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Adaptive Approximate Bayesian Computation
Tolerance Selection

Umberto Simola∗, Jessi Cisewski-Kehe†, Michael U. Gutmann‡, and Jukka Corander§

Abstract. Approximate Bayesian Computation (ABC) methods are increasingly
used for inference in situations in which the likelihood function is either compu-
tationally costly or intractable to evaluate. Extensions of the basic ABC rejection
algorithm have improved the computational efficiency of the procedure and broad-
ened its applicability. The ABC – Population Monte Carlo (ABC-PMC) approach
has become a popular choice for approximate sampling from the posterior. ABC-
PMC is a sequential sampler with an iteratively decreasing value of the tolerance,
which specifies how close the simulated data need to be to the real data for ac-
ceptance. We propose a method for adaptively selecting a sequence of tolerances
that improves the computational efficiency of the algorithm over other common
techniques. In addition we define a stopping rule as a by-product of the adaptation
procedure, which assists in automating termination of sampling. The proposed au-
tomatic ABC-PMC algorithm can be easily implemented and we present several
examples demonstrating its benefits in terms of computational efficiency.

Keywords: complex stochastic modeling, likelihood-free methods, sequential
Monte Carlo.

1 Introduction

Approximate Bayesian Computation (ABC) provides a framework for inference in sit-
uations where the relationship between the data and the parameters does not lead to a
tractable likelihood function, but where forward simulation of the data-generating pro-
cess is possible. ABC has been used in many areas of science such as biology (Thornton
and Andolfatto, 2006), epidemiology (McKinley et al., 2009; Numminen et al., 2013),
ecology (Beaumont, 2010), population modeling (Toni et al., 2009), modeling the popu-
lation effects of a vaccine (Corander et al., 2017), dark matter direct detection (Simola
et al., 2019), and astronomy (Cameron and Pettitt, 2012; Cisewski-Kehe et al., 2019;
Ishida et al., 2015; Schafer and Freeman, 2012; Weyant et al., 2013). The basic ABC
algorithm (Pritchard et al., 1999; Rubin, 1984; Tavaré et al., 1997) can be explained in
four steps. Suppose the parameter vector θ ∈ R

p is the target of inference, then (i) draw
the model parameters from the prior distribution, θprop ∼ π(θ), (ii) produce a synthetic
sample of the data by using θprop in the forward simulation model, yprop ∼ f(y | θprop),
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(iii) compare the true data, yobs, with the generated sample, yprop, using a distance
function, ρ(·, ·), and defining the distance as d = ρ(s(yobs), s(yprop)) where s(·) is some
(possibly multi-dimensional) summary statistic of the data, (iv) if the distance, d, is less
than or equal to a fixed tolerance, ε, then θprop is retained, otherwise it is discarded.
This is repeated until a desired particle sample size, N , is achieved.

Following the notation of Marin et al. (2012), the resulting ABC posterior can be
written as

πε(θ | yobs) =
∫ [

f(yprop | θ)π(θ)IAε,yobs
(yprop)∫

Aε,yobs
×Θ

f(yprop | θ)π(θ)dypropdθ

]
dyprop,

where IAε,yobs
(·) is the indicator function for the set Aε,yobs

= {yprop | ρ(s(yobs),
s(yprop)) ≤ ε}. There are many extensions to the basic ABC algorithm (e.g., Blum
2010; Blum et al. 2013; Ratmann et al. 2013; Csilléry et al. 2010; Del Moral et al.
2012; Drovandi and Pettitt 2011; Fearnhead and Prangle 2012; Joyce and Marjoram
2008; Marin et al. 2012), but here we focus on the ABC – Population Monte Carlo
(ABC-PMC) approach introduced by Beaumont et al. (2009). However, the proposed
methodology could be used in other sequential versions of ABC that require selecting
a sequence of tolerances. The proposed adaptive approximate Bayesian computation
tolerance selection algorithm (aABC-PMC) targets the same kind of approximate pos-
terior sampling problems as the original ABC-PMC algorithm, and may be subject to
the same limitations in the case of high-dimensional parameter spaces. ABC has been
successfully used in numerous situations where the likelihood function is intractable and
the number of parameters varies from 2 to 5 (e.g. Beaumont et al. 2009; Cisewski-Kehe
et al. 2019; Csilléry et al. 2010; Cornuet et al. 2008; Del Moral et al. 2012; Gutmann
and Corander 2016; Järvenpää et al. 2016; Jennings and Madigan 2016; Jennings et al.
2016; Numminen et al. 2013; Silk et al. 2013; Simola et al. 2019; Sisson et al. 2007;
Toni et al. 2009). Our algorithm is designed to significantly improve upon the original
ABC-PMC method under similar circumstances.

The ABC-PMC algorithm by Beaumont et al. (2009) is based on an adaptive im-
portance sampling approach, where, given a series of decreasing tolerances ε1 > ε2 >
· · · > εT (T being the final iteration), the proposal distribution is sequentially updated
in order to improve the efficiency of the algorithm. This is done by constructing a series
of intermediate proposal distributions, with the details of the steps presented in Algo-
rithm 1. The first iteration of the ABC-PMC algorithm uses tolerance ε1 and draws
proposals from the specified prior distribution(s); the corresponding ABC posterior is
denoted by πε1 . Rather than starting the rejection sampling over using a smaller ε, the
algorithm proceeds sequentially by drawing proposals from the ABC posterior approx-
imated in the previous iteration. After a parameter value, typically referred to as a
particle, is selected from the set of available particles from the previous iteration, it is
also translocated according to some kernel function (e.g. a Gaussian kernel) to avoid
degeneracy of the sampler. Since the proposals are not drawn directly from the prior
π, importance weights are used. The importance weight for a particle J = 1, . . . , N at
iteration t is:

W
(J)
t ∝ π(θ

(J)
t )/

N∑
K=1

W
(K)
t−1 φ

[
τ−1
t−1

(
θ
(J)
t − θ

(K)
t−1

)]
, (1.1)
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Algorithm 1 ABC-PMC algorithm for θ.

Given a series of decreasing tolerances ε1 > ε2 > · · · > εT
if t = 1 then

for J = 1, . . . , N do

Set d
(J)
1 = ε1 + 1

while d
(J)
1 > ε1 do

Propose θ(J) by drawing θprop ∼ π(θ),
Generate yprop ∼ f

(
y | θ(J)

)
Calculate distance d

(J)
1 = ρ(s(yobs), s(yprop))

end while
Set weight W

(J)
1 = N−1

end for
else if 2 ≤ t ≤ T then

Set τ2t = 2 · var
(
{θ(J)t−1,W

(J)
t−1}NJ=1

)
for J = 1, . . . , N do

Set d
(J)
t = εt + 1

while d
(J)
t > εt do

Select θ∗t from θ
(J)
t−1 with probabilities

{
W

(J)
t−1/

∑N
K=1 W

(K)
t−1

}N

J=1

Propose θ
(J)
t ∼ N (θ∗t , τ

2
t )

Generate yprop ∼ f
(
y | θ(J)t

)
Calculate distance d

(J)
t = ρ(s(yobs), s(yprop))

end while
Set weight W

(J)
t ∝ π(θ

(J)
t )/

∑N
K=1 W

(K)
t−1 φ

[
τ−1
t−1

(
θ
(J)
t − θ

(K)
t−1

)]
end for

end if

where φ(·) is the density function of a standard normal distribution,1 τ2t−1 is the variance
(twice the weighted sample variance of the particles from iteration t − 1 is used, as
recommended in Beaumont et al. 2009), and π(·) is the prior distribution. We note
that the definition for the importance weight provided in (1.1) is up to a normalization

constant. In fact each importance weight is normalized such that
∑N

J=1 W
(J)
t = 1.

