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Bayesian Effect Selection in Structured
Additive Distributional Regression Models

Nadja Klein∗,‖, Manuel Carlan†,∗∗, Thomas Kneib‡,†† Stefan Lang§,
and Helga Wagner¶

Abstract. We establish Bayesian effect selection for the broad class of structured
additive distributional regression models using a spike and slab prior specifica-
tion with scaled beta prime marginals for the importance parameters of blocks
of regression coefficients. This enables us to model and select effects in all distri-
butional parameters, such as location, scale, skewness or correlation parameters,
for arbitrary distributions. The regression specifications encompass various effect
types such as non-linear or spatial effects. Our spike and slab prior relies on a
parameter expansion that separates blocks of regression coefficients into overall
scalar importance parameters and vectors of standardised coefficients, and yields
effective shrinkage and good sampling performance. Using constrained priors, it
is possible to implement effect decompositions, where, for example, a non-linear
effect can be decomposed into a linear component and the non-linear deviation
from this linear effect; and to select both separately. We investigate some shrink-
age properties, propose a way of eliciting prior hyperparameters and provide full
posterior inference through Markov Chain Monte Carlo simulations. Using both
simulated and real data sets, we show that our approach is applicable for data
with various functional covariate effects, multilevel predictors and non-standard
response distributions, such as bivariate Gaussian or zero-inflated Poisson.

Keywords: penalised splines, prior elicitation, parameter expansion, scaled beta
prime distribution, shrinkage properties.

1 Introduction

The flexibility of modern regression methodology is both a blessing and a curse for ap-
plied researchers and statisticians alike since, on the one hand, added flexibility enables
potentially more realistic models approximating the true data generating process but,
on the other hand, poses additional challenges in the model building and model checking
process. In this paper, we consider structured additive distributional regression models
(Rigby and Stasinopoulos, 2005; Klein et al., 2015c) that combine additive predictors
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consisting of various types of regression effects, e.g. non-linear effects of continuous co-
variates, spatial effects or random effects (Kammann and Wand, 2003; Ruppert et al.,
2003; Wood, 2017) with the possibility to model all parameters (e.g. location, scale or
shape parameters) of arbitrary parametric response distributions in terms of covariates
in a distributional regression approach. Examples of distributional models that fit well
in this framework include the ones for univariate responses of any type (e.g. counts with
zero-inflation/overdispersion, continuous responses with spikes, skewness, heavy tails or
bounded support) as well as multivariate responses (such as multivariate normal, mul-
tivariate t, copula-based specifications with complex dependence structure, or Dirichlet
regression for analyzing compositional data). As a consequence, an analyst is faced with
the challenge not only of choosing an appropriate response distribution, (a task that we
will not consider here, see for example Klein et al., 2015c, for practical solutions to this
task) but also with determining the most appropriate subset of covariates along with
their exact modelling alternative for multiple regression predictors.

For instance, in one of our empirical illustrations on childhood undernutrition with
more than 20,000 observations, we analyse a bivariate response variable y = (y1, y2)

′

consisting of two scores for chronic and acute undernutrition. A previous study (Klein
et al., 2015a) suggests a bivariate normal model in which not only the marginal expec-
tations but also the marginal scale parameters and the correlation parameter depend
on covariates. This leads to a distributional regression model with K = 5 distribu-
tional parameters ϑk ∈ {μ1, μ2, σ1, σ2, ρ}. In a semiparametric model with i = 1, . . . , n
observations yi each of these could be related to a predictor ηik of the form

ηik =x′
iβk + f1,k(cage) + f2,k(mage) + f3,k(mage) + f4,k(mbmi) + fspat,k(region),

(1)

where k refers to one of the five distributional parameters, xi contains 13 binary/categor-
ical covariates (and an intercept) with regression coefficients βk, fj,k(·), j = 1, 2, 3, are
non-linear smooth functions of child’s age (cage), years of partner’s education, mother’s
age (mage) and mother’s body mass index (mbmi), and fspat,k are spatial effects based
on regional information in the data. While effect selection (deciding which of the different
effects should be included in the model) via a full search in the model space would
already be challenging in a mean regression framework with only one single structured
additive predictor, full effect selection in a distributional regression setting with multiple
predictors is typically computationally prohibitive (the number of candidate models
would be 2number of effects×number of predictors = 217×5). This is even more the case when
one is interested in deciding whether the effect of a continuous covariate shall be included
in a linear or non-linear form or whether it could be excluded completely from the model.
In this paper, we address these challenges and develop the first contribution to general
Bayesian effect selection for structured additive distributional regression models (Klein
et al., 2015c).

While there has been extensive interest in spike and slab priors for Bayesian variable
selection (i.e. the selection of effects in models with purely linear predictors) or function
selection (selection of non-linear effects of continuous covariates) in previous years (see
for example Clyde and George, 2004; O’Hara and Sillanpää, 2009, for reviews), most re-
search has been restricted to mean regression with Gaussian errors, distributions from
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the exponential family or survival models, and a focus on modelling the conditional
expectation of the response. Furthermore, most approaches restrict the predictor spec-
ification to include either only linear effects or only non-linear effects of continuous
covariates but do not enable the consideration of the decomposition of non-linear ef-
fects in linear and non-linear components or more complex effect types such as spatial
effects. Classical Bayesian variable selection approaches for linear models based on spike
and slab priors include for example Mitchell and Beauchamp (1988) or George and Mc-
Culloch (1997). Smith and Kohn (1996) utilise similar ideas for function selection in
nonparametric Gaussian regression, while group variable selection has been considered
in Zhang et al. (2014); Xu and Ghosh (2015).

Approaches that move beyond the framework of Gaussian models comprise Rossell
and Rubio (2018) who propose Bayesian variable selection with non-local priors al-
lowing for skewness and thicker tails compared to the Gaussian response distribution,
and Wang et al. (2017) who consider variable selection after transforming the response.
Chung and Dunson (2009) investigate variable selection for a distributional model con-
structed through a probit stick-breaking process, while Kundu and Dunson (2014) con-
sider selection when the distribution of the errors is modelled non-parametrically.

Usually, the variable selection or shrinkage priors are directly imposed on scalar
regression coefficients. In contrast, Ishwaran and Rao (2005) consider a hierarchical
specification where the spike and slab structure is imposed on a higher level of the
hierarchy, i.e. their prior variances. This is advantageous in situations where selection
should take place on blocks of regression coefficients representing for example the coeffi-
cients of a basis expansion in nonparametric regression. This leads to function selection
approaches for additive models, also considered in Yau et al. (2003); Cottet et al. (2008);
Reich et al. (2009), who combine a spike with point mass at zero with a slab that has
support only on the positive real numbers. In contrast, Zhu et al. (2010) specify both
spike and slab as normal distributions (with very different variance components) and
Panagiotelis and Smith (2008) assign a multivariate prior with spike at the origin and
normal slab directly to the whole vector of basis coefficients. In either case, one typi-
cally observes poor mixing unless sampling from marginalized full conditionals. However,
these are only available in closed form for Gaussian models or models that have a latent
Gaussian representation such as the probit model (Zhu et al., 2010). One of the very
few existing contributions to address selection on further distributional parameters is
Cottet et al. (2008), who propose function selection in double exponential regression
models, where both the mean and the dispersion parameter are linked to an additive
predictor. The model space is restricted, since non-linear effects may enter the model
only if the corresponding linear effect is included in the model, similar to Rossell and
Rubio (2019), who consider cubic splines in additive survival models under censoring.

