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Abstract. One of the indicators for evaluating the capability of a process po-
tential and performance in an effective way is the process capability index
(PCI). It is of great significance to quality control engineers as it quantifies
the relation between the actual performance of the process and the pre-set
specifications of the product. Most of the traditional PCIs performed well
when process follows the normal behaviour. In this article, we consider a
process capability index, Cpk , suggested by Kane (Journal of Quality Tech-
nology 18 (1986) 41–52) which can be used for normal random variables.
The objective of this article is three fold: First, we address different meth-
ods of estimation of the process capability index Cpk from frequentist ap-
proaches for the normal distribution. We briefly describe different frequen-
tist approaches, namely, maximum likelihood estimators, least squares and
weighted least squares estimators, maximum product of spacings estima-
tors, Cramèr–von-Mises estimators, Anderson–Darling estimators and Right-
Tail Anderson–Darling estimators and compare them in terms of their mean
squared errors using extensive numerical simulations. Second, we compare
three parametric bootstrap confidence intervals (BCIs) namely, standard boot-
strap, percentile bootstrap and bias-corrected percentile bootstrap. Third, we
consider Bayesian estimation under squared error loss function using nor-
mal prior for location parameter and inverse gamma for scale parameter for
the considered model. Monte Carlo simulation study has been carried out to
compare the performances of the classical BCIs and highest posterior den-
sity (HPD) credible intervals of Cpk in terms of average widths and coverage
probabilities. Finally, two real data sets have been analyzed for illustrative
purposes.

1 Introduction

Process capability indices (PCIs) have received much interest in the statistical literature and
in quality assurance work in recent years. As far as the concept is concerned, there is a strong
agreement that process capability refers to the ability to produce output according to specified
requirements. They are also regarded as convenient indicators of the ‘capability’ of a process
to produce items with a specified measurable characteristic between lower (L) and upper (U )
specification limits. For thorough discussions of different capability indices see, for instance,
Kane (1986), Chan et al. (1988), Pearn et al. (1992, 1998), Kotz and Lovelace (1998), and
Kotz and Johnson (2002).

The first process capability index (PCI) Cp was developed by Juran (1974) which does not
depend on process mean and cannot reflect the tendency of process centering and thus gives
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no indication of the actual process performance. Later on, many PCIs have been studied by
numerous authors and one of the modified capability indices introduced by Kane (1986) to
reflect the impact of μ (process mean) on the PCIs, defined as

Cpk = min
{
U − μ

3σ
,
μ − L

3σ

}
. (1.1)

The index Cpk takes the process variation and process centring into account, but not con-
sidering the process targeting to the preset target. The relationship between the indices Cp

and Cpk are discussed by Gensidy (1985), Barnett (1988), Kotz and Johnson (1999). If the
process is centered at process mean, then the index Cpk coincides with the index Cp .

While assessing PCIs, statistician and quality control engineers often focus their efforts
on point and interval estimation. No doubt, the point estimator of the PCI is useful for mea-
suring the process performance but there is variability associated with such an estimate. In
such a situation a confidence interval (CI) provides better results and information regarding
the variability of the estimator. For more details, see Chan et al. (1988), Smithson (2001),
Thompson (2002) and Steiger (2004). Hsiang and Taguchi (1985) initiated the construction
of CIs for the PCI. Since then, several researchers have developed numerous techniques for
constructing confidence intervals. In this regard, readers may refer to Peng (2010a, 2010b);
Leiva et al. (2014); Pearn et al. (2014, 2016); Kashif et al. (2016, 2017); Weber et al. (2016);
Pina-Monarrez et al. (2016); Rao et al. (2016); Dey et al. (2017); Saha et al. (2018); Dey and
Saha (2019) and the references cited therein.

In the recent past, besides classical point and interval estimation of PCIs, several authors
considered Bayesian point and interval estimation for PCI. To name a few, Saxena and Singh
(2006) considered the Bayesian estimation of the PCI Cp when the underlying distribution is
normal. Ouyang et al. (2002) derived credible intervals for some PCIs. Lin et al. (2011) con-
sidered Bayesian approach to assess process capability for asymmetric tolerances based on
PCI Cpmk . Huiming et al. (2007) considered Bayesian approach for the problem of estimation
and testing PCI based on sub-samples collected over time from an in-control process. They
used non-informative priors with squared error loss function (SELF) for inference purposes.
Miao et al. (2011) studied Bayesian approach under SELF for calculating process capability
indices. Wu and Lin (2009) considered one-sided lower Bayesian estimation of Cpmk . They
also obtained the credible intervals of Cpmk . Recently, Kargar et al. (2014) used the Bayesian
approach with normal prior based on sub-samples to check process capability using capabil-
ity index Cpk . Maiti and Saha (2012) studied the Bayesian estimation of the index Cpy for
normal, exponential and Poisson process distributions based on SELF. Ali and Riaz (2014)
studied the generalized capability indices from the Bayesian view point under symmetric and
asymmetric loss functions for the simple and mixture of generalized lifetime models.

The objective of this paper is three fold: First, we obtain the estimates of Cpk based on
seven different classical methods of estimation and Bayesian method of estimation. For es-
timating the parameter(s) of a distribution, one often uses traditional classical methods of
estimation, viz., method of maximum likelihood (ML), method of least squares (LS), method
of weighted least squares (WLS). Each has its own advantages and limitations but among
these methods the most popular method of estimation is the ML estimation method. Besides,
the above cited methods, we consider four additional methods to estimate the parameters of
normal distribution and subsequently we estimate the PCI Cpk . These additional methods
of estimation are: method of maximum product of spacing (MPS), method of Cramèr–von-
Mises (CM), method of Anderson–Darling (AD) and method of Right-tail Anderson–Darling
(RAD). Inspite of not having good theoretical properties, these methods are used for estimat-
ing the parameters of the model as they sometimes provide better estimates of the unknown
parameter(s) than the ML estimator. In this regard, several authors have discussed differ-
ent methods of estimation for estimating parameters of different distributions [see, Kundu
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and Raqab (2005); Alkasasbeh and Raqab (2009); Teimouri et al. (2013) and Dey et al.
(2014, 2015, 2017a, 2017b, 2017c, 2018)]. The performance of the methods of estimation
are demonstrated in terms of their mean squared errors (MSEs) based on simulated sam-
ples and for different sample sizes through simulation study. Second objective is to obtain
three bootstrap confidence intervals (BCIs) of Cpk based on above cited classical methods
of estimation. The performance of the BCIs are demonstrated in terms of estimated cover-
age probabilities and average widths. Third objective is to obtain Bayes estimates of the PCI
Cpk under squared error loss function using normal prior for location parameter and inverse
gamma for scale parameter of the considered model. We further obtain Bayes credible in-
tervals and compare them with BCIs. Further, we have considered the net sensitivity (NS)
analysis for the given PCI Cpk . To the best of our knowledge thus far, no work was carried
out to study the PCI Cpk using three BCIs based on aforementioned classical methods of
estimation and Bayesian method of estimation for the normal distribution. The study aims to
develop a guideline for choosing the best method of estimation of the index Cpk , which we
think would be of deep interest to applied statisticians and quality control engineers, where
the item/subgroup quality characteristic follows normal distribution.

