».
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(1.1) If ¢1 #0, then
LY ' |
Am e (sign(Ap)'| =0.
(12) If ¢y =0, then 3 # 0. Therefore,

lim |~ — ¢y(sign(A2))'| = 0.

t—-+oo|r,

2
Consequently, C = R?\ {(0, 0)}.

(i1) Real roots with the same absolute value. A1 and A, are real and r :=r; = r».
(ii.1) If Aoy = Ay =rsign(Xy), then

X = clrt(sign(kl))t + cztr’(sign(kl))t for any ¢ € Ny,

where ¢; and ¢; are unique real constants given by initial data xg, x{. Since
(x0, x1) # (0, 0), we have (c1, c2) # (0, 0). The following cases are analyzed.
(ii.1.1) If ¢p #0, then

—+00

. Xt . t

1 — — A =0.
im ‘tr’ c2(sign(rp)) ‘
(ii.1.2) If cp =0, then ¢y # 0. Therefore,

lim ‘x—§ — cl(sign(kl))t' —0.
r

t—400

Consequently, C =R?\ {(0, 0)}.
(ii.2) If Ay # Ao, then

x;=cir' +cy(—r)" foranyt € Ny,
where ¢ and ¢ are unique real constants given by initial data xg, x;. Therefore,

lim |~ — (c1 + e2(—1)")| = 0.

t—+oo| !

Consequently,
C={(x0,x1) €R*:¢c1 +ca#0and ¢ — ¢ #0)
= {(x0, x1) € R? : x9 # 0 and x; # 0}.

(iif) Complex conjugate roots. Since the coefficients of the characteristic polynomial are real,
if A is a root of the polynomial, then conjugate 2 is also a root. We can assume that
A =re?™ and Ay =re=27% with r € (0,1) and 0 € (0, 1) \ {3}. In this setting

x; = c1r! cos(2mOt) + cor' sin(2wOt) for any t € Ny,

where ¢ and ¢ are unique real constants given by initial data xg, x1. Thus,

lim x_; — (c1cos2mOt) + 2 sin(27r0t))‘ =0.

t—>—+oo|r
Since (xg, x1) # (0, 0), we have (c1, ¢2) # (0, 0). Let ¢ = /c? + ¢3 and define y satis-
fying cos(y) = < and sin(y) = 2. Consequently,
vy 1= c1cos(2mOt) + cpsin(2w0t) = ccos(2mnOt — y) for any r € Np.

Observe that y depends on the initial data xg and x1. Let us analyze under which condi-
tions on xp and x; we have liminf;_, ;5 |vs| > O.
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(iii.1) If @ is a rational number, then the sequence (cos(2w0t — y), t € Np) takes finite

number of values. Notice that there exists 7y € Ng such that 270ty — y = % + km
for some k € Z, if and only if cos(2mw 0ty — ) = 0. Therefore, liminf,_,  » |v;| >
0 if and only if

C:{(xo,xl)eRz:Znet—y7E%+kn foranyteNo,kGZ}.

(iii.2) If O is an irrational number, then by Corollary 4.2.3 in Viana and Oliveira (2016)
the set {(6¢ — %) € R/Z :t € Np} is dense in the circle R/Z. Consequently, the
set

{cos(2n0t —y):t € Ng} isdensein[—1,1].

Therefore, for any y we have liminf;_, 4 |v¢| = 0, which implies C = &.

Appendix A: Variance representation of X t(G)

Since (& : t > 0) is a sequence of i.i.d. random variables with standard Gaussian distribution,
it is not hard to see that for any ¢ > p the random variable X ,(6) has Gaussian distribution,
whose expectation is x;. The next lemma provides a representation of its variance under
assumption (H).

Now, for the sake of intuitive reasoning and in a conscious abuse of notation we introduce
the following notation. For each s € Ny denote by ) k; = s the set

P
{(kl,...,kp) eNJ: ) kj =s}
j=1
and denote by ) 'y i —s the sumof 3, & yexk;=s-

Lemma A.1. Assume that (H) holds. For any t > p, X,(é) has Gaussian distribution with

mean x, and variance €>c?, where

2 2
k k
o’t2:1+( E )Jf%..x#’) _|_..._|_< E )Jl‘l...)\pl)

ij:] ij:l—p

and Ay, ..., Ap are the roots of (2.1).

Proof. By the superposition principle, the solution of the non-homogeneous linear recur-
rence (SL) can be written as the general solution of the homogeneous linear recurrence (L)
plus a particular solution of the non-homogeneous linear recurrence (SL) as follows:

X© = x&" 4 xP"9 for any 1 € No,

where X ,(par’e) solves the non-homogeneous linear recurrence (SL), x5 solves the homo-
geneous linear recurrence (L) but possible both solutions do not fit the prescribed initial
conditions. The initial conditions are fitting after adding themselves. For more details, see
Section 2.4 in Elaydi (2005).

