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Abstract. Proportional hazards (PH), proportional odds (PO) and acceler-
ated failure time (AFT) models have been widely used to deal with survival
data in different fields of knowledge. Despite their popularity, such models
are not suitable to handle survival data with crossing survival curves. Yang
and Prentice (2005) proposed a semiparametric two-sample approach, de-
noted here as the YP model, allowing the analysis of crossing survival curves
and including the PH and PO configurations as particular cases. In a gen-
eral regression setting, the present work proposes a fully likelihood-based
approach to fit the YP model. The main idea is to model the baseline haz-
ard via the piecewise exponential (PE) distribution. The approach shares the
flexibility of the semiparametric models and the tractability of the parametric
representations. An extensive simulation study is developed to evaluate the
performance of the proposed model. We demonstrate how useful is the new
method through the analysis of survival times related to patients enrolled in a
cancer clinical trial. Finally, an R package called YPPE was developed to fit
the proposed model. The simulation results indicate that our model performs
well for moderate sample sizes in the general regression setting. A superior
performance is also observed with respect to the original YP model designed
for the two-sample scenario.

1 Introduction

Proportional hazards (PH) models have played a central role in the analysis of survival data.
Such class of models provides a very flexible framework to model survival data. They further
allow an easy interpretation of the parameters from the practical point of view. The main
assumption of the PH models is that the hazard ratios are constant over time. When such
assumption is not verified by the data, some alternatives such as the proportional odds (PO)
and the accelerated failure time (AFT) models can be used in the analysis. However, none
of them is suitable to accommodate survival data with crossing survival curves. This type
of problem is often related to studies involving treatment and control groups. The survival
function for one group may have a fast decay in contrast with a slow decay for the other. The
curves tend to intersect at some time point configuring an inversion in terms of which group
is on the top/bottom position. Studying this alteration is relevant in many clinical trials, where
the identification of the crossing time indicates when the target treatment for a disease can be
considered effective.

Survival data with crossing survival curves may arise due to several reasons in practice.
For instance, Diao, Zeng and Yang (2013) indicates that this may occur in certain clinical
trials related to aggressive treatments such as surgery. Some adverse effects can be observed
in an initial stage, but beneficial results may appear in the long run. According to Breslow
(1974), another situation connected with crossing survival functions is when a treatment has
an early and quick effect and it becomes similar to or worse than the placebo treatment after
a certain period.
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Several approaches have been proposed in the literature to accommodate this crossing
feature in survival data. The most popular ones are based on time-varying regression coef-
ficients; see, for example, the references Egge and Zahl (1999), Shyur, Elsayed and Luxhoj
(1999) and Putter et al. (2005). Zeng and Lin (2007) proposes a class of transformation mod-
els for counting processes which encompasses linear transformation models and which can
handle crossing hazards. Alternatively, Yang and Prentice (2005) presented a semiparamet-
ric two-sample model (hereafter denoted as YP model) for this type of problem. The feature
“two-sample” refers to the scenario where, for example, there is a treatment group and a con-
trol group that can be conveniently represented through a binary variable. The YP proposal
is an interesting option, since it includes the PH and PO representations as particular cases.
In their model, the baseline hazard function is left unspecified, in fact a counting process is
assumed leading to a survival step function. A pair of short-term and long-term hazard ra-
tio parameters is included to accommodate crossing survival curves. In addition, a pseudo
maximum likelihood approach is considered for the estimation procedure. Consistency and
asymptotic normality of the resulting estimators are demonstrated in the paper.

Yang and Prentice (2011) extended the estimation procedure in Yang and Prentice (2005)
to pointwise and simultaneous inference on the hazard ratio function itself. They further
proved the consistency and asymptotic normality of the estimates at a fixed time point. Yang
and Zhao (2012) proposed two omnibus tests to evaluate the adequacy of the YP model. The
first test is based on the martingale residuals and the second one examines the contrast be-
tween the non-parametric and model-based estimators of the survival function. Diao, Zeng
and Yang (2013) extended the two-sample YP model to a general regression setting with
possibly time-dependent covariates; the study developed an efficient likelihood-based esti-
mation procedure. The authors also demonstrated the consistency, asymptotic normality and
efficiency of the resulting estimators. Nieto-Barajas (2014) also extended the YP model to ac-
commodate a general regression setting, and proposed a Bayesian nonparametric prior, based
on increasing additive processes mixtures, to model the baseline function. Yang and Prentice
(2015) presented an alternative formulation of the YP model introduced in Yang and Prentice
(2005) by allowing a subset of the explanatory variables to have constant effects over time,
that is, preserving the proportional hazard structure. The YP model has also been extended
by Tong, Zhu and Sun (2007) to accommodate current status survival data. Another extension
is found in Zhang, Wang and Sun (2018) to fit case II interval-censored data.

