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Max-and-Smooth: A Two-Step Approach for
Approximate Bayesian Inference in Latent

Gaussian Models
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Abstract. With modern high-dimensional data, complex statistical models are
necessary, requiring computationally feasible inference schemes. We introduce
Max-and-Smooth, an approximate Bayesian inference scheme for a flexible class
of latent Gaussian models (LGMs) where one or more of the likelihood parame-
ters are modeled by latent additive Gaussian processes. Our proposed inference
scheme is a two-step approach. In the first step (Max), the likelihood function is
approximated by a Gaussian density with mean and covariance equal to either
(a) the maximum likelihood estimate and the inverse observed information, re-
spectively, or (b) the mean and covariance of the normalized likelihood function.
In the second step (Smooth), the latent parameters and hyperparameters are in-
ferred and smoothed with the approximated likelihood function. The proposed
method ensures that the uncertainty from the first step is correctly propagated
to the second step. Because the prior density for the latent parameters is as-
sumed to be Gaussian and the approximated likelihood function is Gaussian, the
approximate posterior density of the latent parameters (conditional on the hyper-
parameters) is also Gaussian, thus facilitating efficient posterior inference in high
dimensions. Furthermore, the approximate marginal posterior distribution of the
hyperparameters is tractable, and as a result, the hyperparameters can be sampled
independently of the latent parameters. We show that the computational cost of
Max-and-Smooth is close to being insensitive to the number of independent data
replicates, and that it scales well with increased dimension of the latent parameter
vector provided that its Gaussian prior density is specified with a sparse precision
matrix. In the case of a large number of independent data replicates, sparse pre-
cision matrices, and high-dimensional latent vectors, the speedup is substantial in
comparison to an MCMC scheme that infers the posterior density from the exact
likelihood function. The accuracy of the Gaussian approximation to the likelihood
function increases with the number of data replicates per latent model parameter.
The proposed inference scheme is demonstrated on one spatially referenced real
dataset and on simulated data mimicking spatial, temporal, and spatio-temporal
inference problems. Our results show that Max-and-Smooth is accurate and fast.

Keywords: approximate Bayesian inference, Bayesian hierarchical model, latent
Gaussian model, multivariate link function, spatio-temporal data.

∗University of Iceland, Reykjavik, Iceland, birgirhr@hi.is
†University of Exeter, Exeter, UK, s.siegert@exeter.ac.uk
‡King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia,

raphael.huser@kaust.edu.sa
§University of Oslo, Oslo, Norway, bakka@r-inla.org
¶University of Iceland, Reykjavik, Iceland, avj2@hi.is
‖Corresponding author.

c© 2021 International Society for Bayesian Analysis https://doi.org/10.1214/20-BA1219

https://bayesian.org/resources/bayesian-analysis/
mailto:birgirhr@hi.is
mailto:s.siegert@exeter.ac.uk
mailto:raphael.huser@kaust.edu.sa
mailto:bakka@r-inla.org
mailto:avj2@hi.is
https://doi.org/10.1214/20-BA1219


612 A Two-Step Inference Approach for Latent Gaussian Models

1 Introduction

Data are being generated today at an unprecedented rate. Many datasets are large
and exhibit complex marginal behaviors and dependence structures. In particular, data
that are indexed in space and time may indicate non-linear time trends and spatial
patterns, and may be driven by complex space-time interactions. Statistical modeling
and inference for high-dimensional spatio-temporal datasets becomes increasingly com-
putationally demanding as the spatial and/or temporal dimension increases (see, e.g.,
Heaton et al., 2019). The same is true for, e.g., multinomial data (see, e.g., Gustafson
et al., 2008) and survival data (see, e.g., Lee et al., 2011), i.e., as the number of units
or individuals increases the computational cost increases.

In this paper we focus on latent Gaussian models (LGMs), which form a general
and very flexible class of models that has proven to be useful in a wide range of con-
crete applications (see, e.g., Gelfand et al., 2007; Cooley et al., 2007; Rue et al., 2009;
Margeirsson et al., 2010; Sigurdarson and Hrafnkelsson, 2016; Zinszer et al., 2017; Opitz
et al., 2018; Lombardo et al., 2018, 2019). We here introduce Max-and-Smooth, a novel
approximate Bayesian inference procedure for LGMs with independent data replicates
that is both accurate and fast, providing significant speedups in high dimensions. Our
approach has superficial similarities with the recent contribution by Risser et al. (2019),
who propose a frequentist two-step inference approach and focus on the GEV distribu-
tion. In contrast, our proposed inference scheme is more general and designed for fully
Bayesian inference. LGMs are Bayesian hierarchical models (Cressie and Wikle, 2011;
Banerjee et al., 2014) that consist of three levels: the data level, the latent level and the
hyperparameter level. Each level is specified with a probability distribution, the one at
the latent level being Gaussian. For computational reasons, it is common to assume that
the data are conditionally independent, given the latent process, and we also assume
this here. The role of the latent process is to capture the underlying dynamics of the
data (such as space-time dependence interactions). Our focus in this paper is mainly on
three types of spatio-temporal LGMs that are useful in different settings, although our
proposed method applies more generally, e.g., with (replicated) multinomial or survival
data. The first type of LGMs that we consider assumes that the spatio-temporal dynam-
ics of the data is described by latent parameters that vary spatially but are constant
in time, and that (a potentially different number of) data time replicates are available
at each spatial location. This type of LGMs focuses on capturing the data’s spatial
behavior, although datasets with temporal covariates or slowly-varying temporal trends
may also be modeled in the same framework. The second type of LGMs assumes that
the latent parameters vary in time, and that several spatial replicates of the data are
available at each time point. In this setting the latent parameters are usually constant
in space, although they may also refer to the main effects of distinct regions that vary
over time. The focus is therefore on capturing the data’s temporal behavior. Finally,
the third type of LGMs assumes that the latent process varies in both space and time,
and that several replicates for each spatio-temporal observation are available.

Several strategies have been proposed to fit LGMs. Simulation-based Markov chain
Monte Carlo (MCMC) methods can be used (see Cressie and Wikle, 2011; Banerjee
et al., 2014), although their application in high-dimensional settings (i.e., situations
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with either space-rich and/or time-rich data, or with many parameters involved at the
latent level) may be limited by the computational complexity. In order to make MCMC
sampling more efficient, Knorr-Held and Rue (2002) proposed a single block updating
strategy for LGMs characterized by a univariate link function. Their strategy reduces
the cross-correlation between the hyperparameters and the latent parameters within
the posterior samples. A detailed comparison of several sampling strategies for LGMs
in Filippone et al. (2013) showed that the single block updating strategy of Knorr-Held
and Rue (2002) has larger effective sample size compared to sufficient augmentation,
ancillary augmentation and ancillarity-sufficiency interweaving strategy (Yu and Meng,
2011), and the surrogate method (Murray and Adams, 2010). Another approach to infer
LGMs was proposed by Filippone and Girolami (2014), who suggested using a pseudo-
marginal sampling procedure for the marginal posterior density of the hyperparameters,
which relies on the Metropolis-Hastings algorithm and importance sampling. Essen-
tially, samples from the marginal posterior density of the hyperparameters are obtained
first, and the latent parameters are sampled from the conditional posterior density of
the latent parameters. Filippone and Girolami (2014) compared their pseudo-marginal
approach to ancillary augmentation (Yu and Meng, 2011) and the surrogate method
(Murray and Adams, 2010), and found that the effective sample size of the hyperpa-
rameters was much lower for ancillary augmentation and the surrogate method than
for the pseudo-marginal approach. Filippone and Girolami (2014) concluded that this
was due to ancillary augmentation and the surrogate method not being fully capable
of breaking down the correlation between hyperparameters and latent parameters. The
findings of Filippone et al. (2013) and Filippone and Girolami (2014) underline that
sampling from the marginal posterior density of the hyperparameters in an LGM leads
to more effective sampling schemes.