Our proposal is inspired by the approach of Scheipl et al. (2012) that introduces effect
selection in generalized additive models for the exponential family with only one mean-
related additive predictor. As Scheipl et al. (2012), we rely on a parameter expansion
of the vector of the basis coefficients as originally proposed in Gelman et al. (2008),
which allows us to expand the vector of basis coefficients in an importance parameter
shared by all basis coefficients on the one hand and standardised basis coefficients on
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the other hand. Effect selection is then performed by assigning a spike and slab prior
to the squared importance parameter. More precisely, our paper makes the following
important contributions:

• We propose a tractable solution to Bayesian effect selection based on spike and
slab priors for structured additive distributional regression such that selection of
general effect types is no longer restricted to additive mean regression models with
exponential families as in Scheipl et al. (2012).

• We assign constrained multivariate normal priors to blocks of basis coefficients.
The constraint allows us to keep sparse matrix structures, thus enabling efficient
computations. In addition, we do not observe the strong dependence on the di-
mensionality of the basis coefficient vector identified in Scheipl et al. (2012), such
that our method can also jointly select high dimensional coefficient vectors such
as the ones induced by spatial effects. The constrained priors also give a natural
decomposition of effects into the sum of simpler effects through projection, which
broadens the scope of effect selection questions.

• Taking advantage of the modularity of Bayesian inference based on Markov chain
Monte Carlo simulations, we extend the model to hierarchical multilevel specifi-
cations of the predictors following Lang et al. (2014).

• Formulating the spike and slab prior for the squared importance parameter yields
scaled beta prime marginals, which have favourable shrinkage properties (Pérez
et al., 2017). We examine some prior properties in detail and provide conditions
for the propriety of the posterior.

• We develop rules for eliciting the hyperparameters of the spike and slab prior based
on interpretable scaling criteria that are easily accessible to applied researchers.
Based on the elicited parameters, we find that our new prior structure has similarly
favourable shrinkage properties as the approach by Scheipl et al. (2012), while it
avoids to arbitrarily fix the hyperparameters and is applicable in a much broader
model class.

The rest of this paper is structured as follows: Section 2 summarises the specification of
Bayesian effect selection priors for structured additive distributional regression models.
Some properties of the effect selection prior are discussed in Section 3. Section 4 con-
tains details on posterior estimation, software and implementation. Sections 5.1 and 5.2
evaluate the performance of our approach in simulations and three diverse applications.
In Section 6 we conclude.

2 Bayesian Effect Selection in Distributional Regression

2.1 Observation Model

Distributional Regression We develop our approach for the class of structured addi-
tive distributional regression (Klein et al., 2015c). Let (yi,νi), i = 1, . . . , n denote n
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independent observations of a response variable Y ∈ Y ⊆ Rp, p ≥ 1 and ν the covariate
vector comprising different types of covariate information such as discrete and continu-
ous covariates or spatial information. We then assume that the conditional distribution
of yi given νi is specified in terms of a K-parametric distribution with density

p(yi|ϑi1, . . . , ϑiK), (M1)

where ϑi = (ϑi1, . . . , ϑiK)′ is a collection of K scalar distributional parameters ϑik,
k = 1, . . . ,K. Various simpler models, such as generalized additive or survival models
are included as special cases. However, in such mean regression models with p(·) from
the exponential family, the focus is on modelling ϑi = E(yi), while all other K − 1
parameters are treated as fixed or nuisance parameters. In distributional regression
in contrast, each of the distributional parameters ϑik is related to regression effects
and therefore depends on νi. More precisely, we assume that each ϑik is related to a
structured additive predictor ηik via a one-to-one response function hk, i.e. hk(ηik) = ϑik

and ηik = h−1
k (ϑik). The distributional regression framework allows for considerable

flexibility where, for example, regression effects on the scale, the skewness, etc. can be
studied in considerable detail, as we illustrate in our applications in Section 5.2.

Structured Additive Predictors Structured additive predictors are specified as

ηik = ηinik + ηselik =

Lk∑
l=1

f in
l,k(νi) +

Jk∑
j=1

f sel
j,k(νi), (M2)

where the effects f sel
j,k(νi) represent various types of flexible functions depending on

(different subsets of) the covariate vector νi that are to be selected via spike and slab
priors, while ηinik represents a second additive predictor consisting of all effects f in

l,k(νi)
that are not under selection. The separation into two subsets of effects allows us to
include specific covariate effects mandatorily in the model (e.g. based on prior knowledge
or since these represent confounding effects that have to be included in the model). In
the following, we will only discuss the specification of priors for f sel

j,k(νi) ≡ fj,k and refer

to Klein et al. (2015a) for handling ηinik.

Let therefore fj,k be effect j subject to selection in predictor k. It is then assumed
that fj,k can be modelled as

fj,k(νi) = τj,k

D∑
d=1

β̃j,k,dBj,k,d(νi), (M3)

whereBj,k,d(νi), d = 1, . . . , D are appropriate basis functions, β̃j,k = (β̃j,k,1, . . . , β̃j,k,D)′

is the vector of (standardised) basis coefficients and τj,k is an importance parameter
representing the overall relevance of fj,k(ν). Due to the linear basis representation, the
vector of function evaluations f j,k = (f(νj,k,1), . . . , f(νj,k,n))

′ can now be written as

f j,k = τj,kBj,kβ̃j,k where Bj,k is the (n×D) design matrix arising from the evaluation
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of the basis functions Bj,k,d(νi), d = 1, . . . , D at the observed ν1, . . . ,νn, see Section 2.3
below for some examples. The parameterisation in (M3) is equivalent to

fj,k(νi) =
D∑

d=1

βj,k,dBj,k,d(νi) (M3∗)

but “redundant” in the sense that only the product βj,k = τj,kβ̃j,k is identified. However,
the importance parameter τj,k allows us to remove the effect from the predictor for
τj,k = 0, while the effect is considered to be of high importance if τj,k is large in absolute
terms. We will place a spike and slab prior on the squared importance parameter τj,k
to achieve effect selection.

2.2 The Normal Beta Prime Spike and Slab Prior

Constrained Prior for Regression Coefficients Since for many specific types of effects
the vector of basis coefficients βj,k is of relatively high dimension, it is often useful to
enforce specific properties such as smoothness or shrinkage. In a Bayesian formulation,
this can be facilitated by assuming constrained multivariate Gaussian priors

p(βj,k|τ2j,k) ∝ exp

(
− 1

2τ2j,k
β′
j,kKj,kβj,k

)
1
[
Aj,kβj,k = 0

]
, (M4∗)

where Kj,k ∈ RDj,k×Dj,k denotes the prior precision matrix implementing the de-
sired smoothness properties, τ2j,k is a prior variance parameter controlling the degree
of smoothness and the indicator function 1[Aj,kβj,k = 0] is included to enforce linear
constraints on the regression coefficients via the constraint matrix Aj,k. The latter is
typically used to remove identifiability problems from the additive predictor (e.g. by
centring the additive components of the predictor) but can also be used to remove the
partial impropriety from the prior that comes from a potential rank deficiency of Kj,k

with rk(Kj,k) = κj,k ≤ Dj,k.

