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A Phase I–II Basket Trial Design to Optimize
Dose-Schedule Regimes Based on Delayed

Outcomes§

Ruitao Lin∗, Peter F. Thall†, and Ying Yuan‡

Abstract. This paper proposes a Bayesian adaptive basket trial design to opti-
mize the dose–schedule regimes of an experimental agent within disease subtypes,
called “baskets”, for phase I–II clinical trials based on late-onset efficacy and tox-
icity. To characterize the association among the baskets and regimes, a Bayesian
hierarchical model is assumed that includes a heterogeneity parameter, adaptively
updated during the trial, that quantifies information shared across baskets. To ac-
count for late-onset outcomes when doing sequential decision making, unobserved
outcomes are treated as missing values and imputed by exploiting early biomarker
and low-grade toxicity information. Elicited joint utilities of efficacy and toxicity
are used for decision making. Patients are randomized adaptively to regimes while
accounting for baskets, with randomization probabilities proportional to the pos-
terior probability of achieving maximum utility. Simulations are presented to as-
sess the design’s robustness and ability to identify optimal dose–schedule regimes
within disease subtypes, and to compare it to a simplified design that treats the
subtypes independently.

MSC2020 subject classifications: Primary 60K35, 60K35; secondary 60K35.

Keywords: adaptive randomization, Bayesian design, basket trial, missing data,
optimal treatment regime, phase I–II clinical trial.

1 Introduction

Early-phase oncology clinical trials were traditionally designed to evaluate new treat-
ments under the assumption that patients are homogeneous. Advances in cancer biol-
ogy and genomic medicine have shifted the focus of cancer research and therapy from
conventional chemotherapy to agents that target specific genetic or molecular abnor-
malities (Simon and Roychowdhury, 2013). Because different cancer histologies may
share a common target, this motivates the evaluation of different cancers within the
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same clinical trial. To accommodate this approach in the early-phase evaluation of a
new targeted agent, basket trials have emerged as a way to account for different disease
subtypes (Redig and Jänne, 2015; Ornes, 2016). Basket trials provide an approach that
is intermediate between conducting separate trials within cancer subtypes and ignoring
subtypes entirely. Compared to traditional early-phase trial designs, a basket trial has
the advantages of borrowing strength between disease subtypes, which may improve the
efficiency of the trial in terms of sample size and trial duration (Simon et al., 2016),
and also may allow for the inclusion of patients with rare cancers.

Several adaptive basket trial designs have been proposed. Thall et al. (2003) and
Berry et al. (2013) used hierarchical models to borrow information across different can-
cer subtypes. Simon et al. (2016) proposed a Bayesian model that includes a parameter
to quantify heterogeneity of treatment effects across disease subtypes. Cunanan et al.
(2017) proposed an efficient two-stage basket trial design. Trippa and Alexander (2017)
proposed using adaptive randomization (AR) in a Bayesian basket trial design. Chu
and Yuan (2018a) proposed a calibrated Bayesian hierarchical model to improve perfor-
mance. Chu and Yuan (2018b) proposed a Bayesian latent-class design to account for
subtype heterogeneity by adaptively grouping the disease subtypes into clusters based
on their treatment responses, and then borrowing information within the clusters using
a Bayesian hierarchical model.

Our research is motivated by a planned phase I–II trial to optimize the (dose, sched-
ule) regime of PGF melphalan as a single agent preparative regimen for autologous
stem cell transplantation (autosct) in patients with multiple myeloma (MM). This dis-
ease is heterogeneous, with several different classification systems, studied by Zhang
et al. (2006). Most commonly, MM is dichotomized as hyperdiploid or not, in terms
of pathogenesis pathways defined by genetic and cytogenetic abnormalities. A review
is given by Fonseca et al. (2009). The primary objective of our motivating trial is to
determine the optimal (dose, schedule) treatment regime for each MM subtype by using
efficacy and toxicity as co-primary endpoints (Thall et al., 2013; Yuan et al., 2016). The
trial will study three PGF melphalan doses, 200, 225 and 250 mg/m2, and three infusion
schedules, 30 minutes, 12 hours, and 24 hours, yielding nine treatment regimes. Toxicity
is defined as the binary indicator of grade 3 mucositis lasting > 3 days or any grade
4 (severe) or 5 (fatal) non-hematologic or non-infectious toxicity, with onset within 30
days from the start of treatment infusion. In particular, a patient cannot be assessed
as having “no toxicity” until he/she has been followed for 30 days. Efficacy is defined
as the binary indicator of complete remission, evaluated at day 90. Thus, toxicity may
be observed soon enough to feasibly apply a sequential toxicity-based decision rule, but
the efficacy outcome is evaluated much later. Even if the accrual rate is moderately
fast, a substantial number of treated patients will not have had their efficacy outcomes
assessed, and some patients will not have had their toxicity outcomes assessed, at the
time that treatment regimes must be chosen for newly enrolled patients. This is a major
logistical difficulty when making outcome-adaptive decisions for new patients, includ-
ing choosing (dose, schedule) or determining whether a treatment regime is unsafe.
Furthermore, these adaptive decisions must be made for each MM subgroup.

In this paper, we propose an efficient basket design for adaptively optimizing dose-
schedule regimes, and conducting safety monitoring, within disease subtypes in phase
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I–II trials with late-onset (toxicity, efficacy) outcomes. This problem has not been con-
sidered by existing methods for basket trials. In the MM trial, the design allows patients
with different subtypes to be given different dose-schedule regimes, an example of “pre-
cision medicine.” In phase I–II trials with heterogeneous patients, a major concern is
whether the dose–efficacy or dose-toxicity curves differ between disease subtypes. This
is more complex than basing decisions on one-dimensional treatment effects, which are
the basis for existing basket trial designs. Dealing with multi-dimensional outcomes is
challenging in early phase trial designs. See, for example, Lee et al. (2019).

The MM trial is complicated by the following four issues: (1) Adaptive treatment
decisions must account for the relationships between efficacy, toxicity, dose, schedule,
and disease subtype. (2) For each disease subtype, the Pr(efficacy | dose, schedule, sub-
type) function may take a variety of possible forms that may or may not be monotonic
in dose. Nearly all existing subtype-specific phase I dose-finding designs assume mono-
tonic increasing dose–toxicity curves. See, for example, Morita et al. (2017), Chapple
and Thall (2018). (3) In the MM trial, because efficacy is scored at day 90 from the
start of therapy, no efficacy data for patients who have been followed for less than 90
days are available, but it is not feasible to suspend accrual until all previously treated
patients’ outcomes are fully observed, to apply outcome-adaptive rules. Thus, we may
not use existing adaptive methods that consider only time-to-event outcomes and use
follow-up time without efficacy as partial information, as in the designs of Cheung and
Chappell (2000) and Yuan and Yin (2011). (4) Borrowing information across subtypes
is not straightforward, because it is unknown a priori whether (dose, schedule) effects
are homogeneous or heterogeneous between subtypes.

To construct a practical design that addresses all of these issues, we assume a flexi-
ble three-level Bayesian hierarchical model to characterize the associations among dose,
schedule, disease subtype, and the (toxicity, efficacy) outcome. The hierarchical model
facilitates borrowing information adaptively across subtypes. To improve the probability
of identifying optimal (dose, schedule) regimes within subtypes, the design repeatedly
determines whether or not treatment effects are homogeneous across subtypes. We treat
temporarily unobserved (“late-onset”) outcomes as missing values, and impute them by
exploiting auxiliary information that is observed sooner, including low-grade toxicity
and bioactivity data. This substantially improves efficiency when such auxiliary out-
comes are informative. Elicited utilities of (toxicity, efficacy) outcomes are used as a
basis for sequentially adaptive subtype-specific (dose, schedule) optimization. To avoid
getting stuck at a suboptimal regime, our proposed two-stage design adaptively ran-
domizes each newly enrolled patient to a treatment regime according to that patient’s
disease subtype.

