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As a general rule of thumb the resolution of a light microscope (i.e.,
the ability to discern objects) is predominantly described by the full width at
half maximum (FWHM) of its point spread function (psf)—the diameter of
the blurring density at half of its maximum. Classical wave optics suggests
a linear relationship between FWHM and resolution also manifested in the
well-known Abbe and Rayleigh criteria, dating back to the end of the 19th
century. However, during the last two decades conventional light microscopy
has undergone a shift from microscopic scales to nanoscales. This increase
in resolution comes with the need to incorporate the random nature of obser-
vations (light photons) and challenges the classical view of discernability, as
we argue in this paper. Instead, we suggest a statistical description of reso-
lution obtained from such random data. Our notion of discernability is based
on statistical testing whether one or two objects with the same total inten-
sity are present. For Poisson measurements, we get linear dependence of the
(minimax) detection boundary on the FWHM, whereas for a homogeneous
Gaussian model the dependence of resolution is nonlinear. Hence, at small
physical scales modeling by homogeneous gaussians is inadequate, although
often implicitly assumed in many reconstruction algorithms. In contrast, the
Poisson model and its variance stabilized Gaussian approximation seem to
provide a statistically sound description of resolution at the nanoscale. Our
theory is also applicable to other imaging setups, such as telescopes.

1. Introduction.

1.1. Lens optics and diffraction. According to geometrical optics, an ideal light micro-
scope would be able to distinguish two points in space being arbitrary close. However, in 1873
Abbe [1] formulated what later became known as the Abbe diffraction limit (Figure 1(C)):
Two points can be resolved only if their distance d in space is at least

(1) d = λ

2 NA
,

where λ is the wavelength of incoming light and NA is the numerical aperture of the micro-
scope. The numerical aperture is equal to the product of the refractive index of the medium
(1 for vacuum, ≈ 1 for air) and the sine of one-half of the angle of the cone of light that can
enter the microscope. Abbe [1] argued that diffraction and interference of light have to be
taken into account when distances in the order of the wavelength of the illumination light are
considered (see [13] and references therein for a comprehensive account). This paradigm has
limited light microscopy for more than a century until the groundbreaking advent of super-
resolution microscopy [28]; see Section 1.2. For the following, it is beneficial to recall the
basic physics tailored to our needs; see also [5].
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FIG. 1. (A) 1D view of a 2D wave traveling through a circular aperture of width on the same order as the
wavelength. By Huygen’s principle, each point on a wavefront acts as a point source (5 points shown). Due to
diffraction and interference an Airy pattern is formed—where the light interferes constructively/destructively we
get (local) maxima/minima in the intensity pattern. If the distance between the aperture and the screen is much
larger than the wavelength, the slit acts as a point light source. (B) Approximation of an Airy pattern centered
at 1

2 (x1 + x2) by a Gaussian profile matching the maxima with the FWHM indicated. (C)/(D) Two Airy patterns
centered at x1 and x2, distance (1)/ (4) apart, and their superposition (solid red).

Given a specimen under the microscope f , due to diffraction (and the resulting interfer-
ence (see Figure 1(A) and (B))) the imaging system causes a blur so that we do not simply
observe an M times magnified image of f . This blur is usually obtained by calculating ana-
lytically or estimating from data the blur pattern of a single point—the point spread function
(psf) h. For an incoherent imaging system, for example, a fluorescence microscope, using
Huygens’s principle (see, e.g., [9], Section 8.2), the image of the specimen then can be ob-
tained by summing up the blurred images of the points constituting the sample. This results
in a convolution

(2) g(x) =
∫
O

h
(
x − Mx′)f (

x′) dx′,

where O is the space containing the specimen—the object space—and f : O →R. The space
consisting of magnified points Mx′ is called the image space I and g : I → R is the image
of the specimen.