We specify a prior of a very similar structure but on the vector of scaled basis
coefficients β̃j,k,

p(β̃j,k) ∝ exp

(
−1

2
β̃
′
j,kKj,kβ̃j,k

)
1
[
Aj,kβ̃j,k = 0

]
(M4)

and assume that the constraint matrix Aj,k is chosen such that all rank deficiencies in
Kj,k are effectively removed by setting

Aj,k = span (ker(Kj,k)) , (M5)

where ker(Kj,k) denotes the null space of Kj,k and span (ker(Kj,k)) is a representation
of the corresponding basis. Removing all rank deficiencies does not only remove the
non-propriety from the prior but also allows to make the relation between the original
and the parameter expansion more explicit and to perform effect decomposition for the
components of the additive predictor.
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Effect Decomposition Assuming the constraint matrix from (M4) effectively restricts
the parameter vector β̃j,k to a lower dimensional space of dimension κj,k = rk(Kj,k)
and therefore removes certain special cases of effects from what can be represented in
the basis expansion. For example, for Bayesian P-splines with second order random
walk prior, the rank of the prior precision matrix is κj,k = Dj,k − 2 and the null space
corresponds to constant and linear effects. Applying the constrained prior allows to
select constant, linear effects and non-linear deviations separately. In general, an effect
fj,k(ν) can be decomposed into one component fj,k,unpen(ν) that corresponds to the
null space of the prior precision matrix and the remainder fj,k,pen(ν) as

fj,k(ν) = fj,k,unpen(ν) + fj,k,pen(ν).

To achieve separate effect selection for the two components of f , we assign distinct spike
and slab priors. A related idea for cubic splines was used in Rossell and Rubio (2019).

Remark 1

• The specifications (M3), (M4) and (M3∗), (M4∗) seem to be equivalent to each
other corresponding to a simple rescaling of the regression coefficients and the prior
distribution as βj,k = τj,kβ̃j,k. However, this is only true if the prior distribution
(M4) is indeed proper. To see this, assume that Kj,k is rank deficient and a
constant effect is not penalised by the prior precision matrix. In this case, the
traditional formulation of structured additive regression models (M3∗) implies a
constant effect if τ2j,k approaches zero while the rescaled version (M3) implies an
effect equal to zero since the complete function is multiplied by τj,k.

• Note, that both (M4∗) and (M4) rely on the same precision matrix Kj,k and hence
the constraint matrix Aj,k can be constructed independently of the parametrisa-
tion. The traditional way is an explicit mixed model decomposition (Fahrmeir
et al., 2004; Wood, 2011) which is used by Scheipl et al. (2012) to perform effect
selection for mean regression models. However, the explicit mixed model represen-
tation used by Scheipl et al. (2012) destroys the sparsity properties of the design
matrices (such as band structures for B-splines) and causes full design matrices
which in turn increases computation times. In order to keep the sparsity of the
design matrices of functional effects (and hence to minimize computation time)
we instead implicitly remove the improper part of p(βj,k|τ2j,k) by sampling βj,k

directly from the constrained posterior using (M4∗).

Last, we highlight again that in combination with the distributional flexibility, we are the
first to enable Bayesian effect selection in structured additive distributional regression.
We show later the good performance of our approach in these but also simpler models.

Beta Prime Spike and Slab Prior on Squared Importance Parameter To achieve
function selection in our model, we place a spike and slab prior specification on the
squared importance parameter τ2j,k. This hierarchical prior relies on a mixture of one
prior concentrated around zero such that it can effectively be thought of as representing
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zero (the spike component) and a more dispersed, mostly noninformative prior (the
slab) and is specified via the hierarchy

τ2j,k|δj,k, ψ2
j,k ∼ Ga

(
1

2
,

1

2rj,k(δj,k)ψ2
j,k

)
,

δj,k|ωj,k ∼ Bi(1, ωj,k),

ψ2
j,k ∼ IG(aj,k, bj,k),

ωj,k ∼ Beta(a0,j,k, b0,j,k),

rj,k ≡ r(δj,k) =

{
rj,k > 0 small δj,k = 0,

1 δj,k = 1.

(M6)

The scale parameter ψ2
j,k determines the prior expectation of τ2j,k, which is ψ2

j,k for

δj,k = 1 and rj,kψ
2
j,k for δ = 0 with rj,k 	 1 being a fixed small value and hence the

indicator δj,k determines whether a specific effect βj,k = τj,kβ̃j,k is included in the
model (δj,k = 1) or excluded from the model (δj,k = 0). The parameter ωj,k is the prior
probability for an effect being included in the model and the remaining parameters
aj,k, bj,k, a0,j,k, b0,j,k and rj,k are hyperparameters of the spike and slab prior. We will
discuss prior elicitation for these parameters in detail in Section 3.2.

Marginalising over ψ2
j,k, both the spike and the slab component p(τ2j,k|δj,k) are

scaled beta prime distributions with shape parameters 1/2 and aj,k and scale parameter

2r(δj,k)bj,k (Pérez et al., 2017). Therefore we call the hierarchical prior on βj,k = τj,kβ̃j,k

specified by (M4)–(M6) the Normal Beta Prime Spike and Slab (NBPSS) prior, see Sec-
tion 3 for a detailed discussion of the properties of the NBPSS prior. Equations (M1) to
(M6) define our complete model specification for effect selection in structured additive
distributional regression.

2.3 Special Cases

We briefly discuss some of the components fj,k used later in our empirical evaluations:

• For linear effects of continuous covariates, the columns of the design matrix Bj,k

are equal to the different covariates. For binary/categorical covariates, the basis
functions represent the chosen coding, e.g. dummy or effect coding and the design
matrix then consists of the resulting dummy or effect coding columns. While for
linear effects not under selection, flat improper priors (withKj,k = 0) are common
standard, our effect selection prior corresponds to conditionally i.i.d. Gaussian
priors. Informative Gaussian priors can also be used for effects not under selection
to achieve a Bayesian ridge regression prior that enforces shrinkage of the effects
towards zero (with Kj,k = I).

• For a non-linear effect of a continuous covariate x we employ Bayesian P-splines
(Lang and Brezger, 2004). The i-th row of the design matrix Bj,k then contains
the B-spline basis functions Bj,k,1(xi), . . . , Bj,k,D(xi) evaluated at the observed
covariate value xi. If not stated otherwise, we will use cubic B-splines with 20 inner
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knots (resulting in effects of dimension D = 22) and second order random walk
prior in all our empirical applications. The constrained prior removes constant
and linear effects from the spline, as mentioned in Section 2.2.

• Spatial effects for a discrete set of geographical regions are modelled via Gaussian
Markov random fields (GMRFs) with precision matrix given by an adjacency
matrix encoding the neighbourhood relation between the regions (Rue and Held,
2005) and a design matrix with entries (i, s) equal to one if observation i is located
in region s and zero otherwise. We consider the simplest form of GMRFs and define
two regions as neighbours if they share common borders.

• Multilevel structured additive regression models as proposed by Lang et al. (2014)
allow for hierarchical prior specifications for regression effects where each param-
eter vector may again be assigned an additive predictor η̃j,k, i.e. the vector βj,k

is decomposed as βj,k = η̃j,k + εj,k.