While the particles are drawn from a sequentially improving proposal distribution, the
tolerances also decrease such that ε1 > ε2 > · · · > εT , to increase the fidelity of the
resulting approximation to the underlying posterior. The common strategies for selecting
this sequence adaptively, highlighted in Section 1.1, can lead to inefficient sampling as
well as avoiding relevant regions of the parameter space (Silk et al., 2013). The key
contributions of this article are (i) a method for selecting the ε1:T = (ε1, ε2, . . . , εT ) in a

1The probability density function of a Q-dimensional standard normal distribution is φ(X) =

(2π)−
Q
2 exp

(
− 1

2
XTX

)
with the expected value of the random vector X is E[X] = �0 (where �0 is a

Q-dimensional vector of zeros) and its covariance matrix is Var[X] = IQ, where IQ is the Q × Q
identity matrix.
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manner that results in improved computational efficiency, and (ii) a rule for determining
when the algorithm terminates (i.e. determining T ).

1.1 Selecting the Tolerance Sequence and Stopping Rules

There are three common approaches for selecting the tolerance sequence, ε1:T : (i) fixing
the values in advance (Beaumont et al., 2009; McKinley et al., 2009; Sisson et al., 2007;

Toni et al., 2009), (ii) adaptively selecting εt based on some quantile of {d(J)t−1}NJ=1,
the distances of the accepted particles from iteration t− 1 (Cisewski-Kehe et al., 2019;
Ishida et al., 2015; Lenormand et al., 2013; Simola et al., 2019; Weyant et al., 2013),
or (iii) adaptively selecting εt based on some quantile of the effective sample size (ESS)
values (Del Moral et al., 2012; Numminen et al., 2013). These approaches can lead to
inefficient sampling as discussed below and demonstrated in the simulation study in
Section 3. It turns out that selecting tolerances using a predetermined quantile can, if
not selected wisely, lead to the particle system getting stuck in local modes (Silk et al.,
2013). Hence the exact sequence of tolerances has an impact not only on the computa-
tional efficiency of the algorithm but also on convergence towards the true posterior. We
emphasize, however, that obtaining a high-fidelity approximation to the true posterior
using ABC is not guaranteed, as this depends on a number of conditions to be met,
including a careful selection of summary statistics. Silk et al. (2013) propose an adap-
tive approach for selecting the tolerance sequence at each iteration by estimating the
threshold-acceptance rate curve (TAR curve), which is used to balance the amount of
shrinkage of the tolerance with the acceptance rate. This approach requires the estima-
tion of the TAR curve at each iteration of the algorithm. The naive, but computationally
impractical approach to estimating the TAR curve (noted as such in Silk et al. 2013), is
to simulate a Monte Carlo estimate of the acceptance rate at a range of different toler-
ances using the ABC forward model, which would have to be repeated at each iteration
of the ABC algorithm. Instead, they suggest a more practical method for estimating the
TAR curve by building an approximation to the forward model (in their example, using
a mixture of Gaussians and the unscented transform of Julier et al. 2000). The TAR
curve approach is able to avoid local optima values, but requires the extra step of build-
ing a fast approximation of the ABC data-generating model. Our proposed algorithm
is similarly able to avoid local modes, but uses quantities that are directly available in
the algorithm. More details are presented in Section 3.

After determining the sequence of tolerances, it is also necessary to determine when
to stop a sequential ABC sampling algorithm. An ABC algorithm is often stopped when
either a desired (low) tolerance is achieved (Sisson et al., 2007) or after a fixed number
of iterations T (Beaumont et al., 2009). Ishida et al. (2015) showed that once the ABC
posterior stabilizes, further reduction of the tolerance leads to low acceptance rates
without meaningful improvement in the ABC approximation to the posterior. They
stop the algorithm once the acceptance rate drops below a threshold set by the user.

The first main contribution of this paper is to extend the ABC-PMC algorithm so
that the quantile used to update the tolerance in each iteration, qt, is automatically
and efficiently selected, rather than being fixed in advance to a quantile that is used
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for each iteration. It is worth noticing that efficiency is not only a matter of having
a high acceptance rate, as this can be easily accomplished by using larger quantiles,
but rather a balance between the acceptance rate and a suitable amount of shrinkage
of the tolerance. Moreover the series of tolerances needs to be selected in such a way
that the algorithm avoids getting stuck in local modes. As the second contribution, we
develop an automatic stopping rule directly based on the behavior of the sequential
ABC posterior.

The rest of the paper is organized as follows. In Section 2 the adaptive selection of
qt for determining the tolerance sequence is presented along with the proposed stopping
rule. Section 3 is dedicated to a simulation study to compare quantile-based selection of
tolerances using ABC-PMC with the proposed procedure. The final example considered
uses real data on colonizations of the bacterium Streptococcus pneumoniae (Numminen
et al., 2013). Concluding remarks are given in Section 4.

2 Methodology

Using the same quantile to update the tolerance at each iteration can be computation-
ally inefficient and results in the particle system getting stuck in local modes (see the
example in Section 3.2). In this section we introduce a method for adaptively selecting
the quantile such that each iteration has its own quantile, qt, set based on the online
performance of the algorithm.