A simpler design is proposed by Lin et al. (2020a) to optimize dose–schedule regimes
in a similar setting, but it assumes that the probability of treatment efficacy is strictly
ordered for different subtypes, and it does not borrow any additional information to deal
with delayed outcomes. In contrast, the design proposed in here is more general in that
(1) it does not make any ordering assumption about the probability of efficacy, (2) it
can adaptively identify response homogeneity or heterogeneity across subtypes based on
the observed data, and (3) it uses more of the available data, including bioactivity and



182 A Phase I–II Basket Trial Design

low-grade toxicity data, in making treatment decisions when some previously treated
patients have efficacy outcome data pending.

To make things concrete, we present the design in the context of the motivating
trial. The design potentially can be applied quite widely, however. In many early phase
oncology trials, the efficacy outcome is defined to be evaluated a substantial amount
of time after the start of therapy. Moreover, it is routine practice to define toxicity as
an ordinal categorical variable, in terms of severity grade, and to record biological or
conventional prognostic variables related to efficacy prior to enrollment.

The remainder of this paper is organized as follows. In Section 2, we present the hi-
erarchical model for the subtype–dose–schedule–response relationship and the Bayesian
data augmentation model for unobserved outcomes. In Section 3, we describe the trial
design, including the utility function, rules for trial conduct, and prior elicitation meth-
ods. In Section 4, we apply the proposed design to the motivating trial and conduct
simulation studies to examine the design’s performance. We close with a brief discussion
in Section 5 and provide other technical details and the results of additional simula-
tions in the Supplementary Material (Lin et al., 2020b). The R code to implement and
simulate the proposed design is available from the first author upon request.

2 Probability Model

2.1 Inference Model

We consider a phase I–II trial to evaluate all combinations of D doses and S treatment
schedules, for a total of DS treatment regimes, where each patient has one of B different
tumor subtypes, known as “baskets.” Let n denote the number of patients accrued by
an interim decision-making point in the trial, and index patients by i = 1, . . . , n. For
the ith patient, denote toxicity by Xi, efficacy by Yi, cancer subtype by bi ∈ {1, . . . , B},
and the assigned dose-schedule treatment regime by ri = (di, si), for di ∈ {1, . . . , D},
and si ∈ {1, . . . , S}. We assume that Xi and Yi both are binary, with Xi = 1 indicating
dose-limiting toxicity (DLT) and Yi = 1 indicating response. However, toxicity may
occur and be observed at any time during a predefined assessment window [0, TX ] and,
similarly, efficacy is either observed at some time during a window [0, TY ] or observed
at TY . This is similar to the outcome structures considered in a phase I–II setting by Jin
et al. (2014). Extension of this structure to accommodate bivariate ordinal outcomes,
as in Thall et al. (2017), is conceptually straightforward but technically much more
complex.

To characterize the joint distribution of the observed outcomes (Xi, Yi) as a function
of regime ri and disease subtype bi, we propose a three-level Bayesian hierarchical model.
This is more elaborate than a more conventional two-level hierarchical model, and is
motivated by the desire to account for (1) effects of latent variables used to define
the observed outcomes, done in the Level 1 model, and also (2) joint effects of patient
subgroups and treatment regimes, done in the Level 2 model. This may be regarded
as an extra level in the hierarchy that accounts for between-patient variability while
borrowing information between subtypes by assuming that the mean (subtype, schedule)
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effects are iid across disease subtypes. Level 3 then provides priors for mean and variance
parameters appearing in Level 2 of the hierarchical model.

Formally, following Albert and Chib (1993), Chen and Dey (1998), and Chib and
Greenberg (1998), as a device to facilitate joint modeling and computation, we define
each observed (Xi, Yi) pair in terms of real-valued bivariate normal latent variables,
(ξi, ηi), as Xi = I(ξi > 0) and Yi = I(ηi > 0), where I(A) denotes the indicator function
for the event A. Thus, the joint distribution of (Xi, Yi) is induced by that of (ξi, ηi).
The three-level hierarchical model that we use to specify the distribution of the latent
variables (ξi, ηi), for disease subtype bi, and treatment regime ri = (di, si), is as follows:

Level 1: ξi | bi, ri, ui, ξ̃bi,ri , σ
2
ξ

ind∼ N(ξ̃bi,ri + ui, σ
2
ξ ), i = 1, . . . , n

ηi | bi, ri, vi, η̃bi,ri , σ2
η

ind∼ N(η̃bi,ri + vi, σ
2
η), i = 1, . . . , n

Level 2: ui, vi | Σu,v
i.i.d.∼ BN(02,Σu,v), i = 1, . . . , n

ξ̃b,r | ξ̈r, τξ i.i.d.∼ N(ξ̈r, τ
2
ξ ), b = 1, . . . , B

η̃b,r | η̈r, τη i.i.d.∼ N(η̈r, τ
2
η ), b = 1, . . . , B

Level 3 : ξ̈d,s | ξ̈−d,s, ξ0, ν
2
ξ

i.i.d.∼ N(ξ0, ν
2
ξ )I(ξ̈d−1,s < ξ̈d,s < ξ̈d+1,s), d = 1, . . . , D

η̈d,s | η0, ν2η
i.i.d.∼ N(η0, ν

2
η), d = 1, . . . , D

τξ, τη | ψ0, γ0
ind∼ half-Cauchy(ψ0, γ0). (2.1)

Above, BN(02,Σu,v) denotes a bivariate normal distribution with mean vector 02 =

(0, 0) and covariance matrix Σu,v, ξ̈−d,s denotes the subvector of ξ̈s = (ξ̈1,s, . . . , ξ̈D,s)

with ξ̈d,s deleted for d = 1, . . . , D, and N(·)I(A) denotes the truncated normal distribu-
tion having support given by the set A in the indicator function. We denote the vector of
all fixed hyperparameters that must be prespecified by θ0 = (σ2

ξ , σ
2
η,Σu,v, ξ0, η0, ν

2
ξ , ν

2
η ,

ψ0, γ0).

In Level 1 of the model, the patient-specific random effects (ui, vi) induce associ-
ation between ξi and ηi, which in turn induces the association between Xi and Yi.
Numerical values of the hyperparameters (σ2

ξ , σ
2
η) must be specified to ensure that the

model is identifiable. The Level 2 priors on ξ̃b,r and η̃b,r facilitate information borrowing
across cancer subtypes. Specifically, for each (dose, schedule) regime r, we assume that
{ξ̃b,r, b = 1, · · · , C} (or {η̃b,r, b = 1, · · · , C}) are generated from a common normal dis-

tribution, where (ξ̈r, η̈r) are the mean (toxicity, efficacy) effects of regime r = (d, s), and
(τ2ξ , τ

2
η ) characterize the degree of heterogeneity of toxicity and efficacy, respectively, be-

tween subtypes. As τ2ξ , τ
2
η → 0, model (2.1) shrinks to the homogeneous case for which

the regime effects in different subtypes are the same. In the motivating MM trial, based
on clinical experience the toxicity distribution is assumed to be homogeneous between
subgroups, but efficacy may be heterogeneous between subgroups. We thus simplify the
model by setting τ2ξ = 0, while τ2η �= 0. In general, however, the model can account for

heterogeneous toxicity by specifying τ2ξ �= 0.
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Since τ2η controls the degree to which efficacy information is borrowed across different
tumor subtypes, rather than fixing τ2η , we estimate its value adaptively based on the
observed data. The choice of the prior on τ2η is critical to ensure good performance
of the proposed design. To leverage information sharing, we follow the suggestion of
Gelman (2006) by assuming a half-Cauchy (ψ0, γ0) prior on τη in Level 3 of the model,
where ψ0 is the location parameter and γ0 is the scale parameter. When ψ0 = 0 and γ0
is large, this prior is weakly informative. To account for the common assumption that
the risk of toxicity increases monotonically with dose for each schedule, in the Level 3
prior we impose an order constraint on {ξ̈d,s, d = 1, . . . , D} for each s at each Markov
chain Monte Carlo sampling step. This ensures that the latent variable for toxicity
increases stochastically in d. In contrast, we do not impose any monotonicity restriction
on efficacy, so that the dose–efficacy curve is very flexible and can take a wide variety of
shapes. In the MM trial, there is no ordering based on infusion schedule. If the infusion
times would affect the risk of toxicity in other settings, however, such prior ordering
information also can be similarly incorporated in our design.

