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Predictive inference with Fleming–Viot-driven
dependent Dirichlet processes

Filippo Ascolani∗, Antonio Lijoi†,§ and Matteo Ruggiero‡

Abstract. We consider predictive inference using a class of temporally dependent
Dirichlet processes driven by Fleming–Viot diffusions, which have a natural bear-
ing in Bayesian nonparametrics and lend the resulting family of random probabil-
ity measures to analytical posterior analysis. Formulating the implied statistical
model as a hidden Markov model, we fully describe the predictive distribution in-
duced by these Fleming–Viot-driven dependent Dirichlet processes, for a sequence
of observations collected at a certain time given another set of draws collected at
several previous times. This is identified as a mixture of Pólya urns, whereby the
observations can be values from the baseline distribution or copies of previous
draws collected at the same time as in the usual Pólya urn, or can be sampled
from a random subset of the data collected at previous times. We characterize
the time-dependent weights of the mixture which select such subsets and discuss
the asymptotic regimes. We describe the induced partition by means of a Chinese
restaurant process metaphor with a conveyor belt, whereby new customers who
do not sit at an occupied table open a new table by picking a dish either from the
baseline distribution or from a time-varying offer available on the conveyor belt.
We lay out explicit algorithms for exact and approximate posterior sampling of
both observations and partitions, and illustrate our results on predictive problems
with synthetic and real data.

MSC2020 subject classifications: Primary 62F15; secondary 62G25, 62M20.

Keywords: Chinese restaurant, conveyor belt, random partition, hidden Markov
model, generalized Pólya urn, predictive distribution.

1 Introduction and summary of results

Bayesian nonparametric methodology has undergone a tremendous development in the
last decades, often standing out among competitors for flexibility, interpretability and
computational convenience. See, for example, Hjort et al. (2010); Müller et al. (2015);
Ghosal and van der Vaart (2017). The cornerstone of Bayesian nonparametrics is the
sampling model based on the Dirichlet process (Ferguson, 1973), whereby

Yi | X = x
iid∼ x, X ∼ Πα. (1.1)
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Here, given a sampling space Y , we use X to denote a random probability measure
(RPM) on Y , and observations Yi are assumed to be independent with distribution x
when X = x. We also denote by Πα the distribution X induces on the space P(Y) of
probability measures on Y , with α = θP0, θ > 0 and P0 a probability measure on Y .
Notable properties of the Dirichlet process are its large weak support and conjugacy,
whereby the conditional RPM X, given observations Y1, . . . , Yn from (1.1), is still a
Dirichlet process with updated parameter α+

∑n
i=1 δYi .

The great appeal offered by the relative simplicity of the Dirichlet process boosted
a number of extensions, among which some of the most successful are mixtures of
Dirichlet processes (Antoniak, 1974), Dirichlet process mixtures (Lo, 1984), Pólya trees
(Mauldin et al., 1992; Lavine, 1992), Pitman–Yor processes (Perman et al., 1992; Pitman
and Yor, 1997), Gibbs-type random measures (Gnedin and Pitman, 2005; De Blasi et
al., 2015), normalised random measures with independent increments (Regazzini et al.,
2003; Lijoi et al., 2005, 2007), to mention a few. The common thread linking all the
above developments is the assumption of exchangeability of the data, equivalent to the
conditional independence and identity in distribution in (1.1) by virtue of de Finetti’s
Theorem. This can be restrictive when modelling data that are known to be generated
from partially inhomogeneous sources, as for example in time series modelling or when
the data are collected in subpopulations. Such framework can be accommodated by
partial exchangeability, a weaker type of dependence whereby observations in two or
more groups of data are exchangeable within each group but not overall. If groups are
identified by a covariate value z ∈ Z, then observations are exchangeable only if their
covariates have the same value.

One of the most active lines of research in Bayesian nonparametrics in recent years
aims at extending the basic paradigm (1.1) to this more general framework. Besides
pioneering contributions, recent progresses have stemmed from MacEachern (1999), who
called a collection of RPMs {Xz, z ∈ Z} indexed by a finite-dimensional measurement
z ∈ Z a dependent Dirichlet process (DDP) if each marginal measure Xz is a Dirichlet
process with parameter that depends on z.

Here we focus on DDPs with temporal dependence, and replace z with t ∈ [0,∞)
representing time. Previous contributions in this framework include Dunson (2006);
Caron et al. (2007); Rodriguez and ter Horst (2008); Griffin and Steel (2010); Caron
and Teh (2012); Mena and Ruggiero (2016); Caron et al. (2017); Gutierrez et al. (2016);
Canale and Ruggiero (2016); Kon Kam King et al. (2020). Many proposals in this
area start from the celebrated stick-breaking representation of the Dirichlet process
(Sethuraman, 1994), whereby X in (1.1) is such that

X
d
=

∑
i≥0

Vi

i−1∏
j=1

(1− Vj) δYi , Vi
iid∼ Beta(1, θ), Yi

iid∼ P0, (1.2)

and the temporal dependence is induced by letting each Vi and/or Yi depend on time in
a way that preserves the marginal distributions. This approach has many advantages,
among which: simplicity and versatility, since inducing dynamics on Vi or Yi allows for a
variety of solutions; flexibility, since under mild conditions the resulting processes have
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large support (cf. Barrientos et al. 2012); ease of implementation, since strategies for
posterior computation based on MCMC sampling are readily available. However, the
stick-breaking structure makes the analytical derivation of further posterior information,
like for example characterizing the predictive distribution of the observations, often a
daunting task. This typically holds for other approaches to temporal Bayesian nonpara-
metric modelling as well. Determining explicitly such quantities would not only give a
deeper insight into the model posterior properties, which otherwise remain obscure to a
large extent, but also provide a further tool for direct application or as a building block
in more involved dependent models, whose computational efficiency would benefit from
an explicit computation.

In this paper, we provide analytical results related to the posterior predictive dis-
tribution of the observations induced by a class of temporal DDP models driven by
Fleming–Viot processes. The latter are a class of diffusion processes whose marginal
values are Dirichlet processes. The continuous time dependence is a distinctive feature
of our proposal, compared to the bulk of literature in the area. In particular, here we
complement previous work done in Papaspiliopoulos et al. (2016), which focussed on
identifying the laws of the dependent RPMs involved, by investigating the distributional
properties of future observations, characterized as a mixture of Pólya urn schemes, and
those of the induced partitions.