3 Properties of the NBPSS prior

In the following, we discuss some relevant properties of the NBPSS prior hierarchy,
including elicitation of hyperparameters, shrinkage properties and propriety of the
posterior. For prior elicitation and shrinkage properties, the marginal distribution of
βj,k = τj,kβ̃j,k plays a crucial role. We will therefore start with deriving this marginal
distribution. For notational convenience we drop the index for the distribution param-
eter k and the index for the effect j in Sections 3.1 and 3.2.

3.1 Marginal Distribution

The marginal prior for the squared importance parameter τ2 is given by the mixture

p(τ2) = p(τ2|δ = 1)P(δ = 1|a0, b0) + p(τ2|δ = 0)P(δ = 0|a0, b0) (2)

of two scaled beta prime distributions BP(1/2, a, 2b) and BP(1/2, a, 2rb) with mixture
weight of the slab given by P(δ = 1|a0, b0) = a0/(a0 + b0). The NBPSS prior can
alternatively be derived by assuming a mixture of two scaled t distributions for the
importance parameter τ = ±

√
τ2. Specifying this prior hierarchically, the first equation

in (M6) is replaced by τ |δ, ψ2 ∼ N
(
0, r(δ)ψ2

)
and as a consequence posterior sampling

for β would no longer be possible with Gibbs steps as the corresponding conditional
posterior would depend on the likelihood function. Marginalising over ψ2, δ and ω,
the prior p(τ) is a mixture of two scaled t distributions with 2a degrees of freedom,
location parameter 0, scale parameters b/a and rb/a and mixture weights a0/(a0 + b0)
and b0/(a0+b0), respectively. Thus, the prior on the importance parameter τ is basically
the normal-mixture-of-inverse gamma (NMIG) prior of Ishwaran and Rao (2005), who
considered scalar regression coefficients β that are conditionally normal given the inverse
gamma distributed variance parameter τ2 (but with one level of hierarchy less) on the
one hand, and, on the other hand related to the parameter-expanded NMIG (peNMIG)
specification of Scheipl et al. (2012).
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The implied marginal density for β = τ β̃ can be derived as

p(β) =

∫ ∞

−∞
p(τ)pβ̃(β/τ)|τ |−Ddτ, (3)

where pβ̃ is given in equation (M4), and we approximate (3) numerically.

3.2 Prior Elicitation

In the following, we discuss prior elicitation for the NBPSS prior hyperparameters a, b,
a0, b0 and r. More precisely, we argue that suitable default values can be suggested for
a, a0, and b0 based on theoretical arguments while providing intuitive and user-friendly
criteria for the elicitation of b and r. In the literature, default values have often been
suggested from simulation-based evidence (e.g. in Scheipl et al., 2012) but we prefer to
determine b and r in a more transparent and adaptive way.

Theoretical properties of the scaled beta prime distribution have been discussed
in Pérez et al. (2017). From this, it follows that for both spike and slab moments of
order less than a exist and the variance decreases with a. Furthermore, for small values
of a, the spike and the slab component will overlap such that moves from δ = 0 to δ = 1
are possible. However to guarantee the existence of moments, a should not be too small
either. We therefore recommend to set a = 5 as a default; but different values can be
supplied by the user in our implementation.

For the prior inclusion parameter ω, a sensible default is to use a0 = b0 = 1 which
corresponds to a flat prior on the unit interval. Of course, one can also choose fixed
values for ω in case strong prior knowledge on the prior inclusion probability of the size
of the expected model is available. As the marginal prior inclusion probability is given
by P(δ = 1|a0, b0) = a0/(a0 + b0), a0 and b0 can be chosen to reflect prior assumptions
on the inclusion probability of effects.

For the elicitation of b and r, we propose an approach inspired by the principled
approaches of Simpson et al. (2017) and Klein and Kneib (2016). More precisely, we
consider marginal probability statements on the supremum norm supν∈D |f(ν)| over a
certain set of covariate values D conditional on the status of the inclusion/exclusion
parameter δ. Given δ = 1 (inclusion of the effect), the marginal distribution of f(ν)
does no longer depend on r, such that the parameter b can be determined from

P

(
sup
ν∈D

|f(ν)| ≤ c

∣∣∣∣ δ = 1

)
= α. (4)

This is the probability that the supremum norm of an effect is smaller than a pre-
specified level c for all design points ν ∈ D, such that α and c should be small. Basically
we formulate the prior such that it is unlikely that the supremum norm of |f(ν)| stays
below a pre-specified level if it is indeed an informative effect that should be included.
Both the level c and the prior probability α have to be specified by the analyst according
to her/his prior beliefs. To derive r, we proceed similarly but consider the probability

P

(
sup
ν∈D

|f(ν)| ≤ c

∣∣∣∣ δ = 0

)
= 1− α (5)
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now conditioning on non-inclusion. Since in this case we would rather be interested
in making the probability of not exceeding the threshold c large, the probability is
reversed to 1 − α. Note that the absolute value of the effects can be taken without
loss of generality due to the centring constraint of each function to ensure identifiabil-
ity.

The basic idea of these two equations is that such prior statements can be much
more easily elicited in applications, in particular in distributional regression where the
application of response functions such as the exponential function or the logit trans-
form induce default ranges of plausible effect sizes. Of course, the levels c as well the
probability levels α can be chosen to be distinct for the inclusion/exclusion criteria in
(4) and (5) but we suppress this possibility notationally both for simplicity and since
in most cases it seems plausible to choose the same parameter settings anyway.

To access the probabilities in (4) and (5), we derive the marginal distribution of
sup |f(ν)|. For a single covariate value ν, the function evaluation is given by f(ν) =
τ(B1(ν), . . . , BD(ν))β̃ = τb′νβ̃ = b′νβ and the marginal density is

p(b′νβ | δ) =
∫ ∞

0

p(b′νβ|τ2)p(τ2 | δ)dτ2,

where b′νβ|τ2 ∼ N(0, τ2b′νK
−bν) (with K− denoting the generalized inverse of K) and

p(τ2) is given in (2). Note that using the generalized inverse effectively removes the por-
tion of f(ν) that corresponds to the null space of K such that we take the constraint in
(M4) into account. The integrals above are scalar integrals for each covariate ν which
can be solved numerically. However, obtaining the supremum over a large set D, numer-
ical integration easily becomes computationally intractable. We hence determine the
distribution of the supremum based on simulations from the hierarchical NBPSS prior.
In the Online Appendix B (Klein et al., 2020), we show how to determine r and b inde-
pendently of each other. For given design matrix B = (b′ν1

, . . . , b′νn
)′, precision matrix

K, probability level α and threshold c, these can be computed for general functional
effects using the R package sdPrior (Klein, 2018).

Of course, the elicitation rules described in this section can similarly be used to
elicit hyperparameters for other types of hierarchical prior structures as discussed for
example in Klein and Kneib (2016) for the specific case of scale-dependent hyperpriors.
In particular, one may consider informative regularization priors also for the fixed effects
or the unpenalized parts of nonparametric effects not under selection. Especially in
situations with sparse data, this may have beneficial effects on mixing and convergence
of the MCMC sampling scheme. Last, we recommend standardizing the continuous
covariates included with linear, parametric effects since this enhances numerical stability
of the optimization routine.