Under the hierarchical model (2.1), given (ξ̃bi,ri , η̃bi,ri), the joint distribution of
(ξi, ηi) can be obtained by integrating out (ui, vi), which yields

ξi, ηi | μbi,ri ,Σξ,η
ind∼ BN(μbi,ri ,Σξ,η), i = 1, . . . , n. (2.2)

The mean vector μbi,ri depends on both the ith patient’s cancer subtype bi and the

treatment regime ri = (di, si), with μbi,ri = (ξ̃bi,ri , η̃bi,ri), and

Σξ,η = Σu,v +

[
σ2
ξ 0

0 σ2
η

]
.

Suppose, temporarily, that the data of the first n patients are completely observed,
and let Dcom

n = {(xi, yi), i = 1, . . . , n} denote the complete dataset and θ = {μb,r, b =
1, . . . , B, d = 1, . . . , D, s = 1, . . . , S} ∪ Σξ,η. The complete data likelihood, based on
Dcom

n , is given by

L(θ | Dcom
n ) =

n∏
i=1

∫ �xi+1

�xi

∫ �yi+1

�yi

f(ξi, ηi | μbi,ri ,Σξ,η)dηidξi,

where xi, yi = 0, 1, f(ξi, ηi | μbi,ri ,Σξ,η) is the distribution induced by (2.2), and the
cutoff vector (	0, 	1, 	2) = (−∞, 0,∞). Let π(θ | θ0) be the joint prior distribution
on θ based on the hierarchical model (2.1). The joint posterior of θ is given by π(θ |
θ0, D

com
n ) ∝ π(θ | θ0)L(θ | Dcom

n ).

2.2 Imputation Model

When the accrual of new patients is fast relative to the duration of the toxicity and
efficacy assessment periods, TX and TY , there will be some patients for whom Xi and
Yi are not known at the interim time when adaptive decisions must be made for newly
enrolled patients. In the MM trial, the toxicity assessment window is [0, TX ] = [0, 30]
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days, while efficacy is defined as complete remission at the TY = 90 day evaluation. If,
for example, the accrual rate is 6 patients per month, then an average of 18 new patients
will be accrued while waiting to evaluate Yi for the last enrolled patient. In other words,
at the time of decision making, both the toxicity and efficacy data of previously treated
patients are subject to temporary missingness, which is nonignorable (Liu et al., 2013).
Once the patients who have pending Yi values reach their 90-day assessment times,
their (toxicity, efficacy) outcomes have been observed completely. If the accrual were
suspended repeatedly until all previously treated patients were fully assessed, this would
lead to an impractically lengthy trial, and would greatly delay the treatment of new
patients, which cannot be done in an actual trial. To address this realistically, we exploit
additional interim auxiliary information related to the unobserved (Xi, Yi), as follows.

Let ti ≤ max{TX , TY } denote the follow-up time of patient i, within the observation
windows, at some interim decision-making time. Let Ui denote the time to toxicity,
with δ = (δX,i, δY,i) the response indicator vector of whether each outcome of the
ith subject has been observed by ti. The binary toxicity outcome Xi is observed if
Ui ≤ ti ≤ TX , so Xi = 1, in which case δX,i = 1, or the patient has finished the
assessment without experiencing toxicity, i.e., ti ≥ TX and Ui > TX , so Xi = 0. In
contrast, the efficacy outcome is observed if and only if the patient has reached their
efficacy assessment time, that is, δY,i = I(ti ≥ TY ). For example, if ti < Ui then Xi

is missing and δX,i = 0 at ti. Therefore, the observed data for the first n patients are

Dobs
n = {(δX,i, δY,i, ti, X̃i, Ỹi), i = 1, . . . , n}, where X̃i = δX,iXi and Ỹi = δY,iYi.

To exploit information on low grade toxicity that may be available before the binary
toxicity outcome Xi is observed, we define a binary indicator, Li, of whether the ith

patient has experienced low-grade toxicity (Li = 1) or not (Li = 0). We assume that a
patient with low-grade toxicity is more likely to experience DLT, formally Pr(Xi = 1 |
Li = 1) > Pr(Xi = 1 | Li = 0), so Li may be used to help predict as yet unobserved
Xi. In our example, Li is available much sooner than TX . We assume that, if a patient
has finished the toxicity assessment without experiencing any DLT, then his/her time-
to-toxicity outcome is censored at TX . The observed event indicator is X̃i, with X̃i = 1
if that patient i had toxicity, and X̃i = 0 if the time to toxicity for patient i is censored
by the follow-up time ti or maximum toxicity assessment time TX . Formally, X̃i =
I{Ui ≤ min(ti, TX)}. We assume the following proportional hazards (PH) model for the
distribution of the time to toxicity.

PH model : λ(Ui | Li) = λ0(Ui) exp(βLi), i = 1, . . . , n,

Baseline model : Ui | Li = 0, p, q
i.i.d∼ Weibull(p, q), i = 1, . . . , n,

Priors : β | σβ ∼ N(0, σβ)I(0,∞),

p | αp, βp ∼ Gamma(αp, βp), q | αq, βq ∼ Gamma(αq, βq), (2.3)

where λ(Ui | Li) is the conditional hazard function of the time to toxicity given the low-
grade toxicity indicator Li, λ0(Ui) is the baseline hazard, and θ1 = (σβ , αp, βp, αq, βq)
are hyperparameters. We assume that the baseline survival follows a Weibull distri-
bution, which is flexible enough to characterize the time-to-toxicity data in our MM
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setting. Let f(Ui | Li, p, q, β) be the density of Ui and denote the joint posterior distri-
bution

π(p, q, β | Dobs
n ,θ1) ∝ π(p, q, β | θ1)LT (D

obs
n | p, q, β)

= π(p, q, β |θ1)

n∏
i=1

f(ti |Li, p, q, β)
X̃iS(min(ti, TX) |Li, p, q, β)

(1−X̃i),

where S(· | Li, p, q, β) is the survival function. After obtaining the posterior distribution
π(p, q, β | Dobs

n ,θ1), the missing toxicity outcome with δX,i = 0 can be imputed by a
Bernoulli random variable with the probability of DLT given by

Pr(Xi = 1 | δX,i = 0, Dobs
n , p, q, β) = Pr(Ui ≤ TX | Ui ≥ ti, D

obs
n , p, q, β)

=
S(ti | li, p, q, β)− S(TX | li, p, q, β)

S(ti | li, p, q, β)
.

In the MM trial, 90-day response is defined as complete response (CR) or partial
response (PR). In therapy of MM, CR is defined as is negative immunofixation on
analysis of blood serum and urine, disappearance of any soft tissue plasmacytomas, and
< 5% plasma cells in the bone marrow, and PR is defined as ≥ 50% of blood serum
M-protein and ≥ 90% reduction in urinary M-protein level within 24 hours. Additional
details are given by Durie et al. (2006). Thus, early measurement of the M-protein in
the serum and urine are associated with the 90-day response indicator Yi.

Let Zik denote the biomarker measurement for the ith patient at time t′ik, k =
1, . . . ,Ki, where Ki is the total number of biomarker measurements of the ith patient
by the decision-making time ti. We model the longitudinal biomarker measurements Zik

and link them to the efficacy outcome Yi using the following hierarchical model.