To find a particular solution, we introduce the Lag operator I which acts as follows:
Xi—1 =L o x;. Its inverse, L™!, is defined as L=! o x, = X¢+1. For more details about the
Lag operator, we recommend Chapter 2 in Hamilton (1994). Notice that the random linear
recurrence (SL) can be rewritten as

(L7 =L P — ...~ ¢ ) o Xfpar’e) =eL P og.
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Then
(1= AL)(1 = 2oLy -+ (1 — A, L) 0 XP = eg,,

where A1, ..., A, are the roots of (2.1). Since the modulus of the roots of (2.1) are strictly
less than one, we have

XPO = (14 ML+ 23L2 4 ) - (L4 AL+ A2L2 4 ) o €&
for any ¢ > p. Since & is only defined for r > p, we get
X(pare) (l + Z Ak' ...)L/;P[L_F ce Z klf' ...kl;”LfP> o €&,.
> ki=1 Y ki=t—p
Consequently,

k k

Ski=1 S ki=t—p
for t > p, where xt " satisfies (L). After fitting the initial conditions, we see that (x, te
Np) is the solution of (L) with initial data x, ..., x,—. Therefore xtg = x,; for any t € Np.

Since (& : ¢t > p) are i.i.d. Gaussian random Variables with zero mean and unit variance,
X ,(6) is a Gaussian distribution for any ¢ > p. Therefore, it is characterized by its mean and

variance. Since the expectation of X t(e) is x;, we only need to compute its variance. From
(A.1) for any t > p, we get

Var(X,(e))

2 2
=€2(1+( Z )Jf%..)fé”) +...+( Z )»]II---)»];,”) )
2kj=1 Ykj=t=p O

Lemma A.2. Assume that (H) holds. As t goes to infinity, X ,(6) converges in the total varia-

tion distance to a random variable X é? that has Gaussian distribution with zero mean and

variance €*c2 e[e +00).

Proof. From Lemma A.1, we have that for any ¢ > p, X ,(e) has mean x; which is the solution
of (L) and variance €%o 2 where

2 2
a,2=1+( > /\’fl---x’;f’) +---+( > A’{l---,\’,‘,f’>.
= ij:f—p

Since all the roots of (2.1) have modulus strictly less than one, relation (3.7) yields that x;
converges to zero when ¢ goes to infinity. By a simple counting argument, one can see that

Card(ij = s) <(s+1)? foranys € Ny,
where Card denotes the cardinality of the given set. Then for any ¢ > p
2
0,2:1+(Z x’ft..x’,‘;’) ( ok /\”)
Y k=1 Ykj=t—p
<14 (2Pk)* + -4 (¢ — p+ 1)Pk'P)?

t—p
_Z(]+1)2PK2] < Z(]+1)2PK2] < 400,
Jj=0 j=0
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where kK = maxj<j<,|A;| < 1. Since 1 < atz < O’ZZ_H < Z?‘;O(j + 1)?Pk% < +o0 for any
t > p, we deduce lim;— 400 0,2 exists. Denote by ago its value. Observe that ago € [1, +00).

It follows from Lemma B.4 that X ,(6) converges in the total variation distance to X éf;) as t
goes to infinity, which has Gaussian distribution with zero mean and variance €202 . g

Appendix B: Total variation distance between Gaussian distributions

In this section, we provide some useful properties for the total variation distance between
Gaussian distributions. Recall that A'(m, 0%) denotes the Gaussian distribution with mean
m € R and variance o2 € (0, +00). A straightforward computation leads

2 2
1 1 _ (x—myp) 1 _ (x—my)
dry(N (1, 07). N (m2, 03)) = 5 /R Tt o _ N = PN

for any my, ms € R, 012, 022 € (0, +00). For details see Lemma 3.3.1 in Reiss (2012).

Lemma B.1. Letm;, m> € R and 012, 022 € (0, +00). Then

(i) drvN (my, 02), N(ma, 03)) = drv(N (my —ma, o), N(0,03)).
(i) drv(N(emy, c?o?), N(cma, c?02)) = dry(N (m1, 02), N'(m2, 03)) for any ¢ # 0.

Proof. The proofs of item (i) and item (ii) proceed from the Change of Variable theorem. [J

Lemma B.2.
(i) Forany m € R and o2 € (0, +00), we have
dry(N(m,o?), N(0,02)) = — e Tdx < ——.
Wl o) NN = Tz o2m

(i) Foranymi,m; € R and o2 € (0, 400) such that |m| < |m2| < +o00 we have
dTv(N(ml, 02),N(0, 0'2)) < dTv(N(mz, 02),N(0, 02)).