This article unfolds as follows: In Section 2, we describe different classical methods of
estimation (MLE, LSE, WLSE, MPSE, CME, ADE, RADE) of the index Cpk . In Section
3, bootstrap confidence intervals, viz., standard bootstrap (S-boot), percentile bootstrap (P-
boot) and bias-corrected percentile bootstrap (BCp-boot) based on aforementioned methods
of estimation of the PCI Cpk have been discussed. In Section 4, we have derived the Bayes
estimators of the index Cpk under squared error loss function using normal prior for location
parameter and inverse gamma for scale parameter of the model. In Section 5, Monte Carlo
simulation study is carried out to see the performance of the aforementioned classical esti-
mators and Bayes estimators of Cpk in terms of their MSEs. Also we asses the performance
of different bootstrap confidence intervals (S-boot, P-boot, BCp-boot) under the aforemen-
tioned methods of estimation and Bayes Credible intervals in terms of coverage probabilities
and average widths of the intervals. In Section 6, net sensitivity analysis is carried out. For
illustrative purposes, two real data sets are analyzed in Section 7. Finally, concluding remarks
are given in Section 8.

2 Different classical methods of estimation of Cpk

Here, we briefly describe different classical estimators, namely, maximum likelihood estima-
tors (MLE), ordinary and weighted least square estimators (LSE and WLSE), Cramèr–von-
Mises estimators (CME), maximum product spacing estimators (MPSE), Anderson–Darling
estimators (ADE) and Right-tail Anderson–Darling estimators (RADE) of the parameters μ

and σ as well as the corresponding estimator of Cpk .
A random variable X is said to follow normal distribution with parameter � = (μ,σ ) if

its probability density function (PDF) and cumulative distribution function (CDF) are given
as;

f (x;μ,σ) = 1

σ
√

2π
e− 1

2 (
x−μ

σ
)2; x,μ ∈ �, σ > 0, (2.1)

where, μ is the mean and σ is the standard deviation of the normal distribution.

F(x;μ,σ) = �

(
x − μ

σ

)
, (2.2)

where, � is the distribution function of standard normal variate.
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2.1 Maximum likelihood estimator

Suppose X1,X2, . . . ,Xn be a random sample of size n observed from normal distribution,
defined in Equation (2.1). Then, the likelihood function of the parameters μ and σ are given
by

L(μ,σ | x) =
n∏

i=1

f (xi,μ,σ ) =
(

1

2πσ 2

) n
2
e− 1

2
∑n

i=1(
x−μ

σ
)2

. (2.3)

The corresponding log-likelihood function is

lnL(μ,σ | x) = −n

2
ln

(
2πσ 2) − 1

2

n∑
i=1

(
xi − μ

σ

)2
. (2.4)

The MLEs of the parameters μ and σ can be obtained by solving the following normal
equations:

∂ lnL

∂μ
= 0,

∂ lnL

∂σ
= 0,

which yields

μ̂MLE = x̄.

Recalling that μ̂MLE = x̄, we obtain

σ̂MLE =
√√√√1

n

n∑
i=1

(xi − x̄)2.

Substituting the MLEs, we can get the estimator of Cpk as

ĈMLE
pk = min

{
U − μ̂MLE

3σ̂MLE
,
μ̂MLE − L

3σ̂MLE

}
. (2.5)

2.2 Ordinary and weighted least square estimators

The LSE and the WLSE were proposed by Swain et al. (1988) to estimate the parameters of
Beta distributions. Suppose F(X(i:n)) denotes the distribution function of the ordered random
variables X(1:n) < X(2:n) < · · · < X(n:n) of size n from a distribution function F(·) from
Equation (2.2). Then, the LSEs of the parameters μ and σ are obtained by minimizing

S(μ,σ ) =
n∑

i=1

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]2
. (2.6)

The least square estimators μ̂LSE and σ̂LSE of the parameters μ and σ can be obtained by
solving the following non-linear equations:

n∑
i=1

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]
φ1

(
x(i:n) − μ

σ

)
= 0 (2.7)

and
n∑

i=1

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]
(x(i:n) − μ)φ2

(
x(i:n) − μ

σ

)
= 0. (2.8)
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The above normal equations cannot be solved analytically, therefore, we use non-linear min-
imization (nlm) function [see, Dannis and Schnabel (1983)] to obtained the solutions. Sub-
stituting the LSEs, we can get the estimator of Cpk as

ĈLSE
pk = min

{
U − μ̂LSE

3σ̂LSE
,
μ̂LSE − L

3̂σ LSE

}
. (2.9)

The WLSEs of the parameters μ and σ can be obtained by minimising

W(μ,σ ) =
n∑

i=1

(n + 1)2(n + 2)

i(n − i + 1)

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]2
. (2.10)

These estimators can also be obtained by solving the following equations:

n∑
i=1

(n + 1)2(n + 2)

i(n − i + 1)

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]
φ1

(
x(i:n) − μ

σ

)
= 0, (2.11)

n∑
i=1

(n + 1)2(n + 2)

i(n − i + 1)

[
�

(
x(i:n) − μ

σ

)
− i

n + 1

]
(x(i:n) − μ)φ2

(
x(i:n) − μ

σ

)
= 0, (2.12)

where, φ1(x(i:n),μ,σ ) and φ2(x(i:n),μ,σ ) are the first derivatives of �(
x(i:n)−μ

σ
) with respect

to μ and σ respectively. Substituting the WLSEs, we can get the estimator of Cpk as

ĈWLSE
pk = min

{
U − μ̂WLSE

3σ̂WLSE
,
μ̂WLSE − L

3σ̂WLSE

}
. (2.13)

2.3 Maximum product of spacings estimator

This method was introduced by Cheng and Amin (1979) as an alternative to the method of
MLE. The method is briefly described as follows. The CDF of the normal distribution is given
in the Equation (2.2), using the same notations in Subsection 2.2, define the uniform spacings
of a random sample from the normal distribution as:

Di (μ,σ ) = F(xi:n | μ,σ) − F(xi−1:n | μ,σ)