Alternatively, the integrated nested Laplace approximation (INLA) has proven to
be very fast and accurate for approximate Bayesian inference in LGMs (Rue et al.,
2009). The INLA methodology essentially bypasses MCMC sampling by performing a
numerical approximation of the posterior density. Due to its computational efficiency
and its convenient implementation in the package INLA for the R statistical computing
environment, the INLA method has found widespread interest, and has been applied
in numerous settings; see the review papers by Rue et al. (2017) and Bakka et al.
(2018), and references therein. However, the current implementation in the INLA package
only supports LGMs characterized by a univariate link function (i.e., with one single
Gaussian linear predictor at the latent level), and with a small number (typically less
than 20) of hyperparameters. In Section 5, we discuss a linear regression model for
spatio-temporal meteorological data, where the intercept, the covariate effect, and the
residual variance vary spatially, thus requiring a trivariate link function in the likelihood.
Generally speaking, it is common to assume that spatio-temporal data are described by
LGMs of type (i), (ii) or (iii) above with multiple parameters (e.g., intercept, multiple
covariate effects, scale and shape parameters, etc.) that vary spatially and/or temporally.
These types of LGMs usually require multivariate link functions, and we will hereafter
refer to models of this type as extended LGMs in line with Geirsson et al. (2020).
Although it might be possible in principle to extend the INLA software to LGMs with
multivariate link functions, this has not been implemented yet.
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Posterior inference for extended LGMs in moderate or high dimensions is known
to be challenging. Geirsson et al. (2020) developed an efficient block Gibbs sampling
scheme, referred to as the LGM sampler, which was shown to significantly reduce the
autocorrelation in posterior samples. In this paper, we propose using Max-and-Smooth,
a novel two-step approximate Bayesian inference approach for extended LGMs, which
borrows ideas from the INLA method and the LGM sampler, in order to be both fast
and accurate in high dimensions. Essentially, our approach approximates the likelihood
function by a Gaussian likelihood, similar to the Laplace approximation used in the
INLA method. This allows us to perform fast inference with a correct propagation of
the uncertainty. The two steps of the inference scheme are as follows: (i) In the first step
(Max), we compute the maximum likelihood (ML) estimates of the latent parameters
at each spatial, temporal, or spatio-temporal point (depending on the type of LGM
considered), and we approximate the covariance of the Gaussian approximation using
the inverse observed information evaluated at the ML estimate. We also consider an
alternative Gaussian approximation that uses the mean and covariance of the normalized
likelihood function. (ii) In the second step (Smooth), we treat the ML estimate (or the
mean of the normalized likelihood) as the observed data of the latent parameters, with
a Gaussian likelihood (thus taking their estimated variance into account). We then
fit the latent Gaussian model by taking advantage of the conjugacy properties of the
approximate Gaussian–Gaussian model, which is hereafter referred to as the pseudo
model. In other words, we essentially consider that the parameter estimates from the
first step are noisy measurements of the latent field (with known noise variance) and we
smooth them jointly in the second step. Notice that although our proposed approach
has two consecutive steps, it properly propagates the uncertainty, and thus provides a
valid approximate procedure to sample from the full posterior density. Our proposed
procedure is very fast for a variety of reasons. First, the (approximate) sampling scheme
is such that the unnormalized marginal posterior density of the hyperparameters can
be expressed analytically, making it straightforward to sample from it. Second, the
conditional density of the latent parameters given the hyperparameters is Gaussian,
which is straightforward to sample from. Third, because the hyperparameters can be
sampled independently from the latent parameters, similarly to Geirsson et al. (2020),
their cross-correlation is reduced, which yields better MCMC mixing properties with
a higher effective sample size. Fourth, as the computational cost of the second step
(i.e., fitting the pseudo model) does not depend on the number of data replicates,
our proposed procedure is especially well-suited for datasets with a large number of
independent replicates. Finally, further speed-ups can be obtained by specifying the
Gaussian prior density for the parameter vector at the latent level to be a Gaussian
Markov random field (GMRF, Rue and Held, 2005) with a sparse precision matrix.
When such GMRFs are used, Max-and-Smooth scales well with increasing dimension
of the latent parameter vector.

Our proposed methodology involves approximations at two levels. First, the like-
lihood function is approximated by a Gaussian likelihood and may therefore be mis-
specified. Second, the variance of the Gaussian approximation to the likelihood has to
be estimated from data in the first step, but is then treated as exact in the second
step. Intuitively, if the shape of the “true” likelihood function is close to a Gaussian
likelihood, our inference approach will be accurate. With a perfectly (or nearly) Gaus-
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sian likelihood, our inference approach will be very close to being exact provided the
variance of the Gaussian approximation is properly estimated. In contrast, when the
number of data replicates per latent model parameter is low, the Gaussian approxi-
mation may become a poor approximation to the likelihood, which might negatively
impact the posterior inference. However, owing to the asymptotic behavior of the likeli-
hood function in posterior inference, see, e.g., Schervish (1995), the errors of these two
levels of approximation will typically become negligible as the number of data repli-
cates per latent model parameter grows. In other words, Max-and-Smooth is expected
to perform increasingly well as the number of data replicates gets larger, with a negli-
gible effect on the overall computational time. The Gaussian approximation based on
the normalized likelihood function is more suitable for highly non-Gaussian likelihood
functions, because the mean and covariance are propagated more precisely compared to
the Gaussian approximation based on the ML estimate.

The paper is organized as follows. In Section 2, we introduce the extended latent
Gaussian modeling framework, and in Section 3 we detail our proposed approximate
Bayesian inference methodology and introduce Max-and-Smooth. In Section 4 we illus-
trate the strengths and weaknesses of our approach by simulation studies using different
types of extended LGMs. We apply the proposed methodology to a real dataset in Sec-
tion 5. Finally, Section 6 concludes with a discussion and directions for future research.

2 Extended latent Gaussian models

2.1 LGMs with a univariate link function

Latent Gaussian models are a subset of Bayesian hierarchical models in which pa-
rameters at the latent level have a joint Gaussian prior distribution, conditional on
hyperparameters. LGMs are a subclass of structured additive regression models where
the observations, yi (i = 1, . . . , n), are assumed to have a density from the exponential
family and the mean or a particular quantile, μi, is then linked to a structured additive
predictor, ηi, through a univariate link function g(·) such that g(μi) = ηi; see Rue et al.
(2009). The structured additive predictor can then accommodate covariates and random
effects in an additive way, namely,

ηi = β0 +

K∑
k=1

βkzi,k +

J∑
j=1

ujai,j + εi, (2.1)

where β0 is an intercept, {βk} are linear fixed effects of covariates zi,1, . . . , zi,K , {uj}
are unknown random effects with some specified dependency structure, and with known
weights ai,1, . . . , ai,J , and ε1, . . . , εn are unstructured model errors. In LGMs, the terms
β0, {βk}, {uj} and {εi} all have Gaussian prior distributions. Let x contain the la-
tent parameters, namely, β0, {βk}, {uj} and {εi}. Sometimes, the vector x consists of
β0, {βk}, {uj} and {ηi}, i.e., {ηi} is included instead of {εi}. Either way, the param-
eters in x have a joint Gaussian prior distribution, conditional on hyperparameters,
θ = (θ1, . . . , θp)

T. The hyperparameters usually do not have a Gaussian prior density.
Typically, hyperparameters specify the marginal variance, correlation range, smooth-
ness, and/or other correlation parameters of the random effects. Schematically, LGMs
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with a univariate link function may be represented hierarchically as follows in terms of
the data level, the latent level and the hyperparameter level:

Data level The observations y = (y1, . . . , yn)
T are assumed to be dependent on the

latent parameters x and have a density π(y|x,θ). Often, conditional independence is
assumed for simplicity, that is, π(y|x,θ) factorizes as

∏
i π(yi|x,θ) where π(yi|x,θ) =

π(yi|ηi,θ) and μi = E(yi|ηi) = g−1(ηi) or μi = Qp(yi|ηi) = g−1(ηi) if μi is a quantile
defined in terms of an appropriate quantile function Qp.