More specifically, in Section 2 we detail the statistical model we adopt, which directly
extends (1.1) by assuming a hidden Markov model structure whereby observations are
conditionally iid given the marginal value of a Fleming–Viot-driven DDP. We recall
some key properties of this model, and include a new result on the weak support of the
induced prior. In Section 3 we present our main results. Conditioning on samples, with
possibly different sizes, collected at p times 0 = t0 < · · · < tp−1 = T , we characterize the
predictive distribution of a further sequence drawn at time T + t. This task can be seen
as a dynamic counterpart to obtaining the predictive distribution of Yk+1|Y1, . . . , Yk for
any k ≥ 1 in (1.1), when the RPM X is integrated out, which yields the Pólya urn

P(Yk+1 ∈ A|Y1, . . . , Yk) =
θ

θ + k
P0(A) +

k

θ + k
Pk(A), (1.3)

for any Borel set A of Y , where Pk denotes the empirical distribution of (Y1, . . . , Yk).
In the hidden Markov model framework, we identify the predictive distribution of ob-
servations from the DDP at time T + t to be a time-dependent mixture of Pólya urn
schemes. This can be thought of as being generated by a latent variable which selects a
random subset of the data collected at previous times, whereby every component of the
mixture is a classical posterior Pólya urn conditioned to a different subset of the past
data. We characterize the mixture weights, where the temporal dependence arises, and
derive an explicit expression for the correlation between observations at different time
points. Furthermore, we discuss two asymptotic regimes of the predictive distribution
– as the time index diverges, which recovers (1.3), and as the current sample size di-
verges, which links the sequence at time T + t with its de Finetti measure – and lay out
explicit algorithms for exact and approximate sampling from the predictive. Next, we
discuss the induced partition at time T + t and derive an algorithm for sampling from
its distribution. The partition sampling process is interpreted as a Chinese restaurant
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with conveyor belt, whereby arriving customers who do not sit at an already occupied
table, open a new table by choosing a dish either from the baseline distribution P0 or
from a temporally dependent selection of dishes that run through the restaurant on a
conveyor belt, which in turn depends on past dishes popularity. We defer all proofs to
the Supplementary Material (Ascolani et al. 2020). Finally, Section 4 illustrates the use
of our results for predictive inference through synthetic data and through a dataset on
the Karnofsky score related to a Hodgkins lymphoma study.

2 Fleming–Viot dependent Dirichlet processes

We consider a class of dependent Dirichlet processes with continuous temporal covariate.
Instead of inducing the temporal dependence through the building blocks of the stick-
breaking representation (1.2), we let the dynamics of the dependent process be driven by
a Fleming–Viot (FV) diffusion. FV processes have been extensively studied in relation
to population genetics (see Ethier and Kurtz (1993) for a review), while their role in
Bayesian nonparametrics was first pointed out in Walker et al. (2007) (see also Favaro
et al., 2009). A loose but intuitive way of thinking a FV diffusion is of being composed
by infinitely-many probability masses, associated to different locations in the sampling
space Y , each behaving like a diffusion in the interval [0, 1], under the overall constraint
that the masses sum up to 1. In addition, locations whose masses touch 0 are removed,
while new locations are inserted at a rate which depends on a parameter θ > 0. As a
consequence, the random measures Xt and Xs, with t �= s, will share some, though not
all, their support points.

The transition function that characterizes a FV process admits the following natural
interpretation in Bayesian nonparametrics (cf. Walker et al., 2007). Initiate the process
at the RPM X0 ∼ Πα, and denote by Dt a time-indexed latent variable taking values
in Z+. Conditional on Dt = m ∈ Z+, the value of the process at time t is a posterior
DP Xt with law

Xt | (Dt = m,Y1, . . . , Ym) ∼ Πα+
∑m

i=1 δYi
Yi | X0

iid∼ X0. (2.1)

Here, the realisation of the latent variable Dt determines how many atoms m are drawn
from the initial state X0, to become atoms of the posterior Dirichlet from which the
arrival state is drawn. Such Dt is a pure-death process, which starts at infinity with
probability one and jumps from state m to state m−1 after an exponentially distributed
waiting time with inhomogenous parameter λm = m(θ+m−1)/2. The transition prob-
abilities of Dt have been computed by Griffiths (1980); Tavaré (1984), and in particular

P(Dt = m | D0 = ∞) = dm(t), (2.2)

where

dm(t) =

∞∑
k=m

e−λkt(−1)k−m (θ + 2k − 1)(θ +m)(k−1)

m!(k −m)!
,

where θ(k) = θ(θ + 1) · · · (θ + k − 1) is the ascending factorial or Pochhammer symbol,
with θ(0) = 1. Here the fact that D0 = ∞ almost surely should be understood as an
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entrance boundary, i.e., the process decreases from infinity at infinite speed so that at
each t > 0 the value of Dt is finite. The unconditional transition of the FV process is
thus obtained by integrating Dt, Y1, . . . , YDt out of (2.1), leading to

Pt(x, dx
′) =

∞∑
m=0

dm(t)

∫
Ym

Πα+
∑m

i=1 δyi
(dx′)x(dy1) · · ·x(dym). (2.3)

This was first found by Ethier and Griffiths (1993). It is known that Πα is the invariant
measure of Pt if X0 ∼ Πα, in which case all marginal RPMs Xt are Dirichlet processes
with the same parameter. In particular, the death process Dt determines the correlation
between RPMs at different times. Indeed, a larger t implies a lower m with higher
probability, hence a decreasing (on average) number of support points will be shared by
the random measures X0 and Xt when t increases. On the contrary, as t → 0 we have
Dt → ∞, which in turn implies infinitely-many atoms shared by X0 and Xt, until the
two RPMs eventually coincide. See Lijoi et al. (2016) for further discussion.

For definiteness, we formalize the following definition.