3.3 Shrinkage Properties

Regularisation and shrinkage properties of certain prior settings in regression specifica-
tions can be studied by considering the marginal distribution of the regression coeffi-
cients and/or functional effects.
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Constraint Regions We compare the prior specified in (M4)–(M6) with a standard
NMIG prior applied directly to the coefficients in β and the parameter expanded prior
(peNMIG) of Scheipl et al. (2012).

Figure 1: Univariate marginal log-densities for a standard NMIG prior (solid line), the
peNMIG prior of Scheipl et al. (2012, dashed line) and the NBPSS prior (dotted line).
Hyperparameters are set to a0 = b0 = 1, a = 5, b = 50, r = 0.005.

Figure 1 shows the univariate marginal log-densities where the most distinct differ-
ence is between the standard NMIG prior compared to the peNMIG and NBPSS priors.
While the standard NMIG prior resembles the shape of a normal distribution with a
finite asymptote at zero, both parameter expanded priors feature a spike in zero. As we
will show and discuss in the next section, this spike is indeed infinite. Figure 2 supple-
ments the univariate considerations by bivariate marginal log-densities. We differentiate
between two situations: First, we consider two parameters that depend on the same value
τ2, i.e. parameters belonging to the same function f(ν), while in the second case we
consider parameters depending on different importance parameters. This distinction is
important since the standard NMIG prior always assumes independent components with
separate hyperparameters. As a consequence, the peNMIG and NBPSS priors deviate
from the standard situation in two ways: First by the parameter expansion itself and
second by making the parameters depend on the same hyperparameter. To disentangle
the effect of these two deviations, we rely on the separate presentations. We make the
following important observations:

• The NBPSS and peNMIG priors share the same qualitative behaviour while devi-
ating considerably from the standard NMIG prior regardless of whether the case
of shared or distinct τ2 is considered.

• The univariate marginal densities qualitatively resemble the ones of the original
spike and slab prior of Mitchell and Beauchamp (1988) with tails that are heavy
enough to induce a re-descending score function which ensures robustness of the
Bayesian estimators (see also the next subsection).
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Figure 2: Contour lines of bivariate marginal log-densities for a standard NMIG prior
(middle panel), the peNMIG (right column) and the NBPSS prior (left column). The
first row panels show results for parameters with distinct hyperparameters and the
second row panels show results for parameters sharing the same τ . For the standard
NMIG, the hyperparameters are by construction assumed to be distinct and no changes
in the row are possible.

• For distinct parameters, we observe contours similar to the convex shape of Lq

priors with q < 1 for the peNMIG and NBPSS priors which implies weak shrinkage
of large effects while small coefficients are strongly shrunken to zero.

• For the case of shared τ2, the shapes of the contours imply simultaneous shrinkage
of both parameters instead of the strong shrinkage towards the coordinate axes
observed for distinct importance parameters. This is exactly the desired type of
shrinkage for parameters belonging to one effect f(ν) to completely remove the
effect from the model specification.

• As already noted in Section 2.2, the specification of the prior in Scheipl et al.
(2012) differs from ours insofar as they consider the mixed model decomposition
of effects. Additionally, Scheipl et al. (2012) use a bimodal prior for the stan-
dardized regression effects with modes at +1 and −1. This effectively bounds the
coefficients away from zero and thus encourages sampling from one mode of the
posterior, while we instead explore the full posterior. Consequently, the conditional
posterior of β̃ of NBPSS is a standard normal distribution pNBPSS(x) = N(x; 0, 1),
while the one of peNMIG is a mixture of two normals with modes, ppeNMIG(x) =
0.5N(x; 1, 1) + 0.5N(x;−1, 1). Taking the ratio explains the slightly heavier tails
of peNMIG in Figures 1 and 2.
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Figure 3: Univariate (left) and bivariate (right) marginal log-densities of f(ν). The
hyperparameters have been fixed at a = 5, b = 50, r = 0.005 and a0 = b0 = 1.

We also study the implied constraint regions for the marginal prior of function
evaluations f(ν) = b′νβ, which can be derived in complete analogy by utilising that
b′νβ̃ ∼ N(0, b′νK

−bν) with a generalised inverse K−. In contrast, the marginal prior
for the peNMIG prior is not numerically accessible since it involves a complex mixture
of 2D components (where D is the dimension of β) due to the bimodal prior for the
elements of β̃. Figure 3 depicts marginal densities for the effect f(ν) evaluated at one
(left panel) and two (right hand panel) randomly chosen covariate values of a sequence
of n = 100 equidistant values in [−π, π]. The resulting design matrix B is based on
cubic Bayesian P-splines with D = dim(β) = 22. Hence, the bivariate plot corresponds
to the situation of one shared importance parameter since we are interested in shrinkage
of the effect evaluations for the same effect at different covariate values. Qualitatively,
the behaviour from the marginal densities of the regression coefficient is translated to
the function evaluations, i.e. we observe a peak in zero and simultaneous shrinkage.

Tail Behaviour and Behaviour in the Origin Visually, the marginal prior for β features
a distinct peak at zero as shown in the previous section. We now investigate more closely,
whether this spike is finite or infinite by considering the behaviour of pβ(β)|β=0. Using

(3) we obtain

p(β)|β=0 = 2pβ̃(0)

⎛
⎜⎜⎜⎝
∫ 1

0

pτ (τ)︸ ︷︷ ︸
≥pτ (1)

τ−Ddτ +

∫ ∞

1

pτ (τ)τ
−Ddτ︸ ︷︷ ︸

≥0

⎞
⎟⎟⎟⎠

≥ 2pτ (1)pβ̃(0)

∫ 1

0

τ−Ddτ = ∞,

since
∫ 1

0
τ−Ddτ diverges for D ≥ 1 and therefore the marginal prior for β indeed has

an infinite spike in zero. Note that we have shown that the multivariate parameter ex-
panded prior has a spike in zero, while Scheipl et al. (2012) have only shown the result
for the univariate marginal prior. This together with heavy tails can be considered to
induce particularly beneficial shrinkage properties, similar to the horseshoe prior and
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also the normal-Jeffreys’ prior, for which both robustness for large effects and very effi-
cient estimation of sparse coefficient vectors have been shown (Polson and Scott, 2010).
Van der Pas et al. (2016) specified conditions on the prior distribution in the sparse
multivariate normal means model to obtain posterior contraction at the minimax rate.
These conditions require tails at least as heavy as Laplace but not too heavy to recover
both nonzero and zero means with the optimal rate, see also Ročková (2018) for a de-
tailed investigation of the spike and slab lasso. However, Condition (3) of Van der Pas
et al. (2016) is not fulfilled for the NBPSS prior with the current choice of hyperparam-
eters. For the Bayesian linear regression model with Gaussian errors, (near) minimax
posterior contraction rates were obtained recently in Castillo et al. (2015) for a spike
and slab prior with discrete spike and Laplace slab, in Ročková and George (2018) for
the spike and slab lasso, and in Bai and Ghosh (2019) for a (one-component) Normal
beta prime prior. Yet no results are available for distributional regression models.

The tail behaviour of the marginal prior for β can be studied by looking at the score
function of p(β) which consists of the elements

∂

∂βd
pβ(β) = −

∫
pτ (τ)pβ̃(β/τ)

βd

τ2
|τ |−Ddτ.