Bioactivity Model: Zik | t′ik, w0, wbi,ri , σ
2
z

ind∼ N(w0 + wbi,rit
′
ik, σ

2
z),

Link Model : ηi | wbi,ri ,α, σ2
η

ind∼ N(α0 + α1wbi,ri + α2w
2
bi,ri , σ

2
η),

Level 1 Priors: wb,r | w̄r, τ
2
w

i.i.d.∼ N(w̄r, τ
2
w), b = 1, . . . , B

w0 | τ2w0
∼N(0, τ2w0

),

α1, α2 | τ2α
i.i.d.∼ N(0, τ2α),

σ2
z ∼ IGamma(αz, βz),

Level 2 Priors : w̄r | w̄0, ν
2
w

i.i.d.∼ N(w̄0, ν
2
w),

τ2w ∼ half-Cauchy(ψ0, γ0), (2.4)

where α = (α0, α1, α2) and θ2 = (σ2
η, α0, τ

2
w0

, τ2α, αz, βz, w̄0, ν
2
w, ψ0, γ0) are hyperparam-

eters. In particular, α0 must be fixed to make the model identifiable. In the bioactivity
model, w0 is the intercept, which can be viewed as the baseline biomarker value, and
the second term wbi,rit

′
ik captures the trajectory of the biomarker. The relationship

between the latent variable ηi and the random effect wbi,ri induces association be-
tween the biomarker measurements and the efficacy outcome. The random effect wb,r



R. Lin, P. F. Thall, and Y. Yuan 187

depends on the patient’s disease subtype and treatment regime. We also assume that
{wb,r, b = 1, . . . , B} are sampled from a common normal distribution with variance
parameter ν2w, which determines the amount of information shared across subtypes. In
other words, ν2w is another heterogeneity parameter derived from the bioactivity data.

Denote w = {wb,r} for b = 1, . . . , B and all DS pairs r = (d, s). We denote the
posterior distribution of (α,w) under the Bayesian hierarchical model (2.4) by π(α,w |
θ2, D̃

obs
n ), where D̃obs

n = Dobs
n ∪ {zi, i = 1, . . . , n} with zi = {zik, k = 1, . . . ,Ki}.

A missing efficacy outcome, with δY,i = 0, can be imputed as a Bernoulli random
variable with success probability

Pr(Yi = 1 | δY,i = 0, D̃obs
n ,α,w, σ2

η) =

∫ �2

�1

f(ηi | D̃obs
n ,α,w, σ2

η)dηi,

where the conditional distribution f(ηi | D̃obs
n ,α,w, σ2

η) is derived from (2.4).

To deal with temporarily missing toxicity/efficacy data, we adopt a Bayesian data
augmentation (BDA) approach (Daniels and Hogan, 2008; Little and Rubin, 2014) to
iteratively impute the missing data using the available auxiliary information (See Sup-
plementary Material for detailed sampling steps). We sample from the posterior dis-
tribution of the model parameters based on the dataset completed using the imputed
values. In the MM study, low-grade toxicity may be observed quickly, and some bioac-
tivity variables are measured repeatedly. We use this auxiliary information to impute
missing values of Xi and Yi, so that adaptive treatment decisions can be made in real
time based on the completed dataset. The BDA algorithm iterates between two steps:
an imputation (I) step, and a posterior (P) step, in which posterior samples of the
parameters are simulated based on the imputed data. Liu et al. (2013) and Jin et al.
(2014) used a similar data augmentation approach in dose-finding studies with incom-
pletely observed outcomes. However, they only used follow-up time and did not exploit
auxiliary variables to help impute missing outcomes.

We carry out the BDA procedure for posterior sampling using JAGS via the R2jags
package (Su and Yajima, 2015). The posterior samples obtained from JAGS can be
utilized directly to calculate the posterior utility functions as specified in Section 3.
In general, it takes approximately 2s in R to complete one BDA procedure with three
chains and a total of 9,000 posterior samples. When the sample size is 180 and the
posterior estimates are estimated for each subtype after a cohort of three patients have
been treated, it requires about 6 minutes to simulate one trial. We thus used a high
performance computing cluster to conduct runs in parallel across 200 computational
nodes.

3 Trial Design

3.1 Utility Function

We take a utility-based approach to quantify efficacy-toxicity risk-benefit trade-offs.
To do this, a numerical utility U(x, y) is elicited for each of the elementary outcome
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pairs (x, y) = (0, 0), (1, 0), (0, 1), or (1, 1). A consistent utility function must satisfy the
admissibility constraints U(1, 0) < min{U(1, 1), U(0, 0)} and max{U(1, 1), U(0, 0)} <
U(0, 1). It is convenient to fix the best case utility U(0, 1) = 100 and the worst case
utility U(1, 0) = 0, although this is not necessary, and ask the clinicians to specify
the utilities U(0, 0) and U(1, 1) between 0 and 100 for the two remaining intermediate
outcome combinations. If U(1, 1) > U(0, 0), then efficacy is considered more important
than toxicity, while if U(1, 1) < U(0, 0), then avoiding toxicity matters more than
achieving efficacy. For illustrations of the choice of U(x, y), see Houede et al. (2010),
Thall and Nguyen (2012), or Yuan et al. (2016).

For each disease subtype b, the mean utility of regime r = (d, s) given θ is

u(θ, b, r) = E{U(X,Y ) | b = b, r = (d, s),θ} =

=
1∑

x=0

1∑
y=0

U(x, y) Pr{X = x, Y = y | b = b, r = (d, s),θ}.

The posterior probability that the treatment regime r = (d, s) achieves the highest
utility within schedule s is

ω(b, r) = Pr

[
u(θ, b, r) = max

r′∈{(1,s),...,(D,s)}
{u(θ, b, r′)}

∣∣ Θ, D̃obs
n

]
,

where Θ = (θ0,θ1,θ2). The probability of assignment to regime r = (d, s) under the
proposed AR procedure, which is given in detail below, depends on ω(b, r). This is
different from the AR procedures used by Thall and Nguyen (2012), Lee et al. (2015),
and others, where the AR probabilities are defined in terms of posterior mean utilities,

i.e., ω̃(b, r) = E
[
u(θ, b, r) | Θ, D̃obs

n

]
. While ω̃(b, r) summarizes only the first moment

of the posterior of u(θ, b, r), the probability ω(b, r) is more variable because it accounts
for the posterior distribution of u(θ, b, r). Hence, AR probabilities defined in terms of
ω(b, r) lead to more extensive exploration of the set of regimes, so ω(b, r) has a smaller
chance of getting stuck at suboptimal regimes.

3.2 Adaptive Randomization

Let πX(b, r) = Pr{X = 1 | b, r} be the marginal probability of toxicity and πY (b, r) =
Pr{Y = 1 | b, r} the marginal probability of efficacy, for b = 1, . . . , B, d = 1, . . . , D,
and s = 1, . . . , S, where r = (d, s). For each subtype b, we define a set of admissible
regimes by adaptively screening out any regimes with either excessively high toxicity or
unacceptably low efficacy based on the interim data. For each b, denote a fixed elicited
upper limit πX on πT

X(b, r) and a fixed elicited lower limit πY on πE
y (b, r). The set of

admissible regimes Ab for disease subtype b consists of all r = (d, s) that satisfy the two
requirements

Pr{πX(b, r) > πX | Θ, D̃obs
n } < cX and Pr{πY (b, r) < πY | Θ, D̃obs

n } < cY ,

where cX and cY are fixed cutoff probabilities calibrated to obtain a design with good
operating characteristics. If no regimes satisfy these admissible criteria, the trial is
stopped early and no regime is selected.
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The primary objective of the MM basket trial is to find the optimal admissible
treatment regime r = (d, s) for each cancer subtype b. Since toxicity assessment is much
faster than efficacy assessment, we consider a two-stage trial design. In stage 1, patients
in each subtype are randomized fairly among schedules. Since toxicity is observable
much earlier than efficacy, the toxicity data play a major role in stage 1, with treatment
regimes that have excessively high toxicity probabilities within a subgroup being ruled
out. In stage 2, as previously missing efficacy outcomes are observed for patients who
have completed their efficacy assessment, this efficacy data is included in the decision
making. We adaptively randomize the remaining patients among all acceptable regimes
across different schedules.