The use of semiparametric methods for univariate survival data started with Cox (1972) on
the proportional hazards model. Breslow (1972) and Breslow (1974) are two initial publica-
tions proposing the use of the piecewise exponential (PE) distribution to replace the baseline
hazard in a survival analysis. The grid configuration for a model with the PE baseline hazard
is a central topic in Kalbfleisch and Prentice (1973). Many applications, related to clinical
trials and involving the PE distribution, can be found in the literature; some few examples
are: leukemia (Breslow, 1974), gastric cancer (Gamerman, 1991), kidney infection (Sahu
et al., 1997, Ibrahim, Chen and Sinha, 2001), breast cancer (Sinha, Chen and Ghosh, 1999),
melanoma (Demarqui et al., 2014) and hospital mortality (Clark and Ryan, 2002). Although
parametric in a strict sense, the model with the PE baseline hazard has a strong nonparametric
appeal. The main reason is the fact that assumptions about the shape of the baseline hazard
are not required in this approach.

The main contribution of the present paper is to propose a novel fully likelihood-based
approach to handle right-censored survival data with crossing survival curves. This is done
by assuming the PE distribution to deal with the baseline hazard in the YP model. We empha-
size that using the semiparametric PE approach to extend the original YP model has not been
seen in the literature. We also developed an R package called YPPE to fit the proposed model.
Some important advantages of the methodology proposed here are: (i) it has the tractability



174 F. N. Demarqui and V. D. Mayrink

of parametric models; (i) it provides a continuous survival function being convenient for
the detection of the intersection point of two survival curves; (iii) it has the flexibility of a
semiparametric model allowing different shapes for the hazard function; (iv) the routine for
maximum likelihood estimation and inference is straightforward and easy-to-implement. An-
other point to be highlighted is the fact that the original reference for the YP model is focused
on the two-sample case with the general regression setting being extended in Diao, Zeng and
Yang (2013) as previously mentioned. We explore the YP model with the PE baseline hazard,
hereafter called “YPPE model”, using categorical and continuous covariates in this paper.
This work is organized as follows. The proposed model is described in Section 2. A com-
prehensive Monte Carlo simulation study is conducted in Section 3 to evaluate the perfor-
mance of the YPPE model. Section 4 shows an empirical illustration where the new model
is applied to study the survival times of patients enrolled in a gastric cancer clinical trial.
Finally, Section 5 presents the main conclusions, final remarks and discusses future research.

2 Model formulation

Let T be a nonnegative random variable representing the time until the occurrence of an event
of interest. In order to accommodate survival data with crossing survival curves, Yang and
Prentice (2005) proposed the following model in terms of survival function of 7':

A —6
sl =[ 1+ 5 Ro0)] M
where z = (z1,...,24) is a row vector of explanatory variables, A = exp(zy) and 0 =
exp(z¢), ¥ = (Y, ..., 1//q)T and ¢ = (¢1, ...,¢q)T are vectors of regression coefficients

without intercepts, and Roy(t) = Fyp(t)/So(t) corresponds to the baseline odds of death (or
failure) by time ¢. The terms Fp(¢) and So(¢) are the baseline cumulative distribution func-
tion and the baseline survival function, respectively. Note that Fp(¢) =1 — Sp(¢).

The hazard function associated with (1), can be expressed as

h(t|z) = ), 2

- hy
AFp(t) +60S0(¢)
where ho (1) = — % 1og(So(1)) = h(t]0).

The YP model has some interesting and attractive features. First, it is easy to see from
(1) and (2) that the PH and PO models arise as particular cases when ¥ = ¢ and ¢ =0,
respectively. Another point is that a scenario with crossing survival curves can be obtained
when ¥;¢; < 0, for any pair of coefficients (¥, ¢;) and j =1, ..., g. Examples of different
survival functions obtained by varying the values of i and ¢ are displayed in Figure 1.

It follows from (2) that

h(t h(t
im (t1z) =A and lim (t12) =0
1—0 h(t]0) =00 h(t]0)
The quantities A and 0 can be interpreted as the short-term and long-term hazard ratios,
respectively. In addition, the elements of ¥ and ¢ can be regarded as the short-term and
long-term regression coefficients, respectively.