Latent level The latent parameters x have a Gaussian prior density and are potentially
dependent on some hyperparameters θ. The density of x may be written as

π(x|θ) = N(x|μ(θ),Σ(θ)),

where the right-hand side denotes a Gaussian density with mean vector μ(θ) and co-
variance matrix Σ(θ). This is in line with the notation in Gelman et al. (2013).

Hyperparameter level The hyperparameters θ are assigned a prior density π(θ).

An LGM is fully specified by the definition of these three levels. In the next section,
we extend this framework to LGMs characterized by a multivariate link function.

2.2 LGMs with a multivariate link function

LGMs with a multivariate link function are referred to as extended LGMs (Geirsson
et al., 2020). We assume here conditional independence at the data level for simplicity,
and that the data can be lined up according to groups, e.g., sites, time points, spatio-
temporal elements or categories. The models presented here have the same structure as
the LGMs in Section 2.1, except that the assumption of the data density being in the
exponential family is dropped and the vector x refers to several subsets of parameters
found at the data level, each subset with its separate set of linear predictors at the
latent level. In contrast, in the case of classical LGMs defined in Rue et al. (2009), only
one single parameter of the data distribution is modeled at the latent level.

We assume that each group i has ni observations. The total number of groups
is G. Observations from the same group or from different groups are assumed to be
conditionally independent given the latent process. The groups can represent various
types of sampling setups. For example, the groups may be geological sites observed
over time, i.e., each group corresponds to a site; or the groups may be time points
where several observations are made at the same time point. The groups may also be
spatio-temporal elements such that multiple observations are collected for each spatially
and temporally-referred element. Furthermore, the groups may also represent generic
categories that do not have any spatial nor temporal reference, yet, several observations
are made within each category. Each group is described by M parameters. The general
setup is such that the M subsets of parameters at the data level are mapped to M
subsets of parameters at the latent level through an M -variate link function. Each of
these subsets at the latent level is modeled with a linear model of the form in (2.1).
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The probability density function of yi,j , the j-th observation from group i, is denoted
by π(yi,j |ψ1,i, ψ2,i, . . . , ψM,i) where ψ1,i, . . . , ψM,i are the parameters within group i such
that (ψ1,i, . . . , ψM,i)

T ∈ D, and D is a subspace of RM . Let y be the vector containing
all the observations, let yi be the observations from group i, and let

ψ1 = (ψ1,1, . . . , ψ1,G)
T, ψ2 = (ψ2,1, . . . , ψ2,G)

T, . . . , ψM = (ψM,1, . . . , ψM,G)
T,

denote the M subsets of parameters at the data level, each vector containing only one
type of parameters, e.g., all the location parameters or the regression slope coefficients
for all groups. Conditional on ψ1, ψ2, . . . , ψM , the probability density function of y is

π(y|ψ1,ψ2, . . . ,ψM ) =

G∏
i=1

π(yi|ψ1,i, ψ2,i, . . . , ψM,i)

=

G∏
i=1

∏
j∈Ai

π(yij |ψ1,i, ψ2,i, . . . , ψM,i),

where Ai is an index set for group i. Let g be an M -variate link function such that
g : D → R

M with g(ψ1,i, ψ2,i, . . . , ψM,i) = (η1,i, η2,i, . . . , ηM,i)
T ∈ R

M , so the domain of
each ηm,i is the whole real line. Linear models for the M subsets of parameters at the
latent level, i.e., the vectors

η1 = (η1,1, . . . , η1,G)
T, η2 = (η2,1, . . . , η2,G)

T, . . . , ηM = (ηM,1, . . . , ηM,G)
T,

are then specified and they may be expressed in vector notation as

η1 = X1β1 +A1u1 + ε1,

η2 = X2β2 +A2u2 + ε2,

...

ηM = XMβM +AMuM + εM ,

(2.2)

where β1, β2, . . . , βM are fixed effects, X1, X2, . . . , XM are the corresponding design
matrices containing covariate information, u1, u2, . . . , uM are random effects, A1, A2,
. . . , AM are their corresponding weight matrices, and ε1, ε2, . . . , εM are independent
and unstructured error terms, referred to as model errors. The terms βm, um, and
εm, m = 1, 2, . . . ,M , are assigned Gaussian prior densities and assumed to be a priori
mutually independent.

In the following section, we develop an approximate inference scheme for the LGMs
with a multivariate link function.

3 Approximate Bayesian inference for extended LGMs

3.1 General idea

In this section, we detail an approximation to the posterior density used to compute
inference for extended LGMs (recall Section 2.2). We then introduce Max-and-Smooth,
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a two-step approach that is fully Bayesian and utilizes a Gaussian approximation to the
likelihood. This approximation together with the conditional Gaussian prior at the latent
level results in a Gaussian–Gaussian model (conditional on the hyperparameters) that is
referred to here as the pseudo model. We perform inference both for the hyperparameters
and for the latent parameters in the original extended LGM by exploiting this Gaussian–
Gaussian model. In Section 3.2, we describe the posterior density of extended LGMs,
and in Section 3.3 we detail the two consecutive steps of our inference approach. The
first step relies on a Gaussian approximation to the likelihood function. We actually
propose two different approximations; one is based on the ML estimates and the inverse
of the observed information, while the other one is based on the mean and covariance
of the normalized likelihood function. The second step consists of inferring the resulting
Gaussian–Gaussian pseudo model. For more details about the approximate inference
scheme, see the Supplementary Material (Hrafnkelsson et al., 2020).

3.2 The posterior density of extended LGMs

The vectors for the model in (2.2) are gathered as follows

η = (ηT
1 ,η

T
2 , . . . ,η

T
M )T,

ν = (βT
1 ,u

T
1 ,β

T
2 ,u

T
2 , . . . ,β

T
M ,uT

M )T,

ε = (εT1 , ε
T
2 , . . . , ε

T
M )T.

A priori, the vectors β1, u1, β2, u2,. . . , βM and uM are assumed to be independent.
Denote the means and precision (i.e., inverse covariance) matrices of these vectors by
μβ,1, μu,1, μβ,2, μu,2, . . . , μβ,M , μu,M , Qβ,1, Qu,1, Qβ,2, Qu,2, . . . , Qβ,M and Qu,M ,
respectively. The prior mean of ν is therefore

μν = (μT
β,1,μ

T
u,1,μ

T
β,2,μ

T
u,2, . . . ,μ

T
β,M ,μT

u,M )T,

while the precision matrix of ν is a block diagonal matrix,

Qν = bdiag(Qβ,1, Qu,1, Qβ,2, Qu,2, . . . , Qβ,M , Qu,M ).

The precision matrices of ε1, ε2, . . . , εM are diagonal matrices that are denoted by
Qε,1 = σ−2

ε,1 I, Qε,2 = σ−2
ε,2 I, . . . , Qε,M = σ−2

ε,MI, respectively, where I is the identity
matrix and σε,1, σε,2, . . . , σε,M are the corresponding standard deviations. The precision
matrix of ε is thus given by

Qε = bdiag(Qε,1, Qε,2, . . . , Qε,M ).

Define the matrix Z based on X1, A1, X2, A2, . . . , XM and AM as

Z =

⎛
⎜⎜⎜⎜⎜⎝

X1 A1 0 0 0 0 0 0 0 0
0 0 X2 A2 0 0 0 0 0 0
...

...
...

...
. . .

. . .
...

...
...

...
0 0 0 0 0 0 XM−1 AM−1 0 0
0 0 0 0 0 0 0 0 XM AM

⎞
⎟⎟⎟⎟⎟⎠

,
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where the zeros denote zero matrices. Simple matrix multiplication implies that (2.2)
can be rewritten more compactly as

η = Zν + ε.

Since the model is an extended LGM, the prior densities of ν, and η conditional on ν,
are assumed to be Gaussian. Furthermore, the precision matrices Qβ,1, Qβ,2, . . . , Qβ,M

are assumed to be fixed, while hyperparameters govern the precision matrices for the
random effects u1, u2, . . . , uM , i.e., Qu,1, Qu,2, . . . , Qu,M . When the dimensions of u1,
u2, . . . , uM are large, and we require fast computation, then Qu,1, Qu,2, . . . , Qu,M need
to be sparse and thus specifying them with Gaussian Markov random fields (GMRF,
Rue and Held, 2005) becomes crucial.