2.1 Initial Sampling and Automatic Tolerance Selection Rule

In order to initialize the tolerance sequence we use the following approach. Let N be the
desired number of particles to approximate the posterior. The initial tolerance ε1 can
be adaptively selected by sampling Ninit = kN draws from the prior, for some k ∈ Z

+

(Cisewski-Kehe et al., 2019). Then the N particles of the Ninit total particles with the

smallest distances are retained, and ε1 = max(d
(1∗)
1 , . . . , d

(N∗)
1 ), where d

(1∗)
1 , . . . , d

(N∗)
1

are the N smallest distances of the Ninit particles sampled. This initialization procedure
effectively selects a distance quantile for the first step by the selection of an appropriate
k, but making this first step adaptive is easier than trying to guess a good ε1. Trying
to specify a reasonable ε1 can be especially challenging when testing different summary
statistics or distance functions because the scale of the distances can be different. It
is important to note that k must be large enough to result in a satisfactory initial
exploration of the parameter space, otherwise the algorithm might get stuck in local
regions of the parameter space. This challenge also holds true in general for other ABC
algorithms, including when ε1 is predefined (i.e. not set adaptively). Providing a general
and suitable value for k regardless of the problem that is considered is challenging,
since this choice depends on a number of factors such as the definition of the prior
distribution(s), the forward model and where relevant regions of the parameter space
are (the latter being unknown). Therefore the parameter k has to be suitably tuned by
the user once the forward model and the prior distribution(s) have been defined. The
problem of selecting k is further discussed in Section 3.
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For the subsequent tolerances, ε2:T , the general idea is to gauge the amount of
shrinkage for iteration t + 1 by determining the value of εt+1 based on the amount of
improvement between π̂εt−1 and π̂εt . In particular, we can use the estimated ABC pos-
teriors to select a quantile to update the tolerance for the next iteration, and adjust the
next tolerance based on how slowly or rapidly the sequential ABC posteriors are chang-
ing. More specifically, after each iteration t > 1, the following ratio can be estimated
using the weighted particles:

ĉt = sup
θ

π̂εt(θ)

π̂εt−1(θ)
. (2.1)

Since π̂εt−1(θ) and π̂εt(θ) from (2.1) are both proper densities, they will be either exactly
the same, making ĉt = 1, or there must be a place where π̂εt(θ) > π̂εt−1(θ), making
ĉt > 1. Then the proposed quantile for iteration t (in order to determine εt+1) is

qt =
1

ĉt
, (2.2)

which varies between 0 and 1. Small values of qt imply qt−1 lead to a large improve-
ment between π̂εt−1 and π̂εt , which then results in a larger percentage reduction of the
tolerance for the coming iteration, t + 1. On the other hand, once the ABC posterior
stabilizes, qt tends to 1 as π̂εt−1 and π̂εt become more similar.

The form of (2.2) was motivated by the Accept-Reject (A/R) algorithm (Andrieu
et al., 2003; Robert and Casella, 2013). The A/R algorithm has a target distribution,
a proposal distribution, and a rule to decide whether or not an element coming from
the proposal distribution should be accepted as an element coming from the target
distribution. If the form of the ABC posterior distribution was known, A/R sampling
would work as follows. A candidate, θ∗, would be proposed from π̂εt−1(θ|yobs

), and would

be accepted with probability
π̂εt (θ

∗|y
obs

)

c·π̂ε∗
t−1

(θ|y
obs

) , where c ∈ (1,∞) is a positive real constant

number selected such that π̂εt(θ|yobs
) ≤ c · π̂εt−1(θ|yobs

) (Robert and Casella, 2013).
In A/R sampling, the unconditional acceptance probability is 1

c (Hesterberg, 1988).
The constant c acts as a proxy for the difference between the proposal and the target
distributions (e.g., if they are the same distribution, then c = 1 and all proposals would
be accepted).

The ABC algorithm does not follow the A/R sampling scheme, but the notion of 1/c
relating to the sampling efficiency in the A/R algorithm inspired the proposed adaptive
tolerance selection idea. For some future iteration, say iteration t+1, the ABC posterior
distribution is unknown so the previous two ABC posteriors at iterations t−1 and t are
used as the proposal and target distributions, respectively, so that ĉt can be computed
in (2.1). If there was a substantial change between π̂εt−1 and π̂εt , then ĉt would be larger
resulting in a smaller quantile, qt, for specifying εt+1. As π̂εt−1 and π̂εt become more
similar, larger quantiles qt are assigned. The proposed form of ct allows the tolerance
selection to be based on changes in the ABC posterior from the previous iteration where
substantial changes between iterations t−1 and t result in a substantial decrease in the
proposed tolerance for εt+1. This continues until a substantial decrease in the proposed
tolerance does not result in a substantial change in the ABC posterior, at which point
the amount of shrinkage in the tolerance becomes smaller.
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Figure 1: Illustration of the selection of qt. (left) The proposal distribution ABC poste-
rior π̂t−1, the resulting ABC posterior π̂t and their ratio π̂t

π̂t−1
, with ĉt defined according

to (2.1) and used for setting qt, as defined in (2.2). (right) The (arbitrary) distribution

of distances is from the accepted distances at iteration t, {d(J)t }NJ=1, with εt being the
largest possible value. The next iteration’s tolerance, εt+1, is set as the qt quantile of

{d(J)t }NJ=1.

We found the rule based on (2.2) to work well empirically. One challenge with a theo-
retical evaluation of the proposed algorithm, and other algorithms designed to optimize
the tolerance shrinkage and acceptance rate, is that the acceptance rate depends on the
forward simulation model. In general ABC settings, the forward simulation model does
not have a closed-form expression.

An illustration of the proposed quantile selection procedure is provided in Figure 1.
If π̂t−1 was used as the proposal for iteration t+1 (instead of π̂t), then qt would be the
percentage decrease in the acceptance rate from iteration t, i.e. if acct is the acceptance
rate for iteration t, then acct+1 would be approximately qt × acct. However, we are not
proposing from π̂t−1, but rather π̂t so the decrease in the acceptance rate is mitigated
by the improvement in the proposed particles from iteration t. When there is a large
improvement in the ABC posterior from π̂t−1 to π̂t, then qt is smaller, allowing for a
larger drop in the tolerance. This larger percentage drop in tolerance does not result
in an equal percentage drop in acceptance rate because the new proposal distribution,
π̂t, is better than π̂t−1. Conversely, if π̂t−1 is close to π̂t, then the improvement in the
ABC posterior is not enough to allow for a large decrease in the acceptance rate and
consequently qt is closer to 1.

The evaluation of (2.1) relies on the calculation of the ratio between the (possibly
multidimensional) density functions, defined here as r. A naive solution would be to
separately calculate the density for π̂t and π̂t−1 using some Kernel Density Estimate
(KDE) method (see Silverman 2018 for a review), and then estimate the ratio from those
estimates. Then, the supremum of the previously calculated ratio can be obtained, for
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example, through an optimization procedure that computes the density over a grid
of values. However, this is not a reliable solution, in particular for high-dimensional
cases for which division by an estimated quantity can magnify the estimation error
(Sugiyama et al., 2008). In order to address the problem of properly estimating r with
r̂, and therefore solving (2.1), alternatives to the KDE solution are available, such as
ratio estimation methods (REM) (Sugiyama et al., 2012). The main advantage of using
REM is that the calculation of the desired ratio does not include density estimation,
which would involve dividing by an estimated KDE. Additionally, when using a KDE,
kernel and bandwidth need to be selected, which can affect the result. Poorly estimating
the density of the denominator of r, in particular, can potentially increase the error of
the estimated ratio (Sugiyama et al., 2010). There are several different REM frameworks
(e.g. Bickel et al. 2007; Gretton et al. 2009; Sugiyama et al. 2008, 2010), but we use the
ratio matching approach of Sugiyama et al. (2008) discussed in more detail next.