We now describe the main aspects related to the piecewise exponential distribution. Con-
sider a time grid p = {ay, ..., a,—1} inducing the following set of intervals:

I — (ar—-1,ar], k=1,....m—1,
“Tn-r.00) k=m,
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Figure 1 Survival functions according to different choices of ¥ and ¢. Panel (a): ¥ =1 and ¢ = —1 (crossing
survivals). Panel (b): W = —1 and ¢ = 1 (crossing survivals). Panel (c): ¥ = 0.5 and ¢ = 0.5 (PH structure).
Panel (d): =0 and ¢ = 0.5 (PO structure).

with ag = 0. We shall assume that the baseline hazard function appearing in (2) is constant in
each interval induced by p, that is

ho(t1&, p) =&, & >0

foréE=(&,....&y) ,teandk=1,...,m.

The choice of the time grid p has a significant impact in terms of goodness-of-fit for the
target model. A time grid with a large number of intervals might provide unstable estimates
for the failure rates. On the other hand, time grids with few intervals might lead to poor ap-
proximations to the true survival function. In practice, the time grid selection must seek a
balance in terms of how well the hazard and survival functions can be estimated. Several
approaches have been proposed in the literature to address this issue. We shall assume here
that the time grid p is a known quantity composed by either the set of distinct ordered ob-
served failure times, as suggested by Breslow (1974), or a subset of such observed times, as
proposed by Demarqui et al. (2012, 2014). According to Schneider et al. (2020), one advan-
tage of those approaches is that the length of the grid intervals are smaller for time intervals
where a large number of time points are observed, and larger for those time intervals with
few observations.

Following Demarqui et al. (2011), the baseline survival function So(¢|€, p) can be conve-
niently expressed as:

So(t|&, p) = exp(—Ho(1)),
where Ho(t) = /" & (tx — ak—1) is the baseline cumulative hazard function, and

ag—1, ift <ap_q,
th =1t, if t € I,
ag, if t > ag,

fork=1,...,m.
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Note that the cumulative hazard function of the PE distribution is a non-decreasing func-
tion defined in terms of a sum of positive increments in disjoint intervals. Under the assump-
tion of independent increments (Kalbfleisch, 1978), it can be seen as a realization of a Levy
process. This fact can be convenient under the Bayesian framework, since it facilitates the
elicitation of prior processes for the cumulative hazard. This is true for the gamma process,
which is the most used Levy process to model the cumulative hazard function (Sinha and
Dey, 1997). Another attractive characteristic of the PE distribution regards the possibility to
add some degree of smoothness on the (baseline) hazard function by the introduction of first-
order correlation structures on the failure rates &;’s, such as those proposed by Gamerman
(1991) and Arjas and Gasbarra (1994). We emphasize, however, that a Bayesian treatment of
the model being proposed here is out of the scope of the paper, and it will be addressed in
future works.

Consider a random sample of size n, where all elements are independent, and denote
by 7; and C; the failure and censoring times, respectively. Let z; be a row vector of
explanatory variables associated with the i-th element in the sample. Assume that the
censoring mechanism is non-informative. In addition, the failure times are right-censored
so that Y; = min{7;, C;} is the observable failure time. The term §; = I{T; < C;}, for
i =1,...,n, is the failure indicator function. The set of observed data is then denoted by
D ={(yi,6i,2;);i=1,...,n}. Finally, let @ = (WT, ¢T, ST) represent the vector of param-
eters to be estimated. Since the time grid p is regarded as a known quantity in this paper, its
notation will be suppressed here for simplicity.

The likelihood function can be expressed as follows:

79’.

- Aibi b Ai
ho<y,-|;=)] [1+§R0(yi|§)} G

0; D) =
L(e: D) H[ei50<yi|£)+wo<w|€>

i=1

where Fo(y;i|&) =1 — So(yil§), Li = exp(z;¥) and 6; = exp(z;¢), fori =1, ..., n. The like-
lihood function for alternative formulation of the YP model discussed in Yang and Prentice
(2015), along with an additional simulation study, is presented in Appendix A.

Maximum likelihood estimates (MLEs) for the parameters are obtained by the direct max-
imization of the log-likelihood function given in (3) using standard numerical maximization
routines. In order to accomplish this task, we developed an R package, called YPPE, which
is currently available on CRAN (https://cran.r-project.org/web/packages/YPPE/index.html).
The YPPE package is based on Stan’s Programming Language (Carpenter et al., 2017), and
allows the application of three different maximization algorithms (Newton and two related
quasi-Newton methods, namely L-BFGS and BFGS). For more details about these optimiz-
ers, the reader is referred to Nocedal and Wright (2006). The standard errors of the estimators
are computed through the observed Fisher information matrix, which is obtained by inverting
the approximated log-likelihood Hessian matrix readily available from the optimizer routines
provided by Stan.

In the next section, we empirically investigate some asymptotic properties of the MLEs
through a simulation study. This is a comprehensive study based on simulated data replicated
in a Monte Carlo (MC) scheme. The main idea is to explore different aspects of the proposed
model and compare its results with those from the standard YP model.