If the microscope was perfect and there was no blur, then the psf h would simply cor-
respond to a delta function δx−Mx′ , so that g(x) = f (x/M). In general, the psf h can be
computed explicitly by scalar diffraction theory. Under the assumption of circular aperture
and using the paraxial approximation [9, 47], h becomes proportional to the Airy pattern [3]
(Figure 1(A))

(3) h(x) ∝
∣∣∣∣2A

(
2π

λ

NA

M
‖x‖2

)∣∣∣∣
2
,

where λ is the illumination wavelength and ‖ · ‖2 is the Euclidean norm. The function A in
(3) is given by A(u) = J1(u)/u, where J1 is the Bessel function of the first kind.
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Independently of Abbe, Lord Rayleigh formulated in 1879 a resolution criterion for spec-
troscopes [59]. Applied to microscopes, Rayleigh’s criterion reads that two point sources at
x1 and x2 having equal intensity can just be resolved if the central maximum of the first psf
centered at x1 coincides with the first minimum of the second psf. The first zero of the Bessel
function J1 is at x ≈ 3.8317, and hence x/2π ≈ 0.6098. Thus, in the case of circular aperture
the Rayleigh criterion is given by

(4) d = 0.61
λ

NA
.

Note that this is slightly more conservative than Abbe’s result (1). See Figure 1(C) and (D)
for a comparison.

The resolution criteria (1) and (4) can be understood in terms of the full width at half
maximum (FWHM) of the (effective) psf (see Figure 1(B), where FWHM = |x2 −x1|). More
precisely, the FWHM is defined as the width of the psf when its intensity is half of its maximal
intensity. The ability to state both Abbe and Rayleigh criteria in terms of the FWHM has lead
to the common understanding that two point sources in space can be resolved by a light mi-
croscope as soon as their distance is larger than roughly the FWHM of the psf h. Usage of the
FWHM as a resolution criterion dates back to at least 1927 [34] and is still popular today [18].
The FWHM criterion is particularly well suited if the psf can be approximated by a Gaussian
kernel as shown in Figure 1(B), since this function does not have any local minima. In fact,
the approximation of the psf by a Gaussian is very common and sufficient for many practical
purposes; see, for example, [65]. For an Airy pattern (3), the FWHM can be computed by first
computing the FWHM of A(u)2 = (J1(u)/u)2, which—due to maxu A(u)2 = A(0)2 = 1—is
determined by the solution of J1(u) = ±u/

√
2. This yields an FWHM of 3.232 for A(u)2,

and hence taking the additional scaling factors in (3) into account together with Mx′ = x, we
get the FWHM resolution criterion in its most common form

(5) d = FWHM = 0.51
λ

NA
.

Thus, the FWHM limit is almost equal to the Abbe resolution limit (1) and somewhat below
the Rayleigh resolution limit (4).

Note that all three resolution criteria postulate a linear dependency of the resolution on the
FWHM, which is in good agreement with experimental results; see, for example, [18].

We mention that due to their generality, the above resolution criteria are not confined to
microscopes and can also be applied to telescopes [2, 7], or other imaging devices, in gen-
eral. We stress that there are many other resolution criteria such as the recently popularized
Fourier ring correlation [6], which can be expressed in terms of the FWHM as well. Hence,
in summary, the FWHM can be viewed as a simple but very informative number to quantify
optical resolution.

Concerning microscopes, from equations (1), (4) and (5) it seems that there are only two
possible ways to improve the resolution: either the wavelength has to be decreased, or the
numerical aperture increased. Since the wavelength λ is inversely proportional to the energy
of the incoming light, decreasing the wavelength might damage the sample, a major issue in
living cell microscopy. Hence, visible light (380–760 nm) is preferred for such applications.
Concerning the second option, the numerical aperture of a modern lens is around 1.3–1.5
[65], and this value has not improved substantially during the last decades. In fact, Abbe’s
resolution limit has been standing as a paradigm for more than 100 years [28], limiting con-
ventional light microscopes to about 250 nm lateral and 500 nm axial resolution1

 [8, 13, 26,
27].