The joint posterior density of (η,ν,θ) may be expressed as

π(η,ν,θ|y) ∝ π(θ)π(η,ν|θ)π(y|η),

where y denotes the data vector, π(y|η) is the data density defined at the data level,
π(η,ν|θ) is the Gaussian prior density defined at the latent level, and π(θ) is the prior
density for the hyperparameters defined at the hyperparameter level. When the data
density π(y|η) is used for inference, it is referred to as the likelihood function and viewed
as a function of η. We next describe our proposed approximate inference scheme.

3.3 Max-and-Smooth: A two-step approximate inference approach

Our proposed approximate Bayesian inference scheme (Max-and-Smooth) is based on
approximating the likelihood function with a Gaussian density function (Step 1, Max),
and on fitting the resulting Gaussian–Gaussian pseudo model (Step 2, Smooth). We
now describe each step separately.

Step 1 (Max): Gaussian approximation of the likelihood function

We here propose two different Gaussian likelihood approximations that we then subse-
quently exploit for fast fully Bayesian inference.

The first Gaussian approximation is based on the mode of the likelihood function,
i.e., the ML estimate (hence the term “Max”), and the observed information evaluated
at the ML estimate. Let L(η|y) denote the likelihood function, where L(η|y) = π(y|η),
and let L̂ denote the first Gaussian approximation; then, cL̂(η|y) ≈ L(η|y), where

L̂(η|y) = N(η|η̂,Σηy),

c is a constant independent of η, η̂ is the ML estimate for η, i.e., it is the mode of
L(η|y), and Σηy = (−Hηy)

−1, where Hηy denotes the Hessian matrix of log(L(η|y))
evaluated at η = η̂. Furthermore, the observed information evaluated at η̂ is written as
Iηy = −Hηy.

Due to the assumed conditional independence, the first Gaussian approximation is
straightforward to evaluate because it can be computed for each group separately. More
precisely, let L(ηi|yi) = π(yi|ηi) denote the likelihood contribution of the i-th group
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such that L(η|y) =
∏G

i=1 L(ηi|yi). The ML estimate of ηi, η̂i, is the mode of L(ηi|yi),
the observed information in L(ηi|yi) evaluated at η̂i is

Iηyi = −∇2 log(L(ηi|yi))|ηi=η̂i ,

and the inverse of Iηyi is equal to the covariance matrix Σηyi . Now we can approximate

the likelihood contribution of group i, L(ηi|yi), with ciL̂(ηi|yi), where

L̂(ηi|yi) = N(ηi|η̂i,Σηyi)

and ci is a constant independent of ηi.

Therefore, the approximated posterior density π̂(η,ν,θ|y) based on the approxi-

mated full likelihood L̂(η|y) =
∏G

i=1 L̂(ηi|yi), is such that π̂(η,ν,θ|y) ≈ π(η,ν,θ|y),
and it is given by

π̂(η,ν,θ|y) ∝ π(θ)π(η,ν|θ)L̂(η|y)
∝ π(θ)π(η,ν|θ)N(η|η̂,Σηy)

∝ π(θ)π(η,ν|θ)
G∏
i=1

N(ηi|η̂i,Σηyi).

(3.1)

The second Gaussian approximation relies on normalizing the likelihood function
such that the function d−1L(η|y) integrates to one (over the domain of η), where
d ∈ (0,∞) is an appropriate normalization constant that is independent of η. Here we
assume that d is finite. If this is not the case, we may either find a more adequate model
parametrization or replace the likelihood function by an alternative generalized likeli-
hood that consists of the likelihood times an extra prior density for η. Bayes’ Theorem
ensures the finiteness of d under the generalized likelihood since it is proportional to a
posterior density. This second Gaussian approximation is also designed to “maximize”
the match with the true likelihood function, especially in skewed scenarios.

Then, similarly to the first Gaussian approximation, the likelihood function, or the
generalized likelihood function, is approximated with a Gaussian density that has mean
and covariance matrix equal to those of the normalized likelihood function. If there is
a need for ensuring that the mean and variance are finite then the extra prior density
can be given a finite support. We exploit again the assumed conditional independence,
i.e., L(η|y) =

∏G
i=1 L(ηi|yi), now approximating the i-th likelihood contribution as

L(ηi|yi) ≈ diL̃(ηi|yi) = diN(ηi|η̃i,Ωηyi),

where di is a constant independent of ηi, L̃(ηi|yi) is the Gaussian approximation, and
the mean and the covariance matrix are

η̃i =

∫
ηid

−1
i L(ηi|yi)dηi,

Ωηyi =

∫
(ηi − η̃i)(ηi − η̃i)

Td−1
i L(ηi|yi)dηi.
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Similarly to (3.1), the alternative approximation to the posterior density, π̃(η,ν,θ|y),
which is based on L̃(η|y) =

∏G
i=1 L̃(ηi|yi), may be expressed as

π̃(η,ν,θ|y) ∝ π(θ)π(η,ν|θ)
G∏
i=1

N(ηi|η̃i,Ωηyi). (3.2)

Because the Gaussian density is the asymptotic form of the likelihood function under
mild regularity conditions (Schervish, 1995), these two types of approximations are
expected to work increasingly well when the number of data replicates grows. With a
low number of replicates (i.e., less than 10–20 per distinct model parameter involved at
the data level and further described at the latent level), a small bias might be expected,
although we have found it to be relatively negligible in the settings we have considered.
More details on the quality of these Gaussian approximations are given in Section 4.

The computational benefit of the approximations in (3.1) and (3.2) lies in the fact
that π(η,ν|θ) is Gaussian with respect to (η,ν) and the functional form of both L̂(η|y)
and L̃(η|y) with respect to η is proportional to a Gaussian density. As a result, the con-
ditional posterior density of (η,ν) is Gaussian, and posterior samples can be obtained
directly from this density and it is well known how to generate the samples from it. The
information about η stemming from the data is quantified with reasonable accuracy in
L̂(η|y) or L̃(η|y) provided that at least one of these two approximations is fairly good.
This information is correctly weighted against the prior information about η which is
quantified in π(η,ν|θ). Since the inference scheme is Bayesian and the parameters are
inferred simultaneously, then the information about η is correctly propagated to ν and
θ through π(η,ν|θ). Notice that the likelihood approximation L̂(η|y) may be faster to
compute than L̃(η|y) as it is free from integrals, while L̃(η|y) is likely to provide a more
accurate approximation in the case of a small number of replicates within each group.
Hereafter, the Gaussian approximation based on the ML estimates and the inverse of the
observed information will be referred to as the first Gaussian approximation, while the
Gaussian approximation based on the mean and covariance of the normalized likelihood
function will be referred to as the second Gaussian approximation.

Step 2 (Smooth): Inference for the Gaussian–Gaussian pseudo model

To infer the model presented in Section 2.2 based on the approximate posterior density
in (3.1), we consider a pseudo model that is such that η̂ (obtained from the first Gaussian
approximation) is treated as noisy measurements of the latent field. Fitting this pseudo
model is equivalent to smoothing the estimates in η̂ jointly (hence the term “Smooth”).
A similar approach may be used based on (3.2) by treating η̃ (obtained from the second
Gaussian approximation) as the data. The proposed data density of the pseudo model
based on (3.1) is N(η̂|η, Q−1

ηy ) where Qηy = Σ−1
ηy , and Qηy is known. Its numerical values

are evaluated from the already observed data. This model can be written hierarchically
as

π(η̂|η, Qηy,θ) = N(η̂|η, Q−1
ηy ),

π(η|ν,θ) = N(η|Zν, Q−1
ε ),

π(ν|θ) = N(ν|μν , Q
−1
ν )
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and π(θ) is the prior density for θ as before. The posterior density for this model is
given by

π(η,ν,θ|η̂) ∝ π(θ)π(η,ν|θ)π(η̂|η, Qηy,θ)

∝ π(θ)π(η,ν|θ)N(η̂|η, Q−1
ηy )

∝ π(θ)π(η,ν|θ)L̂(η|y).
The above posterior density stems from looking at it as a function of η and taking
η̂ as a fixed quantity, which gives N(η̂|η, Q−1

ηy ) = N(η|η̂, Q−1
ηy ). Thus, the above pos-

terior density is exactly the same as the approximated posterior density in (3.1) for
the extend LGM in Section 2.2. The pseudo model is a Gaussian–Gaussian model and
it is convenient to approach the inference for the unknown parameters through this
model.