(iii) Iflimy_ o0 |m;| = +00 and 0% € (0, +00), then

: 2 2\\ __
t_l)nlloodTV(N(m,, o), N(0,0%))=1.

Proof. Notice that item (ii) and item (iii) follow immediately from item (i). Therefore we
only prove item (i). From item (ii) of Lemma B.1, we can assume that m > 0. Observe that

dTv(N(m, 02), N(O, 02))

m 2

1 7, 22 _aom)? 1 too @em? a2
/ ( 262 —e 202 ) dx + [ (e 262 — e 22 ) dx
m

= e
2/2mo /-0 2 2no /g
2 7 a2
= e 272 dx.
V2o /0
The latter easily implies the result. O

Lemma B.3. For any o2e(, 1)U (1, +00), we have
2 max{x(a),@} 2 2

2 _ R
drv(N(0,07), N (O, 1))——m i), 222} © 2 dxfm

2 1 .
where x(0) = a(%)i. Moreover, we have lim

’

1
x(a)‘——l
o

21 Xx(0)=1.
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Proof. In this case, a formula for dtv (N (0, 02), N'(0, 1)) can be computed explicitly as we
did in the proof of item (i) of Lemma B.2. Indeed, if o2 € (0, 1) observe that

drv(NV ( 2), N (0, D)

_i x2
/ —e 262 —e 2

dx

On the other hand, if 02 € (1, 4+00) one can also deduce that

2 x(0) 2 2 1
drv(N(0,02), N0, 1)) = Wir o e 2Tdx < mx(o*)(l - ;)

The second part of the lemma is a direct computation. U

Lemma B4. Iflim;— 1oom; =m € R and lim;_, 4 otz =02 € (0, 4+00), then

t_leoodTv(N(m;, otz),N(m, 02)) =0.

Proof. The proof follows from the triangle inequality together with item (i) of Lemma B.1,
item (i) of Lemma B.2 and Lemma B.3. O

Lemma B.5. Let 6% € (0, +00).

(i) Iflimsup,_, , |Im:| < Cp € [0, +00), then
limsupdry (N (m,, 0%), N (0, 6%)) < dv(N(Co, 0%), N'(0,62)).
t—400

@i1) Ifliminf; o |m,| > C1 € [0, +00), then
liminfdry (A, o?), N(0,0%)) > drv(N(C1, %), N(0, 5%)).

Proof.

(i) Let L :=limsup,_, ., drv(N (m,, 02), N'(0, 52)). Then there exists a subsequence (1, :
n € N) such that lim,,_, ; o, t, = +00 and

lim dpy (N (m,, 02),/\/(0, 02)) =L.

n—+400

Since limsup,_, ., |m;| < Co, we have limsup, ., |m,| < Cp. Then there ex-
ists a subsequence (t,, : k € N) of (¢, : n € N) such that lim_, {1, = +00 and
limg— 400 |m,nk| exists. We define C := limy_ |m,nk| and notice that 0 < C < Cy.
From Lemma B.4, we obtain

k_l)h}rloodTV(N(mfnk’az)’N(O’ o?)) =dry(N(C,02), N(0,5?)).
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Notice that limy_, ; oo dTv (N(mtnk ,02), N(0,52)) = L, then by item (ii) of Lemma B.2
we deduce

L= dTv(N(C, 02),N(0, 02)) < dTv(N(C(), 02),N(0, 62)).

(i1) The proof of item (ii) follows from similar arguments as we did in item (i). We left the
details to the interested reader. [

Appendix C: Tools

In this section, we state some elementary tools that we used all along the article. We state
them here for the sake of completeness.

Lemma C.1. Let (ac : € > 0) and (bc : € > 0) be functions of real numbers. Assume that
lim._, g+ be =b € R. Then

(1) limsup,_, o+ (aec + be) = limsup,_, g+ ae + b.
(i1) liminf,_, o+ (ac + be) =liminf,_ g+ ac + b.
(iii) liminf,_, g+ (acbe) = bliminf,_, o+ ar when b > 0.

Proof. The proofs proceed by definition of limit superior and limit inferior using subse-
quences. (|

Lemma C.2. Forany a € R andr € (0, 1) we have

(t(e))arz(f)
lim ——

e—0t €

=1,

in(h
In(—$%
(1n(}))

In(3)

1
where 1) = —ln(f) +o
in(D)

Proof. Note that (¢ =log, (¢) —a log, (log, (€)), where log, (-) denotes the base—r logarithm
function. A straightforward computation shows

(€)yor ,.1© o
t I 1
im O i (1_QM> _ 1
e—>071 € e—0t log,(e) O
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