Definition 1. A Markov process {Xt}t≥0 taking values in the space of atomic proba-
bility measures on Y is a Fleming–Viot dependent Dirichlet process with parameter α,
denoted Xt ∼ FV-DDP(α), if X0 ∼ Πα and its transition function is (2.3).

Seeing a FV-DDP as a collection of RPMs, one is immediately led to wonder about
the support properties of the induced prior. The weak support of a FV-DDP is the
smallest closed set in B{P(Y)R+} with probability one, where P(Y) is the set of prob-
ability measures on Y and B{P(Y)R+} is the Borel σ-field generated by the product
topology of weak convergence. Barrientos et al. (2012) investigated these aspects for a
large class of DDPs based on the stick-breaking representation of the Dirichlet process.
Since no such representation is known for the FV process, our case falls outside that
class. The following proposition states that a FV-DDP has full weak support, relative
to the support of P0.

Proposition 1. Let α = θP0 and Y be the support of P0. Then the weak support of a
FV-DDP(α) is given by P(Y)R+ .

In order to formalize the statistical setup, we cast the FV-DDP into a hidden Markov
model framework. A hidden Markov model is a double sequence {(Xtn , Ytn), n ≥ 0}
where Xtn is an unobserved Markov chain, called hidden or latent signal, and Ytn are
conditionally independent observations given the signal. The signal can be thought of as
the discrete-time sampling of a continuous time process, and is assumed to completely
specify the distributions of the observations, called emission distributions. While the
literature on hidden Markov models has mainly focussed on finite-dimensional signals,
infinite-dimensional cases have been previously considered in Beal et al. (2002); Van
Gael et al. (2008); Stepleton et al. (2009); Yau et al. (2011); Zhang et al. (2014); Pa-
paspiliopoulos et al. (2016).

Here we take Xtn to be a FV-DDP as in Definition 1, evaluated at p times 0 = t0 <
· · · < tp−1 = T . The sampling model is thus

Y i
tn | Xtn = x

iid∼ x, i = 1, . . . , ntn , Xt ∼ FV-DDP(α), (2.4)
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where ntn is the number of observations collected at time tn. It follows that any two
variables Y i

tn , Y
j
tm are conditionally independent given Xtn and Xtm , with product dis-

tribution Xtn ×Xtm .

In addition, similarly to mixing a DP with respect to its parameter measure as in
Antoniak (1974), one could also consider randomizing the parameter α in (2.4), e.g. by
letting α = αγ and γ ∼ π on an appropriate space.

In the following, we will denote for brevity Yn := Ytn and Y0:T := (Y0, . . . ,YT ),
where Yi is the set of ni observations collected at time ti. We will sometimes refer to
Y0:T as the past values, since the inferential interest will be set at time T + t. We will
also denote by (y∗1 , . . . , y

∗
K) the K distinct values in Y0:T , where K ≤

∑T
i=0 ni. In this

framework, Papaspiliopoulos et al. (2016) showed that the conditional distribution of
the RPM XT , given Y0:T , can be written as

L(XT |Y0:T ) =
∑
m∈M

wmΠα+
∑K

j=1 mjδy∗
j

, (2.5)

where the weights wm can be computed recursively. In particular, M is a finite convex
set of vector multiplicities m = (m1, . . . ,mK) ∈ Z

K
+ determined by Y0:T , which identify

the mixture components in (2.5) with strictly positive weight. We will call M the set
of currently active indices. In particular, M is given by the points that lie between the
counts of (y∗1 , . . . , y

∗
K) in YT , which is the bottom node in a K-dimensional graph in

ZK
+ , and the counts of (y∗1 , . . . , y

∗
K) in Y0:T , which is the top node. For example, if T = 1

suppose we observe Y0 = (y∗1 , y
∗
2) for some values y∗1 �= y∗2 and Y1 = Y0, hence K = 2.

Then the top node is (2, 2) since in Y0:1 there are 2 of each of (y∗1 , y
∗
2) and the bottom

node is (1, 1) which is the counts of (y∗1 , y
∗
2) in Y1. Cf. Figure 1. Observations with

K = 3 distinct values would instead generate a 3-dimensional graph, with the origin
(0, 0, 0) linked to 3 level-1 nodes (1, 0, 0), (0, 1, 0), (0, 0, 1), and so on. In general, each
upper level node is obtained by adding 1 to one of the lower node coordinates.

We note here that the presence of dm(t) in (2.3) makes the computations with
FV processes in principle intractable, yielding in general infinite mixtures difficult to
simulate from (cf. Jenkins and Spanò 2017). It is then remarkable that conditioning on
past data one is able to obtain conditional distributions for the signal given by finite
mixtures as in (2.5).

3 Predictive inference with FV-DDPs

3.1 Predictive distribution

In the above framework, we are primarily interested in predictive inference, which re-
quires obtaining the predictive distribution of Y 1

T+t, . . . , Y
k
T+t|Y0:T , that is the marginal

distribution of a k-sized sample drawn at time T + t, given data collected up to time
T , when the random measures involved are integrated out. See Figure 2. Note that by
virtue of the stationarity of the FV process, if X0 ∼ Πα, then P(Yt ∈ A) = P0(A)
for any t ≥ 0. Note also that if one mixes model (2.4) by randomizing the parameter
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Figure 1: Red indices in the graph identify active mixture components at time T , i.e. the
set M in (2.5), corresponding to points m ∈ Z

K
+ with positive weight. In this example

K = 2, and the graph refers to M at time T = 1 if we observe Y0 = (y∗1 , y
∗
2) = Y1.

Figure 2: The predictive problem depicted as a graphical model. The upper yellow
nodes are nonobserved states of the infinite-dimensional signal, the lower green nodes
are conditionally independent observed data whose distribution is determined by the
signal, the light gray node is the object of interest.

measure α = αγ as mentioned above, the evaluation of the predictive distributions is of
paramount importance for posterior computation. Indeed, one needs the distribution of
γ|Y0:T , and if for example γ has discrete support on Z+ with probabilities {pj , j ∈ Z+},
then

P(γ = j|Y0:T ) ∝ pjP(Y0:T |j) ∝ pjP(Y0|j)P(Y1|Y0, j) · · ·P(YT |Y0:T−1, j).