Samples of (x,θ), where x = (ηT,νT)T, are obtained by sampling first from the
marginal posterior density of θ, and then from the posterior density of x conditional
on θ. The marginal posterior density of θ given η̂ is π(θ|η̂) ∝ π(θ)π(η̂|θ) and it can be
represented as

π(θ|η̂) ∝ π(θ)
π(η̂|x,θ)π(x|θ)

π(x|η̂,θ) . (3.3)

The densities π(η̂|x,θ) and π(x|θ) have precision matrices Qηy and Qx, respectively,
and if Qηy and Qx are sparse matrices, then the precision matrix of π(x|η̂,θ) is a sparse
matrix; see details in the Supplementary Material (Hrafnkelsson et al., 2020). Samples
from the marginal posterior density of θ can be obtained by using grid sampling if the
dimension of θ is small (i.e., four or less), a Metropolis step or a Metropolis–Hastings
step, or other samplers that are well suited for densities with a non-tractable form. Since
the conditional posterior density of x is Gaussian, samples of x are straightforward to
obtain, and if the precision matrix of π(x|η̂,θ) is sparse, the computational cost is
relatively low.

Further methodological and computational details on the inference scheme for the
Gaussian–Gaussian pseudo model are presented in the Supplementary Material (Hrafnkels-
son et al., 2020).

4 Simulation examples

4.1 Settings

In this section, we assess the accuracy of our proposed approximate Bayesian inference
scheme, Max-and-Smooth, by evaluating by simulation how close the approximate pos-
terior density of an LGM is to its exact posterior density. In particular, in Section 4.2
we consider an LGM where the data are independent mean zero Gaussian random vari-
ables on a lattice, with spatially-varying variance at each lattice point. The approximate
marginal posterior densities of the latent parameters and the hyperparameters are com-
pared to the exact posterior densities inferred by an “exact” MCMC sampler. Moreover,
as the link function in this specific example is univariate, INLA can also be applied and
we include it in our experiments for comparison.
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In the Supplementary Material (Hrafnkelsson et al., 2020) we explore three other
models, namely a linear regression model on a lattice with Gaussian error terms, which
is also applied to real data in Section 5, a linear regression model with t-distributed er-
ror terms and temporally varying coefficients, and a spatio-temporal model for Poisson
counts. Our results suggest that the Gaussian likelihood approximation is accurate in
finite sample sizes (even with just one single replicate in the case of the Poisson distri-
bution with large counts), and therefore, that our Max-and-Smooth approach performs
well in a rich variety of realistic settings.

4.2 Gaussian data with spatially-varying log-variance

In this section, we apply Max-and-Smooth to mean-zero Gaussian data with spatially-
varying variance. We first simulate a single realization of a Gaussian Markov random
field (GMRF; see Rue and Held, 2005), {xi}, on a regular lattice of size 10× 10 where
the index i = (i1, i2) corresponds to the lattice point with horizontal coordinates i1 and
vertical coordinates i2. With the mean fixed to zero, the conditional mean and variance
of this GMRF at an interior point of the lattice are

E(xi1,i2 |x−(i1,i2)) =
1

4
(xi1−1,i2 + xi1+1,i2 + xi1,i2−1 + xi1,i2+1) ,

var(xi1,i2 |x−(i1,i2)) = (4τ)−1,

while the GMRF has different means and variances on the boundaries (i.e., along the
edges and at the corners) of the lattice; see further details in the Supplementary Material
(Hrafnkelsson et al., 2020). For the simulation, the precision parameter of the GMRF is
fixed at τ = 1. At each of the N = 100 lattice points, we simulate T = 10, 20, 50 inde-
pendent Gaussian variates with zero mean and log-variance xi, i.e., yi,t ∼ N(0, exp(xi))
for t = 1, . . . , T and i = 1, . . . , N . Therefore, in this simulation example, the “groups”
mentioned in Section 2.2 represent the data replicates available at each lattice point,
and thus, the total number of groups is equal to the number of lattice points, i.e.,
G = N = 100. The goal is to exploit Max-and-Smooth to infer the latent variables
x = {xi}, and the precision hyperparameter τ from the observed data y = {yi,t}. The
model is simple enough to also infer the latent variables and hyperparameter using an
MCMC sampler that uses the true likelihood function, to compare the approximation
with an “exact” fully Bayesian procedure. The model parameters are inferred assuming
that the mean at the data level is equal to zero. As the link function is here univariate
(i.e., M = 1), INLA is also used to infer the model parameters for the sake of comparison
(but note that this would not be possible for more complex models with multivariate link
functions). The full details of this simulation study are reported in the Supplementary
Material (Hrafnkelsson et al., 2020).

Figure 1 shows the posterior densities of latent parameters xi at three different lattice
points, inferred from datasets with T = 10, 20, 50 replicates per location. We chose the
three locations with the smallest, closest to zero, and largest element of x. Each graph
in Figure 1 shows four posterior densities, based on a fully Bayesian MCMC simulation,
based on the two approximate inference schemes from Section 3.3, and based on INLA.
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Figure 1: Exact and approximated marginal posterior densities of three latent param-
eters. The density curves were computed by an “exact” MCMC sampler (blue), by
Max-and-Smooth based on the first (red) and second (green) Gaussian approximations,
and by INLA (purple). We consider T = 10, 20, 50 temporal replicates (top to bottom).
The true values are indicated by dashed vertical lines.

By comparing the density curves, we see that the second Gaussian approximation (with
mean and variance derived from the normalized likelihood function) is generally closer
to the true posterior density than the first Gaussian approximation (with mean and
variance based on the maximum likelihood estimate (MLE) and observed information).
Both approximate posterior inference schemes capture the exact posterior densities very
well when T is sufficiently large (T ≥ 20). In the case of T = 10, the discrepancy between
the approximated and exact posterior density is relatively small for the small and median
values of xi, while it is more pronounced in the case of large xi. The reason might be
that the Gaussian approximation of the likelihood function does not properly capture
the right-skewness of the exact likelihood function. When the spatial prior for the vector
x has a strong effect (pulling the estimate toward zero), then the right skewness of the
marginal likelihood function will show up most prominently in the case of large xi. The
posterior densities estimated by INLA are slightly closer to the exact densities for these
selected latent variables than our approximations.

The exact and approximate posterior densities of the precision hyperparameter τ
of this model are shown in Figure 2 for sample sizes T = 10, 20, 50. Figure 2 shows
that when T ≥ 20 there is a negligible difference between the densities approximated
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Figure 2: Exact and approximated marginal posterior densities of the hyperparameter
τ , inferred from sample sizes T = 10, 20, 50 (from top to bottom). Colours are as in
Figure 1. The true value τ = 1 is indicated by a dashed vertical line.

by Max-and-Smooth and the exact posterior densities. When T = 10 the difference
between the two Max-and-Smooth approximations is small and their difference with
respect to the exact density appears reasonably small. For T = 10 there is no notable
difference between the quality of INLA and Max-and-Smooth, but for T ≥ 20, the
posterior density calculated by INLA is further from the exact posterior than both Max-
and-Smooth approximations.