Figure A.1 of the Online Appendix visualizes the resulting score function and com-
pares it to the score function of the NMIG and peNMIG priors. From the graphical
representation we find that all three prior structures have heavy tails such that the
score functions are re-descending (i.e. they approach zero as their argument tends to
infinity) which induces Bayesian robustness of the resulting estimates. The score func-
tions of the peNMIG and NBPSS priors resemble the shape of Lq priors with q close to
zero, while the shape of the score function for the NMIG prior shows a more complex
non-monotonously shape around zero.

3.4 Properties of the Posterior

Propriety Building on the theoretical results derived in Klein et al. (2015b) and Klein
and Kneib (2016), we obtain sufficient (and in the special case of Gaussian mean re-
gression also necessary) conditions for the propriety of the posterior under our Bayesian
effect selection specification. While in Section 2 we avoid to explicitly reparameterize
the design matrices to remove the null space of the precision matrices Kj,k (both for
effects with NBPSS prior and for effects not under selection), we employ a mixed model
representation of the predictors ηk in (M2) here as this greatly simplifies the derivation
of sufficient conditions for the propriety of the posterior. To keep the presentation con-
cise, we refer the reader to the Online Appendix A for the general strategy, the main
differences to the theoretical results derived in Klein et al. (2015b) and Klein and Kneib
(2016) and detailed proofs.

Consistency In general, posterior consistency is another important property which
has been studied extensively in the literature for a variety of variable selection priors.
However, most papers deal with the Gaussian linear model under various scenarios
(too many to give an extensive literature overview here). For instance, for classical
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spike and slab priors such as Gaussian mixtures (George and Mc Culloch, 1993) and
Laplace mixtures (Ročková, 2018; Ročková and George, 2018) the asymptotic theory
of Castillo and van der Vaart A. (2012) and Ročková (2018) suggests that using a0 =
1 and b0 = p yields optimal posterior concentration when the number of unknown
parameters p is o(n). In contrast, in our model the number of all regression parameters
p (which is far larger than the number of covariates) in the K distributional parameters
is typically considerably smaller than n. Hence, the complexity of our model is mostly
due to specifying a very flexible, semiparametric regression model for each distributional
parameter rather than the large number of covariates in the predictors.

For instance, ignoring smoothing in β through the multivariate normal priors, p
would be computed as the sum of all coefficients in each of the functional effects, i.e.
p =

∑K
k=1

∑Jk+Lk

j=1 Dj,k, where Dj,k is the number of basis functions of the j-th effect
fj,k in predictor ηk (which is associated to distribution parameter ϑk). However, due to
the shrinkage in β and due to our main goal of general effect selection rather than the
selection of single coefficients, the more interesting case is to count the total number of
effects p̃ =

∑K
k=1(Jk + Lk).

Keeping these tasks in mind, unfortunately, the available literature is rare. A first
start could be the work of Rossell and Rubio (2019), who consider non-local priors with
discrete spike for survival models but allow for non-linear regression splines without
smoothing. Interestingly, these authors show that a similar effect decomposition as we
employ can help gaining efficiency. Still, the discussion above implies a number of dif-
ferences to our setting, such that we leave studying the posterior consistency in depth
in our model class for future work.

4 Posterior Estimation

In this section, we describe the basic steps of our Markov chain Monte Carlo (MCMC)
sampler. In each MCMC sweep m = 1, . . . ,M , this sampler involves two main loops;
one over the distribution parameters k = 1, . . . ,K and a second inner loop over the all
l = 1, . . . , Lk and j = 1, . . . , Jk effects in predictor k, see Algorithm 1 of the Online
Appendix C.2.

Update of the Basis Coefficients Due to the modular structure of MCMC simulation
algorithms, no changes in the MCMC scheme developed by Klein et al. (2015c) are
required for updating the basis coefficients βj,k when supplementing them with a NBPSS
prior on τ2 instead of the standard inverse gamma prior. We therefore apply iteratively
weighted least squares based approximations to the log full conditional and generate
proposals from the multivariate normal distribution N(μj,k,P

−1
j,k) with expectation and

precision matrix given by

μj,k = P−1
j,kB

′
j,kW j,k(ỹj,k − η−j,k), P j,k = B′

j,kW j,kBj,k +
1

τ2j,k
Kj,k, (6)

where η−j,k = ηj,k − Bj,kβj,k is the predictor without the effect currently updated
and the working observations ỹj,k and weights W j,k are determined based on first and
second derivatives of the log-likelihood with respect to the predictor.
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Update of the Smoothing Variance for Effects not Subject to Selection For effects
not subject to selection, we consider an inverse gamma prior τ2j,k ∼ IG(aj,k, bj,k) for

the smoothing variances such that the update of τ2j,k can be done via a simple Gibbs

sampling step drawing from τ2j,k|· ∼ IG(a′j,k, b
′
j,k), with updated parameters a′j,k =

rk(Kj,k)
2 + aj,k, b

′
j,k = 1

2β
′
j,kKj,kβj,k + bj,k.

Update of the Squared Importance Parameter for Effects Subject to Selection
The full conditional p(τ2j,k|βj,k, δj,k, ψ

2
j,k) is a generalised inverse Gaussian distribu-

tion GIG(p, q, c), with p = −0.5 rk(Kj,k) + 0.5, q = 1/(r(δj,k)ψ
2
j,k), c = β′

j,kKj,kβj,k.

This has the advantage that τ2 can be generated independently of the likelihood in an
efficient Gibbs step which is no longer possible when the prior is formulated for the
importance parameter τ as in (Scheipl et al., 2012) where a Metropolis-Hastings update
is required, see the Online Appendix C.1.

Updates for the Hyperparameters of the NBPSS prior For the hyperparameters of
the NBPSS prior, we obtain Gibbs sampling steps via the following full conditionals:

• Inclusion indicator δj,k:

p(δj,k = 1|·) = 1

1 +
ϕ(τj,k;0;rj,kψ2

j,k)(1−ωj,k)

ϕ(τj,k;0;ψ2
j,k)ωj,k

,

with ϕ(·;μ, σ2) the density of a normal distribution with mean μ and variance σ2.

• Hyper-variance ψ2
j,k: ψ

2
j,k|· ∼ IG

(
aj,k + 0.5, bj,k +

τ2
j,k

2rj,k(δj,k)

)
.

• Inclusion probability ωj,k: ωj,k|· ∼ Beta(a0,j,k + δj,k, b0,j,k + 1− δj,k).

Implementation Implementation was done in a developer version of BayesX (Belitz
et al., 2015), which is available from the authors on request. The software makes use
of methods for efficient storing of large data sets and sparse matrix algorithms for
sampling from multivariate Gaussian distributions and also allows us to access existing
procedures for example for computing simultaneous credible bands for nonparametric
effects (Krivobokova et al., 2010). Hyperparameter elicitation is integrated in the R-
package sdPrior (Klein, 2018).

5 Empirical Evaluations

5.1 Simulations

To evaluate the performance of the NBPSS prior for effect selection in distributional
regression, we conducted extensive simulations under various settings. We distinguish
different scenarios for the predictor complexity, models including and excluding spa-
tial effects, four selected response distributions, varying sample sizes, correlated and
uncorrelated covariates and a set of user-defined parameters for hyperprior elicitation.
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Simulation Design

• We consider Gaussian responses with effects only on the expectation, a Gaussian
location-scale model, Poisson regression and zero-inflated Poisson models.