=
[
�

(
x(i:n) − μ

σ

)
− �

(
x(i−1:n) − μ

σ

)]
; i = 1,2, . . . , n + 1, (2.14)

where, F(x(0:n) | μ,σ) = 0 and F(x(n+1:n) | μ,σ) = 1. Clearly
∑n+1

i=1 Di (μ,σ ) = 1. The
MPSEs μ̂MPSE and σ̂MPSE, of the parameters μ and σ are obtained by maximizing with
respect to μ and σ , the geometric mean of the spacings:

G = n+1

√√√√(
n+1∏
i=1

Di (μ,σ )

)
. (2.15)

Taking logarithm on both sides of Equation (2.15), we get,

lnG = 1

(n + 1)

n+1∑
i=1

lnDi (μ,σ ). (2.16)

The MPSEs are obtained by solving the following non-linear equations:

n+1∑
i=1

1

Di(μ,σ )

[
η1(x(i:n) | μ,σ) − η1(x(i−1:n) | μ,σ)

] = 0 (2.17)
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and
n+1∑
i=1

1

Di(μ,σ )

[
η2(x(i:n) | μ,σ) − η2(x(i−1:n) | μ,σ)

] = 0, (2.18)

where, η1(x(i:n),μ,σ ) and η2(x(i:n),μ,σ ) are the first derivatives of Di (μ,σ ) with respect
to μ and σ respectively. Substituting the MPSEs, we can get the estimator of Cpk as

ĈMPSE
pk = min

{
U − μ̂MPSE

3̂σ MPSE
,
μ̂MPSE − L

3σ̂MPSE

}
. (2.19)

2.4 Cramèr–von-Mises estimator

To motivate our choice of Cramèr-von Mises type minimum distance estimators, MacDonald
(1971) provided empirical evidence that the bias of the estimator is smaller than the other
minimum distance estimators. Thus, the Cramèr-von Mises estimators μ̂CME and σ̂CME of
the parameter μ, σ are obtained by minimizing the following expression:

C(μ,σ ) = 1

12n
+

n∑
i=1

[
F(x(i:n) | μ,σ) − 2i − 1

2n

]2
(2.20)

the minimization of the above equation yields
n∑

i=1

[
�

(
x(i:n) − μ

σ

)
− 2i − 1

2n

]
φ1(x(i:n) | μ,σ) = 0 (2.21)

and
n∑

i=1

[
�

(
x(i:n) − μ

σ

)
− 2i − 1

2n

]
(xi − μ)φ2(x(i:n) | μ,σ) = 0, (2.22)

where, φ1(x(i:n),μ,σ ) and φ2(x(i:n),μ,σ ) are the first derivatives of �(
x(i:n)−μ

σ
) with respect

to μ and σ , respectively. Substituting the CMEs, we can get the estimator of Cpk as

ĈCME
pk = min

{
U − μ̂CME

3σ̂CME
,
μ̂CME − L

3σ̂CME

}
. (2.23)

2.5 Anderson–Darling and right-tail Anderson–Darling estimators

Another method of estimation based on the minimum distance was suggested by Anderson
and Darling (1952) as an alternative to other statistical tests for detecting sample distributions
departure from normality. The ADEs (μ̂ADE, σ̂ADE) of the parameters (μ,σ ) are obtained by
minimizing the following function, with respect to μ and σ ;

AD(xi;μ,σ) = −n − 1

n

n∑
i=1

(2i − 1)
[
lnF(xi:n | μ,σ) + ln F̄ (xn+1−i:n | μ,σ)

]
. (2.24)

Using, the CDF of normal distribution, we get

AD(xi;μ,σ)

= −n − 1

n

n∑
i=1

(2i − 1)

[
ln�

(
xi:n − μ

σ

)
+ ln

(
1 − �

(
x(n+1−i):n − μ

σ

))]
. (2.25)

The respective estimators of μ and σ are obtained by solving the following non-linear equa-
tions:

n∑
i=1

(2i − 1)

[
ζ1(xi:n | μ,σ)

F (xi:n | μ,σ)
− ζ1(x(n+1−i):n | μ,σ)

F̄ (x(n+1−i):n | μ,σ)

]
= 0 (2.26)
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and

n∑
i=1

(2i − 1)

[
ζ2(xi:n | μ,σ)

F (xi:n | μ,σ)
− ζ2(x(n+1−i):n | μ,σ)

F̄ (x(n+1−i):n | μ,σ)

]
= 0. (2.27)

Substituting the ADEs, we can get the estimator of Cpk as

ĈADE
pk = min

{
U − μ̂ADE

3σ̂ADE
,
μ̂ADE − L

3̂σ ADE

}
. (2.28)

The RADEs μ̂RADE and σ̂RADE of the parameters μ and σ are obtained by minimizing the
function:

RAD(μ,σ ) = n

2
− 2

n∑
i=1

lnF(xi:n | μ,σ) − 1

n

n∑
i=1

(2i − 1)F̄ (xn+1−i:n | μ,σ) (2.29)

or equivalently

RAD(μ,σ ) = n

2
− 2

n∑
i=1

ln�

(
xi:n − μ

σ

)

− 1

n

n∑
i=1

(2i − 1)

(
1 − �

(
x(n+1−i):n − μ

σ

))
. (2.30)

The estimates can also be obtained by solving the non-linear equations

−2
n∑

i=1

ζ1(xi:n | μ,σ)

F (xi:n,μ,σ )
+ 1

n

n∑
i=1

(2i − 1)
ζ1(x(n+1−i):n | μ,σ)

F̄ (x(n+1−i):n,μ,σ )
= 0 (2.31)

and

−2
n∑

i=1

ζ2(xi:n | μ,σ)

F (xi:n | μ,σ)
+ 1

n

n∑
i=1

(2i − 1)
ζ2(x(n+1−i):n | μ,σ)

F̄ (x(n+1−i):n | μ,σ)
= 0. (2.32)

Substituting the RADEs, we can get the estimator of Cpk as

ĈRADE
pk = min

{
U − μ̂RADE

3σ̂RADE
,
μ̂RADE − L

3σ̂RADE

}
. (2.33)

3 Bootstrap confidence intervals

In this section, we propose three confidence intervals based on bootstrap methods: (i) standard
bootstrap (S-boot); (ii) percentile bootstrap (P-boot) based on the idea of Efron (1982), and
(ii) bias-corrected percentile bootstrap (BCp-boot). Below, we are discussing the algorithm
for all the three methods. The algorithm of bootstrap method is displayed below graphically
[see, Figure 1].

The arrangement of the entire collection of the bootstrap estimates are arranged from
smallest to largest which would constitute an empirical bootstrap distribution of the index
Cpk will be denoted as Ĉ

∗(1)
pk ≤ Ĉ

∗(2)
pk ≤ · · · ≤ Ĉ

∗(B)
pk .
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Figure 1 Bootstrap Procedure.