In addition to the accuracy of the approximation, we also compare the computational
speed of each approach. To calculate the joint density π(y,x, τ) = π(y|x, τ)π(x|τ)π(τ),
the “exact” Bayesian inference requires T evaluations of the Gaussian density per lattice
point to calculate the likelihood π(y|x, τ). In contrast, under the approximate inference
schemes, calculating the approximation of the likelihood requires only a single evaluation
of the Gaussian density per lattice point. We should thus expect the computational cost
of the exact inference to scale linearly with T , while the computational cost of Max-
and-Smooth should be constant in T . Figure 3 shows the time to draw 10,000 MCMC
samples of τ and x for different numbers of temporal replicates T and different numbers
of grid points N . Max-and-Smooth has constant computation cost as a function of T ,
and does not suffer from the same slowdown with increasing T as the exact method. As
might be expected, for small sample sizes and grid sizes, the speedup is only moderate.
But for large grid sizes such as N = 50× 50, and T = 100 replicates, Max-and-Smooth
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Figure 3: Computational cost measured in seconds per ten thousand samples for the
spatially-varying log-variance model when applying Max-and-Smooth based on the first
Gaussian approximation (red lines) and the second Gaussian approximation (dashed
green line), and when applying an MCMC sampling scheme that uses the exact posterior
density (blue line). The four graphs show the computational cost when the dimension
of the latent vector is 100, 400, 1225 and 2500 (left to right).

is faster than the exact method by a factor greater than 10. Since both approximation
methods use a Gaussian approximation for the likelihood function, only with a different
mean and variance, there is no difference in computational speedup between them. As
computation of marginal posteriors with INLA is not based on sampling, it was excluded
from the comparison of computational cost in Figure 3. Inferring the marginal posterior
densities of the latent field and the hyperparameters took only a few seconds with
INLA, but unlike Max-and-Smooth, INLA’s run time increased with increasing number
of temporal replicates.

5 Predictions of meteorological variables on a lattice

As alluded to in the introduction, a wide variety of Bayesian and frequentist approaches,
involving different types of approximations or simplifications, have been proposed to
deal with high-dimensional spatio-temporal data, often under the assumption of data
being exactly Gaussian. These include low-rank approaches (Cressie and Johannesson,
2008), the predictive process (Banerjee et al., 2008), covariance tapering (Furrer et al.,
2006; Anderes et al., 2013), multi-resolution models (Nychka et al., 2015; Katzfuss,
2017), hierarchical nearest-neighbor Gaussian processes (Datta et al., 2016), the Vecchia
approximation (Vecchia, 1988; Stein et al., 2004; Katzfuss and Guinness, 2019), the
integrated nested Laplace approximation (Rue et al., 2009; Bakka et al., 2018), or more
recently a frequentist approach for data modeled by a generalized-extreme value (GEV)
distribution (Risser et al., 2019; Russell et al., 2020). See Heaton et al. (2019) for a
recent review and comparison of some of these methods. In this section, we apply our
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proposed Max-and-Smooth approach to analyze a moderately high-dimensional real
climate dataset, assuming that the data are well described with an extended LGM.

More precisely, the dataset used in our analysis is from a seasonal climate fore-
casting experiment, consisting of retrospective surface temperature forecasts, and their
corresponding “verifying” observations. The forecast data were produced by a global cli-
mate model ensemble (28 forecasts started from perturbed initial conditions)
downloaded from the ECMWF C3S Seasonal catalog (https://apps.ecmwf.int/
data-catalogues/c3s-seasonal/) via the MARS API on 21 February 2018. Fore-
casts were started from perturbed May 1 initial conditions each year from 1993 to 2015,
i.e., the sample size is T = 23 in time. Each model run predicts atmospheric conditions
several months into the future. The particular forecast target analyzed for this paper
is surface air temperature on a 1-by-1 degree latitude-longitude grid over a rectangular
region with corners 20W/40N and 40E/60N (N = 1281 grid points in total, covering
most of Europe). Here each grid point forms a group, so the total number of groups is
G = N . The forecasts were averaged over the 28 ensemble members, and over the Boreal
summer period June/July/August, yielding a single scalar prediction per grid point per
year. Since these forecasts were initialized in May and predict June-August climate,
the forecast lead time is 1–3 months. Verifying observations are from the ERA-Interim
reanalysis dataset (Dee et al., 2011), which is available on the same 1-by-1 degree grid
as the forecasts, and can also be downloaded from the ECMWF data base. Observation
data were averaged over the same June–August period as the forecasts.

Due to structural errors and missing physical processes in the climate model, and
due to the chaotic nature of atmospheric dynamics, numerical model forecasts have
systematic biases in the forecast mean. Furthermore, for forecasts of the climate system
on seasonal time scales, the correlation between forecasts and verifying observations
tends to be low. The biases in the numerical model forecasts can be partly corrected
through a linear regression of the observations on forecasts. The adjustment of model
forecasts by linear regression, known as model output statistics (MOS), has a long
tradition in the weather forecasting community (Glahn and Lowry, 1972; Glahn et al.,
2009), and is part of an active area of research known as forecast recalibration or forecast
post-processing (e.g., Siegert and Stephenson, 2019). In this section, we will infer the
post-processing parameters on a spatial grid in an extended LGM framework, using
spatial priors for the regression coefficients to reduce their estimation uncertainty, and
ultimately improve the predictive skill of the recalibrated model forecasts.

The statistical model linking observed climate yi,t at time t and location i to the
climate model forecast fi,t for the same time and location is assumed to be

yi,t = αi + βi(fi,t − f̄i) + εi,t, (5.1)

where f̄i denotes the local mean forecast over the data period, and the residuals εi,t are
independent Gaussian variates with mean zero and variance exp(τi). It is common to
estimate the regression parameters η = (αT,βT, τT)T = (ηT

α,η
T
β ,η

T
τ )

T individually for
each grid point, using maximum likelihood estimation. However, this may lead to high
estimation variability, due to the limited number of samples per grid point.

https://apps.ecmwf.int/data-catalogues/c3s-seasonal/
https://apps.ecmwf.int/data-catalogues/c3s-seasonal/
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To exploit the spatial structure in the data, and borrow strength from data at
neighboring grid points when estimating the regression parameters η, we use a spatial
prior distribution for the spatial fields of regression parameters as outlined in Section
2.2 of the Supplementary Material (Hrafnkelsson et al., 2020), and we exploit Max-
and-Smooth for Bayesian inference. The spatial field for each regression parameter is
decomposed additively into a spatially correlated component u and an unstructured
component ε, i.e.,

α = ηα = uα + εα, (5.2)

and respectively for β = ηβ and τ = ητ . We model the structured term u as a first-
order intrinsic Gaussian Markov random field on a regular lattice, (Rue and Held, 2005,
Section 3.3.2, pp. 104–108) and the unstructured component ε as a mean zero Gaussian
process with diagonal covariance matrix. All latent processes u and ε are mutually
independent.

The prior model has a total of six hyperparameters: The precision parameters of the
three spatially correlated fields uα, uβ and uτ , denoted {τu,α, τu,β , τu,τ}, and the preci-
sion parameters of the three unstructured fields εα, εβ and ετ , denoted {τε,α, τε,β , τε,τ}.
The hyperparameters θ = (τu,α, τε,α, τu,β , τε,β , τu,τ , τε,τ )

T are a priori independent, and
spatially homogeneous. We used independent penalized complexity (PC) priors (Simp-
son et al., 2017) for all hyperparameters. Specifically, the PC priors were specified as
exponential distributions with rate parameter 1 for the standard deviations, which leads
to a prior density for the precision parameter τ proportional to τ−1.5 exp(−1/

√
τ).

We begin by exploring the marginal posterior distributions of the precision hyper-
parameters θ obtained using Max-and-Smooth (recall Section 3). Preliminary studies
suggested that the hyperparameters are nearly uncorrelated under their joint poste-
rior, which allows us to explore their posterior distributions individually. We evaluated
each unnormalized marginal posterior at 41 points, that are equidistant on the log-scale
and centered around the posterior mode, spanning ±4 posterior standard deviations
(estimated via a Laplace approximation from the numerical second derivative).