3 Simulation study

In this section, we present a Monte Carlo simulation study to evaluate the performance of
the model introduced in the previous section. There are two main purposes in this analysis:
(i) compare the proposed model with the two-sample semiparametric model in Yang and
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Prentice (2005) and (ii) evaluate the performance of the new model in the general regression
setting.

In order to generate the simulated data sets, the Weibull baseline survival function
So(tle, y) = exp(—yt¥), with « = 1.50 and y = 0.05, is assumed to generate the failure
times (#;’s). The censoring times (c;’s) are obtained from the uniform distribution in the in-
terval (0, T), with T chosen so that the censoring rate is approximately 30% of the observed
data. Recall that the final time reported for each sample unit is given by y; = min{#;, c;}.
We begin the simulation study with the two-sample scenario. The MC schemes are config-
ured with 1000 data sets and they explore three different sample sizes: n = 50, n = 100 and
n = 200. In each case, a single binary covariate is included assuming z; ~ Bernoulli(0.5), for
i=1,...,n.

All models were implemented and fitted using the R programming language (R Core Team,
2019). The YPPE model was fitted using our proposed R package YPPE, whereas the YP
model in Yang and Prentice (2005) was fitted through the R package YPmodel; see more
details in Yang and Prentice (2010, 2011) and Yang and Zhao (2012).

The survival function, defined in the YP model, is a step function with jumps on the ob-
served failure times. In order to ensure a fair comparison between our YPPE model and the
original YP model, the endpoints of the intervals forming the grid in the PE distribution are
set to be the observed failure times. In other words, each interval contains exactly 1 obser-
vation. Naturally, other configurations including more than 1 time point per interval can be
applied and this is expected to improve results.

The relative bias reported in Table 1 is calculated according to the following expression:

RB (k) = 100(k — kirue) /| Ktrue]-

In this expression consider that: « is a generic parameter, £ is the maximum likelihood esti-
mate and ke 18 the true value.

Table 1  Summary for the MC simulation study with 1000 replications and a single binary covariate. Notation:
fitted model (Mod), parameter name (Par), true value (True), average point estimate (Est.), average asymptotic
standard error (AASE), sample standard deviation of the estimates (SSDE), relative bias (RB), average 95%
confidence interval (CI) and coverage probabilities (CP)

95% CI
Mod Par True Est. AASE SSDE RB(%) Lower Upper CP
n =50
YPPE ) 1.0 0.907 0.858 0.870 —-9.269 —0.773 2.588 0.940
¢ -1.0 —0.651 3.363 1.788 34.872 —7.242 5.940 0.981
YP v 1.0 1.150 1.419 1.522 14.976 —1.631 3.931 0.863
¢ -1.0 —0.729 1.068 1.147 27.118 —2.822 1.364 0.924
n =100
YPPE ) 1.0 0.955 0.595 0.606 —4.511 —-0.212 2.122 0.947
¢ -1.0 —0.935 0.387 0.384 6.513 —1.694 —0.176 0.969
YP ¥ 1.0 1.138 2.042 1.098 13.787 —2.864 5.140 0.946
¢ -1.0 —0.930 1.701 0.585 6.992 —4.265 2.405 0.993
n =200
YPPE ) 1.0 0.991 0.417 0.418 —0.944 0.173 1.808 0.949
¢ —-1.0 —0.966 0.258 0.265 3.434 —1.471 —0.461 0.956
YP ) 1.0 1.039 3.007 0.590 3.939 —4.854 6.933 0.994
¢ -1.0 —0.939 2.412 0.530 6.135 —5.666 3.789 0.995
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Table 1 shows the results of the Monte Carlo simulation study. As it can be seen, neither the
proposed model nor the YP model performed well when the sample size is small (n = 50). In
this case, both models show relative biases above ~ 10% and coverage probabilities far from
the nominal level for all parameters. Now looking at the moderate sample sizes (n = 100 and
n = 200) the results in Table 1 change in favour of the proposed YPPE model. It is evident
that the YPPE model has a superior performance with respect to the standard semiparametric
YP model. Although an improvement in terms of relative bias reduction can be observed
for both models under moderate sample sizes, the proposed model provides smaller relative
biases and indicates coverage probabilities closer to the nominal level of 95%.

Another important aspect exhibited in Table 1 is the similar results for the AASE and SSDE
related to the proposed PE model. This similarity indicates that the method implemented to
fit the proposed model is performing properly. Note that this type of result is not true for
the standard semiparametric YP model, which seems to overestimate the standard errors of
the parameter estimators. In addition, this bad behavior can explain the wider average 95%
confidence interval limits and the coverage probabilities above the nominal level observed
for this model.