Assume that patients are recruited sequentially to each schedule within each disease
subtype. Let Nmax be the maximum total sample size, and pb the prevalence of subtype
b = 1, . . . , B, so

∑B
b=1 pb = 1. For each subtype b, we fairly allocate κpbNmax patients

to each schedule in stage 1. Thus, the remaining number of patients in stage 2 is (1 −
κS)pbNmax. The two-stage trial is conducted as follows.

Stage 1. If the next patient has disease subtype b, determine the admissible set Ab

based on the most recent data D̃obs
n .

1.1 Randomly choose a schedule, s, with probability 1/S each.

1.2 If the selected schedule s has never been tested, then start the subtrial for this
schedule at the lowest dose, i.e., r = (1, s). Otherwise, subject to the constraint that no
untried dose may be skipped when escalating, randomly choose an admissible regime
r = (d, s) ∈ Ab, d = 1, . . . , D, for the next patient with AR probability proportional to
ω(b, r).

1.3 The subtrial for subtype b is either stopped when the maximum sample size κpbNmax

is reached, or terminated early if no dose within this schedule is admissible for subtype b.

Stage 2. For each newly enrolled patient in subtype b, first determine the optimal
admissible regime r∗b (s) = (d∗b(s), s) that has largest posterior probability of having the
maximum mean utility within each s, i.e.,

d∗b(s) = argmax
d∈{1,...,D}

ω(b, r)I{r ∈ Ab | r = (d, s)}, s = 1, . . . , S.

Then choose the schedule s ∈ {1, · · · , S} with probability proportional to

ω(b, r∗b (s)) = Pr

[
uθ(b, r

∗
b (s)) = max

r′b∈{r∗b (1),...,r∗b (S)}
{uθ(b, r

′
b)} | Θ, D̃obs

n

]
,

and assign the new patient to regime (d∗b(s), s). In other words, the second stage adap-
tively randomizes patients to the best dose–schedule regime within each schedule. Re-
peat this process until the remaining patients have been treated in the second stage. If
no regime is admissible for subtype b, then stop the trial for that subtype.
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At the end of the study, based on the complete data DNmax , for each subtype

b = 1, . . . , B, the optimal treatment regime r∗b = (d∗b , s
∗
b) is defined as that with the

largest posterior probability of having the maximum mean utility among all the regimes,

formally

r∗b = argmax
r∈Ab

Pr
[
u(θ, b, r) = max

r′
{uθ(b, r

′)} | Θ, D̃obs
n

]
.

3.3 Design Parameter Calibration

To obtain a design with good performance, one must carefully calibrate the numerical

values of both the hyperparameters,Θ = (θ0,θ1,θ2), and the design parameters, (Nmax,

κ, πX , πY , cX , xY ). In general, this can be done as follows. The method requires prior

values of πX(b, r) and πY (b, r) to be elicited from the physicians who are planning the

trial, for each subgroup b and regime r.

The method uses the idea of prior expected sample size (ESS) given by Morita et al.

(2008) to specify the hyperparameters θ0, θ1, θ2. As the first step of an iterative process,

fix the initial values of (σ2
ξ , σ

2
η,Σu,v) and (ν2ξ , ν

2
η , ψ0, γ0). Given a regime r, the values

of ξ0 and η0 can be obtained by matching the mode of the prior of each πX(b, r) and

πY (b, r) with the corresponding elicited value. Using the initial fixed hyperparameters,

prior samples of πX(b, r) and πY (b, r) values are generated using the hierarchical model

(2.1). Following the approach of Lee et al. (2015), each prior sample is fit to a Beta(a, b)

distribution using the method of moments, with the prior ESS approximated as a+ b.

The hyperparameter θ0 can be calibrated repeatedly until a + b is near 1 for each

(b, r) combination, which gives a reasonably vague prior. A similar procedure can be

used to obtain θ1 and θ2. Additional details, including guidelines for choosing the

numerical prior and design parameter values, are given in Section S2 of Supplementary

Material.

The upper limit πX on πX(b, r), and the lower limit πY on πY (b, r) also must be

specified by the clinician. In practice, the maximum sample size Nmax of a phase I–II

trial is specified based on practical limitations, and choosing Nmax may be informed by

preliminary trial simulations to assess the design’s performance for a range of different

feasible values. We recommend that at least D patients are assigned to each schedule in

stage 1 for each subtype, to ensure that each dose within each schedule has a reasonable

probability of being tried, unless the lowest dose is found to be unsafe for that schedule.

Formally, this implies that κ ≥ maxb∈{1,...,B}{D/(pbN
max)}. For example, givenNmax =

180, D = 3, C = 3, and (p1, p2, p3) = (3/12, 4/12, 5/12), κ should be greater than

1/15, to ensure that at least one patient in subtype 1 can be assigned to each dose

for each schedule in stage 1. When Nmax is adequate, we recommend allocating more

patients to stage 1, to ensure that the preliminary estimate of the subgroup-specific

optimal treatment regime for each subtype is reasonably accurate. In the MM study,

Nmax = 180, and we assign at least 3D = 9 patients to each schedule for each subtype

in stage 1.
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4 Simulation Study

4.1 Simulation Design

A simulation study to assess the proposed design’s performance was designed to be simi-
lar to the MM trial, with B = 3 different subtypes and patients in each subtype assigned
to one of the nine dose–schedule regimes, for a total of 27 subtype-specific dose–schedule
regimes. The toxicity window was TX = 30 days with the same upper limit πX = .15
for all πT

X(b, r). Low-grade toxicity was defined as grade 1 or 2 toxicity observed im-
mediately. Bioactivity was simulated as a longitudinal variable measured on each of
days 10, 20, · · · , 90. Assuming equal subgroup proportions (p1, p2, p3) = (1/3, 1/3, 1/3),
the maximum sample size Nmax = 180 leads to an average of 6.6 patients assigned to
each of the 27 subgroup-regime combinations. We also performed a sensitivity analysis
to investigate the design’s performance for other (p1, p2, p3) vectors. We set κ = 0.15
so that the stage 1’s sample size was 81. We assumed an accrual rate of 10 patients
per month, with patients arriving according to a Poisson process, so it took approx-
imately 18 months to accrue 180 patients. The proposed design was examined under
12 different scenarios. The assumed fixed marginal probabilities (πX(b, r), πY (b, r)) in
each scenario are given in Table S1 of the Supplementary Material, and the true mean
utilities E(U(X,Y ) | b, r) are given in Table S2 of the Supplementary Material. The 12
scenarios have six homogeneous cases and six corresponding heterogeneous cases. For
each homogeneous case, say scenario i, πY (b, r) was the same across subtypes b = 1, 2, 3
for all r. For the corresponding heterogeneous case, {πX(b, r) : b = 1, 2, 3} and πY (1, r)
were the same as in scenario i, but πY (b, r)’s were different for b = 2, 3. Comparing
the design’s performance under scenarios i and i + 1 thus shows what is gained by
borrowing information across subtypes. Let umax

b denote the largest expected utility
for all 9 regimes in subtype b. The set of subgroup-specific optimal treatment regimes
(OTRs) are defined as those have expected utilities no less than umax

b − 5, so in partic-
ular more than one r may be nominally “optimal.” The OTRs for each subtype under
each scenario are indicated in boldface in Table S2 of the Supplementary Material. The
data-generating algorithms for the toxicity and efficacy outcomes (xi, yi), i = 1, . . . , n,
and for the bioactivity and low-grade toxicity data, are provided in the Supplementary
Material.