Denote for brevity Y 1:k
T+t := (Y 1

T+t, . . . , Y
k
T+t) the k values drawn at time T + t. For

m ∈ Z
K
+ , let {n ∈ Z

K
+ : n ≤ m} be the set of nonnegative vectors such that ni ≤ mi for

all i. Define also |n| :=
∑K

j=1 ni, and

L(M) := {n ∈ Z
K
+ : n ≤ m,m ∈ M} (3.1)

to be all the points in Z
K
+ lying below the top node of M. E.g., if M is given by the red

nodes in Figure 1, then L(M) is given by all nodes shown in the figure.

Proposition 2. Assume (2.4), and let the law of XT given data Y0:T be as in (2.5),
where the weights wm have been computed recursively. Then, for any Borel set A of Y,
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the first observation at time T + t has distribution

P
(
YT+t ∈ A|Y0:T

)
=

∑
n∈L(M)

pt(M,n)

(
θ

θ + |n|P0(A) +
|n|

θ + |n|Pn(A)

)
(3.2)

and the (k + 1)st observation at time T + t, given the first k, has distribution

P
(
Y k+1
T+t ∈ A|Y0:T , Y

1:k
T+t

)
=

∑
n∈L(M)

p
(k)
t (M,n)

×
(

θ

θ + |n|+ k
P0(A) +

|n|
θ + |n|+ k

Pn(A) +
k

θ + |n|+ k
Pk(A)

) (3.3)

where

Pn =
1

|n|

K∑
i=1

niδy∗
i
, Pk =

1

k

k∑
j=1

δY j
T+t

(3.4)

and (y∗1 , . . . , y
∗
K) are the distinct values in Y0:T .

Before discussing the details of the above statement, a heuristic read of (3.2) is that
the first observation at time T + t is either a draw from the baseline distribution P0,
or a draw from a random subset of the past data points Y0:T , identified by the latent
variable n ∈ L(M). Given how L(M) is defined, YT+t can therefore be thought of as
being drawn from a mixture of Pólya urns, each conditional on a different subset of
the data, ranging from the full dataset to the empty set. Indeed, recall from Section 2
that the top node of M, hence of L(M) in (3.1), is the vector of multiplicities of the
distinct values (y∗1 , . . . , y

∗
K) contained in the entire datasetY0:T . The probability weights

associated to each lower node n ∈ L(M) are determined by a death process on L(M),
that differs from Dt in (2.2). In particular this is a Markov process that jumps from node
m to node m−ei after an exponential amount of time with parameter mi(θ+|m|−1)/2,
with ei being the canonical vector in the ith direction. The weight associated with node
n ∈ L(M) is then given by the probability that such death process is in n after time t,
if started from any node in M. For example, if M is as in Figure 1, than the weight of
the node (0, 2) is given by the probability that the death process is in (0, 2) after time
t if started from any other node of M. Being a non increasing process, the admissible
starting nodes are (2, 2), (1, 2) and (0, 2) itself. Figure 3 highlights the first two of these
paths.

The transition probabilities of this death process are

pm,n(t) = p|m|,|n|(t)HG(m− n;m, |m− n|), 0 ≤ n ≤ m, (3.5)

where HG(i;m, |i|) is the multivariate hypergeometric probability function evaluated at
i, namely

HG(i;m, |i|) =
(
m1

i1

)
. . .

(
ml

il

)
(|m|

|i|
) , l = dim(m)
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Figure 3: The weight associated to an index n ∈ L(M) at time T + t is determined by
the probability that the death process reaches n from any active index m ∈ M at time
T . For M as in Figure 1, the weight of the mixture component with index n = (0, 2),
i.e., no atoms y∗1 and 2 atoms y∗2 , is the sum of the probabilities of reaching node (0, 2)
via the path starting from (1, 2) (left) and from (2, 2) (right).

with dim(m) denoting the dimension of vector m, while p|m|,|n|(t) is the probability of
descending from level |m| to |n| (see Lemma 1 in the Supplementary Material). Hence,
in general, the probability of reaching node n ∈ L(M) from any node in M is

pt(M,n) =
∑

m∈M,m≥n

wmpm,n(t). (3.6)

In conclusion, with probability pt(M,n) the first draw at time T + t will be either from
P0, with probability θ/(θ+ |n|), or a uniform sample from the subset of data identified
by the multiplicity vector n.

After each draw, the weights associated to each node need to be updated according to
the likelihood that the observation was generated by the associated mixture component,
similarly to what is done for mixtures of Dirichlet processes. Specifically,

p
(k+1)
t (M,n) ∝ p

(k)
t (M,n)p(yk+1

T+t | y1:kT+t,n), (3.7)

where

p(yk+1
T+t | y1:kT+t,n) :=

θp0(y
k+1
T+t) +

∑K
i=1 niδy∗

i
({yk+1

T+t}) +
∑k

j=1 δyj
T+t

({yk+1
T+t})

θ + |n|+ k
(3.8)

is the predictive distribution of the (k + 1)st observation given the previous k and
conditional on n, for P0 discrete with density p0. An analogous formula holds when P0

is diffuse, that takes into account the different atoms in each component of the mixture.

Concerning the general case for the (k + 1)st observation at time T + t, trivial
manipulations of (3.3) provide different interpretative angles. Rearranging the term in
brackets one obtains

θn
θn + k

P0,n +
k

θn + k
Pk, (3.9)
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which bears a clear structural resemblance to (1.3). Here

θn = θ + |n|, P0,n :=
θ

θ + |n|P0 +
|n|

θ + |n|Pn

play the role of concentration parameter and baseline probability measure (i.e., the
initial urn configuration), respectively. Thus (3.3) can be seen as a mixture of Pólya
urns where the base measure has a randomised discrete component Pn. Unlike in (1.3),
observations not drawn from empirical measure Pk of the current sample can therefore
be drawn either from P0 or from the empirical measure Pn, where past observations are

assigned multiplicities n with probability p
(k)
t (M,n).