In order to introduce the REM framework, consider θ ∈ R
p and two generic sam-

ples {θLi }Li=1 and {θMj }Mj=1, where L and M are the sample sizes for the first and the

second sample, respectively. The sample {θLi }Li=1 has as corresponding density pL(θ),
while the sample {θMi }Mi=1 has as corresponding density pM (θ). The density ratio r(θ)

can be defined as r(θ) = pL(θ)
pM (θ) . The basic idea of the ratio matching approach is to

match a density ratio model r̂(θ) with the true density ratio r(θ) under some diver-
gence (Sugiyama et al., 2010). Several divergences can be used to compare r̂(θ) with
r(θ). A common divergence is the Bregman divergence (Bregman, 1967), along with
some of its related divergences such has the unnormalized Kullback-Leibler divergence
and the squared distance. In particular, the unnormalized Kullback-Leibler divergence
minimizes the divergence between pL(θ) and p̂L(θ) = r̂(θ)pM (θ) by means of the fol-
lowing criterion:

min
r̂

∫
pL(θ) log

pL(θ)

r̂(θ)pM (θ)
dθ. (2.3)

By decomposing the Kullback-Leibler divergence defined in (2.3), r̂(θ) can be estimated
by solving the objective function maxr̂

∫
pL(θ) log r̂(θ)dθ (Hido et al., 2011; Sugiyama

et al., 2010). Further details on the unnormalized Kullback-Leibler divergence and on
other REM approaches are found in Sugiyama et al. (2012). As pointed out by Sugiyama
et al. (2010), a further non-negligible advantage of using REM, and in particular the
ratio matching approach, is the applicability of gradient-based algorithms and quasi-
Newton methods for optimization over r̂(x).

In the analyses of the present work we use the ratio matching approach and
the Kullback–Leibler importance estimation procedure (KLIEP) (Hido et al., 2011;
Sugiyama et al., 2010, 2008) in order to estimate, at the end of each iteration t, the
ratio of densities defined in (2.1). Recall that the densities involved in (2.1) are π̂εt(θ)
and π̂εt−1(θ). Once the ratio between π̂εt(θ) and π̂εt−1(θ) has been estimated, the supre-
mum of (2.1) is calculated by using an optimizer over the parameter space, such as the
one proposed by Brent (2013). The quantile used to reduce the tolerance for the coming
iteration is finally retrieved by using (2.2). The steps discussed above are performed at
the end of each iteration as long as the stopping rule, defined in (2.5) and discussed
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below, is not satisfied. Estimation of r̂ is carried out by using the densratio package,2

which is freely available in the R software (R Core Team, 2019).

The acceptance rate is also useful for evaluating the computational burden of the
ABC-PMC algorithm, defined as:

acct =
N

Dt
, (2.4)

where Dt is the number of draws done at iteration t in order to produce N accepted
values. Equation (2.4) generally decreases with each iteration because as the tolerance
decreases, the number of elements Dt required to get N accepted particles generally
increases (Lintusaari et al., 2017).

2.2 Stopping Rule

There are several published ideas in the literature on how to determine the number of
iterations in an ABC-PMC algorithm. Often one picks some T based on the compu-
tational resources available, but this can be needlessly inefficient. Ishida et al. (2015)
proposed to stop the algorithm once the acceptance rate is smaller than some specified,
fixed tolerance. The proposed stopping rule is directly based on the estimated sequen-
tial ABC posterior distributions, which avoids unnecessary additional iterations of the
algorithm.

The ABC-PMC algorithm produces a sequence of T posterior distributions, π̂εt ,
where εt identifies the tolerance used in iteration t, with t = 1, . . . , T and ε1 > ε2 >
· · · > εT . When defining a stopping rule, it turns out that (2.2) can be used not only to
adaptively selecting the quantile used to reduce the tolerance across the iterations, but
also to indicate when to stop the procedure once the sequential ABC posterior stops
changing significantly.

The series of quantiles defined through (2.2) generally increases as the tolerance
decreases. In particular, since the quantile used to reduce the tolerance is based on
the online performance of the ABC posterior distribution, once the ABC posterior has
stabilized, qt ≈ 1. This follows directly from (2.1) because once the ABC posterior has
stabilized ĉt ≈ 1, and further reductions of the tolerance (i.e. additional iterations) do
not necessarily lead to an improvement by the ABC posterior distribution. In other
words, once the ABC posterior stabilizes, the series of the quantiles defined through
(2.2) stops increasing and the upper bound of 1 implies that no further reduction will
improve the ABC posterior distribution. This leads to an automatic and simple stopping
rule, which is employed starting from the third iteration, i.e. once the transformation
kernel has been used twice to avoid premature stopping. Our algorithm is stopped at
time t when

qt > 0.99 for t ≥ 3. (2.5)

Hence, the algorithm is stopped once the quantile used to reduce the tolerance suggests
that further reduction is not necessary since the ABC posterior has stabilized.

2https://github.com/hoxo-m/densratio.

https://github.com/hoxo-m/densratio
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Using (2.2) as an automatic rule to shrink the tolerance and (2.5) as the stopping
rule, the ABC-PMC algorithm is stopped once additional iterations with smaller toler-
ances do not lead to significant changes in the ABC posterior.3

3 Illustrative Examples

Next we provide a comparison between the original ABC-PMC algorithm and our ex-
tension proposed in Section 2, the aABC-PMC, by using three examples. In the first
example the Gaussian mixture model by Sisson et al. (2007) is used in order to demon-
strate the computational efficiency of the proposed aABC-PMC procedure. Then the
aABC-PMC algorithm is used for a model from Silk et al. (2013), which has local
modes, in order to illustrate how the proposed automatic tolerance selector is able to
avoid getting stuck in local regions of the parameter space. The final example, origi-
nally presented in Numminen et al. (2013), uses data on colonizations of the bacterium
Streptococcus pneumoniae and represents a computationally expensive forward model.
Expensive forward models are a challenge for ABC methods because the computational
cost can be prohibitive for practical applications, and in these cases selecting an appro-
priate sequence of tolerances is crucial. A fourth example, the Lotka–Volterra model by
Toni et al. (2009), is presented (see Appendix A in Supplementary Material, Simola et
al., 2020).

In order to compare the proposed procedure with the original ABC-PMC algorithm,
both the computational time and the total number of draws until the stopping criterion
is satisfied are considered. The Hellinger distance is used for evaluating the similarity
between the 1-dimensional marginal ABC posterior distributions at the final iteration,
π̂εT , and a benchmark, πtrue, which is defined as:

H(π̂εT , πtrue) =

(∫ (√
π̂εT (y)−

√
πtrue(y)

)2

dy

) 1
2

. (3.1)

The benchmark, πtrue, is the true posterior distribution if it is available in closed form,
which is the case in the first two presented examples (see Sections 3.1 and 3.2). In the
final example, since the true posterior distribution is not available, the ABC posteriors
from Numminen et al. (2013), are used as benchmarks (see Section 3.3).