3.1 S-boot

Let ¯̂
C∗

pk and Se∗ be the sample mean and sample standard deviation of {Ĉ∗(J )
pmk ;J =

1,2, . . . ,B}, i.e.,

¯̂
C∗

pmk = 1

B

B∑
j=1

Ĉ
∗(J )
pk

and

Se∗ =
√√√√√ 1

(B − 1)

B∑
J=1

(
Ĉ

∗(J )
pk − ¯̂

C∗
pk

)2
,

respectively. A 100(1 − α)% S-boot confidence interval of Cpk is given by
{ ¯̂
C∗

pk − z(α/2).Se∗, ¯̂
C∗

pk + z(α/2).Se∗}
. (3.1)

Here, z(α/2) is obtained by using upper (α/2)th point of the standard normal deviate.

3.2 P-boot

Let Ĉ
∗(η)
pk be the η percentile of {Ĉ∗(J )

pT k ;J = 1,2, . . . ,B}, i.e., Ĉ
∗(η)
pk is such that

1

B

B∑
j=1

I
(
Ĉ

∗(J )
pk ≤ Ĉ

∗(η)
pk

) = η; 0 < η < 1,

where, I is indicator function. Then, 100(1 − ζ )% P CI of Cpk is{
Ĉ

∗(B.(ζ/2))
pk , Ĉ

∗(B.(1−ζ/2))
pk

}
. (3.2)

3.3 BCp-boot

The idea of this method lies to correct for the potential bias. At first, locate the observed Ĉpk

in the order statistics Ĉ
∗(1)
pk ≤ Ĉ

∗(2)
pk ≤ · · · ≤ Ĉ

∗(B)
pk . Then, compute the probability

ϒ0 = 1

B

B∑
J=1

I
(
Ĉ

∗(J )
pk ≤ Ĉpk

)
.
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Calculate 
0 = �−1(ϒ0), where, �(·) is the standard normal CDF and ψl and ψu are defined
as

ψl = �(2
0 − ξ(1−ζ/2)) and ψu = �(2
0 + ξ(1−ζ/2)).

Then, 100(1 − ζ )% BCp-boot confidence interval of Cpk is
{
Ĉ

∗(B.ψl)
pk , Ĉ

∗(B.ψu)
pk

}
. (3.3)

To study the different confidence intervals, we consider their estimated average widths and
coverage probabilities. For each of the methods considered, the probability that the true value
of Cpk is covered by the 100(1 − α)% BCI, which is called the “coverage probability”. In
addition, the average width of the BCIs is calculated based on the K = 5000 different trials.
The average width and estimated coverage probability are given by

Average width =
∑K

I=1(UI − LI)

K ,

and

Coverage probability = (LW ≤ Cpk ≤ UP)

K
,

where, (LW ,UP ) denote the 100(1 − α)% confidence intervals based on K replicates.

4 Bayesian estimation

In this section, we present Bayesian estimation of the index Cpk . Bayesian analysis is a
natural way to combine the observed information with the prior information. Here, we have
considered two independent conjugate priors for the parameters μ and σ 2. The considered
prior distributions are given by

g(μ) ∝ Normal(a, b), g
(
σ 2) ∝ Inverse-gamma(c, d),

where, a, b, c and d are the hyper-parameters which are assumed to be known. Therefore, the
joint prior distribution of μ and σ 2 is:

π
(
μ,σ 2) ∝ g(μ) × g

(
σ 2)

. (4.1)

Now, using the Equations (2.3) and (4.1), the joint posterior distribution can be written as:

P(μ,σ | x) ∝
(

1

σ 2

) n
2
e− 1

2
∑n

i=1(
x−μ

σ
)2

e− 1
2b

(μ−a)2 1

σ 2

c+1

e
− d

σ2

∝
(

1

σ 2

)n/2+c+1
e
− 1

σ2 (d+ns2)
e
− nb+σ2

2bσ2 (μ− aσ2+bx̄n

σ2+nb
)
.

(4.2)

Since, the considered priors are conjugate, therefore, the marginal posterior distribution of μ

and σ 2 belongs to the same familiarity of distribution, given as

Pσ

(
σ 2|x) ∼ Inverse-Gamma

(
n/2 + c, d + ns2)

(4.3)

and

Pμ

(
μ|σ 2,x

) ∼ N

(
aσ 2 + bx̄n

σ 2 + nb
,

bσ 2

nb + σ 2

)
(4.4)

respectively, where, s2 = ∑n
i=1(xi − x̄)2/n and x̄ = 1

n

∑n
i=1 xi .
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In the case of Bayes point estimation theory, one of the most important element is the
consideration of loss function. Here, we have considered squared error loss function (SELF).
Note that, estimators using other loss functions can be obtained similarly. Under SELF, the
Bayes estimate is the posterior mean of the corresponding posterior density functions, men-
tioned in Equations (4.3) and (4.4), respectively.

The Bayes estimate of Cpk under SELF is obtained as;

ĈBAYES
pk = EP (Cpk|X) = K

∫
μ

∫
σ

CpkP (μ,σ | x) dμdσ, (4.5)

where, K is the normalizing constant.
From the Equation (4.5), it is clear that the Bayes estimator of Cpk cannot be explicitly

obtained due to involvement of ratio of two integrals. Therefore, for any Bayes computational
techniques, viz., Lindley’s method, Markov Chain Monte Carlo (MCMC) method, may be
employed. Here, we have used MCMC method. The following steps have been used to obtain
the estimate of Cpk .

1. Generate the sequence of σ 2, i.e., σ 2
1 , σ 2

2 , . . . , σ 2
N from Pσ (σ 2|x).

2. Using sequence of σ 2 from Step 1, generate the sequence of μ, i.e., μ1,μ2, . . . ,μN from
Pμ(μ|σ 2,x).

3. Using Steps 1 and 2 for desired values U and L, generate the sequence of posterior sample:
{Ci

pk; i = 1,2, . . . ,N}.
4. Then Bayes estimate of Cpk is given as ĈBAYES

pk = 1
N

∑N
i=1 Ci

pk
5. After simulating the posterior samples of Cpk , the 100(1 − α)% HPD credible intervals

for Cpk can be obtained by applying the algorithm suggested by Chen and Shao (1999).

5 Comparison among the estimators of Cpk

Here, we have carried out Monte Carlo simulation study to compare the performances of
the classical methods of estimation and the Bayesian method of estimation of the PCI
Cpk . The performances of the estimates (classical as well as Bayes) are compared in
terms of their MSEs. Also, we have obtained three bootstrap confidence intervals (BCIs),
viz., standard bootstrap (S-boot); percentile bootstrap (P-boot) and bias-corrected per-
centile bootstrap (BCp-boot) and HPD credible intervals. The performances of the CIs
are compared in terms of their average widths (AWs) and coverage probabilities (CPs).
Here, for the simulation study, we have considered the sample sizes n = 10,20,30,50
and set the lower specification limit, the upper specification limit as 0.0, 8.0 and (μ,σ ) =
(1.0,2.0), (1.0,3.0), (2.0,3.0), (2.0,4.0), respectively.