An alternative interpretation is obtained by expanding the sum in (3.3) to obtain a
single generalised Pólya urn, written in compact form as

P
(
Y k+1
T+t ∈ · |Y0:T , Y

1:k
T+t

)
= AkP0(·) +

K∑
i=1

Ci,kδy∗
i
(·) +BkPk(·), (3.10)

where A is a Borel set of Y . In this case, the first observation is either from P0 or a
copy of a past value Y0:T , namely

Y 1
T+1 ∼

{
P0 w.p. A0

δy∗
i

w.p. Ci,0,

while the (k + 1)st can also be a copy of one of the first k current observations Y 1:k
T+t,

namely

Y k+1
T+1 ∼

⎧⎪⎨
⎪⎩
P0 w.p. Ak

δy∗
i

w.p. Ci,k

Pk w.p. Bk.

The pool of values to be copied is therefore given by past values Y0:T and current,
already sampled observations Y 1:k

T+t.

As a byproduct of Proposition 2, we can evaluate the correlation between observa-
tions at different time points.

Proposition 3. For t, s > 0, let Yt, Yt+s be from (2.4). Then

Corr(Yt, Yt+s) =
e−

θ
2 s

θ + 1
.

Unsurprisingly, the correlation decays to 0 as the lag s goes to infinity. Moreover,

Corr(Yt, Yt+s) →
1

θ + 1
, as s → 0

which is the correlation of two observations from a DP as in (1.1).
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3.2 Sampling from the predictive distribution

In order to make Proposition 2 useful in practice, we provide an explicit algorithm

to sample from the predictive distribution (3.3), which can be useful per se or for

approximating posterior quantities of interest. Exploiting (3.9) and the fact that (3.3)

can be seen as a mixture of Pólya urns, we can see n ∈ Z
K
+ as a latent variable whereby,

given n, sampling proceeds very similarly to a usual Pólya urn.

Recalling that |n| =
∑K

j=1 ni, a simple algorithm for the (k+1)st observation would

therefore be:

• sample n ∈ L(M) w.p. p
(k)
t (M,n);

• sample from P0, Pn or Pk with probabilities proportional to θ, |n|, k respectively;

• update weights p
(k)
t (M,n) to p

(k+1)
t (M,n) for each n ∈ L(M).

A detailed pseudo-code description is provided in Algorithm 1.

Algorithm 1 Exact sampling from (3.3).
1: Input: - active nodes at time T : M

- precision parameter: θ

- last mixture weights p
(k)
t (M,n), n ∈ L(M)

- past unique observations: y∗1 , . . . , y
∗
K

- current observations: y1T+t, . . . , y
k
T+t

2: Sample n w.p. p
(k)
t (M,n), n ∈ L(M)

3: Sample Y from P0, Pn or Pk w.p. θ
θ+|n|+k ,

|n|
θ+|n|+k ,

k
θ+|n|+k respectively

4: Set yk+1
T+t = Y

5: Update parameters:
6: for n ∈ L(M) and p(yk+1

T+t | y1:kT+t) as in (3.8) do

7: p
(k+1)
t (M,n) = p

(k)
t (M,n)p(yk+1

T+t | y1:kT+t)

8: Normalize p
(k+1)
t (M,n)

A possible downside of the above sampling strategy is that when the set L (M) is

large, updating all weights may be computationally demanding. Indeed, the size of the

set L(M) is |L(M)| =
∏K

j=1(1 + mj), where mj is the multiplicity of y∗j in the data,

which can grow considerably with the number of observations (cf. also Proposition 2.5

in Papaspiliopoulos and Ruggiero 2014). It is however to be noted that, due to the

properties of the death process that ultimately governs the time-dependent mixture

weights, typically only a small portion of these will be significantly different from zero.

Figure 4 illustrates this point by showing the nodes in {0, . . . , 50} with weight larger

than 0.05 at different times, if at time 0 there is a unit mass at the node 50, when θ = 1.

A deeper investigation of these aspects in a similar, but parametric, framework, can be

found in Kon Kam King et al. (2020).
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Figure 4: Nodes in {0, . . . , 50} (black dots) with probability of being reached by the
death process bigger than .05 after lags .01, .1, .2, .5 and 1 (horizontal axis). Starting
with mass 1 at the point 50, only a handful of nodes have significant mass after these
lags.

Hence an approximate version of the above algorithm can be particularly useful

to exploit this aspect. We can therefore target a set M̃ ⊂ L (M) such that |M̃| �
|L(M)| and

∑
n∈M̃ pt (M,n) ≈ 1 by inserting a Monte Carlo step in the algorithm and

simulate the death process with a large number of particles. The empirical frequencies

of the particles landing nodes will then provide an estimate of the weights pt(M,n)

in (3.2), and one can retain only those above a certain threshold. Furthermore, the

simulation of the multidimensional death process can be factorised into simulating a

one-dimensional death process, which simply tracks the number of steps down the graph,

and hypergeometric sampling for choosing the landing node within the reached level. A

simple algorithm for simulating the death process is as follows: for i = 1, . . . , N ,

• draw m with probability wm and set m = |m|;
• run a one-dimensional death process from m, and let n be the landing point after

time t;

• draw n(i) ∼ HG(n,m/|m|);

and return {n(i), i = 1, . . . , N}. Note, in turn, that the simulation of the death process

trajectories does not require to evaluate its transition probabilities (3.5), which are

prone to numerical instability, and can instead be straightforwardly set up in terms of

successive exponential draws by repeating the following cycle: for i ≥ 1,

• draw Zi ∼ Exp(m(θ +m− 1)/2)

• if
∑

j≤i Zj < t set m = m− 1 else return n = m− i+ 1 and exit cycle.

Algorithm 2 outlines the pseudocode for sampling approximately from (3.3) according

to this strategy.
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Algorithm 2 Approximate sampling from (3.3).
1: Input: - active nodes at time T : M

- time to propagate: t
- precision parameter: θ
- mixture weights at time T : wm

- past unique observations: y∗1 , . . . , y
∗
K

- number of Monte Carlo iterates: N
- weights threshold: ε ≥ 0

2: M̃ = ∅; w = ∅
3: for i ∈ 1 : N do
4: Sample m w.p. wm, m ∈ M
5: n = |m|; s = t
6: for j ≥ 1 do
7: Sample Z from Exp(n(θ + n− 1)/2) and set s = s− Z
8: if s > 0 and n > 0 then
9: Set n = n− 1

10: else
11: Return n and exit cycle.