1Axial resolution is the resolution in the longitudinal direction of the measurement trajectory (z-axis), whereas
lateral resolution is the resolution in the image plane (x, y). Note that the Abbe and Rayleigh criteria in (1) and
(4) hold for lateral resolution.
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1.2. From microscopy to nanoscopy. One important idea to improve on Abbe’s resolution
limit is confocal microscopy suggested by Minsky [43, 49] in 1961. After a laser excitation
fluorescent dyes of fluorophores emit light of higher wavelength (less energy) than absorbed
due to rotational and vibrational losses which then can be recorded in a detector device.
Here, only a small spot of the object is illuminated at any given time, and nonfocused light is
blocked by a pinhole. Moving the pinhole over the sample (scanning) creates multiple images
which are then combined to produce the full image. Clearly, the smaller the pinhole, the more
the resolution is increased. On the other hand, a smaller pinhole decreases the overall image
intensity. Theoretically, confocal microscopy increases the resolution by

√
2 (see, e.g., [18]

or [27]) but due to these competing effects practical increase is lower. Consequently, although
providing some improvement, confocal microscopy on its own cannot break the resolution
barrier [5].

An early approach to overcome Abbe’s resolution limit relies on the fact that both limits
in equations (1) and (4) are only valid in the far-field, that is, when sample and microscope
are sufficiently far apart. Similarly, the regime when the sample and the microscope are less
than a wavelength apart is called near-field. In this case, the size of the aperture and not the
wavelength determines the resolution [12]. In 1972, Ash and Nicholls [4] went below Abbe’s
diffraction limit in the near-field. Using 3 cm wavelength, they achieved a resolution of λ/60.
Current experiments are able to achieve a lateral resolution of 20 nm and a vertical resolution
of 2–5 nm [17, 48]. Although impressive, near-field microscopes have certain disadvantages,
the most obvious being that the specimen must be very close to the microscope and one is
hence mostly limited to surface measurements. Moreover, they are unsuitable for transparent
objects which excludes many biological samples.

The major breakthrough to overcome Abbe’s diffraction limit using far-field microscopy
is intimately related to the development of photoswitchable fluorophores [27, 35]. These can
be switched on and off in a statistically controlled manner, which finally allows to narrow the
region of photon emission down to the nanoscale—resulting in superresolution microscopy.
The fundamental importance of this principle and its impact on modern science is reflected in
the 2014 Nobel prize in Chemistry shared by E. Betzig, S. Hell and W. Moerner “for the de-
velopment of superresolved fluorescence microscopy” [20], where the term superresolution
refers to any technique, which is able to break Abbe’s diffraction limit in the far field. Since
superresolution microscopy is able to achieve resolutions in the nanoscale, it is also called
nanoscopy.

The present paper analyzes not only “classical” microscopy, but also an important type of
nanoscopy—the so-called scanning mode superresolution microscopy. Before we dive into
the scanning mode in the next paragraphs, we would like to stress that other important non-
scanning mode superresolution techniques exist, which we do not address in this paper. This
includes in particular Single Marker Switching (SMS) nanoscopy in its various forms [8, 19,
25, 32, 53]. For a survey from a statistical perspective on nanoscale imaging in general see,
for example, [58] and for a survey on statistical single-molecule techniques see, for example,
[16].

In the scanning mode superresolution microscopy, nonlinearity of the response to exci-
tation is exploited and dyes or fluorophores in a predefined region are shut off to enhance
resolution. The sample itself—just like in confocal microscopy—is scanned along a grid by
illuminating it with a (pulsed) excitation beam focused at the current grid point. We do not
aim to describe all possible approaches here in detail (see, e.g., [67] or [5] for a survey ac-
cessible to a statistical audience) and focus on the most prominent state-of-the-art scanning
mode superresolution technique—Stimulated Emission Depletion (STED) [18, 27, 28, 36].
In STED, the fluorescent dyes are only excited in the center of a torus shaped region and
are actively depleted inside the torus; see Figure 2. Superresolution is achieved by selectively
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FIG. 2. STED microscopy. Column I: Original psf (blue), Column II: Depletion psf (red), Column III: effective
psf (solid beige). The top row shows psfs in 1D, the bottom row in 2D.