We now turn our attention to the general regression setting. Moderate to large data sets
were considered in this analysis to investigate the performance of the YPPE model assuming
a regression structure with four covariates. Artificial data sets were simulated taking into
account three different sample sizes: n = 100, n = 200 and n = 500. We again use the MC
scheme with 1000 replications. The following short-term and long-term linear predictors are
explored:

log(A;) = +2.0z1; — 0.5z0; + 1.5z3; — 1.5z4;,
log(6;) = —1.0z1; + 1.0z0; — 1.523; + 1.5z4;

where z1; ~ Bernoulli(0.5), z2; ~ N(0, 1), z3; ~ Bernoulli(0.5) and z4; ~ N(0, 1), for i =
1,...,n and all of them being independent.

The main reference Yang and Prentice (2005) is entirely focused on the two-sample sce-
nario and does not explore the general regression setting. In fact the paper indicates that the
standard YP model can be extended to incorporate covariates, but this was left for future
work in the mentioned reference. The corresponding R package YPmodel does not allow
the analysis using the general configuration. As a consequence of this point, in the next anal-
ysis we do not confront the results from the YPPE model and the standard YP case. Recall
that, for comparison reasons, the time grid for the YPPE model was initially chosen (analysis
of Table 1), with 1 observation per interval. The results presented in Table 2 are obtained by
assuming a different grid structure. In this case, the number of intervals is given by m = /n.
This choice is convenient to reduce the computational burden to fit the model. The endpoints
of the intervals are chosen as follows. Given the set ¢ of J distinct observed failure times, let
k and r be integers such that J = km 4 r. Then, the endpoints of the time grid o are chosen
among the elements of ¢ so that the first m — r intervals have k failure times, and the re-
maining intervals contain k + 1 failures. According to Demarqui et al. (2014), this procedure,
which is implemented in the function t imeGrid () of our package YPPE, allows for more
failure times to be in the last intervals, where less information is usually available.

As it can be seen from Table 2, relative biases are reasonably low, especially for n = 200
and n = 500. In addition, the coverage probabilities are, in general, close to the nominal
level of 95%. Another important aspect observed here is the fact that both bias and AASE
tend to decrease as the sample size increases; this is expected and confirms that the fitting
algorithm behaves well. The results displayed in Table 2 also indicate that the standard errors
of the parameters are being well estimated, since the AASE and SSDE have similar values
for all parameters; this is true regardless of the sample size under investigation. Overall, the
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Table 2 Summary for the MC simulation study with 1000 replications and 4 covariates. Notation: parameter
name (Par), true value (True), average point estimate (Est.), average asymptotic standard error (AASE), sample
standard deviation of the estimates (SSDE), relative bias (RB), average 95% confidence interval (CI) and coverage
probabilities (CP)

95% CI

Par True Est. AASE SSDE RB(%) Lower Upper CP

n =100 and m =10
¥ 2.0 1.903 0.614 0.656 —4.855 0.700 3.106 0.931
Yo -0.5 —-0.473 0.296 0.315 5.314 —1.053 0.106 0.940
¥3 1.5 1.415 0.615 0.655 —5.657 0.209 2.621 0.919
Yq —-1.5 —1.477 0.402 0.416 1.562 —2.264 —0.689 0.942
b1 —1.0 —-0.913 0.347 0.397 8.664 —1.593 —0.234 0.927
03] 1.0 1.047 0.238 0.258 4.738 0.581 1.514 0.951
@3 —-1.5 —1.459 0.350 0.372 2.718 —2.145 —0.773 0.952
P4 1.5 1.547 0.266 0.295 3.156 1.026 2.068 0.964

n=200and m =15
¥ 2.0 1.946 0.422 0.412 —2.704 1.119 2.773 0.945
153 -0.5 —0.479 0.200 0.209 4.181 —0.871 —0.087 0.937
v3 1.5 1.430 0.423 0.438 —4.692 0.600 2.259 0.933
Yq -1.5 —1.475 0.276 0.284 1.689 -2.015 —0.935 0.937
P1 -1.0 —0.953 0.233 0.237 4.657 —1.411 —0.496 0.955
03] 1.0 1.034 0.160 0.162 3.367 0.720 1.348 0.945
b3 —-1.5 —1.477 0.237 0.251 1.535 —1.941 —1.012 0.939
o 1.5 1.528 0.179 0.185 1.848 1.178 1.878 0.937

n =500 and m =23
¥ 2.0 1.976 0.264 0.270 —1.223 1.458 2.493 0.936
Yo -0.5 —0.485 0.123 0.124 2.905 —0.727 —0.244 0.948
¥3 1.5 1.463 0.264 0.261 —2.441 0.946 1.981 0.949
Yy —1.5 —1.472 0.171 0.174 1.866 —1.807 —1.137 0.936
P1 -1.0 —0.978 0.144 0.143 2.177 —1.261 —0.695 0.958
b 1.0 1.010 0.098 0.097 1.035 0.818 1.202 0.953
b3 —-1.5 —1.482 0.146 0.142 1.218 —1.769 —1.195 0.955
b4 1.5 1.518 0.110 0.115 1.227 1.303 1.734 0.931

proposed model seems to perform well in the general regression setting for moderate to large
data sets.