12: Sample n ∼ HG(n,m/|m|)
13: if n �∈ M̃ then
14: Add n to M̃ and add 1 to w
15: else
16: Add 1 to the corresponding element of w

17: Normalize w.
18: Retain weights w > ε and normalize again.
19: Apply algorithm 1 with M = M̃ and pt(M,n) = w

3.3 Partition structure and Chinese restaurants with conveyor belt

A sample from (3.3) will clearly feature ties among the observations, since there are
two discrete sources for the data, namely Pn and Pk. A fundamental task concern-
ing sampling models with ties is to characterize the distributional properties of the
induced random partition. We say that a random sample (Y1, . . . , Yn) induces a par-

tition with frequencies (n1, . . . , nK) if
∑K

i=1 ni = n and grouping the observed values
gives multiplicities (n1, . . . , nK). The distribution of a random partition generated by
an exchangeable sequence is encoded in the so-called exchangeable partition probability
function, which for the Dirichlet process was found in Antoniak (1974) to be

p(n1, . . . , nk) =
θk

θ(n)

k∏
i=1

(ni − 1)!, (3.11)

with θ(n) as in Section 2. The sampling scheme on the space of partitions associated
to the Dirichlet process is generally depicted through a Chinese restaurant process
(Pitman, 2006): the first customer sits at a table and orders a dish from the menu P0,
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Figure 5: Schematic depiction of a conveyor belt running through the Chinese restaurant.
The conveyor makes available to the customers only a time-varying selection from a pool
of dishes. The Figure depicts the current selection, given by three dishes of type 1, one of
type 2 and two empty slots from which previously available dishes have been removed.

while successive customers either sit at an existing table j, with probability proportional
to its current occupancy nj , and receive the same dish as the other occupants, or sit at
an unoccupied table, with probability proportional to θ, and order from P0.

To account for random partitions induced by a FV-DDP, one can think of a conveyor
belt typical of some Chinese restaurants, which delivers a non constant selection of
dishes that customers can choose to pick up. See Figure 5. In the context of (3.3), each
new customer on day T + t faces a different configuration n of dishes available on the

conveyor belt, determined by the weights p
(k)
t (M,n). This depends on the following

factors: (i) which dishes were most popular on day T , the greater the popularity, the
higher their multiplicity in the nodes of M, hence the greater their average multiplicity
on the conveyor on day T + t as determined by n; (ii) the removal of dishes that
showed symptoms of food spoilage before the first customer arrives, as determined by
the temporal component; (iii) previous customers’ choices, as the kitchen readjusts the
conveyor at each new customer by reinforcing the most popular dishes, as determined
by the update (3.7).

Schematically, the Chinese restaurant process with conveyor belt proceeds as follows.
The first customer at time T + t arrives at the restaurant, finds the configuration n on
the conveyor belt, then picks a dish

• from the conveyor belt, with probability |n|/(θ + |n|)
• from the menu P0, with probability θ/(θ + |n|)

and sits at the first table. The kitchen then readjusts the offer on the conveyor belt
based on the first customer’s choice, through (3.7). The (k + 1)st customer arrives at
the restaurant, finds a configuration n′ on the conveyor belt, then

• with probability mj/(θ+ |n′|+k) sits at table j and receives the same dish as the
other occupants, mj being the current table occupancy

• otherwise picks a dish

• from the conveyor belt, with probability |n′|/(θ + |n′|+ k)

• from the menu P0, with probability θ/(θ + |n′|+ k)

and sits at a new table.

Note that node 0 has always positive probability, in which case the conveyor belt is
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empty and (3.3) reduces to (1.3). Hence a customer facing the configuration n = 0 is
entering a usual Chinese restaurant.

An approach to formally deriving the law of a random partition induced by n ob-
servations from XT+t would be to compute∫

Yq

E

[
[XT+t(dy1)]

n1 · · · [XT+t(dyq)]
nq

]
, q ≤ n,

which evaluates the probability of all possible configurations of multiplicities
(n1, . . . , nq), with q ≤ n and

∑q
h=1 nh = n, irrespective of the values Yi that gen-

erated them. This entails a considerable combinatorial complexity, particularly given
by the fact that XT+t, which has a similar representation to (2.5), is given by a mix-
ture of Dirichlet processes whose base measures have partially shared discrete compo-
nents.

Alternatively, one can derive (3.11) from (1.3), better seen by rewriting Pk in terms
of multiplicities of the distinct values, by assuming observations in the same group arrive
sequentially, so that the first group has multiplicity n1 with probability proportional to
θ(n1 − 1)!, the second has multiplicity n2 with probability proportional to θ(n2 − 1)!,
and so on. Similarly, we can use the results in Proposition 2 to derive the explicit
law of a partition induced by a sample from XT+t. The resulting expression, given in
Lemma 2 in the Supplementary Material, suffers from the combinatorial complexity
due to the possibility of sampling values that start a group both from P0 and from
Pn, where n is itself random. Here instead we provide an algorithm for generating such
random partitions, which can be used, for example, to study the posterior distribution
of the number of clusters directly, i.e. without resorting to Proposition 2. Mimicking
the argument above, we need to

• choose whether to sample a new value from P0 or from any of the Pn’s

• draw the new observation after excluding from Pn the recorded values

• draw the size of the corresponding group.

From (3.10), the probability of drawing a new observation is therefore given by Ak +∑
i∈K Ci,k, where K is the set of past observations still not present in the current

sample. The probability of enlarging a group associated to the value y by one is in-
stead {

BkPk({y}) if y �= y∗j , ∀j,
BkPk({y}) + Cj,k if y = y∗j .

Algorithm 3 outlines the pseudocode for sampling a random partition according to this
strategy.