In the simulations, we denote the proposed basket phase I–II trial design as BTD12.
The detailed configuration of the BTD12 is provided in Supplementary Material. For
comparison, we simulated a simpler naive design that is used quite often in practice. This
naive design collapses the different disease subtypes into a single population, based on
the assumption of homogeneity. To deal with delayed outcomes, this design would make
adaptive treatment assignment decisions for new patients only after the outcomes of
the previously treated patients are all observed. To evaluate the advantage of borrowing
information across subtypes by the BTD12 design, as a comparator we also simulated a
design that conducts separate, independent trials for each of the three subtypes, with
maximum sample size pbNmax for each subtype b = 1, . . . , B. This design, hereafter
referred to as ITD12, does not borrow information across subtypes for decision making.
To evaluate the gain for borrowing information from additional bioactivity and low-
grade toxicity data, we simulated the observed-data version of the BTD12 (denoted by
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BTDO
12). This design does not borrow any information from additional bioactivity or

low-grade toxicity data. In addition, it makes treatment decisions based on the patients
whose outcomes have been completely observed by the decision-making time. As a
benchmark for comparison, we also simulated the complete-data version of the BTD12

(denoted by BTDC
12), which repeatedly suspends the accrual of new patients prior to each

treatment assignment, to wait until all pending outcomes of previously treated patients
have been observed completely. As a result, BTDC

12 has no missing outcomes. However,
BTDC

12 requires a very lengthy trial duration and is not feasible in practice. Nonetheless,
it provides an upper bound for evaluating the performance of the proposed design since
BTDC

12 uses all the data in decision making. Lastly, we include the design proposed in
Lin et al. (2020a) for ordered cancer subtypes (hereafter referred to as OTD) in the
simulation study. The OTD design requires strong prior information on the efficacy
probability ordering among different subtypes. To adapt this design in our simulation
setting, we assume that the treatment efficacy probabilities follow the ordering: subtype
3 > subtype 2 > subtype 1. For each design, the posterior distributions were updated
after each cohort of three patients was treated. We simulated each design 1000 times
under each scenario.

4.2 Simulation Results

The simulation results of the proposed BTD12 design are summarized in Tables S3 and
S4 of the Supplementary Material, including within-subtype selection percentages and
number of patients allocated to each regime. The simulation results show that BTD12

has particularly high probabilities of selecting the optimal subgroup-specific treatment
regimes, and it allocates most patients to the appropriate regimes. As mentioned, the
marginal toxicity and efficacy probabilities are the same for subtype 1 in scenarios i and
i+1, for i an odd number, with the key difference that scenario i is a homogeneous case
and scenario i+1 is a heterogeneous case. Comparing the OTR selection percentages for
subgroup 1 for each scenario pair i and i+1 shows that the BTD12 design generally has
a greater probability of OTR identification, primarily because it borrows information
across subtypes in the homogeneous cases.

We next focus on comparisons among the BTD12, naive, ITD12, OTD, and BTDC
12

designs. Table 1 shows the percentages of selecting OTRs for each design. Table 2
provides other operating characteristics, including the percentage of patients allocated
to overly toxic regimes with πX(b, r) > πX , the percentage of patients allocated to
inefficacious regimes with πY (b, r) < πY , the percentage of trials selecting overly toxic
regimes, summed across subgroups (so the maximum value is 300%), the average trial

duration, and the trial efficiency index, defined as EI =
∑B

b=1 pb
ûb−ūb

umax
b −ūb

, where ûb is

the empirical expected utility induced by one design for cancer subtype b, umax
b is the

maximum utility among the regimes for subtype b, and ūb is the empirical mean utility
induced by uniformly allocating patients to each of the dose–schedule regimes within
subtype b. EI has a maximum value of 1, and measures how efficient the design is in
treating the patients enrolled in the trial: If a design allocates as many patients as
possible to the best treatment regime with E(U(X,Y ) | b, r) = umax

b , then its EI would
approach one. Thus, larger EI corresponds to better design performance. Alternatively, if
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Method
Scenarios

Average
1 2 3 4 5 6 7 8 9 10 11 12

Cancer subtype 1

BTD12 91.7 80.1 80.4 70.2 73.4 47.8 85.7 72.3 75.9 69.1 85.1 84.8 76.4

Naive 96.6 43.2 85.6 49.8 69.3 19.5 92.8 46.5 83.5 64.2 93.2 91.0 69.6

ITD12 73.4 73.2 62.5 65.0 39.2 37.5 61.1 67.5 53.4 56.8 67.8 68.6 60.5

OTD 93.6 64.0 78.5 60.7 74.5 33.6 87.0 59.5 77.4 67.2 89.2 91.3 73.0

BTDO
12 91.6 74.3 81.2 68.0 68.8 45.8 85.8 68.4 72.5 69.1 85.4 85.4 74.7

BTDC
12 92.9 79.4 81.9 73.5 70.3 46.8 86.9 64.5 78.6 69.9 87.0 87.1 76.6

Cancer subtype 2

BTD12 93.6 76.8 79.4 70.5 73.9 61.3 84.9 81.6 74.2 79.3 87.6 86.6 79.1

Naive 96.6 18.9 85.6 18.6 69.3 26.3 92.8 47.1 83.5 48.2 93.2 91.0 64.3

ITD12 76.0 77.0 62.6 70.5 37.5 58.9 61.4 93.1 56.1 67.6 67.2 74.2 66.8

OTD 95.1 37.5 78.8 35.2 77.1 45.0 88.7 89.4 77.9 54.0 91.0 91.7 71.8

BTDO
12 91.3 72.8 80.2 66.1 70.6 62.2 84.0 81.0 74.8 74.4 86.2 88.1 77.7

BTDC
12 93.9 73.2 81.6 73.6 70.0 59.6 85.9 91.6 80.5 79.1 87.4 87.3 80.3

Cancer subtype 3

BTD12 92.8 77.0 79.6 84.4 73.6 73.2 84.0 53.2 76.3 51.2 85.3 83.9 76.2

Naive 96.6 3.6 85.6 66.4 69.3 32.5 92.8 19.3 83.5 41.0 93.2 91.0 67.4

ITD12 73.9 74.5 64.7 70.9 35.5 65.5 62.9 52.1 53.4 37.9 67.6 66.5 60.5

OTD 91.6 55.6 77.4 65.5 74.1 52.4 85.5 33.4 72.8 37.0 86.5 88.6 68.4

BTDO
12 94.2 77.4 80.8 77.2 70.0 68.7 84.1 49.1 74.3 52.4 86.2 85.0 75.0

BTDC
12 93.6 81.0 82.0 84.7 70.8 69.7 87.2 52.1 80.5 55.9 87.0 85.5 77.5

Table 1: Percentages of selecting optimal treatment regimes within each cancer subtype,
for each of the five designs under each of the 12 scenarios in Table S1 of the Supplemen-
tary Material. Efficacy is assessed at day 90, and the assessment period for toxicity is
30 days. The accrual rate is 10 patients per month. Scenarios given in boxes correspond
to heterogeneous cases. The subgroup-specific optimal treatment regimes are defined
as those have expected utilities no less than umax

b − 5, where umax
b denotes the largest

expected utility for all 9 regimes in subtype b.

EI < 0, then the design is unacceptable since it performs worse than the equal allocation
scheme.

Table 1 shows that, in the homogeneous scenarios indexed by odd numbers, on av-
erage the naive design achieves the best performance. This is because the homogeneity
assumption of the naive design is correct in these scenarios. The naive design thus can
be treated as the oracle design in the homogeneous scenarios. However, in the heteroge-
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neous scenarios where the model is misspecified, the naive design has the smallest OTR
selection percentage, on average. Across the 12 scenarios, the within-subtype OTR se-
lection percentage by BTD12 is 76%, on average, which exceeds that provided by ITD12

by approximately 15%. The advantage of BTD12 over ITD12 is quite large in the ho-
mogeneous scenarios, because BTD12 borrows information across subtypes while ITD12

does not. For example, in scenarios 1, 7, and 9, BTD12 has more than a 20% greater
chance of identifying the OTRs than ITD12. The most striking case is scenario 5, in
which the correct OTR selection percentage of BTD12 is almost double that of ITD12.