For each of the design, B = 1000 bootstrap samples with each of size n are drawn from the
original sample and replicated M = 1000 times. To obtain the Bayes estimate of the index
Cpk , we chose the hyper parameters a = 0.98;b = 0.95; c = 1.5;d = 5 respectively. The
results are reported in Table 1. The results of the 95% BCIs, viz., S-boot, P-boot and BCp-
boot constructed by each of the classical methods estimation for Cpk and also 95% highest
posterior density (HPD) credible interval are reported in Tables 2–9, respectively.

From Table 1, it is observed that, for all the considered parameters values, the Bayes esti-
mate gives least MSEs as compared to other classical methods of estimation. Also, in almost
all the cases, MSEs decreases as the sample sizes increases. Form Tables 2–8 it is observed
that, MPSE gives the least AWs in all the cases (S-boot and BCp-boot) compared to other
classical methods of estimation (MLE, LSE, WLSE, CME, ADE, RADE) and the order of
best method of estimation is MPSE < MLE < WLSE < LSE < CME < ADE < RADE. For
all the parameter values, AWs decreases and CPs increases as we increase the sample sizes.
From Table 9, it observed that AWs of HPD credible intervals decreases and CPs increases
as we increase the sample size for almost all the set up of parameter values.
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Table 1 True value of Cpk along with average estimates of different estimators (MLE, LSE, WLSE, CME, MPSE,
ADE, RADE, Bayes), their corresponding absolute biases (in each second row) and MSEs (in each third row)

Estimates of Cpk and corresponding biases, MSEs

n μ σ Cpk MLE LSE WLSE CME MPSE ADE RADE Bayes

10 1.00 2.00 0.16667 0.19214 0.17306 0.17214 0.17144 0.15293 0.17555 0.20592 0.18724
0.20142 0.20213 0.20212 0.20163 0.02013 0.02108 0.02111 0.01935
0.01252 0.02231 0.02089 0.02076 0.01142 0.01511 0.03339 0.00568

20 1.00 2.00 0.16667 0.17853 0.16662 0.16877 0.16671 0.15553 0.17089 0.18258 0.17249
0.00476 0.00481 0.00481 0.00483 0.00473 0.00488 0.00489 0.00469
0.00694 0.00741 0.00697 0.00695 0.00531 0.00671 0.00971 0.00438

30 1.00 2.00 0.16667 0.17784 0.16413 0.16621 0.16566 0.15615 0.16762 0.17276 0.16988
0.00379 0.00379 0.00379 0.00382 0.00378 0.00384 0.00384 0.00362
0.00450 0.00466 0.00433 0.00431 0.00389 0.00429 0.00542 0.00376

50 1.00 2.00 0.16667 0.17774 0.16661 0.16761 0.16756 0.15931 0.16812 0.17231 0.16682
0.00018 0.00026 0.00023 0.00026 0.00018 0.00027 0.00028 0.00012
0.00263 0.00294 0.00278 0.00253 0.00237 0.00277 0.00352 0.00224

10 1.00 3.00 0.11111 0.10148 0.11024 0.10753 0.10746 0.10079 0.11324 0.13148 0.13653
0.02133 0.02139 0.02137 0.02142 0.02132 0.02139 0.02145 0.02127
0.01354 0.01343 0.01514 0.01513 0.01210 0.01577 0.02255 0.00647

20 1.00 3.00 0.11111 0.12404 0.11497 0.11682 0.11679 0.10824 0.11855 0.12889 0.12543
0.01041 0.01052 0.01048 0.01053 0.0144 0.01057 0.01058 0.01038
0.00638 0.00683 0.00644 0.00667 0.00488 0.00686 0.00859 0.00459

30 1.00 3.00 0.11111 0.12756 0.10755 0.10977 0.10739 0.10355 0.11096 0.11516 0.11484
0.00343 0.00344 0.00344 0.00349 0.00341 0.00353 0.00356 0.00329
0.00453 0.00458 0.00454 0.00437 0.00412 0.00436 0.00488 0.00404

50 1.00 3.00 0.11111 0.12762 0.10806 0.10889 0.10884 0.10373 0.10929 0.11217 0.11232
0.00151 0.00154 0.00154 0.00157 0.00148 0.00166 0.00169 0.00137
0.00252 0.00253 0.00245 0.00242 0.00236 0.00244 0.00293 0.00233

10 2.00 3.00 0.22222 0.23291 0.21303 0.21662 0.21661 0.19761 0.22438 0.25466 0.23922
0.02262 0.02276 0.02271 0.02279 0.02252 0.02291 0.02293 0.02247
0.02792 0.02911 0.02809 0.02904 0.02144 0.03517 0.03519 0.02094

20 2.00 3.00 0.22222 0.23761 0.21839 0.22347 0.21904 0.20714 0.22752 0.23905 0.24483
0.01803 0.01813 0.01809 0.01818 0.01793 0.01823 0.01826 0.01788
0.00844 0.00926 0.00806 0.00931 0.00642 0.00996 0.01088 0.00432

30 2.00 3.00 0.22222 0.20483 0.21731 0.22252 0.22154 0.20888 0.22473 0.23079 0.22473
0.00247 0.00258 0.00253 0.00263 0.00242 0.00266 0.00271 0.00238
0.00784 0.00862 0.00828 0.00926 0.00731 0.00954 0.00979 0.00670

50 2.00 3.00 0.22222 0.19982 0.21954 0.22268 0.22133 0.21224 0.22313 0.22634 0.22278
0.00163 0.00174 0.00171 0.00179 0.00154 0.00186 0.00192 0.00147
0.00745 0.00842 0.00803 0.00894 0.00657 0.00899 0.00914 0.00630

10 4.00 3.00 0.44444 0.39978 0.45513 0.45554 0.42584 0.32679 0.37155 0.39186 0.44343
0.00194 0.00223 0.00217 0.00229 0.00179 0.00234 0.00242 0.00133
0.01191 0.01871 0.01810 0.01879 0.01098 0.01895 0.02040 0.00970

20 4.00 3.00 0.44444 0.41051 0.45623 0.38783 0.47923 0.36044 0.39439 0.40067 0.44517
0.00112 0.00125 0.00117 0.00138 0.00078 0.00173 0.00184 0.00045
0.00852 0.01050 0.00879 0.01177 0.00582 0.01377 0.01408 0.00370