3.4 Asymptotics

We investigate two asymptotic regimes for (3.3). The following Proposition shows that
when t → ∞, the FV-DDP predictive distribution converges to the usual Pólya urn
(1.3).
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Algorithm 3 Sampling random partitions at time T + t.
1: Input: - active nodes at time T : M

- mixture weights at time T: wm

- past unique observations: y∗1 , . . . , y
∗
K

- number of observations to draw: n

2: Initialize L = 0, K = {1, . . . ,K} and D = ∅
3: while L < n do
4: Sample N equal to 0 w.p. AL and equal to i w.p. Ci,L, with i ∈ K.
5: if N = 0 then
6: Sample Y from P0

7: Sample l equal to
8: - 1 w.p. AL+1 +

∑
i∈K Ci,L+1

9: - j w.p.
(
AL+j +

∑
i∈K Ci,L+j

)∏j−1
p=1 BL+p

p
L+1

10: with j = 2, . . . , n− L
11: else
12: Set Y = y∗N and set K = K\N
13: Sample l equal to
14: - 1 w.p. AL+1 +

∑
i∈K Ci,L+1

15: - j w.p.
(
AL+j +

∑
i∈K Ci,L+j

)∏j−1
p=1

[
Ci,L+pBL+p

p
L+1

]
16: with j = 2, . . . , n− L

17: Set L = L+ l and add Y to D.

18: Return D

Proposition 4. Under the hypotheses of Proposition 2, we have

L
(
Y k+1
T+t |Y0:T , Y

1:k
T+t

) TV−→ θ

θ + k
P0 +

k

θ + k
Pk, a.s., as t → ∞,

with Pk as in (3.4).

Here
TV−→ denotes convergence in total variation distance, and the statement holds

almost surely with respect to the probability measure induced by the FV model on
the space of measure-valued temporal trajectories. A heuristic interpretation of the
above result is that, when the lag between the last and the current data collection
point diverges, the information given by past observations Y0:T becomes obsolete, and
sampling from (3.3) approximates sampling from the prior Pólya urn (1.3). This should
be intuitive, as very old information, relative to the current inferential goals, should
have a negligible effect.

Unsurprisingly, it can be easily proved that an analogous result holds for the distri-
bution of the induced partition, which converges to the EPPF of the Dirichlet process
as t → ∞. The proof follows similar lines to that of Proposition 4, and is therefore
omitted. In the conveyor belt metaphor, as t increases all dishes on the conveyor belt
have been removed due to food spoilage, before the next customer comes in.
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The following Proposition shows that when k → ∞ in (3.3), we recover the law of
XT+t given Y0:T as de Finetti measure.

Proposition 5. Under the hypotheses of Proposition 2, we have

L
(
Y k+1
T+t |Y0:T , Y

1:k
T+t

)
⇒ P ∗

T+t, a.s., as k → ∞,

where P ∗ ∼ L(XT+t|Y0:T ).

Here P ∗ is a random measure with the same distribution as the FV-DDP at time
T + t given only the past information Y0:T . Recall for comparison that the same type
of limit for (1.3) yields

L(Yk+1|Y1, . . . , Yk) ⇒ P ∗, P ∗ ∼ Πα, as k → ∞,

where Πα is the de Finetti measure of the sequence and P ∗ is sometimes called the
directing random measure.

4 Illustration

We illustrate predictive inference using FV-DDPs, based on Proposition 2. Besides the
usual prior specification of Dirichlet process-based models, which involves the total mass
θ and the baseline distribution P0, here we introduce a parameter σ > 0 that controls
the speed of the DDP. This acts as a time rescaling, whereby the data collection times ti
are rescaled to σti. This additional parameter provides extra flexibility for estimation,
as it can be used to adapt the prior to the correct time scale of the underlying data
generating process.

4.1 Synthetic data

We consider data generated by the model

Yt ∼
1

2
Po(μ−1

t , 0) +
1

2
Po(ν−1

t , 5),

μt =μt−1 + εt, εt ∼ Exp(1),

νt = νt−1 + ηt, ηt ∼ Exp(1), ηt ⊥⊥ εt,

where Po(λ, b) denotes a b-translated Poisson distribution with parameter λ, and where
μ−1
0 = ν−1

0 = 5, for t = 0, 1, 2, . . . . We collect 15 observations at each t ∈ {0, . . . , 15} and
consider one-step-ahead predictions based on the first 5 and 15 data collection times.

We fit the data by using a FV-DDP model as specified in (2.4), with the following
prior specification. We consider two choices for P0, a Negative Binomial with param-
eters (2, 0.5) and a Binomial with parameters (99, 0.3), which respectively concentrate
most of their mass around small values and around the value 30. We consider a uniform
prior on θ concentrated on the points {.5, 1, 1.5, . . . , 15}. A continuous prior could also
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Figure 6: One-step-ahead prediction and 95% pointwise credible intervals, based on 15
data collection times.

be envisaged, at the cost of adding a Metropolis–Hastings step in the posterior sim-
ulation, which we avoid here for the sake of computational efficiency. Similarly, for σ
we consider a uniform prior on the values {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.5}. The estimates
are obtained by means of 500 replicates of (3.3) of 1000 observations each, using the
approximate method outlined in Algorithm 2 with 10000 Monte Carlo iterates. We also
compare the FV-DDP estimate with that obtained using the DDP proposed in Gutier-
rez et al. (2016). This is constructed from the stick-breaking representation (1.2) by
letting

Vi(tn) ∼ cδV ′ + (1− c)δVi(tn−1), c ∈ (0, 1), V
′ ∼ Beta(1, θ),

and keeping the locations Yi fixed. We let the resulting DDP be the mixing mea-
sure in a time-dependent mixture of Poisson kernels, which provides additional flex-
ibility to this model with respect to our proposal. Furthermore, we give the com-
petitor model a considerable advantage by training it also with the data points col-
lected at times 6 and 7, which provide information on the prediction targets, and by
centering it on the Negative Binomial with parameters (2, 0.5), rather than on the
above mentioned mixture, which puts mass closer to where most mass of the true pmf
lies.

Figure 6 shows the results on the one-step-ahead prediction with 15 collection times.
The posterior of σ (not shown) concentrates most of the mass on points 0.7 and 0.9,
which leads to learning the correct time scale for prediction, resulting in an accurate
estimate of the true pmf. The credible intervals are quite wide, and a better preci-
sion may be achieved by increasing the number of time points at which the data are
recorded.