• We specify four test functions f1(x) = x, f2(x) = x + (2x−2)2

5.5 , f3(x) = −x +
πsin(πx) and f4(x) = 0.5x+ 15φ(2(x− 0.2))− φ(x+ 0.4).

• We distinguish two scenarios in terms of the predictor complexity:

– low sparsity in which out of 16 included covariates 12 have non-zero influ-
ence. The true linear predictor is η = f1(x1) + f2(x2) + f3(x3) + f4(x4) +
1.5 (f1(x5) + f2(x6) + f3(x7) + f4(x8))+2(f1(x9)+f2(x10)+f3(x11)+f4(x12))
and we simulate the two cases with and without additional spatial effect
fspat(s), labeled as “spatial/non-spatial”. These settings are used for ημ in
the homoscedastic Gaussian and the Gaussian location-scale model, as well
as for ηλ in the Poisson and the zero-inflated Poisson model.

– high sparsity in which out of eight included covariates four have non-zero
influence. The true linear predictor is η = f1(x1) + f2(x2) + f3(x3) + f4(x4)
and we again simulate the two cases with and without additional spatial
effect fspat(s). These settings are used for ησ2 in the Gaussian location-scale
model and for ηπ in the zero-inflated Poisson model.

• We generate the covariates x either as i.i.d. realizations from U [−2, 2] or from an
AR(1) process with correlation ρ = 0.7 and standardize x in order to facilitate
prior elicitation.

• We simulate 150 replications for each combination of the settings.

• We use six combinations of α and c for the elicitation of the prior hyperparameters
b and r arising from the pairwise combination of α = 0.05, 0.1, 0.2, and c = 0.1, 0.2.

• We consider the sample sizes n = 200; 1,000 for Gaussian, n = 500; 2,000 for
Poisson, n = 1,000; 2,000 for Gaussian location-scale and zero-inflated Poisson
responses. The sample sizes have been chosen to reflect a challenging (small sample
size) and a relatively informative (large sample size) setting, taking the different
complexity of the model structures into account.

As a competitor for the single parameter distributions Gaussian and Poisson, we consider
the peNMIG prior of Scheipl et al. (2012) implemented in the R-package spikeSlabGAM
(Scheipl, 2016). We refrain from comparison with further variable selection priors men-
tioned in the introduction as these usually lack applicability beyond the framework of
generalized linear models. Hyperparameter elicitation for the NBPSS prior was per-
formed with the package sdPrior (Klein, 2018) and estimation was done with the
current developer version of BayesX (Belitz et al., 2015).

Results In the following, we restrict ourselves to the main conclusions, a detailed de-
scription about simulation settings and evaluation including complete graphical evidence
is provided in the Online Appendix D.
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Figure 4: Violin plots of relative mean log-scores (MLS), i.e. MLS with NBPSS prior
divided by MLS of oracle model, in the zero-inflated Poisson model. The log-scores are
averaged over 5,000 new test data observations for each replicate. Columns are sample
sizes n = 1,000; 2,000, rows 1 and 3 belong to the non-spatial scenarios, rows 2 and 4
to the spatial ones. Covariates are uncorrelated in rows 1 and 2 and correlated in rows
3 and 4. Boxplots within a column/row correspond to different combinations of (α, c).

• As a general outcome, the NBPSS prior results in very good performance for the
selection of relevant effects even in challenging distributional regression settings
with effect selection on multiple distributional parameters, where no competing
Bayesian variable selection approach is available so far. Evidence for that is given
in Figure 4 and the Figures in the Online Appendix Part D, showing posterior
inclusion probabilities and the ratio between predictive NBPSS log-scores and
oracle log-scores (i.e. log-scores arising from a model with given, true predictor
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Figure 5: Overall accuracy (measured by the sum of true positives and true negatives
divided by the total number of effects) for the Poisson model. Columns are sample
sizes n = 500; 2,000. Covariates are uncorrelated in row 1 and correlated in row 2 and
both include a spatial effect (see the Online Appendix D for the non-spatial scenarios).
The boxplot on the right of each subplot shows the peNMIG prior, the remaining ones
correspond to different choices for (α, c) and the NBPSS prior.

specification), respectively, in the zero-inflated Poisson model. The log-scores have
been computed from test data sets with 5,000 observations.

• In the simple exponential family framework with only one single regression pre-
dictor, the NBPSS prior turns out to be a strong competitor to the peNMIG prior
(see Figure 5 for overall accuracy results of the Poisson model). Selection of large
coefficient blocks such as spatial effects works well for all types of response dis-
tributions, while these are particularly problematic with peNMIG due to severe
mixing problems. On the other hand, the explicit reparameterisation of non-linear
effects used with the peNMIG prior (as compared to the constrained sampling
approach that NBPSS is based on) seems to have some advantages in separating
the linear and non-linear part of non-linear effects in cases where the true effect
is close to linear and at the same time covariates are strongly correlated.

• To further investigate effect separation in different distribution parameters, we
conducted an experiment in Subsection D.5 of the Online Appendix with two
scenarios: One where the same covariate enters both the mean and the variance
predictor and one, where the covariate is just added as noise. Based on a threshold
of 0.5 for the posterior mean inclusion probability (the median probability model,
Barbieri and Berger, 2004), most replications would select the correct model.
There are slightly more false positives than false negatives. Crucially though,
false positives and false negatives in one predictor do not seem to (spuriously)
affect the respective posterior mean inclusion probability in the other predictor;
and misclassification occurs only for a small proportion of replicates.
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• Coinciding with previous evidence on Bayesian effect selection, we find a strong im-
pact of hyperprior parameter choice on the resulting effect selection performance.
Our interpretable yet flexible way of eliciting hyperprior parameters equips data
analysts with an intuitive approach for choosing these hyperparameters. More
precisely, changing the probability α and the threshold c can help to balance
between the true positive and false negative rates of effect selection. Choosing
α and c smaller, results in more conservative, i.e. sparser models. Based on our
simulations, we suggest α = c = 0.1 as default values in our applications.

5.2 Applications

In this section, we demonstrate the efficacy of the NBPSS prior and its applicability for
non-Gaussian, discrete or multivariate data. Core information about the different data
sets Patents, Nigeria and House prices can be found in Table 1. Note here that all our
examples have a large number of unknown coefficients, since each effect in a predictor
typically induces a complete vector of coefficients and each predictor (of which we have
K as distributional parameters) is an additive decomposition of such effects.

Data set n
∑K

k=1 Jk distribution time
Nigeria 23,042 108 bivariate normal 5.92 min
Patents 4,805 22 zero-inflated Poisson 0.25 min
House prices 98,354 26 Gaussian location-scale 3.75 min

Table 1: Summaries for the data sets Patents, Nigeria, and House prices. Columns 2
to 4 show the number of observations, number of effects in all predictors in the full
model and the distribution for the response. The last column reports the computing
time required for estimating 1,000 subsequent MCMC sweeps with the NBPSS prior.