In order to estimate the 1-dimensional marginal ABC posterior distributions from
the samples and their corresponding importance weights, a KDE (Silverman, 2018) is
used with a Gaussian kernel and a smoothing bandwidth parameter h. The bandwidth
is selected using Silverman’s rule-of-thumb (Silverman, 1986).

Finally, unless otherwise noted, the number of particles in the ABC procedures is
set to N = 1, 000.

3The desired sample size N has an impact on the evaluation of (2.5). This problem arises also in the
classical Markov Chain Monte–Carlo (MCMC) analysis when determining the length of the MCMC
chain (Gelman et al., 2014). An N that is too small leads to more variability of the estimated posterior
in (2.5), which could lead to the algorithm stopping prematurely.
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Sisson et al. (2007) aABC-PMC

t εt Dt Hdist t εt qt Dt Hdist

1 1.000 2,595 0.34 1 1.96 5,000 0.39

2 0.5013 8,284 0.29 2 0.45 0.20 7,095 0.29

3 0.2519 8,341 0.26 3 0.072 0.15 24,216 0.22

4 0.1272 7,432 0.24 4 0.035 0.45 44,919 0.20

5 0.0648 10,031 0.23

6 0.0337 17,056 0.20

7 0.0181 34,178 0.21

8 0.0102 72,704 0.20

9 0.0064 171,656 0.19

10 0.0025 1,089,006 0.20

Total 1,421,283 81,230

Table 1: Gaussian mixture model. The number of draws needed in each iteration to
reach N = 1, 000 accepted values for the ABC-PMC and the aABC-PMC algorithm.
(The displayed results were obtained by running the procedure 21 times and using the
run that produced the median number of total draws.) For the aABC-PMC algorithm,
the quantile automatically selected through the iterations is displayed under qt. The
procedure stopped once the quantile q5 = 0.999 was proposed. For the ABC-PMC
algorithm a total of 1, 421, 283 (243 sec.) draws were required, while our aABC-PMC
takes 81, 230 (88 sec.) draws overall.

3.1 Gaussian Mixture Model

The first application of the aABC-PMC is an example from Sisson et al. (2007), which
is also analyzed by Beaumont et al. (2009). It is a Gaussian mixture model with two
Gaussian components with known variances and mixture weights, but an unknown
common mean, f(y | θ) = 0.5N (θ, 1) + 0.5N (θ, 0.01) and prior π(θ) ∼ Unif(−10, 10).
With a single observation yobs = 0, the true posterior distribution is

π(θ | yobs) ∼ 0.5N (0, 1) + 0.5N (0, 0.01). (3.2)

For consistency with the results of Sisson et al. (2007) and Beaumont et al. (2009),
the distance function used is ρ (yobs, yprop) = |yobs − yprop|, N = 1, 000, and a Gaussian
kernel for resampling the particles is used. Both Sisson et al. (2007) and Beaumont
et al. (2009) manually define the series of tolerances. In particular, Sisson et al. (2007)
carry out T = 10 iterations with a fixed series of tolerances ε1:10 displayed in Table 1.
To evaluate the reliability of the aABC-PMC, a comparison with the ABC-PMC is
done both in terms of computational time and total number of draws. The results of
the analysis are shown in Table 1 and are based on 21 independent runs with the
same dataset, yobs = 0. The table includes the values for the run that produced the
median number of total draws. The aABC-PMC outperforms ABC-PMC in the terms
of total draws (81,230 vs 1,421,283) and a faster computational time (88 seconds vs
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Figure 2: Gaussian mixture model example. (a) ABC-PMC and aABC-PMC final pos-
terior distributions and (b) sequential quantities computed for the aABC-PMC method.
The qt’s (black circles) generally increase through the iterations until the ABC posterior
has stabilized. The acceptance rate (blue triangles) decreases throughout the iterations,
which is why it is desirable to stop the algorithm once the ABC posterior has stabi-
lized.

243 seconds). The final ABC posteriors for each method are displayed in Figure 2a.

Though the aABC-PMC method is computationally more efficient than the ABC-PMC

approach, the final ABC posteriors are very similar. This suggests that after a suitable

tolerance is achieved, decreasing the tolerance further does not necessarily lead to a

better approximation of the posterior distribution.

From Table 1, we note that the final tolerance for Sisson et al. (2007) is ε10 = 0.0025

(Hdist = 0.20) while the automatic stopping rule of aABC-PMC leads to 4 iterations

with a final tolerance of ε4 = 0.035 (Hdist = 0.20). In Figure 2b, the qt’s retrieved by

using (2.2) are displayed (black circles), which increase until the final iteration, while

the acceptance rate (blue triangles) decreases. Neglecting to stop the algorithm once

the ABC posterior has stabilized can be inefficient since the number of draws needed

in order to complete further iterations can drastically increase, as evidenced by the

increasing Dt for later iterations displayed in Table 1.

Next, we show the behavior of the aABC-PMC algorithm for different choices of

the number of proposed values from the prior distribution at the first iteration of

the procedure. Initial particle sample sizes, Ninit, of N, 2N, 5N, and 10N are con-

sidered (with N = 1, 000), and the results are displayed in Table 2. The initial par-

ticle sample size that seems to best balance the total number of draws and the time

required to satisfy the stopping rule in this example is 5N , with similar final ABC

posterior distributions based on Hdist (see Table 2); the posteriors are displayed in

Figure 3.
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T Dt ε1 εT time (sec) Hdist

N 14 276,885 11.54 0.035 208 0.23
2N 10 109,720 4.97 0.077 150 0.29
5N 4 81,230 1.96 0.035 88 0.20

10N 4 90,194 1.00 0.059 105 0.17

Table 2: aABC-PMC algorithm with different choices for Ninit (N, 2N, 5N, 10N) for the
Gaussian mixture model example.

Figure 3: aABC-PMC posteriors with different choices for Ninit (N, 2N, 5N, 10N) for
the Gaussian mixture model example.

Using the EasyABC R package4 we carried out the same analysis for the ABC-SMC
algorithm by Del Moral et al. (2012). The ABC-SMC algorithm by Del Moral et al.
(2012) is discussed in Section 3.3. For each initial particle sample size, Ninit, of N, 2N,
5N, and 10N, 21 independent runs with the same dataset are performed and the runs
that produced the median number of total draws are compared to the corresponding run
obtained by our adaptive approach. Our choices for setting the parameters required by
the ABC-SMC algorithm (see Section 3.4) are: N = 1, 000, ε = 0.035, α = 0.5, M = 1
and nbthreshold = N/2. We note that for the last three parameters, the default values are
used, according to the suggestions by Del Moral et al. (2012). The results of the analysis
are summarized in Table 3 and the corresponding posterior distributions are displayed in
Figure 4. For all four Ninit values considered, the final tolerances returned by the ABC-
SMC algorithm are comparable with the one obtained by our approach with Ninit =
5N (ε4 = 0.035). However the corresponding ABC-SMC posterior distributions do not
match the true posterior distribution as well as our proposed approach. In particular,
the ABC-SMC algorithm does not seem to capture the (low) variance coming from the
second component of the Gaussian mixture model. Similar results were also obtained
by the ABC-SMC sampler proposed in Bonassi and West (2015). A further comparison
when using the ABC-SMC algorithm by Del Moral et al. (2012) is available in the
Appendix B of the Supplementary Material.