30 4.00 3.00 0.44444 0.43242 0.45388 0.39832 0.41426 0.37556 0.40219 0.40567 0.44484
0.00068 0.00065 0.00064 0.00073 0.00053 0.00083 0.00092 0.00034
0.00508 0.00509 0.00506 0.00671 0.00386 0.00781 0.00823 0.00290

50 4.00 3.00 0.44444 0.43243 0.50117 0.40874 0.41739 0.38967 0.41062 0.41279 0.44453
0.00036 0.00038 0.00035 0.00044 0.00028 0.00046 0.00064 0.00026
0.00411 0.00414 0.00412 0.00432 0.00234 0.00488 0.00554 0.00210
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Table 2 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
MLEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.54621 2.36348 2.24156 0.915 0.915 0.919
20 1.00 2.00 0.16667 1.43781 1.00591 1.00081 0.916 0.919 0.921
30 1.00 2.00 0.16667 0.44435 0.38335 0.33276 0.921 0.923 0.923
50 1.00 2.00 0.16667 0.15284 0.10062 0.10041 0.924 0.926 0.926

10 1.00 3.00 0.11111 1.24968 1.14254 1.13561 0.918 0.919 0.917
20 1.00 3.00 0.11111 1.09224 1.05493 1.04483 0.919 0.921 0.921
30 1.00 3.00 0.11111 0.98293 0.95195 0.94337 0.920 0.921 0.923
50 1.00 3.00 0.11111 0.34651 0.33416 0.32872 0.927 0.929 0.930

10 2.00 3.00 0.22222 1.07502 0.93245 0.92765 0.918 0.919 0.919
20 2.00 3.00 0.22222 1.00007 0.92975 0.91897 0.921 0.922 0.922
30 2.00 3.00 0.22222 0.69373 0.67920 0.66873 0.924 0.926 0.927
50 2.00 3.00 0.22222 0.44550 0.42138 0.41773 0.930 0.931 0.933

10 4.00 3.00 0.44444 1.03256 0.92001 0.91254 0.917 0.919 0.920
20 4.00 3.00 0.44444 0.94359 0.93745 0.92113 0.919 0.920 0.921
30 4.00 3.00 0.44444 0.74589 0.72916 0.71771 0.921 0.921 0.922
50 4.00 3.00 0.44444 0.72014 0.68543 0.66558 0.929 0.930 0.932

Table 3 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
LSEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.52663 2.33876 2.23115 0.916 0.917 0.919
20 1.00 2.00 0.16667 1.42116 1.00378 1.00063 0.918 0.919 0.920
30 1.00 2.00 0.16667 0.42786 0.37234 0.32116 0.923 0.924 0.923
50 1.00 2.00 0.16667 0.15003 0.10033 0.10017 0.926 0.927 0.926

10 1.00 3.00 0.11111 1.23264 1.12453 1.13114 0.917 0.919 0.917
20 1.00 3.00 0.11111 1.07454 1.04713 1.02784 0.919 0.920 0.920
30 1.00 3.00 0.11111 0.96773 0.93654 0.93672 0.921 0.921 0.922
50 1.00 3.00 0.11111 0.33245 0.32241 0.31782 0.926 0.927 0.927

10 2.00 3.00 0.22222 1.05352 0.91786 0.91135 0.917 0.918 0.919
20 2.00 3.00 0.22222 0.99766 0.91776 0.90565 0.920 0.921 0.922
30 2.00 3.00 0.22222 0.68343 0.65767 0.65435 0.923 0.924 0.925
50 2.00 3.00 0.22222 0.43264 0.41426 0.40896 0.926 0.928 0.928

10 4.00 3.00 0.44444 1.01236 0.91652 0.90373 0.917 0.918 0.919
20 4.00 3.00 0.44444 0.92447 0.91786 0.90115 0.919 0.920 0.921
30 4.00 3.00 0.44444 0.73523 0.70452 0.69884 0.920 0.921 0.922
50 4.00 3.00 0.44444 0.71143 0.67112 0.64786 0.927 0.928 0.928

6 Sensitivity analysis

The net sensitivity (NS) analysis using a distribution function for a given PCI is defined as
[see, Flaig (1999), Maiti et al. (2010)]

NS = 1

p0
lim
δ→0

[{F(U) − F(L)} − {F(U − δ) − F(L − δ)}
δ

]
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Table 4 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
WLSEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.51456 2.33124 2.22544 0.915 0.917 0.918
20 1.00 2.00 0.16667 1.41674 1.00287 1.00044 0.917 0.918 0.919
30 1.00 2.00 0.16667 0.42113 0.36784 0.31543 0.922 0.923 0.923
50 1.00 2.00 0.16667 0.15001 0.10013 0.10015 0.926 0.927 0.927

10 1.00 3.00 0.11111 1.22784 1.12113 1.12768 0.916 0.917 0.917
20 1.00 3.00 0.11111 1.07244 1.04242 1.02443 0.918 0.919 0.920
30 1.00 3.00 0.11111 0.96245 0.93112 0.93324 0.921 0.921 0.921
50 1.00 3.00 0.11111 0.32785 0.31342 0.31114 0.925 0.926 0.926

10 2.00 3.00 0.22222 1.03655 0.91332 0.90896 0.916 0.918 0.919
20 2.00 3.00 0.22222 0.99223 0.91443 0.90114 0.919 0.920 0.920
30 2.00 3.00 0.22222 0.67894 0.65337 0.65111 0.922 0.922 0.923
50 2.00 3.00 0.22222 0.42775 0.41068 0.40089 0.925 0.926 0.926

10 4.00 3.00 0.44444 1.01114 0.91222 0.89773 0.916 0.917 0.918
20 4.00 3.00 0.44444 0.92046 0.91137 0.88364 0.919 0.920 0.921
30 4.00 3.00 0.44444 0.73114 0.70342 0.69117 0.921 0.921 0.921
50 4.00 3.00 0.44444 0.70677 0.66891 0.63885 0.926 0.927 0.927

Table 5 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
CMEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.52334 2.33767 2.22112 0.916 0.917 0.919
20 1.00 2.00 0.16667 1.40897 1.00131 1.00023 0.918 0.918 0.920
30 1.00 2.00 0.16667 0.42036 0.36223 0.31221 0.922 0.923 0.923
50 1.00 2.00 0.16667 0.14894 0.99846 0.10061 0.926 0.927 0.927

10 1.00 3.00 0.11111 1.22844 1.12889 1.12843 0.917 0.918 0.919
20 1.00 3.00 0.11111 1.07899 1.05637 1.03644 0.918 0.919 0.920
30 1.00 3.00 0.11111 0.96766 0.94362 0.94377 0.922 0.922 0.923
50 1.00 3.00 0.11111 0.33367 0.32331 0.32111 0.926 0.926 0.928