switching off the surrounding molecules by a second laser beam (depletion). Using a dichroic
beamsplitter, it is ensured that only the fluoresced light is detected at the detector. On each
grid point, this procedure is repeated for a fixed time (the pixel dwell time) t or equivalently
for a fixed number of pulses (also denoted by t for simplicity). Therefore, one is able to image
specific predefined structures, instead of observing a superposition of the whole sample.

To analyze the resolution of a STED superresolution microscope, we can still employ an
analog to Rayleigh’s criterion (4) by computing the effective psf; see Figures 2 and 3. This
leads to a resolution criterion of the form

(6) d = λ

2NA
√

1 + ξ

(see [27, 66]), where ξ > 0 is the shrinkage factor increasing in the direction of maximal
intensity within the depletion spot. Note that, in principle, the resolution can be increased ar-
bitrarily by increasing ξ . However, in practice, this leads to a decreased number of measured
photons in view of the thinner psf, and hence to a decreased signal-to-noise ratio. We will
discuss this trade-off in Section 1.7. In experiments, resolutions of around 2.4 nm have been
achieved this way; see [52].

Even though the resolution formula (6) is reasonable in view of (1) and (4) if both are
understood in terms of the FWHM, (6) lacks dependency on another important contribution

FIG. 3. Photons generated by two point sources at x1 and x2 which are hard to distinguish for a conventional
light microscope having Airy psf (3), but are easily distinguishable with narrower effective psf after STED.
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in superresolution microscopy—the statistical error. In experiments, one is clearly aware that
both the experimental setup and the statistical error should play a role in the actual resolution
of a (superresolution) microscope. In fact, in any real world experiment, the noise plays a cen-
tral role for the actual ability to distinguish two point sources, leading to the conclusion that
the noise level (e.g., the observed number of photons) should also play a role in equations (1),
(4) and (6). This plays a minor role on the microscopic scale but becomes more severe as res-
olution increases, especially at the nanoscale. Given the vast applications of microscopy and
rapid progress of superresolution, a refined understanding of fundamental principles govern-
ing resolution is of immense importance. However, as far as we know, such mathematically
rigorous model of statistical resolution is still lacking. To overcome this gap, in this paper
we aim to provide unifying modeling (see Section 2) and statistical analysis (Sections 2.2
to 3.4), which allow to understand both the effect of the experimental setup (in terms of the
convolution in (2)) and the random nature of photon counts on the resulting resolution.

2. Statistics.

2.1. Statistical model. To derive a mathematically rigorous formulation for the resolution
of a (fluorescence) microscope with psf h, we start with modeling the actual observations.
Throughout this paper, we confine ourselves to the one-dimensional problem, which is a
prototype for higher spatial dimensions (see Remark 2.3 below).

In practice, the physical space O is scanned bin-wise or sampled at once by a CCD camera
or another detection device. We will assume that the image space I , the space of magnified
points, is the unit interval [0,1], and each scanned bin in O corresponds to a bin Bi = [(i −
1)/n, i/n] ⊂ I . From a mathematical point of view, we can for most experimental setups also
rescale O = [0,1], and in this case scanning at a bin Bi means to center the psf at the center of
Bi . Each bin is either illuminated t ∈ N times by a short excitation pulse (pulsed illumination),
or it is illuminated continuously for some time t (continuous illumination) which we may
also assume to be an integer due to time discretization in the measurement process (e.g.,
t can denote time in pico or nanoseconds). For each bin, we observe the total number of
detected photons denoted by Yi ∈ N. Clearly, Yi is a random quantity, but according to the
above reasoning, we may assume that