4 Real data analysis

This section is dedicated to the analysis of a real data set freely available through the R pack-
age YPmodel under the label of gastric; see also Gastrointestinal Tumor Study Group
(1982) as a reference for more details. This gastric cancer data set has become a common
application in the literature related to survival analysis and, more specifically, it can be easily
found in studies dealing with crossing survival curves; some few references are: Yang and
Prentice (2005), Lee (2011), Yang and Zhao (2012), Diao, Zeng and Yang (2013) and Yang
(2018). The experiment in this clinical trial involves 90 individuals diagnosed with locally
unresectable (advanced) gastric cancer. The participants were randomly assigned to the fol-
lowing groups: (i) the control group composed by 45 patients receiving chemotherapy and
(ii) the treatment group including 45 patients receiving a combination of chemotherapy and
radiation therapy. These individuals were followed within this study for about 5 years. Three
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Table 3  Summary of the models fitted to the gastric cancer data

95% CI
Model Par Est. SE Lower Upper z p-value
YPPE ) 1.837 0.648 0.567 3.108 2.834 0.005
¢ —1.017 0.300 —1.606 —0.429 —3.387 0.001
YP ) 1.600 0.538 0.547 2.656 2977 0.003
¢ —0.906 0.248 —1.393 —0.421 —3.650 <0.001

variables are reported in the data set for each patient: the time response representing either a
failure (time to death) or a right censoring, a binary failure indicator identifying those patients
experiencing the event of interest and, finally, a group binary indicator with 1 meaning the
treatment category. Note that this application contains a single binary covariate; therefore, it
can be explored and compared via the YPPE and YP models.

Table 3 summarizes the results obtained for both models. As it can be observed, the short-
term (1) and long-term (¢) regression coefficients, within each model, are estimated with
opposite signs and they have distinct magnitudes. This can be observed by either looking at
the point estimate (column Est.) or the 95% confidence intervals. This behavior is a clear
indication of survival curves having an intersection at some intermediate time point between
0 and the maximum. In other words, the top and bottom positioning of the curves are inverted
for the intervals below and above the crossing time point; see Figure 2 for a visual idea. This
inversion suggests the existence of an alteration in the effectiveness of the treatment at some
point during the follow-up period of the study. In general, the results tend to be similar when
comparing the corresponding estimates from both models. Note that the standard error related
to v is larger than the one for ¢. In addition, all p-values from the z-test are small, indicating
significant regression coefficients.

One interesting and attractive feature of the proposed YPPE model is the fact that it pro-
vides a continuous survival function. This aspect allows us to apply standard procedures to
find the roots of nonlinear equations to determine accurately the time point at which the sur-
vival curves intersect each other. One possibility to handle this problem in R is to use the
command uniroot (Brent, 1973) for unidimensional searches. In line with this idea, right
after fitting our YPPE model to the gastric cancer data, we apply the uniroot function to
conclude that the crossing time occurs, for this application, at the time point given by the
day 863 within the full period of the study. From the practical point of view, this means that
before the day 863, the patients in the control group (only chemotherapy) have better sur-
vival rates than those in the treatment group. On the other hand, the benefits of combining
chemotherapy with radiotherapy tend to emerge in a later stage of the study (after day 863).

The 95% confidence interval for the crossing survival time, obtained via nonparametric
Bootstrap (based on 1000 resamples), is [1, 1967]. As it can be noted, the confidence in-
terval in this case is quite wide, reflecting the uncertainty associated with the small sample
size of the gastric cancer data. Larger clinial trials are expected to provide shorter intervals
establishing with higher precision the region of the crossing point.

The panel (a) of Figure 2 shows the Kaplan—Meier curves associated with the two treat-
ments and the survival curves estimated via the semiparametric YPPE and YP models. The
panel (b) of Figure 2 displays the estimated survival curves, provided by the YPPE model,
along with the estimated time at which the survival curves are expected to cross. Finally, the
panel (c) of Figure 2 provides the hazard ratio estimated by the proposed model. As it can be
seen in panel (a), both models seem to accommodate and represent well the data, since their
estimated survival curves tend to agree with the Kaplan—Meyer survival estimates. Moreover,
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Figure 2 Analysis of the gastric cancer data set. Panel (a): Kaplan—Meier estimates for the survival curves
along with the YPPE estimates (solid lines) and the YP estimates (dashed lines). Panel (b): estimated survival
curves provided by the YPPE model along with the estimated time point at which the survival curves probably
cross each other. Panel (¢): estimated hazard ratio provided by the YPPE model.