10 2.00 3.00 0.22222 1.04367 0.92337 0.91227 0.916 0.918 0.919
20 2.00 3.00 0.22222 0.99887 0.92351 0.91226 0.918 0.920 0.920
30 2.00 3.00 0.22222 0.68447 0.65892 0.65776 0.921 0.922 0.923
50 2.00 3.00 0.22222 0.42993 0.41674 0.41037 0.926 0.926 0.927

10 4.00 3.00 0.44444 1.03674 0.91778 0.90133 0.917 0.918 0.918
20 4.00 3.00 0.44444 0.93224 0.91784 0.89614 0.918 0.920 0.920
30 4.00 3.00 0.44444 0.74773 0.71373 0.70568 0.920 0.921 0.922
50 4.00 3.00 0.44444 0.71336 0.67431 0.64114 0.926 0.926 0.927

= f (U) − f (L)

p0
,

where, p0 is the desirable yield. The positive NS values imply that the distribution is more
sensitive (or less robust) at upper specification than at lower specification, and for negative
NS values, it is opposite. Lower the value of NS (in absolute sense) implies less sensitive-
ness/more robustness with respect to the PCI.
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Table 6 True value of Cpk along with estimated average widths, coverage probabilities and relative coverages
of BCIs based on MPSEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.50764 2.31896 2.21657 0.915 0.916 0.917
20 1.00 2.00 0.16667 1.40284 1.00114 1.00016 0.916 0.917 0.917
30 1.00 2.00 0.16667 0.41673 0.35724 0.30784 0.920 0.921 0.922
50 1.00 2.00 0.16667 0.14896 0.10011 0.10009 0.925 0.926 0.926

10 1.00 3.00 0.11111 1.21374 1.12037 1.12117 0.915 0.916 0.916
20 1.00 3.00 0.11111 1.06343 1.04111 1.02226 0.916 0.917 0.918
30 1.00 3.00 0.11111 0.95474 0.92225 0.92785 0.920 0.921 0.921
50 1.00 3.00 0.11111 0.32224 0.30472 0.30761 0.924 0.925 0.925

10 2.00 3.00 0.22222 1.03423 0.90762 0.90225 0.915 0.917 0.919
20 2.00 3.00 0.22222 0.98336 0.91112 0.89974 0.916 0.918 0.920
30 2.00 3.00 0.22222 0.67224 0.65016 0.64661 0.920 0.920 0.922
50 2.00 3.00 0.22222 0.42237 0.40896 0.40015 0.924 0.925 0.926

10 4.00 3.00 0.44444 0.99786 0.90764 0.89114 0.916 0.916 0.918
20 4.00 3.00 0.44444 0.91889 0.91058 0.87446 0.917 0.919 0.920
30 4.00 3.00 0.44444 0.72667 0.70111 0.68335 0.919 0.920 0.921
50 4.00 3.00 0.44444 0.69742 0.66332 0.63114 0.924 0.925 0.925

Table 7 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
ADEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.52432 2.33476 2.22441 0.916 0.917 0.919
20 1.00 2.00 0.16667 1.41447 1.00221 1.00064 0.917 0.918 0.921
30 1.00 2.00 0.16667 0.43227 0.36467 0.31772 0.919 0.922 0.922
50 1.00 2.00 0.16667 0.14773 0.10044 0.10037 0.925 0.926 0.928

10 1.00 3.00 0.11111 1.22667 1.13114 1.12078 0.916 0.918 0.919
20 1.00 3.00 0.11111 1.07224 1.04221 1.02783 0.918 0.920 0.921
30 1.00 3.00 0.11111 0.96453 0.93667 0.92884 0.920 0.922 0.923
50 1.00 3.00 0.11111 0.32778 0.31558 0.31637 0.926 0.927 0.927

10 2.00 3.00 0.22222 1.05223 0.92781 0.90896 0.916 0.917 0.919
20 2.00 3.00 0.22222 0.99782 0.92112 0.91078 0.919 0.921 0.922
30 2.00 3.00 0.22222 0.68771 0.65482 0.64991 0.921 0.922 0.923
50 2.00 3.00 0.22222 0.43294 0.41783 0.40891 0.924 0.926 0.927

10 4.00 3.00 0.44444 1.01452 0.91463 0.90224 0.917 0.918 0.919
20 4.00 3.00 0.44444 0.93116 0.92362 0.90887 0.918 0.920 0.921
30 4.00 3.00 0.44444 0.73112 0.72022 0.70792 0.921 0.922 0.922
50 4.00 3.00 0.44444 0.71762 0.67883 0.66114 0.925 0.926 0.927

In Table 10, we have reported the net sensitivity values for the normal, gamma and expo-
nential distributions. The net sensitivity values are expressed as defective per million (dpm).
We observe that the gamma and exponential distributions are more sensitive (less robust) than
normal distribution for (L,U) = (0.00,10.00) and p0 = 0.95, respectively.
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Table 8 True value of Cpk along with estimated average widths and coverage probabilities of BCIs based on
RADEs

Average Widths Coverage Probabilities

n μ σ Cpk S-boot P-boot BCp-boot S-boot P-boot BCp-boot

10 1.00 2.00 0.16667 2.55224 2.36887 2.25114 0.917 0.918 0.919
20 1.00 2.00 0.16667 1.44556 1.04671 1.03624 0.919 0.920 0.921
30 1.00 2.00 0.16667 0.45381 0.39972 0.34878 0.922 0.923 0.924
50 1.00 2.00 0.16667 0.17226 0.10267 0.10167 0.926 0.928 0.929

10 1.00 3.00 0.11111 1.25243 1.15772 1.14764 0.919 0.919 0.920
20 1.00 3.00 0.11111 1.10375 1.07226 1.06781 0.920 0.921 0.922
30 1.00 3.00 0.11111 0.99452 0.95889 0.94773 0.922 0.923 0.923
50 1.00 3.00 0.11111 0.35625 0.34664 0.33714 0.926 0.927 0.928

10 2.00 3.00 0.22222 1.09363 0.94772 0.93463 0.919 0.920 0.920
20 2.00 3.00 0.22222 1.04613 0.93771 0.92117 0.920 0.922 0.922
30 2.00 3.00 0.22222 0.70382 0.68615 0.67881 0.924 0.925 0.926
50 2.00 3.00 0.22222 0.45293 0.43738 0.42553 0.927 0.928 0.928