(7) E[Yi] = t

∫
Bi

g(x)dx,

where g is the image of the specimen as defined in (2). We assume here and in the following
that the statistical experiments when measuring at Bi are independent for different values
of i, which is physically evident in many measurement settings; see, for example, [5, 33].
Consequently, we observe a vector (Yi)i∈{1,...,n} of independent random variables

Yi
indep.∼ Ft

∫
Bi

g(x)dx, i ∈ {1, . . . , n}(8)

with a family of distributions Ftθ for parameters θ ∈ (0,∞) in mean value parametrization.
The specific choice of Ftθ depends fundamentally on the imaging setup and on the number

of photons collected. We consider the following scenarios here:

Poisson model (P) The finest model we will consider here is a Poisson model Ftθ =
Poi(tθ). This is well known and widely used in the literature; see, for example, [7, 33]. It
is often derived in the setting of continuous illumination, but the Poisson model can also be
motivated by means of the law of small numbers; see, for example, [45].

Variance stabilized Gaussian model (VSG) Due to the central limit theorem, for suffi-
ciently large t also normal models appear a reasonable approximation. Following the pre-
vious reasoning, this then leads to N (tθ, tθ). Applying the variance stabilizing transform
f (x) = 2

√
x, we thus analyze F2

√
tθ = N (2

√
tθ,1).
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Homogeneous Gaussian model (HG) The simplest model to assume in this situation is the
homogeneous Gaussian model N (μ,σ 2) for some general mean μ = tθ and some constant
variance σ 2. In particular, many recovery algorithms rely on this model assumption; see, for
example, [7, 33] for further discussion. After renormalizing the mean μ by σ , we can w.l.o.g.
set σ = 1 and consider the model N (tθ,1).

For a comprehensive discussion and more details on the modeling see, for example, [5,
45]. We emphasize that the homogeneous Gaussian model is commonly used as a proxy
for “microscopy with noise” and has been investigated in many studies. We will, however,
show that it is misleading in the present context. In contrast, we will show that the other two
models (asymptotically) lead to the same resolution which scales linearly with the FWHM in
agreement with the physical understanding.

REMARK 2.1. We consider photons, but treat them as classical particles. In the case of
Poisson model, our modeling as given in (7) and (8) corresponds to the so-called semiclassi-
cal detection model; see, for example, Chapter 9 of [23]. This model is an approximation and
follows from the general theory of light and matter interactions—quantum electrodynamics
(QED); see, for example, [39] and in particular its Appendix B.

REMARK 2.2. In the above models, the only source of randomness is photon counting.
However, in practice other sources can also occur, which require a detailed model of their
own. An important second source of randomness in actual measurements is background con-
tributions which arise either from external light sources or from contributions in out-of-focus
regions. This can be included in the above models by adding a constant factor γ > 0 to the
psf h, at least as long as the background can be assumed to be homogeneous (see also Re-
mark 3.3 below). Furthermore, it might happen that the sensing devices cannot register each
single photon precisely, but only with probability η ∈ (0,1). From a statistical point of view,
this leads to thinning of the counting process; see [45] for details. An appropriate general-
ization of the above models in this case is given by multiplying the expectations with η. In
the following, for notational simplicity we will focus on the three models P, VSG and HG
without background and thinning, but will discuss our results in the more general case in
Remark 3.6.

2.2. Statistical testing problem. Building on the models of Section 2.1, in the following
we will describe the resolution of a microscope with psf h ≥ 0 as a detection problem. We
consider general psfs and provide a mathematically rigorous (asymptotic) statistical testing
theory for resolution. To this end, we test the hypothesis that there is one point source at x ′