Table 4 Short and long term hazard ratios summarized by point estimate (Est.) along with the 95% confidence
interval (CI)

95% CI
Model Hazard ratio Est. Lower Upper
YPPE chemo + radiation (short term) 6.280 1.762 22.375
chemo alone (long term) 2.766 1.535 4.984
YP chemo + radiation (short term) 4,953 1.728 14.239
chemo alone (long term) 2.474 1.523 4.027

panel (c) shows a monotonically decreasing behavior of the estimated hazard ratio over time,
which is in agreement with the estimated regression coefficients provided by the proposed
model.

The short and long term hazard ratios provided by the fitted models are summarized in
Table 4. The risk of death for patients under chemo + radiation treatment at the beginning
of the therapy is significantly superior (6.28 times greater) than that observed for patients
treated with chemotherapy alone. On the long run, however, the combination of chemotherapy
and radiation has a beneficial effect, and the risk of death for those patients treated with
chemotherapy alone is significantly superior (2.77 times greater) than that observed for the
patients receiving the combined treatment. It is also possible to note that the corresponding
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hazard ratios estimated by the YP model are slightly smaller than those obtained by the YPPE
model.

5 Conclusions

This paper presents a fully likelihood-based approach to deal with crossing survival curves
as an extension to the standard YP model proposed in 2005 for a two-sample case. The main
difference with respect to other extensions of the YP model is the fact that we take advantage
of the piecewise exponential semiparametric modeling to allow a flexible representation of
the baseline hazard function. This also configures the main contribution of the paper, since
no other study combining these two aspects (YP model structure and PE distribution) can
be found in the literature of survival analysis. Using the PE distribution brings some advan-
tages when comparing to other semiparametric options for the YP model. The YPPE model
preserves the flexibility of the semiparametric models and the tractability of the parametric
ones. In addition, it is relatively easy-to-implement using standard maximization routines.
Estimation of parameters, hazard function, survival function and hazard ratios is straightfor-
ward. Another important aspect to be emphasized is the fact that the survival function has a
continuous representation via the YPPE model; this is not true in the original YP model and
other approaches presented in the literature, where a step function is obtained as the survival
representation. As a result of this feature, the time in which the survival curves (treatment
and control groups) intersect each other can be easily and accurately determined.

A comprehensive MC simulation study was developed to examine the performance of the
proposed PE model in comparison with the YP model. The results indicate that the YPPE
model provides better results with smaller relative biases being observed for most parame-
ters. Using simulated data sets, the behavior of the YPPE model was also investigated for
a general regression setting involving several covariates. The standard YP model can be ex-
tended to this context, but the original paper in 2005 does not explore this type of result. Our
findings suggest that the YPPE model also has a good performance when dealing with several
covariates.

After the simulation study, the present paper presents a real application concerning a well
known data set related to a clinical trial for patients detected with advanced gastric cancer.
In summary, the results of the YPPE and YP models are similar and they clearly indicate
significant regression coefficients with opposite signs, which is expected for the scenario
where the survival curves have an intersection.

As supplement to this paper, we developed the R package called YPPE to fit the proposed
model in this study; the source code is available at https://cran.r-project.org/web/packages/
YPPE/index.html. Some R codes used throughout the paper are presented in Appendix B.
In terms of future work, we indicate that the approach presented here can also be extended
to accommodate survival data with cure fraction and interval-censored observations. We also
intend to develop a Bayesian version for our model. Another possible extension is to introduce
some degree of smoothness on the PE failure rates in adjacent intervals by using first-order
autocorrelated processes.

Appendix A: Additional simulation study

In this section, we present a replication of the simulation study carried out in Yang and Pren-
tice (2015).


https://cran.r-project.org/web/packages/YPPE/index.html
https://cran.r-project.org/web/packages/YPPE/index.html
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Table S Bias of the estimators provided by the proposed model based on 1000 MC simulations

09112 1.240.8
Censoring (0.9 1 1.2) Censoring (1.2 1 0.8)
10% 30% 50% 10% 30% 50%
n =100 v —0.0012 0.0139 0.0098 —0.0015 —0.0250 —0.0021
¢ 0.0206 —0.0387 —0.0271 —0.0555 —0.0156 —0.0107
B 0.0076 0.0169 0.0203 0.0133 0.0185 0.0082
n =400 ¥ —0.0026 0.0140 0.0007 0.0065 —0.0071 0.0005
¢ —0.0073 —0.0282 0.0009 —0.0268 —0.0328 —0.0360
B 0.0006 0.0047 0.0045 0.0023 0.0040 0.0009
n =800 W 0.0037 0.0062 —0.0031 —0.0055 —0.0031 —0.0051
¢ —0.0086 —0.0118 —0.0041 —0.0238 —0.0212 —0.0186
B —0.0004 0.0003 0.0013 0.0031 0.0039 0.0014