10 4.00 3.00 0.44444 1.05283 0.93773 0.92392 0.918 0.919 0.920
20 4.00 3.00 0.44444 0.95671 0.94884 0.93682 0.920 0.921 0.921
30 4.00 3.00 0.44444 0.75653 0.73899 0.72369 0.921 0.922 0.924
50 4.00 3.00 0.44444 0.74112 0.70783 0.69221 0.927 0.928 0.928

Table 9 True value of Cpk along with estimated average widths and coverage probabilities of credible intervals
based on Bayesian estimation method

n μ σ Cpk Average Coverage
width probability

10 1.00 2.00 0.16667 1.33904 0.929
20 1.00 2.00 0.16667 0.92226 0.933
30 1.00 2.00 0.16667 0.29071 0.937
50 1.00 2.00 0.16667 0.09474 0.944
10 1.00 3.00 0.11111 1.12019 0.931
20 1.00 3.00 0.11111 1.01959 0.936
30 1.00 3.00 0.11111 0.87077 0.939
50 1.00 3.00 0.11111 0.24870 0.946
10 2.00 3.00 0.22222 0.85483 0.932
20 2.00 3.00 0.22222 0.84215 0.935
30 2.00 3.00 0.22222 0.58489 0.938
50 2.00 3.00 0.22222 0.35528 0.943
10 4.00 3.00 0.44444 0.87984 0.929
20 4.00 3.00 0.44444 0.84458 0.932
30 4.00 3.00 0.44444 0.67982 0.936
50 4.00 3.00 0.44444 0.62961 0.939

Table 10 Sensitivity analysis

Distribution f (U) f (L) NS (dpm)

Normal(μ = 4, σ = 1) 6.075883 × 10−09 0.0001338302 −140.8675
Gamma(α = 4, λ = 1) 0.007566655 0.000 7964.900
Exponential(λ = 1) 4.539993 × 10−5 1.000 −1052584
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Figure 2 Histogram, density, CDFs, P–P plot and Q–Q plot.

7 Applications

In this section, two real data sets are considered to illustrate the different methods of estima-
tion and BCIs (S-boot, P-boot and BCp-boot) of the PCI Cpk for the normal distribution.
At first, we check whether the considered data sets come from the normal distribution by
goodness of fit test. We have used histogram, density, theoretical and empirical CDFs, P–P
plot and Q–Q plot to test the goodness of fit test for the normal distribution, displayed in
the Figures 2 and 3, respectively. Also, we provide the descriptive statistics, AIC, BIC, the
Kolmogorov–Smirnov (KS) statistic and the corresponding p-values of the considered data
sets in Tables 11 and 12, respectively, which have been done using fitdistrplus package of R

software [see, Ikha and Gentleman (1996)]

• Data Set I: Data of voltages for aluminium foils.
This study cites data from the suppliers, who provided aluminium foil materials to an

electronics company in Taiwan, to demonstrate the proposed procedure, given in Chen and
Tong (2003). Aluminium foil is a key component that governs the quality of capacitors
and the voltage is an important quality characteristic of aluminium foil: the production
specifications (USL, T ,LSL) of the voltage are (530,520,510). If the voltage falls outside
this interval, the aluminium foil will break, and thus be rejected.

• Data Set II: Application of the novel procedure to a color STN display process.
The data set involving a colour STN (Super Twist Nematic) displays product was

taken from a manufacturing industry in Taiwan and was originally discussed by Chen
and Chen (2004). Colour STN displays are created by adding colour filters to traditional
monochrome STN displays. The specification limits are 12,000 ± 500A0 (where, 1A0 =
10−7 mm), that is, the upper and the lower specification limits are set to USL = 12,500,
LSL = 11,500 and the target value is set to T = 12,000. If the thickness of membrane
does not fall within the tolerance (LSL, USL), color STN displays will suffer chromatic
aberration.
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Figure 3 Histogram, density, CDFs, P–P plot and Q–Q plot.

Table 11 Descriptive statistics for the considered data sets

Data n Min. Q1 Median Q3 Max. CS CK

I 50 516.5 518.4 519.7 521.1 523.8 0.1244902 2.343682
II 60 12040 12090 12100 12110 12140 −0.41697 3.636393

Table 12 MLEs of μ and σ , KS and p-values for the considered data sets

Data MLEs Log-likelihood AIC BIC KS Statistic KS p-value

I μ̂ = 519.756 −99.37723 202.7545 206.5785 0.073389 0.9505
σ̂ = 1.783731

II μ̂ = 12098.51667 −262.5265 529.053 533.2417 0.061872 0.9757
σ̂ = 19.23061

For the considered data sets, we have calculated the point estimates of Cpk using differ-
ent aforementioned classical methods of estimation and the Bayesian estimation method,
reported in Table 13. Further, the widths of BCIs (S-boot, P-boot and BCp-boot) using
different classical methods of estimation as well as widths of HPD credible intervals are re-
ported in Table 14 and it is observed that the width of the HPD interval is minimum among
the widths of BCIs (S-boot, P-boot and BCp-boot), which is also echoed our simulation
results.
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Table 13 Estimates of the index Cpk using different methods of estimation

Data Set MLE LSE WLSE CME MPSE ADE RADE BAYES

I 0.88617 0.85338 0.85112 0.85223 0.82894 0.89734 0.90067 0.88353

II 6.95910 6.55118 6.54723 6.54223 6.45613 6.95372 6.97335 6.64917

Table 14 Widths of BCIs and HPD credible intervals of Cpk for the data sets

Width of BCIs

Data Set Width of HPD Credible intervals S-boot P-boot BCp-boot

I 0.24074 0.27683 0.26779 0.24011
II 1.75805 1.83772 1.81684 1.77083

8 Conclusions

In this paper, we have considered three BCIs of the PCI Cpk based on seven different classical
methods of estimation as well as by Bayesian method of estimation using squared error loss
function for the normal distribution. We have considered the MLEs, LSEs, WLSEs, CMEs,
MPSEs, ADEs and RADEs of the parameters μ and σ to obtain the estimates and BCIs for
the PCI, Cpk . As it is not feasible to compare these methods theoretically, we have performed
extensive simulation study to compare these methods with different sample sizes and differ-
ent combinations of the unknown parameters. Next, we have considered Bayesian estimation
of the unknown parameters and the index Cpk . Besides, point estimation, we have consid-
ered three BCIs (S-boot, P-boot, BCp-boot) and HPD credible intervals for the index Cpk .
Simulation results suggest that Bayes estimators perform better than the considered classical
methods of estimation. It is worth mentioning that the choice of hyper-parameters of the prior
distributions need to be carefully chosen. Among classical methods of estimation, MPSE
gives the best results in terms of MSE for almost all the choices of sample sizes among the
other classical methods of estimation. In real data analysis for both the data sets, the Bayesian
method of estimation gives smallest widths from the other methods of estimation.
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