0
against the alternative that there are two equally bright point sources at x′

1 and x′
2, respec-

tively. This reflects the ability to discern between one and two objects, and is in line with
many common resolution criteria; see, for example, [14]. Taking into account the previous
considerations on diffraction, in particular (2), and setting xi = Mx′

i for i ∈ {0,1,2} we hence
consider testing the hypothesis that

(9a) H0 : g(x) = h(x − x0)

against the alternative

(9b) H1 : g(x) = 1

2
h(x − x1) + 1

2
h(x − x2);

see Figure 4 for an illustration. The factors of 1/2 in the alternative ensure that the image g

has the same intensity under H0 and H1 (for generalizations to qh(x −x1)+ (1−q)h(x −x2)

with q ∈ (0,1) see Appendix B.3 of the Supplementary Material [37]). We always assume
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FIG. 4. Resolution as a statistical testing problem in one dimension. First row: On the left-hand side, the hypoth-
esis with the psf centered at x0, on the right-hand side the alternative with two psfs centered at x1 and x2, distance
d < FWHM apart. Second, third and fourth rows: The corresponding observational data generated according to
the Poisson, VSG and HG models, respectively.

that x0 is fixed. For each particular alternative, we also assume that x1 and x2 are fixed as
well. However, in the asymptotic analysis we will let d = |x1 − x2| → 02 and later on we
will consider the worst case scenario (Theorem 2.4). Without loss of generality, we scale
the image function g in (9) to be defined on the unit interval [0,1] and normalize it to have
volume 1. Setting the domain of g to be the unit interval [0,1] allows us to interpret h(·− xi)

as functions with domain [0,1] for i ∈ {0,1,2}.

REMARK 2.3. Note that in practice, the hypothesis testing problem (9) occurs in multiple
dimensions (depending on the observational setup). However, if x0, x1, x2 ∈ [0,1]m, m ≥ 1,
the statistically most difficult situation, independently of the (spatial) dimension m, is if all

2In our analysis, we will couple all parameters to the illumination time t . However, for ease of readability we
omit the subscripts t , that is, we write n = nt and d = dt throughout.
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three points fall on a line, as otherwise the distributions under H0 and H1 would not have
the same center of mass. Therefore, the whole problem can essentially be reduced to the
one-dimensional problem of testing on this line.

A (randomized) statistical test for the hypothesis testing problem (9) is a measurable map

n :Rn → [0,1], n ∈ N, where 
n(Y ) = p for (y1, . . . , yn) = Y means that we reject the null
hypothesis with probability p. Each statistical test can make a type I error when the hypoth-
esis is falsely rejected with probability EH0
n(Y ), and a type II error when the hypothesis is
falsely accepted with probability 1 −EH1
n(Y ).

As for the locations, the moment x0, x1 and x2 are fixed, H0 versus H1 in (9) consti-
tutes a simple hypothesis versus a simple alternative testing problem. Thus, according to the
Neyman–Pearson lemma [38] for a fixed n and a fixed significance level α, the likelihood
ratio test (LRT) for H0 versus H1 is uniformly most powerful, that is, no other statistical test
can perform better. For our model (8), the LRT 
n : Rn → [0,1] takes the form

(10) 
n(Y ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if Tn(Y ) > q∗
α,n,

γ if Tn(Y ) = q∗
α,n,

0 if Tn(Y ) < q∗
α,n,

with the log likelihood ratio statistic Tn(Y ) given in terms of the probability mass functions
or densities ftθ of Ftθ by

(11) Tn(Y ) = log
(∏n

i=1 ftp1i∏n
i=1 ftp0i

)
=

n∑
i=1

log
(

ftp1i

ftp0i

)
,

which then has to be determined according to the models (P)–(HG) from Section 2. Here and
in what follows, we abbreviate the detection probabilities in the ith bin by

(12) p0i :=
∫ i/n

(i−1)/n
h(x − x0)dx

under the hypothesis H0 and

(13) p1i := 1

2

∫ i/n

(i−1)/n
h(x − x1)dx + 1

2

∫ i/n

(i−1)/n
h(x − x2)dx

under the alternative H1.
Given a significance level α ∈ (0,1), the threshold q∗

α,n and the constant γ in (10) have
to be chosen such that EH0
N(Y ) = PH0(Tn(Y ) > q∗

α,n) + γPH0(Tn(Y ) = q∗
α,n) = α, as this

ensures α to be the level (i.e., the probability of the type I error) of the test.