The (normalized) marginal posteriors of the hyperparameters are shown in Figure 4.
For better interpretability, the hyperparameters were transformed from precision τv,l to
standard deviation σv,l =

1√
τv,l

for v ∈ {u, ε} and l ∈ {α, β, τ}. The standard deviations

of the unstructured components σε,l are small compared to the spatial variability seen in
the ML estimates of the regression coefficients, and compared to the standard deviation
parameters of the spatial components σu,l. This suggests that a simpler model might
be fitted to the data that does not include an unstructured component. The standard
deviation corresponding to the spatial effect of the intercept, σu,α, is large compared to
σu,β and σu,τ . Thus, there is a greater spatial variability in the intercept than in the
slope and log-variance. By comparing the posterior densities with their PC prior distri-
butions (not shown), we found no evidence that the posterior is unduly influenced by
the prior, indicating that the amount of data available is sufficient to properly constrain
the model’s hyperparameters.

Figure 5 compares the posterior means of the latent fields ηl = ul+εl for l ∈ {α, β, τ}
(conditional on the posterior mode of the hyperparameters) with the corresponding max-
imum likelihood estimates. We used the first Gaussian approximation (ML estimates
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Figure 4: Marginal posterior densities of the hyperparameters (transformed to standard
deviations).

and observed information) for Figure 5, noting that the corresponding plots for the sec-
ond Gaussian approximation (mean and variance of normalized likelihood) are almost
indistinguishable. The intercept parameters of the regression model in the vector α are
not smoothed very much compared to the corresponding ML estimates. This is because
the maximum likelihood estimates of α are generally well-constrained by the data, as in-
dicated by the low sampling uncertainty derived from the observed information matrix.
In contrast, β and τ exhibit considerable smoothing. The pointwise posterior standard
deviations of the latent fields (not shown) are smaller than the sampling standard devi-
ations of the maximum likelihood estimates: they are on average about 5% smaller for
α and around 60% smaller for β and τ .

We then test the performance of the spatial regression model using cross-validated
predictions of surface temperatures calculated using equation (5.1), integrated over the
posterior distributions of α, β and τ . In practice, forecast and observation data are
typically available at all locations in the historical dataset, but no data are available
for the present year, for which bias-corrected forecasts are required. We mimic this
setting by applying “leave-one-year-out” cross-validation: We leave out all forecasts
and observations from one year, fitting the regression parameters using data from the
remaining years, and then using the fitted parameters to forecast the temperature at all
grid points for the left-out year. For each year and grid point, we generated Ns = 1000
samples from the posterior predictive distribution by repeating the following algorithm
Ns times:

• Sample hyperparameters θ(s) independently from their marginal posteriors, i.e.,
π(τu,l|y−t), and π(τε,l|y−t), where l ∈ {α, β, τ} and y−t is forecast and observation
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Figure 5: Pointwise maximum likelihood estimates (left) of the regression parameters
α (top), β (middle), and τ (bottom), and posterior expectations inferred from the
extended LGM with a spatially correlated prior (right). The results were obtained from
Max-and-Smooth based on the first Gaussian approximation.
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data with year t being left out of the training dataset. Sampling of hyperparam-
eters is done by grid sampling, i.e., after evaluating the marginal density of each
hyperparameter at 21 equally spaced points, one of the 21 values is sampled with
probability proportional to the marginal density.

• Draw an independent sample η(s) of each of the latent fields ηα, ηβ and ητ from

their conditional posterior distribution π(η|η̂,θ(s)).

• Using the sampled regression parameter in η(s), simulate a spatial field of re-

sponses yt from the regression model conditional on η
(s)
α , η

(s)
β , and η

(s)
τ , and

using the covariates f t from the left-out year t.

The procedure is repeated leaving each year out in turn, ultimately resulting in Ns

out-of-sample posterior predictive samples per grid point for each year. The predictive
samples are compared to the verifying observations by the mean squared error (MSE)
of the posterior predictive mean, by the continuous ranked probability score (CRPS,
see Winkler (1969); Gneiting and Raftery (2007)) of the posterior predictive distribu-
tion, by the average widths of the central 95% posterior prediction interval (W95), and
by the average coverage frequencies of the posterior predictive 5, 50 and 95-percentiles
(COV05, COV50, COV95, respectively). The CRPS is preferred here because it can be
evaluated solely from samples drawn from the posterior predictive distribution, without
having to know the predictive distribution in closed form, using the following rela-
tion:

CRPS({x1, . . . , xNs}, y) =
1

Ns

∑
1≤i≤Ns

|y − xi| −
1

2N2
s

∑
1≤i,j≤Ns

|xi − xj |, (5.3)

where x1, . . . , xNs are samples from the posterior predictive distribution, and y is the
corresponding observed temperature value (see Gneiting and Raftery, 2007, Equa-
tion (20)). Lower CRPS values indicate better forecasts. The different measures of
sharpness, reliability and accuracy of the posterior predictive distribution are compared
to two benchmark predictions. We draw the same number of samples from the classical
predictive distributions using the pointwise ML estimates for the linear regression mod-
els. This forecast scheme is denoted MLE and is used to characterize the performance of
the forecast post-processing method achieved when spatial correlation in the regression
parameters is ignored. An even simpler benchmark model is constructed by sampling
1000 times from a Gaussian distribution which has the mean and standard deviation
(taken over time) of the observations yi, calculated separately at each grid point i. This
benchmark prediction is almost constant between the years, with slight differences only
due to the leave-one-out procedure. This forecast scheme is denoted CLIM (for clima-
tology) and quantifies the average predictability of atmospheric surface temperature if
no further forecast information is available. The prediction scheme CLIM is thus used
to quantify the merit of the forecast information available from the numerical model.
Finally, we use the acronyms SPAT1 and SPAT2 to denote the posterior predictive
distribution derived from the extended LGM with a spatial prior, inferred using Max-
and-Smooth based on the first and second Gaussian approximations, respectively. Due
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CLIM MLE SPAT1 SPAT2
MSE 0.8329 0.7843 0.7747 0.7742
CRPS 0.4952 0.4843 0.4817 0.4814
W95 3.31 3.35 3.08 3.08

COV05 0.056 0.049 0.06 0.06
COV50 0.50 0.51 0.51 0.51
COV95 0.93 0.94 0.93 0.93

Table 1: Comparison of leave-one-year-out predictive performance of the four forecast
schemes, CLIM, MLE, SPAT1, SPAT2 (descriptions in main text), by mean squared er-
ror of the predictive mean (MSE), continuous ranked probability score (CRPS), average
width of the central 95% prediction interval (W95), and average coverage frequencies
of the predictive 5, 50, and 95-percentiles (COV05, COV50, COV95, respectively).

to computational limitations we have not implemented an exact Bayesian inference us-

ing an MCMC sampler. Table 1 shows that spatially smoothing the regression estimates

using a hierarchical prior leads to improvements in mean squared error of the predictive

mean, and CRPS of the predictive distribution. Simultaneously, forecast uncertainty,

as indicated by the narrower average prediction intervals, is reduced by our method.

Coverage frequencies are quite good overall.

The seemingly small improvement in MSE and CRPS of SPAT1/2 compared to MLE

may suggest a rather negligible improvement of our approach. However, the magnitude

of this improvement has to be compared to the improvement of MLE over CLIM. In-

formally speaking, the improvement of MLE over CLIM quantifies the advantage of a

forecaster who has access to the numerical model forecast compared to a forecaster who

only knows the climatological distribution. Due to the inherent unpredictability of the

atmosphere on long time scales, this advantage tends to be small in seasonal climate

prediction. The improvement of SPAT1/2 over MLE thus has to be judged relative to

the improvement of MLE over CLIM. The improvement of SPAT1 and SPAT2 over

MLE relative to the improvement of MLE over CLIM is about 20% for the MSE, and

about 25% for the CRPS. Both improvements are substantial. A basic uncertainty as-

sessment of CRPS differences is reported in the Supplementary Material (Hrafnkelsson

et al., 2020), suggesting that they are indeed significant.