4https://cran.r-project.org/web/packages/EasyABC.

https://cran.r-project.org/web/packages/EasyABC
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Dt time (sec) Hdist εt
N 25,023 17 0.35 0.037

2N 47,192 54 0.37 0.031
5N 124,890 322 0.33 0.031

10N 249,696 1254 0.34 0.03

Table 3: ABC-SMC algorithm with different choices for Ninit (N, 2N, 5N, 10N) for the
Gaussian mixture model example.

Figure 4: ABC-SMC final posterior distributions with different choices for Ninit

(N, 2N, 5N, 10N) for the Gaussian mixture model example.

3.2 Presence of a Local Mode

The sequence of tolerances has an impact not only on the computational efficiency
of the algorithm, but also on its ability to find the true posterior (Silk et al., 2013),
noting again that convergence to the true posterior using ABC is not guaranteed. To
demonstrate the performance of aABC-PMC in the presence of local modes, we consider
an example proposed in Silk et al. (2013). The (deterministic) forward model is g(θ) =
(θ − 10)2 − 100 exp(−100(θ − 3)2). The input value is set to θ = 3 leading to a single
observation yobs = −51. The true posterior distribution is a Dirac function at 3. The
specifications for the distance function (L1 norm), the prior distribution (a normal
distribution with mean of 10 and variance of 10), and the desired number of particles
(N = 1, 000) are taken from Silk et al. (2013).

Figure 5 displays the locations of the accepted particles (orange x’s) against the dis-
tances for a range of θ’s, which highlights the challenge for ABC with this model. There
is a local minimum distance around θ = 10, but the global minimum distance occurs at
the true value of θ = 3. Initial steps of the ABC algorithm will find the local minimum,
but the algorithm can easily get stuck around θ = 10 if the sequential tolerances are
not selected carefully. The series of plots in Figure 5 shows the behavior of the aABC-
PMC algorithm by focusing on the values for θ that were accepted (orange x’s). After
6 iterations, the aABC-PMC algorithm has found the global minimum distance around
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Figure 5: Example from Silk et al. (2013) to investigate the performance of the proposed
aABC-PMC in the presence of a local optimal value. The accepted θ are plotted as
orange x’s against the corresponding distance by iteration.

the true θ. The results of the analysis, based on 21 independent runs, are summarized
in Table 4, where 384, 347 total particles were used by the proposed aABC-PMC algo-
rithm. The table includes the values for the run that produced the median number of
total draws.

It is apparent from Figure 5 that the third iteration was an important step in
which the large reduction of the tolerance allowed the algorithm to consider those few
particles coming from the global optimal value at θ = 3. Although the raw tolerance
hardly decreases between the first and the second iteration (ε1 = 51.59 and ε2 = 51.02),
there is a substantial change between the ABC posteriors, from π̂ε2 to π̂ε3 . The majority
of the accepted values from t = 2 are sampled near the local mode at θ = 10, but the
reduction resulting from the slightly smaller ε3 leads to the majority of values proposed
near θ = 3 to be accepted.

In order to compare the proposed aABC-PMC algorithm with the ABC-PMC ap-
proach of Silk et al. (2013) (see Section 1.1), we estimated the TAR curve and the
corresponding thresholds (Silk et al., 2013). The TAR curve is obtained by plotting
on the x-axis several thresholds ε that might be picked for the next iteration of ABC
simulations and on the y-axis their corresponding acceptance rates. The threshold ε rec-
ommended for the next ABC-PMC iteration is then selected by locating the “elbow” of
the estimated TAR curve (Silk et al., 2013). Since the forward model is computationally
cheap, an approximation to the forward model was not needed. Instead, the TAR curve
was estimated at each iteration by setting arbitrary grid points of tolerances having
range in (0, εt−1), running the ABC-PMC algorithm (for t > 1 the previous iteration’s
particle system and the Gaussian perturbation kernel are used), and then calculating
the acceptance rate according to (2.4). This procedure was repeated 100 times and the
resulting average TAR curve was used to retrieve the tolerance for the coming iteration,
as was done in Figure 2(left) of Silk et al. (2013). As result, a plot of acceptance rate vs.
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TAR curve (Silk et al., 2013) aABC-PMC

t εt Dt Hdist t εt qt Dt Hdist

1 150 1,000 1.37 1 51.59 5,000 1.38

2 51.26 11,560 1.26 2 51.02 0.19 8,130 1.36

3 50.84 1,403,040 0.174 3 51.00 0.16 99,596 0.68

4 39.33 0.17 138,972 0.43

5 0.07 0.06 32,045 0.067

6 0.00025 0.90 100,604 0.064

Total 1,415,600 384,347

Table 4: The number of draws needed in each iteration to reach N = 1, 000 accepted
values for the ABC-PMC with the TAR curve-selected tolerances and the aABC-PMC
algorithm. (The displayed results were obtained by running the procedure 21 times
and using the run that produced the median number of total draws.) For the aABC-
PMC algorithm, the quantile automatically selected through the iterations is displayed
under qt. The procedure stopped once the quantile q7 = 0.9991 was calculated. For
the ABC-PMC algorithm a total of 1, 415, 600 (310 sec.) draws are required, while our
aABC-PMC takes 384, 347 (258 sec.) draws overall. The number of draws listed for Silk
et al. (2013) does not include the draws required to build the TAR curve; however, we
did include the TAR curve construction in the computational time.

tolerances was obtained; the tolerance is set at the value corresponding to the elbow of
the TAR curve. The series of tolerances, displayed together with the number of draws in
Table 4, is ε1:3 = (150, 51.26, 50.84) and the corresponding ABC posterior distributions
are displayed in Figure 6a. The number of draws listed for Silk et al. (2013) does not
include the draws required to build the TAR curve; however, we did include the TAR
curve construction in displayed computational time. We note that the true posterior
distribution, which is a Dirac function centered in θ = 3, is not suitably approximated
by Silk et al. (2013) (Hdist = 0.17).

In order to calculate the Hellinger distance in this example, we approximate the
true posterior (i.e., a Dirac function at θ = 3) with an N -dimensional vector with all
elements equal to 3.