Bivariate Analysis of Undernutrition The Nigeria data have been extracted from De-
mographic and Health Surveys (DHS, https://dhsprogram.com/) containing nation-
ally representative information about the population’s health and nutrition status in
numerous developing and transition countries. Here we use data from Nigeria collected
in 2013. Overall there are 23,042 observations after removing outliers and inconsistent
observations from the data, see Table E.1 of the Online Appendix for a full description
of variables. We use stunting and wasting as the bivariate response vector, where stunt-
ing refers to stunted growth measured as insufficient height of the child with respect
to its age (chronic undernutrition), while wasting refers to insufficient weight for height
(acute undernutrition). We assume the two indicators are jointly normally distributed
with marginal means, scales and correlation parameter depending on covariates. Specif-
ically, the model equations for all K = 5 predictors of the distributional parameters
are specified according to (1). The four non-linear effects f1 to f4 of cage (age of the
child in months), edupartner (years of partner’s education), mage (age of the mother
in years), mbmi (body mass index of the mother) are decomposed into their linear and
non-linear part as described in Section 2.2. For the scale parameters, we used an ex-
ponential response function and for ρ the response function h(x) = x/

√
(1 + x2). The

deviance information criterion (DIC)/Watanabe-Akaike information criterion (WAIC)

https://dhsprogram.com/
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Figure 6: Nigeria: Posterior means and 95% credible intervals for the linear effects of
all model parameters (left column for stunting, right column for wasting, top row for
ρ, middle row for σ, bottom row for μ) together with posterior inclusion probabilities
(those with P(δ|·) > 0.5 are highlighted in bold). Since ρ acts on both responses, the
effects are only shown in the first column. Red corresponds to results for the NBPSS
prior and blue to the full model with inverse gamma prior for the hypervariances.

of the full model and model with NBPSS prior are 159,101/159,190 and 159,101/159,173,
respectively and hence slightly better for the NBPSS prior model.

Figures 6 and 7 show the posterior means together with their 95% posterior credible
intervals of linear and non-linear effects for the full model (blue) and the model with
NBPSS prior (red) as well as posterior inclusion probabilities P(δ|·) = 1. For the function
estimates fj,k = fj,k,lin + fj,k,nonlin , Figure 7 shows the corresponding non-linear part
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Figure 7: Posterior mean estimates and 95% credible intervals for non-linear effects of
cage, edupartner , mage, mbmi (column-wise) in ρ, σstunting, σwasting, μstunting, μwasting

(row-wise) together with posterior inclusion probabilities. Red corresponds to the
NBPSS prior and blue to the full model.

fj,k,nonlin separately from the linear part fj,k,lin in Figure 6, while the sum of the two
components can be found in the Online Appendix E. We see that both models yield very
similar point estimates, however the NBPSS prior results in smoother estimates (against
overfitting) and more narrow credible intervals. In Section D.6 of the Online Appendix
we empirically find that posterior coverage is appropriate when employing the NBPSS
prior: Coverage rates for estimation without NBPSS prior are far too conservative,
while the ones from the NBPSS prior are closer to the nominal level but with a slight
tendency to be anti-conservative. Spatial effects of the five distribution parameters with
the NBPSS prior are visualized in the Online Appendix E. While we omit the ones of
the full model, tendencies are similar as for the remaining effects.

Based on marginal inclusion probabilities in the Online Appendix E, we find that the
regional effect is relevant in all distribution parameters, i.e. not only the marginal means
but also the scales and the correlation between stunting and wasting . Interestingly,
chronic undernutrition measured by stunting seems to be mostly driven by variables
describing the life situation of the children. In contrast, besides the region of residence,
the mother’s nutritional status measured by mbmi has a relevant effect only for acute
undernutrition (wasting).

Number of Patent Citations The Patents data set contains the number of citations
of patents granted by the European Patent Office (EPO). An inventor who applies for a
patent has to cite all related, already existing patents his patent is based on. Klein et al.
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(2015b) use this data set to illustrate their developed methodology on Bayesian zero-
inflated and overdispersed count data and conducted variable selection in a stepwise
forward approach based on the deviance information criterion (DIC). We focus on zero-
inflated Poisson (ZIP) models with a detailed analysis in the Online Appendix Part F.
From that we can conclude that the ZIP model with effect selection through the NBPSS
is clearly favoured over the stepwise forward selection of Klein et al. (2015b) in terms
of various predictive criteria.

Hedonic House Prices Understanding determinants not only of expected house prices
but also their variability is important for the risk management of financial institutions
relying on real estate as a part of their portfolio. Distributional regression relying, for
example, on a normal response model for price per square metre is therefore a very
promising approach since it allows to identify not only covariates related to expected
house prices but also to the variability of house prices around their expectation. An
additional complication often arising in the regression-based, hedonic approach to house
price assessment is spatially structured but at least partially unobserved heterogeneity
that requires the inclusion of spatial effects in a hierarchical multilevel regression model.
We employ a Gaussian hierarchical location-scale model, see the Online Appendix Part
G for details. In summary, we find that the NBPSS prior demonstrates its effect selection
and shrinkage and regularization abilities also in hierarchical settings.

6 Summary and Discussion

In this paper, we have introduced Bayesian effect selection based on spike and slab pri-
ors to the class of structured additive distributional regression models. We considered
a constrained prior construction that enables effect decomposition and efficient com-
putations via sparse matrix structures, provided simple rules for prior elicitation and
derived shrinkage properties of the NBPSS prior highlighting its favourable properties.
In simulations, we have demonstrated that the NBPSS prior is applicable even to the
selection of high-dimensional coefficient blocks in more than one distribution parame-
ter. The method promises wide applicability, which we illustrate along three different
examples including zero-inflated count data, a bivariate Gaussian model and a hierar-
chical location-scale specification for hedonic housing prices. Instead of arbitrarily fixing
hyperparameters of the inverse gamma priors, we have suggested an intuitive and inter-
pretable way for hyperprior elicitation, which is easily accessible by applied users. This
is an important feature since results react sensitively with respect to the actual choices
of hyperparameters.

Yet, the NBPSS prior controls the flexibility of each effect separately since priors are
assumed to be independent and does not allow to control the overall complexity of the
predictor. However, the NBPSS prior could be extended to achieve also global shrinkage
properties, e.g. by specifying the scale parameter in the prior on τ2 as a product of a
global and a local parameter (similar as in Polson and Scott, 2010). Another direction
for future research is the consideration of hierarchical spike and slab priors based on
our parameter expansion and the NBPSS prior for the importance parameter. In such
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a setup, one would not only (de-)select complete blocks of regression coefficients but
could perform separate selection decisions for sub-groups or single elements of this block.
In a recent paper, Bai and Ghosh (2019) consider a high-dimensional Bayesian linear
regression model with p � n and it would be interesting to work on such extensions for
general effect selection.

As in distributional regression the propriety of the posterior is not trivial, however,
care has to be taken with respect to the specific prior choices (Ghosh et al., 2018).
Alternatively, if interest is rather in smoothing and shrinkage than in explicit effect
selection shrinkage priors like the double gamma prior (Bitto and Frühwirth-Schnatter,
2019) or penalised complexity priors (Simpson et al., 2017) might be used. Also, it is
conceptually straightforward to include Bayesian quantile or expectile regression models
into the NBPSS prior framework and we aim to do so in a future work.

Supplementary Material

Supplementary Material to “Bayesian Effect Selection in Structured Additive Distribu-
tional Regression Models” (DOI: 10.1214/20-BA1214SUPP; .pdf). This contains exten-
sive additional material, including tables and figures referred to in the text, organized
into Parts A–G.
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