In the heterogeneous scenarios, indexed by even numbers, one concern is that exces-
sive borrowing of information between subgroups may harm the performance of BTD12.
The simulations show that BTD12 still outperforms ITD12 in most of the heterogeneous
scenarios, which may be attributed to the ability of BTD12 to adaptively determine the
amount of information borrowed from each subtype. For example, in scenario 4, sub-
type 2 has two OTRs, regimes (1, 1) and (2, 3), that are totally different for subtypes 1
and 3. The simulation results from Table 1, and Tables S3 and S4 in the Supplemen-
tary Material, together, show that BTD12 is able to correctly detect this heterogeneity
and allocate most patients to subtype-specific OTRs. The OTR selection percentage
for subtype 2 is 70.5, which is particularly close to that based on ITD12. In addition,
since subtypes 1 and 3 have a common OTR, as a result, BTD12 performs better than
ITD12 in terms of the OTR selection percentages for subtypes 1 and 3, due to adap-
tive information borrowing. There is only one OTR for each subtype, and the three
subtype-specific OTRs are different in scenario 6, which is difficult for BTD12 as infor-
mation borrowing across subtypes may lead to incorrect OTR selections. However, the
simulations show that, in scenario 6, BTD12 still is superior to ITD12. Another interest-
ing result is seen in scenario 12, where the treatment effects are heterogeneous but the
locations of the OTRs are the same across the three subtypes. In this case, it appears
that BTD12 benefits greatly from information borrowing, since it yields higher OTR se-
lection percentages than ITD12. Moreover, since the toxicity outcomes are assumed to
be homogeneous across subtypes, there are always safety advantages from information
sharing by BTD12. Borrowing toxicity information across subtypes improves the relia-
bility of the rules for screening out overly toxic regimes, whereas the ITD12, which does
not borrow information, has worse safety. This is shown by Table 2, which indicates
that BTD12 selects fewer overly toxic regimes and allocates fewer patients to overly
toxic regimes, compared to ITD12. Table 2 also shows that BTD12 uniformly dominates
the ITD12 design in terms of trial efficiency and average trial duration.

Comparing the operating characteristics of the BTD12 design and the observed-data
BTDO

12 design shows that borrowing information from bioactivity and low-grade toxicity
data makes the BTD12 more efficient. Table 2 shows that the EI values of BTD12 are
generally larger than those of BTDO

12, and BTD12 allocates fewer patients to overly toxic
treatment regimes. In addition, BTD12 yields higher selection percentages of optimal
treatment regimes than BTDO

12, especially in the heterogeneous scenarios 2, 4, 6, and
8. Recall that the complete data design BTDC

12 is a benchmark that could never be
used in practice since, by repeatedly suspending accrual, it would require an impossibly
long trial duration. For example, BTDC

12 would require up to 180 months (15 years)
to complete a trial of 180 patients. Since the decisions of BTD12 are made based on
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Method
Scenarios

Average
1 2 3 4 5 6 7 8 9 10 11 12

% selection of overly toxic regimes

BTD12 1.4 1.4 1.1 7.3 4.3 2.6 13.3 41.1 49.7 53.5 12.2 18.0 17.2

Naive 0.0 0.9 0.0 3.3 3.3 0.3 6.0 27.9 32.4 32.4 6.0 11.7 10.4

ITD12 14.8 15.3 10.4 19.4 16.7 11.0 40.2 45.8 115.1 110.7 33.3 36.4 39.1

OTD 0.9 3.2 1.7 8.9 4.3 2.1 12.8 39.6 52.7 55.0 10.1 13.5 17.1

BTDO
12 1.0 2.8 0.6 10.0 4.0 2.4 16.8 42.8 53.6 55.2 16.1 20.4 18.8

BTDC
12 0.4 1.4 1.9 5.2 3.6 2.2 12.6 39.9 39.6 50.5 11.8 15.9 15.4

# patients allocated to overly toxic regimes

BTD12 16.2 16.0 15.7 22.0 9.5 6.5 22.1 30.2 81.2 79.7 17.5 18.9 28.0

Naive 12.2 12.4 12.2 18.2 6.8 4.1 17.8 25.4 74.0 74.9 12.4 14.0 23.8

ITD12 27.7 27.4 28.6 32.2 7.6 6.5 18.2 22.0 93.1 93.4 16.0 16.9 32.6

OTD 12.3 12.2 12.7 16.2 5.9 4.7 14.7 17.2 51.6 51.1 10.9 11.3 18.4

BTDO
12 20.4 19.4 19.6 26.9 10.1 7.6 24.5 31.4 84.6 84.5 19.8 19.8 30.7

BTDC
12 14.8 14.2 13.3 19.8 8.3 5.6 20.2 27.5 74.5 76.0 15.1 15.1 25.4

# patients allocated to subtherapeutic regimes

BTD12 9.9 12.1 37.8 43.6 9.2 10.6 47.5 53.5 21.4 27.7 64.6 70.2 34.0

Naive 9.0 17.1 32.9 59.2 7.9 9.0 41.2 72.0 19.8 33.1 58.3 62.8 35.3

ITD12 22.0 19.1 61.0 48.8 21.8 21.4 72.4 66.1 26.6 27.2 83.2 94.9 45.2

OTD 5.2 8.1 21.7 27.7 4.5 5.2 28.7 35.8 9.2 16.1 38.3 42.7 20.3

BTDO
12 10.9 12.1 39.4 42.2 9.7 10.3 50.4 54.6 19.3 26.2 64.3 71.8 34.3

BTDC
12 9.0 11.3 33.8 43.0 7.7 9.4 45.2 53.5 20.7 26.8 62.5 66.6 32.4

Trial efficiency index

BTD12 53.0 46.5 53.2 43.2 27.0 26.7 35.5 19.1 36.4 37.1 37.3 36.2 37.6

Naive 56.9 38.2 57.9 36.8 27.5 19.6 42.5 5.1 40.9 36.2 45.3 42.3 37.4

ITD12 28.0 27.0 35.4 33.6 26.8 14.9 19.6 17.1 24.6 27.2 25.8 23.2 25.3

OTD 41.9 33.2 44.6 29.2 18.6 16.8 28.7 6.4 29.5 27.3 38.3 30.6 21.0

BTDO
12 46.0 40.4 49.0 38.2 21.3 23.1 31.3 17.2 33.6 32.8 35.4 34.8 33.6

BTDC
12 54.0 48.6 56.6 45.7 26.8 26.9 38.7 22.1 40.0 39.9 40.5 39.8 40.0

Average trial duration (in months)

BTD12 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0

Naive 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0

ITD12 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0

OTD 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0

BTDO
12 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0

BTDC
12 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0

Table 2: Operating characteristics based on five designs under the 12 scenarios in Table
S1 of the Supplementary Material, assuming accrual rate of 10 patients per month.
Scenarios given in boxes correspond to heterogeneous cases. “% selection of overly toxic
regimes” is the sum of the percentages of selecting overly toxic regimes for all three
subtypes, so the maximum value is 300%.
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less data, unavoidably, it is less efficient than the optimal complete-data BTDC
12 design,

according to the EI values in Table 2. In terms of other metrics, such as OTR selection or
overdose control, BTD12 and BTDC

12 have very similar performance, however. Although
outcomes are missing early in the trial, it appears that BTD12 is able to recover from
the efficiency loss in the late-stage of the trial when more outcomes that had been
temporarily missing are observed.

Comparing the BTD12 basket design and the order-based OTD design, we found
that these two methods yield similar OTR selection percentages in homogenous sce-
narios (indexed by odd numbers), where the ordering restriction of OTD was not vi-
olated. However, in heterogenous scenarios (indexed by even numbers) where the true
subtype–efficacy structure does not satisfy the strong ordering restriction on the treat-
ment efficacy probabilities among the three cancer subtypes, the performance of OTD is
uniformly inferior to that of BTD12. An interesting finding is that OTD generally yields
smaller numbers of patients at overly toxic or subtherapeutic regimes than BTD12, as
noted in Table 2. This is potentially due to the fact that OTD puts highly informa-
tive priors on the efficacy probabilities, causing extensive information borrowing across
different cancer subtypes. As a consequence, the convergence of parameter estimates
based on OTD is faster, and thus OTD can quickly identify overly toxic or subthera-
peutic regimes. But the accompanying risk with such a faster convergence rate is the
higher chance of being trapped in suboptimal treatment regimes. On the other hand,
BTD12 does not assume a strong association among cancer subtypes, and uses observed
data to adaptively determine the level of information sharing. At the beginning of the
trial when the information contained in the observed data is sparse, BTD12 tends to
be more exploratory and test more untried regimes. Therefore, it has a higher number
of patients treated at overly toxic of subtherapeutic regimes than BTD12. Nevertheless,
BTD12 is much safer than the independent ITD12 design. Furthermore, BTD12 uses
more information, leading to a higher EI than OTD across all scenarios. This in turn
implies that more patients are treated at optimal or nearly optimal regimens based on
BTD12.