For t = 4, the estimated TAR curve did not have an elbow and, consequently, there
was no additional shrinkage of the tolerance resulting in an ABC posterior that was
not a suitable approximation to the true posterior distribution; the final tolerance ε3
was too high. We tried making adjustments to the TAR curve grid to see if this could
be improved. When using fewer grid points (e.g. 10) for the TAR curve, we were able
to improve the performance. However, this improved performance was due to poorer
approximation to the TAR curve. In general, it would be preferable if a better estimate of
the TAR curve lead to better performance. A higher resolution TAR curve grid with 1000
grid points also was not able to find the global optimal solution. In contrast, as shown
in Figure 6b, the proposed aABC-PMC approach provides a better approximation of
the true posterior distribution although the number of draws required by the simulator
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Figure 6: ABC posterior distributions by iteration using (a) the TAR curve, and (b)
the proposed aABC-PMC algorithm. The true posterior distribution, which is a Dirac
function centered at θ = 3 is better captured by the aABC-PMC algorithm (Hdist =
0.064), compared to the ABC-PMC method based on the TAR curve (Hdist = 0.17).
Note that the vertical axes are on different scales.

is only of 384, 347 (compared to 1,415,600 draws required by ABC-PMC with the 100
point TAR curve grid).

Silk et al. (2013) note that if the particles are sampled from a large region of the
parameter space that has a negligible mass in the posterior distribution, there is a risk of
getting stuck in this parameter region if the tolerance is not selected carefully. In other
words, the parameter space needs to be sufficiently explored in order to get enough
particles in regions near the global optimal value. In the first iteration of the aABC-
PMC algorithm the number of particles sampled directly from the prior was kN with
k = 5, which seems to work well in the examples considered. We emphasize that moving
toward relevant regions of the parameter space needs to happen in the first few iterations
of the ABC-PMC procedure, since uniformly small reductions in the tolerance sequence
(e.g. using a fixed qt ≥ 0.25) could end up removing those few important particles near
the global optimal value, even if the number of particles sampled directly from the prior
is 5N .

The initial exploration of the parameter space and the definition of small enough
quantiles in the first iterations appears to be why in the procedure based on the TAR
curve, the total number of draws needed by the ABC-PMC algorithm is large, mak-
ing it very expensive computationally. In fact, at the end of the second iteration, the
majority of the previous iteration’s accepted particles are drawn near the local mini-
mum. Moreover, since their Ninit = N , only few candidates close to the global opti-
mum are available. This means that when a particle is resampled, it will likely come
from regions near to the local minimum and therefore it may be easily rejected dur-
ing the third iteration of the ABC-PMC algorithm, for which the selected tolerance is
ε3 = 50.84.



414 Adaptive Approximate Bayesian Computation Tolerance Selection

Dt time (sec) Hdist εt
N 56,535 31 0.374 0.00027

2N 111,478 106 0.368 0.00050
5N 278,412 606 0.388 0.00017

10N 521,945 2305 0.41 0.00022

Table 5: ABC-SMC algorithm with different choices for Ninit (N, 2N, 5N, 10N) for the
Silk et al. (2013)’s model.

Figure 7: ABC-SMC final posterior distributions with different choices for Ninit

(N, 2N, 5N, 10N) for the Silk et al. (2013)’s model.

The proposed aABC-PMC algorithm allows for small qt’s early on, when larger im-
provements occur between the sequential ABC posteriors. By doing so, larger reductions
in the tolerance sequence can be taken in the first iterations of the ABC-PMC, which
results in moving away from local optimal values into better regions of the parameter
space. If a sufficient reduction of the tolerance is not made early on, achieving a good
approximation of the true posterior distribution is unlikely because the distances asso-
ciated with the local optimal values will overwhelm the particle system so that it gets
stuck in the local region.

As previously done for the Gaussian Mixture Model example presented in Section 3.1,
we conclude the analysis of this model by performing a comparison between our adap-
tive aABC-PMC approach and the ABC-SMC algorithm by Del Moral et al. (2012).
Again, four initial particle sample sizes of Ninit are considered (N, 2N, 5N, and 10N)
and 21 independent runs with the same dataset are performed. The results include the
runs that produced the median number of total draws and are compared to the cor-
responding results obtained by our adaptive approach. The 5 parameters required by
the ABC-SMC algorithm have been fixed as follows: N = 1, 000, ε = 0.00025, α = 0.5,
M = 1 and nbthreshold = N/2. We note again that default values are used for the last
three parameters, following the suggestions by Del Moral et al. (2012). The results of
the analysis are summarized in Table 5 and the corresponding posterior distributions
are displayed in Figure 7. From Table 5 with k = 5, although the number of total draws
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of the ABC-SMC algorithm is smaller than the corresponding total number of draws
obtained by the adaptive aABC-PMC, our procedure is faster in terms of computational
time. Moreover, the final ABC posterior distribution obtained by the aABC-PMC al-
gorithm (Hdist = 0.064) matches the true posterior distribution better than the one
obtained by the ABC-SMC sampler (Hdist = 0.388). On the other hand, the ABC-SMC
sampler successfully explores relevant regions of the parameter space for k = 1 and
k = 2, while our aABC-PMC failed to reach the global mode for k = 1, 2 because too
few particles from the global mode were drawn in the first iteration of the procedure.
However, the final ABC posterior distribution obtained by the aABC-PMC algorithm
with the recommended k = 5, and for which Hdist = 0.064, better matches the true
posterior compared to any ABC posterior distribution obtained by the ABC-SMC al-
gorithm (Figure 7).

3.3 Bacterial Infection in Day Care Centers Example

The final model we consider, discussed by Numminen et al. (2013), uses data on colo-
nizations of the bacterium Streptococcus pneumoniae. Discussion about mathematical
models for such scenarios, known as household models, can be found in Hoti et al. (2009)
or Brooks-Pollock et al. (2011). According to the specifications provided in Numminen
et al. (2013), the transmission process is modeled with four parameters. Two parame-
ters, β and Λ, account for the hazards of infection from the day care center and from the
community, respectively. Another parameter, θ, scales the probability of co-infection.
Finally, the parameter γ corresponds to the rate of clearance of an infection. In the fol-
lowing analyses we considered γ = 1 fixed and known, to be consistent with the analysis
in Numminen et al. (2013).

The observed data consists of the identified pneumococcal strains in a total of 611
children from 29 day care centers, with varying numbers of sampled attendees per day
(Vestrheim et al., 2008, 2010). For each of the 29 day care centers, a binary matrix with
varying number of sampled attendees is available. For each sampled attendee, the state
of carrying one of the 33 different pneumococcal strains or not is indicated by a 1 or
0, respectively, in the binary matrix. As pointed out in Gutmann and Corander (2016)
statistical inference is challenging in this setting since the data represent a snapshot of
the state of the sampled attendees at a single time point only. Moreover, the modeled
system involves infinitely many correlated unobserved variables, since the modeled pro-
cess evolves in continuous time. Using the observed colonizations with bacterial strains,
the following four summary statistics are obtained for each of the 29 day care centers:
the Shannon index of diversity of the distribution of the observed strains, the number
of different strains, the prevalence of carriage among the observed individuals, and the
prevalence of multiple infections among the observed individuals. By doing so, the di-
mensionality of the problems reduces from a 611 · 33 · 29 = 584, 727 dimensional space
to a 4 · 29 = 116 dimensional space.