We note that a leave-one-year-out cross-validation is not the only method that can

be applied to illustrate the benefits of a spatial model for the forecast post-processing

problem. An alternative cross-validation method would be to remove all observed data

from a number of spatially contiguous blocks of locations or randomly sampled lo-

cations, and infer the post-processing parameters at these locations from the spatial

model. We reserve such an analysis for future studies. Finally, it should be noted that

evaluating the marginal posterior distributions of the 6 hyperparameters at 21 values

each, drawing 1000 samples of the spatial fields of the regression parameters from their

posterior distributions, and calculating 1000 posterior predictive samples of atmospheric

temperature over the entire grid takes less than 1 minute on a standard laptop.



B. Hrafnkelsson, S. Siegert, R. Huser, H. Bakka, and Á. V. Jóhannesson 633

6 Discussion

In this paper, we have introduced Max-and-Smooth, a new two-step approximate pos-
terior sampling scheme for extended LGMs with independent data replicates. Extended
LGMs include a diverse range of important applications, such as regression models with
spatial or temporal effects in regression coefficients and error variances. Our proposed
Max-and-Smooth approach is fast and well-suited for this class of LGMs with a complex
and high-dimensional latent structure and multivariate link functions. The first step of
the inference scheme involves approximating the likelihood function around its mode by
its asymptotic Gaussian density, and we also explored another Gaussian approximation
which uses the mean and variance of the normalized likelihood. We suggest that the
adequacy of the Gaussian approximation be explored case by case. The second step
involves Bayesian inference for the latent parameters and the hyperparameters of the
model such that the uncertainty from the first step is correctly propagated into the
uncertainty of the posterior distributions. Max-and-Smooth contrasts with the INLA

software, which is designed for LGMs with a univariate link function but not for ex-
tended LGMs.

Our approach scales well with the dimensions of the multivariate link function and
the latent parameter vector given that the precision matrices of the Gaussian priors
at the latent level are sparse. This is important for high-dimensional applications, e.g.,
models with high-dimensional temporal and spatial effects. Additionally, exploiting con-
jugacy of the Gaussian–Gaussian pseudo model (similar to the INLA method), posterior
samples from the marginal density of the hyperparameters can be generated efficiently
with low sample autocorrelation. For our approach to be successful, we need the Gaus-
sian likelihood approximation in the first step of our two-step inference approach to
be accurate. It turns out that models with non-Gaussian likelihood functions can often
be aggregated over groups of independently replicated observations, such that the joint
likelihood function of the group is close to a multivariate Gaussian likelihood. In our
paper, we have provided evidence that Max-and-Smooth indeed provides accurate and
reliable inference in various settings. The computational cost of our proposed inference
scheme is close to being insensitive to the number of independent data replicates. In
the case of a high-dimensional latent vector modeled with sparse precision matrices and
a large number of independent data replicates, the speedup is substantial in compar-
ison to a Markov chain Monte Carlo inference scheme which samples from the exact
posterior density. A case study comparing Max-and-Smooth with INLA (in a simplified
scenario with a univariate link function) showed that INLA seems to do better at ap-
proximating marginal posteriors of latent variables, whereas Max-and-Smooth produces
better approximations of marginal posteriors of hyperparameters. The observed differ-
ences between posterior approximations are minor, and the extent to which the results
generalize to different applications will be subject of future research.

Max-and-Smooth is designed for a rich class of flexible models. It is straightfor-
ward to implement, and when sparse precision matrices are used at the latent level,
high-dimensional latent vectors can be handled. This paves the way for having an ad-
ditional set of complex models that are feasible for the analysis of complex and high-
dimensional datasets. Future research involves exploring ways to drop the conditional
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independence assumption at the observation level, and computing the Gaussian ap-
proximation based on the normalized likelihood when analytical results for the mean
and variance are not available, and when the dimension of the parameter vector within
groups is high.

Supplementary Material

Supplementary material for “Max-and-Smooth: a two-step approach for approximate
Bayesian inference in latent Gaussian models” (DOI: 10.1214/20-BA1219SUPP; .pdf).
The Supplementary Material presents further methodological and computational de-
tails on Max-and-Smooth, and demonstrates applications of Max-and-Smooth to data
simulated from statistical models.
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Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M., Balsamo, G., Bauer, D., et al. (2011). “The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system.” Quarterly Journal
of the Royal Meteorological Society , 137(656): 553–597. 627

Filippone, M. and Girolami, M. (2014). “Pseudo-marginal Bayesian inference for Gaus-
sian processes.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11): 2214–2226. MR3577381. doi: https://doi.org/10.1214/16-BA1038. 613

Filippone, M., Zhong, M., and Girolami, M. (2013). “A comparative evaluation of
stochastic-based inference methods for Gaussian process models.” Machine Learning ,
93(1): 93–114. MR3093120. doi: https://doi.org/10.1007/s10994-013-5388-x.
613

Furrer, R., Genton, M. G., and Nychka, D. (2006). “Covariance tapering for interpola-
tion of large spatial datasets.” Journal of Computational and Graphical Statistics,
15(3): 503–523. MR2291261. doi: https://doi.org/10.1198/106186006X132178.
626

Geirsson, O. P., Hrafnkelsson, B., Simpson, D., and Sigurdarson, H. (2020). “LGM Split
Sampler: An efficient MCMC sampling scheme for latent Gaussian models.” Statistical
Science, 35(2): 218–233. MR4106602. doi: https://doi.org/10.1214/19-STS727.
613, 614, 616

Gelfand, A. E., Banerjee, S., Sirmans, C., Tu, Y., and Ong, S. E. (2007). “Multilevel
modeling using spatial processes: Application to the Singapore housing market.” Com-
putational Statistics & Data Analysis, 51(7): 3567–3579. MR2367820. doi: https://
doi.org/10.1016/j.csda.2006.11.019. 612

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Sta-
tistical Science. Taylor & Francis. MR3235677. 616

Glahn, B., Peroutka, M., Wiedenfeld, J., Wagner, J., Zylstra, G., Schuknecht, B.,
and Jackson, B. (2009). “MOS Uncertainty Estimates in an Ensemble Framework.”
Monthly Weather Review , 137(1). 627

Glahn, H. R. and Lowry, D. A. (1972). “The use of model output statistics (MOS)
in objective weather forecasting.” Journal of Applied Meteorology , 11(8): 1203–1211.
627

Gneiting, T. and Raftery, A. E. (2007). “Strictly proper scoring rules, prediction,
and estimation.” Journal of the American Statistical Association, 102(477): 359–378.
MR2345548. doi: https://doi.org/10.1198/016214506000001437. 631

Gustafson, P., Lefebvre, G., et al. (2008). “Bayesian multinomial regression with class-
specific predictor selection.” The Annals of Applied Statistics, 2(4): 1478–1502.
MR2655668. doi: https://doi.org/10.1214/08-AOAS188. 612

Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., Ger-
ber, F., Gramacy, R. B., Hammerling, D., Katzfuss, M., Lindgren, F., Nychka, D. W.,

https://www.ams.org/mathscinet-getitem?mr=3577381
https://doi.org/10.1214/16-BA1038
https://www.ams.org/mathscinet-getitem?mr=3093120
https://doi.org/10.1007/s10994-013-5388-x
https://www.ams.org/mathscinet-getitem?mr=2291261
https://doi.org/10.1198/106186006X132178
https://www.ams.org/mathscinet-getitem?mr=4106602
https://doi.org/10.1214/19-STS727
https://www.ams.org/mathscinet-getitem?mr=2367820
https://doi.org/10.1016/j.csda.2006.11.019
https://doi.org/10.1016/j.csda.2006.11.019
https://www.ams.org/mathscinet-getitem?mr=3235677
https://www.ams.org/mathscinet-getitem?mr=2345548
https://doi.org/10.1198/016214506000001437
https://www.ams.org/mathscinet-getitem?mr=2655668
https://doi.org/10.1214/08-AOAS188


636 A Two-Step Inference Approach for Latent Gaussian Models

Sun, F., and Zammit-Mangion, A. (2019). “A case study competition among methods
for analysing large spatial data.” Journal of Agricultural, Biological, and Environmen-
tal Statistics, 24(3): 398–425. 612, 626

Hrafnkelsson, B., Siegert, S., Huser, R., Bakka, H., and Jóhannesson, Á. V. (2020).
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