4.3 Sensitivity Analyses

We carried out sensitivity analyses to assess the robustness of the BTD12 design, by
considering different (a) prevalence proportions for the three subgroups, (b) sample
sizes for stage 1 while keeping Nmax = 180 constant, (c) patient accrual rates, and
(d) prior distributions on the heterogeneity parameters. In each sensitivity analysis,
the other simulation configurations were unchanged from those in Section 4.1. In this
section, we only describe the results (see Figure 1) under scenarios 1–4 of Table S1 in the
Supplementary Material, since the substantive conclusions based on the other scenarios
are the same.

In sensitivity assessment (a), we considered three prevalence ratios. The first two
were p1 : p2 : p3 = 3 : 4 : 5, which enrolls more patients with subtype 3, and p1 : p2 :
p3 = 5 : 4 : 3, which enrolls more patients with subtype 1. Additionally, since in Table 5
of Fonseca et al. (2009) MM patients are classified as {hyperdiploid, non-hyperdiploid,
other} with respective percentages 45, 40, 15, we examined the design’s behavior using
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the corresponding values p1 : p2 : p3 = 9 : 8 : 3. The simulation results show that,
when the treatment effects are homogeneous (scenarios 1 and 3), the OTR selection
percentages for the proposed design are not sensitive to the different prevalence ratios.
However, when there are heterogeneous treatment effects, as in scenarios 2 and 4, the
subtype-specific OTR selection percentage increases with the sample size of the subtype.
For the most extreme imbalance p1 : p2 : p3 = 9 : 8 : 3, lower OTR selection percentages
of about 60% are seen in Scenario 2 and 70% in Scenario 4, which are slightly below
the values for the case p1 : p2 : p3 = 5 : 4 : 3, although the decrements are very small in
Scenarios 1 and 3.

In sensitivity assessment (b), we evaluated the design under three different stage
1 sample sizes, N1 = 54, 81, and 108, corresponding to κ = 0.10, 0.15, or 0.20, since
N1 = κNmaxB. The simulations suggest that the OTR selection percentage is not
sensitive to these rather large differences in stage 1 sample size. However, we also found
that smaller κ results in a larger EI (results not shown). This is because, when κ is small,
more patients are enrolled in stage 2, which is the optimization stage. As a result, a
design with a smaller value of κ generally allocates more patients to OTRs, and hence
is more efficient in this regard.

In sensitivity assessment (c), we examined accrual rates of 6, 10, and 15 patients
per month, which lead to respective average trial durations of 33, 21, and 15 months.
Given the fixed toxicity/efficacy assessment windows, the accrual rate determines the
amount of missing data at the time of decision making. The faster new patients arrive,
the more likely it will be that patients treated previously will have missing outcomes
that must be imputed. The simulation results displayed in panel (c) of Figure 1 show
that the OTR selection percentage for the proposed method is quite robust to this range
of accrual rates. However, the faster the accrual rate, the larger the amount of missing
data in the decision-making process. Although the accrual rate does not affect the OTR
selection percentage for BTD12, additional simulations (results not provided) show that
a fast accrual rate would make the proposed method less efficient and more aggressive.

In sensitivity assessment (d), we evaluated the effects of different prior distributions
on the heterogeneity parameters τη and τw, which play critical roles in determining
the amount of information borrowing between subtypes. We considered three cases:

τη, τw
i.i.d.∼ half-Cauchy(0, 1), τη, τw

i.i.d.∼ half-Cauchy(0, 5), and τη, τw
i.i.d.∼ IG(0.1, 0.1).

The half-Cauchy(0, 1) prior places more probability mass on the homogeneous case,
i.e., τη = τw = 0. The simulation results based on these three prior specifications are
particularly close, suggesting that our design is not sensitive to these prior distributions.

5 Concluding Remarks

The proposed phase I–II basket trial design finds the optimal subtype-specific dose–
schedule by first assuming a three-level hierarchical model. Complications due to late-
onset toxicity or efficacy outcomes are addressed by using a two-stage design with
adaptive randomization, which is a natural approach to this problem. In stage 1, when
most of the efficacy data are unavailable, toxicity data can be utilized for decision mak-
ing to screen out unsafe treatment regimes. When more patients have completed their
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Figure 1: Sensitivity assessments of the proposed BTD12 method to (a) different preva-
lence ratios (p1 : p2 : p3); (b) different stage 1 sample sizes; (c) different patient accrual
rates; (d) different prior distributions on τη and τw. The sensitivity assessments are
conducted based on scenarios 1–4 of Table S1 in the Supplementary Material.
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follow-up in stage 2, the efficacy outcome plays a major role in treating the remaining
patients, and for choosing optimal (dose, schedule) regimes. To deal with different can-
cer subtypes, the Bayesian hierarchical model assumes that the dose–schedule treatment
effects for different subtypes vary around a common mean, and thus facilitates adaptive
shrinkage based on the observed data. The simulations show that the proposed design
uniformly outperforms an approach that conducts separate independent trials within
subgroups when the regime effects are homogeneous across subtypes. In addition, the
operating characteristics of the proposed design are very close to those of the benchmark
complete-data design, indicating that the efficiency loss due to missing data is minimal.

Although the assumed imputation models for missing values of Xi and Yi may
be incorrect, this will have negligible effects on the design’s performance, for several
reasons. First, the imputation model only provides partial/indirect information, and
the treatment-assignment decisions of the proposed method are mainly determined by
the inference model. Second, outcomes are only temporarily missing. Once patients
with pending outcomes have finished their entire assessments, temporarily unobserved
outcomes become available and contribute to the estimation of the primary inference
model (2.1). Third, the primary objective of the trial is not to obtain accurate inference
on the subtype-specific regime-response relationships, but rather to identify optimal
subtype-specific treatment regimes. Our simulations show that, even with misspecified
imputation models, the proposed design still does a good job of allocating patients to
optimal regimes and provides high probabilities of making correct selections.

While the Bayesian hierarchical model adaptively borrows information across cancer
subtypes, a caveat is that it tends to shrink the subtype-specific treatment effects toward
the common mean, which may lead to incorrect treatment assignment decisions when
there is a mixture of homogeneous and heterogeneous subgroups. As suggested by an
associate editor, we have considered four scenarios where the treatment effects are very
similar for some subtypes and very different for the other subtypes. We compared the
operating characteristics of BTD12 with those of the naive design, which is based on the
subtype homogeneity assumption, and those of the ITD12 design, which is based on the
subtype heterogeneity assumption. The simulation results given in the Supplementary
Material show that the proposed BTD12 design strikes a balance between the full-
information-borrowing naive design and the no-information-borrowing ITD12 design.
However, in this case, one may hypothesize that the performance of BTD12 might
be improved by adaptively combining or splitting the cancer subtypes using the latent
subgroup membership variable approach of Chapple and Thall (2018). This is a potential
area for future research.

Supplementary Material

Supplementary material of “A Phase I–II Basket Trial Design to OptimizeDose-Schedule
Regimes Based on Delayed Outcomes” (DOI: 10.1214/20-BA1205SUPP; .pdf). The Sup-
plementary Material contains Bayesian data augmentation steps, the prior elicitation
procedure, simulation configurations, and additional simulation results.

https://doi.org/10.1214/20-BA1205SUPP
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