Numminen et al. (2013) use the four summary statistics and four tolerances, ε =
(ε1, ε2, ε3, ε4), for each iteration of their procedure. Instead, we use the approach of
Gutmann and Corander (2016). Each of the four summary statistics is rescaled so that
the maximum value for each of the four the summary statistics is one. Then the summary
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statistics are vectorized in order to obtain a single vector of dimension 116. Finally the
L1 distance between the vector corresponding to yprop and the vector corresponding to
yobs is calculated, with the result divided by 116. By doing so, only one tolerance is
used in the ABC procedure.

The series of tolerances used in Numminen et al. (2013) was based on the ABC-
Sequential Monte Carlo (ABC-SMC) method proposed by Del Moral et al. (2012). The
ABC-SMC method of Del Moral et al. (2012) adaptively proposes a series of tolerances
by estimating, at the end of each iteration, the effective sample size (ESS). For a generic
iteration t the ESS is defined as:

ESS({W (J)
t }NJ=1) =

(
N∑

J=1

(
W

(J)
t

)2
)−1

, (3.3)

where W
(J)
t is the importance weight for particle J = 1, . . . , N at iteration t as defined

in (1.1). Once the ESS is estimated by using (3.3), the new tolerance εt+1 is obtained
by solving the following for εt+1:

ESS({W (J)
t }NJ=1, εt+1) = qtESS({W (J)

t−1}NJ=1, εt), (3.4)

where qt is some pre-selected quantile which varies between 0 and 1. Numminen et al.
(2013) had to adjust this to work for their setting with four tolerances. We note that
our aABC-PMC approach does not require the specification of a quantile qt, nor other
parameters such as the number M of simulations performed for each particle, the min-
imal effective sample size threshold below which a resampling of particles is performed,
nbthreshold, and the final tolerance level, εfinal. Further details on the ABC-SMC algo-
rithm and discussions on how to properly select its required parameters can be found
in Del Moral et al. (2012).

The prior distributions for the three parameters of interest are β ∼ Unif(0, 11),
Λ ∼ Unif(0, 2), and θ ∼ Unif(0, 1). Starting from the second iteration of the ABC-PMC
algorithm, proposals are perturbed with Gaussian kernels, using the specifications of
Beaumont et al. (2009). The desired particle sample size was set at N = 10, 000. For the
aABC-PMC algorithm, the initial number of draws sampled from the prior distributions
is set to Ninit = 5× 10, 000, in order to appropriately explore the parameter space.

The results of the analysis are summarized in Table 6, where the proposed adaptive
rule for selecting the quantile performs better than the ABC-SMC algorithm both in
terms of the computational time (3 days and 5 hours vs. 4 days and 12 hours using a
cluster computer) and the total number of draws (1, 085, 696 draws vs. 2, 199, 760 draws).
Because the proposed sampling procedure stops after t = 4 iterations, the expensive
forward model is used fewer times, achieving final posterior distributions in a shorter
amount of time. We note that the number of particles sampled in the first iteration has
an important role in the performance of the algorithm. In fact, having sampled from
the priors D1 = 50, 000 particles allowed the aABC-PMC algorithm to initiate with a
smaller tolerance ε1 = 1.26 compared to the ABC-SMC algorithm (ε1 = 3.91 by fixing
D1 = 10, 000 particles).
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Numminen et al. (2013) aABC-PMC

t εt Dt t εt qt Dt

1 3.91 10,000 1 1.26 50,000

2 1.94 121,374 2 1.04 0.19 154,142

3 1.28 277,997 3 0.97 0.31 489,239

4 0.99 572,007 4 0.93 0.74 792,315

5 0.84 1,218,760

Total 2,199,760 1,085,696

Table 6: Bacterial infection in day care centers results. The number of draws needed
in each iteration to reach N = 10, 000 accepted values for the ABC-SMC as presented
in Gutmann and Corander (2016) and the proposed aABC-PMC algorithm. In the
aABC-PMC algorithm also the quantile automatically selected through the iterations is
available. The procedure stopped once the quantile q5 = 0.993 was calculated. For the
ABC-SMC algorithm a total of 2, 199, 760 (4 days and 12 hours on a cluster with 200
cores) draws are required, while our aABC-PMC takes 1, 085, 696 draws (3 days and 5
hours on a cluster with 200 cores).

Figure 8: Bacterial infection in day care centers ABC posteriors. Comparison between
the final posterior distributions for β, λ and θ obtained by using Del Moral et al. (2012)’s
adaptive selection of the tolerances (solid black) and by using the aABC-PMC algorithm
(dashed blue).

The ABC posteriors for the three parameters β, Λ and θ for the tolerances of Num-
minen et al. (2013) selected by using ABC-SMC and the proposed aABC-PMC approach
are displayed in Figures 8. We note that the final tolerance from Numminen et al. (2013),
ε5 = 0.83, is slightly smaller than the final tolerance of aABC-PMC, ε4 = 0.93, but the
posteriors for β, Λ and θ are comparable, with the Hellinger distances respectively equals
to Hdist = 0.079, 0.097, 0.093.5

5The Hellinger distances are calculated between the ABC posterior distributions found by Nummi-
nen et al. (2013) and the corresponding ABC posterior distributions retrieved with our aABC-PMC
approach.
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4 Concluding Remarks

The ABC-PMC algorithm of Beaumont et al. (2009) has lead to great improvements
over the basic ABC rejection algorithm in terms of sampling efficiency. However, to use
ABC-PMC it is necessary to define a sequence of tolerances along with the total number
of iterations. We propose an approach leveraging ratio estimating methods for shrinking
the tolerances by adaptively selecting a suitable quantile based on the progression of the
estimated ABC posteriors. The proposed adjustment to the existing algorithm is shown
to be able to deal with the possible presence of local modes and shrinks the tolerance in
such a way that fewer draws are needed from the forward model compared to commonly
used techniques for selecting the tolerances. A simple criterion for stopping the algorithm
based on the behavior of the sequential ABC posterior distribution is also presented.
The empirical performance in the examples considered suggests the proposed aABC-
PMC algorithm is superior to the other options considered in terms of computational
time and the number of draws from the forward model. Based on the computational
experiments we envisage that the proposed aABC-PMC algorithm performs generally
well when dealing with small to moderate dimensional problems for which the original
ABC-PMC algorithm was developed. It remains as a challenge for the future research
to generalize these samplers to higher dimensional models.

Supplementary Material

Supplementary Material of “Adaptive Approximate Bayesian Computation Tolerance
Selection” (DOI: 10.1214/20-BA1211SUPP; .pdf).
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