Under the alternative formulation of the YP model proposed by Yang and Prentice (2015),
the likelihood function assumes the form:
n |: A0k

L(®*; D¥) =
( ) 1131 0;So(yi|&§) + A; Fo(yil&)

where D* = {(;,8i,zi,%;);i = 1,...,n}, @ = (¥, ¢, B, E"), ho(yil€), Fo(yil),

S )"i —0;Kk;
hO()’i|§):| [1 + aRo(inS)] ,

1

So(yi|€), A; and O; are defined as in Section 2, x; = (x;q, ..., x,-p)T 1S a row vector con-
taining the subset of covariates with constant effects over time, 8 = (81, ..., 8 ,,)T vector of
corresponding regression coefficients, and x; = exp(x; ), fori =1, ..., n. Inferences on @*

are carried out straightforwardly as described in Section 2.

In Table 5 we show the biases of the estimators for the regression coefficients provided by
the proposed model, under the alternative formulation of the YP, in a replication of the Monte
Carlo simulation study presented in Table 1 of Yang and Prentice (2015). For this particular
simulation study we chose to standardize all covariates entering in the linear predictors as a
strategy to avoid numerical problems. The corresponding inverse transformation to recover
the parameters in their original scale was applied in order to reach the magnitude of the results
shown in Yang and Prentice (2015).

By comparing the biases shown in Table 5 with those reported in Table 1 of Yang and
Prentice (2015), one may see that the proposed model seems to perform well compared to the
model investigated in Yang and Prentice (2015), showing, in general, smaller biases for the
regression coefficients estimators.

Appendix B: R code related to the YPPE package

In this section, we provide examples of the R code used throughout the paper to fit the pro-
posed model.
The R code used to fit the gastric cancer data in Section 4 is presented below:

library (YPPE)

# loading the gastric cancer data:

data(gastric)

# fitting the model:

fit <- yppe(Surv(time, status)~trt, data=gastric, init=0)
summary (fit)

V V.V V V V
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Call:
yvppe (formula = Surv(time, status) ~ trt, data = gastric, init = 0)
Short-term coefficients:
Estimate StdErr z.value p.value
trt 1.8373 0.6483 2.834 0.004597 xx

Signif. codes: 0 ’x%x’ 0.001 "%’ 0.01 '%’ 0.05 ’.” 0.1 * ’ 1

Long-term coefficients:
Estimate StdErr z.value p.value

trt -1.01753 0.30036 -3.3877 0.0007049 *x*x

Signif. codes: 0 “xxx’ 0.001 '%%’ 0.01 ’'%’ 0.05 ".” 0.1 * " 1

loglik = 47.65404 AIC = 62.69192

> # Estimating the crossing survival time:

> newdatal=data.frame(trt=0)

> newdata2=data.frame(trt=1)

> crossTime (fit, newdatal, newdata2, nboot=1000)
Est. 2.5% 97.5%

862.363 1 1967.201

=

# ploting the estimated survival curves:
newdata=data.frame(trt=as.factor(0:1))

St <- survfit(fit, newdata)

ekm <- survfit(Surv(time, status)~trt, data=gastric)
time <- sort(gastricStime)

plot (ekm, col=1:2)

lines (time, St[[1]])

lines (time, St[[2]], col="red")

VV V V VYV VYV

In order to fit the proposed model with the alternative formulation of the YP model, the
following R code can be used:

> library (YPPE)

> simdata <- read.table("simdata.txt", header=TRUE)

> fit <- yppe(Surv(time, status)~x1l|x2, data=simdata, init=0)
> summary (fit)

Call:

vppe (formula = Surv(time, status) ~ x1 | x2, data = simdata,

init = 0)

Short-term coefficients:

Estimate StdErr z.value p.value
x1 0.10615 0.47385 0.224 0.8228
Long-term coefficients:

Estimate StdErr z.value p.value
x1 -0.53777 0.52239 -1.0294 0.3033
Proportional hazards coefficients:

Estimate StdErr z.value p.value
x2 0.38583 0.11061 3.4882 0.0004864 =*x=*

Signif. codes: 0 “xxx’ 0.001 "%%’ 0.01 "%’ 0.05 *.” 0.1 * " 1

loglik = 74.67624 AIC = 10.64752
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