We compare the previous results with those obtained by choosing σ via out-of-
sample validation. This is done here using times 0 to 4 as training and time 5 as test,
whereby for each σ ∈ {.0001, .001, .01, .1, 0.5, 1, 1.5} we compute the sum of absolute
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Figure 7: One- (left) and two-step-ahead prediction (right) based on 5 data collection
times, with 95% pointwise credible intervals.

errors (SAE) between the FV-DDP posterior predictive mean and the true pmf. These

are shown in Table 1, leading to choose σ = .01.

Table 1: Sum of the absolute error between predicted and true pmf at time 5 for different
values of σ.

σ .0001 .001 .01 .1 .5 1 1.5
SAE .1410 .1345 .1064 .1301 .1261 .1595 .1847

Table 2 shows the posterior weights of relevant values of θ among those with positive

prior mass, for the above mentioned choices of P0 and using the chosen value of σ. The

model correctly assigns all posterior probability to the Negative Binomial centering

(Binomial not reported in the table), which moves mass towards smaller values as time

increases.

Table 2: Relevant posterior weights of θ.
θ 1 1.5 2 3

NegBinom .5644 .001694 .04702 0.3868

Figure 7 shows the results in this case for the one- and two-step-ahead predic-

tions given only 5 data collection times. The true pmf is correctly predicted by the

FV-DDP estimate even in this short horizon scenario, and the associated 95% point-

wise credible intervals are significantly sharper if compared to Figure 6, obtained with

a longer horizon. The prediction based on the alternative DDP mixture does not in-

fer correctly the target, leading to an associated normalised 
1 distance from the true

pmf of 12.72% and 12.84%, compared to 4.95% and 4.90% for the FV-DDP predic-

tion.
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4.2 Karnofsky score data

We consider the dataset hodg used in Klein and Moeschberger (1997), which contains
records on the time to death or relapse and the Karnofsky score for 43 patients with
a lymphoma disease. The Karnofsky score (KS) is an index attributed to individual
patients, with higher values indicating a better prognosis.

In the framework of model (2.4), we take the times of death or relapse as collection
times and let the KS of the survivors at each time be the data. We aim at predicting
the future distribution of the KS among the patients who are still in the experiment
at that time, which would be an indirect assessment of the effectiveness of the score
in describing the patients’ prognosis. We also include censored observations (patients
leaving the experiment for reasons different from death or relapse), without having
them trigger a collection time. The FV-DDP appears as the ideal modeling tool in this
framework since it includes a probabilistic mechanism that accounts for the reduced
number of observations through different time points.

We train the model up to 42, 108 and 406 days after the start of the experiment, and
we make predictions 28, 112 and 144 days ahead, respectively. As regards the prior, we
put a uniform distribution on the observed scores (note that new score values cannot
appear along the experiment) and we uniformly randomize θ over {.5, 1, 1.5, . . . , 15},
analogously to Section 4.1. Given the results of the previous subsection for different
approaches to selecting σ, here, after transforming the lags in annual, we proceed by
selecting σ for each value of θ by maximizing the probability that the death process
makes the right number of transitions in the desired laps of time. Some of the selected
values for σ1, σ2, σ3 for the three different trainings, depending on θ, are shown in
Table 3.

Table 3: Choice of σ for some values of θ for the three trainings.
θ .5 1 1.5 · · · 29 29.5 30
σ1 0.4947 0.4913 0.4885 · · · 0.3235 0.3266 0.3228
σ2 0.6059 0.6014 0.5696 · · · 0.3684 0.3130 0.3361
σ3 0.6149 0.6150 0.5789 · · · 0.3063 0.3018 0.2901

Figure 8 shows the three predictions of the scores distribution. Coherently with the
intuition, as the experiment goes by, individuals with higher KS become predominant:
from 70 to 230 days the predicted weight associated to a score of 90 increases of more
than 10%, and similarly for 100. However the distribution of the scores remains pretty
stable, apart from the lowest values, meaning that the highest scoring patients actually
had much better prognoses, as showed by the third prediction.

These findings are consistent with the Kaplan-Meyer estimate of the survival func-
tion, shown in the bottom right panel, which decreases rapidly between 70 and 230
and flattens after that point, implying that the FV-DDP prediction adapted to the
periods of quick change in the underlying distribution and periods of relative steady
behaviour.



F. Ascolani, A. Lijoi, and M. Ruggiero 391

Figure 8: From top left: pmf prediction at 70, 230 and 550 days after the experiment.
Bottom right: Kaplan-Meyer estimate of the survival times up to time 550.

5 Discussion

We have derived the predictive distribution for the observations generated by a class
of dependent Dirichlet processes driven by a Fleming–Viot diffusion model, which can
be characterized as a time-dependent mixture of Pólya urns, and described the in-
duced partition structure together with practical algorithms for exact and approximate
sampling of these quantities. An upside of inducing the dynamics through a FV pro-
cess is that one can implicitly exploit the rich and well understood underlying prob-
abilistic structure in order to obtain manageable closed-form formulae for the quan-
tities of interest. This ultimately relies on the duality with respect to Kigman’s coa-
lescent, which was first used for inferential purposes in Papaspiliopoulos and Ruggiero
(2014).

The approach we have described yields dependent RPMs with almost surely dis-
crete realisations. While such a feature perfectly fits the specific illustrations we have
discussed, it is not suited to draw inferences with continuous data. An immediate and
natural extension of the proposed model, which accommodates continuous outcomes
would be to consider dependent mixtures of continuous kernels, whereby the observa-
tion y from the RPM at time t becomes a latent variable acting as parameter in a
parametric kernel f(z|y). This approach would be in line with the extensive Bayesian
literature on semi-parametric mixture models, which has largely used the DP or its var-
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ious extensions as mixing measure. It remains however a non trivial exercise to derive in
this framework the corresponding formulae for prediction, which we will leave for future
investigation.

Supplementary Material

Predictive inference with Fleming–Viot-driven dependent Dirichlet processes
(DOI: 10.1214/20-BA1206SUPP; .pdf). Contains all proofs of the results provided above,
together with the explicit expression for the transition probabilities of the death process
and of the distribution of the partition induced by (3.3).
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