2.3. Statistical resolution. In the following, we adopt a minimax testing point of view.
To this end, we begin by determining which choice of x1 and x2 in (9) is the most difficult to
detect.

THEOREM 2.4. Consider the testing problem (9) for x0 = 1/2 fixed. Assume that the
psf h is even. Fix 0 < α < 1/2 and consider the asymptotic regime that t, n → ∞ and d →
0. Then for each of the three models defined in Section 2.1 the uniformly most powerful
test �∗ (and hence the LRT) for (9) with asymptotic level α (i.e., EH0�

∗(Y ) → α) has the
asymptotically smallest power EH1�

∗(Y ) when

x0 = x1 + x2

2
,

that is, when x1 and x2 are placed symmetrically around x0.
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With the above preparations in mind, we now propose the following definition for the
resolution of a microscope.

DEFINITION 2.5 (Statistical resolution of a microscope). Let Y = (Yi)i∈{1,...,n} be as in
(8) and let h be the point spread function of the microscope under investigation. Choose one
of the three models Poisson, VSG or HG. Let 0 < α,β < 1/2, x0 ∈ [0,1], t ∈N and n ∈ N be
fixed. We define the microscope’s statistical resolution at point x0, discretization n, exposure
time t , type I error α and type II error β under the prescribed model as the unique value
d ∈ (0,1) such that the uniformly most powerful test (and hence the LRT (10)) �∗ for (9)
with x1 and x2 chosen such that d = |x1 − x2| and x0 = 1

2(x1 + x2) has exactly level α and
power 1 − β , that is, it satisfies

EH0�
∗(Y ) = α and EH1�

∗(Y ) = 1 − β.

In other words, if the distance d between the two sources x1 and x2 in (9) satisfies |x1 −
x2| = d , the statistical resolution is determined by the best possible test with detection power
1 − β while the error of incorrectly assigning two sources (when only one is present) is
controlled by α. It is immediately clear that a larger value of d will result in larger power,
and a smaller value of d will result in smaller power, that is, the power as a function of d

is monotonically increasing and, furthermore, continuous. Thus, the statistical resolution is
well defined. Moreover, for x1 and x2 with |x1 − x2| ≤ d no level α test is able to distinguish
H0 and H1 with power ≥ 1 − β . Note that, doing so, the sum of errors is bounded by α + β ,
which is why we restrict ourselves to the case α,β ∈ (0, 1

2). Consequently, if α = 0 or β = 0,
the resolution is infinite—no method can achieve finite resolution if one of the errors is zero.
In the case α = β = 1

2 , the test � ∼ Bin(1, 1
2); hence the resolution is 0 which corresponds

to the information of a coin flip to decide between H0 and H1.
The aim of this paper is to study the asymptotic behavior (as n, t → ∞ and d → 0) of

the statistical resolution d = |x2 − x1| in the three models from Section 2.1 and to relate
our results to the classical Abbe and Rayleigh criteria. Furthermore, we will show that the
(asymptotic) behavior of d serves as a good proxy in finite sample situations whenever n

and t are sufficiently large and d is sufficiently small, which might be useful for designing
experiments. This is investigated in simulations presented in Section 4.

3. Main theorem and discussion.

3.1. Assumptions. To derive the precise asymptotic behavior of the statistical resolution
d of a given (superresolution) microscope, we have to pose smoothness assumptions on its
psf h depending on the employed model.

In the HG model, we require the following.

ASSUMPTION 3.1 (HG model). Suppose that the psf h is even and nonconstant. Further-
more, let h ≥ 0 and h(· − xi) ∈ C2[0,1] for all i ∈ {0,1,2}.

The requirement that h ≥ 0 is natural in view of h being an intensity. The differentiability
condition is rather mild and clearly satisfied for the Airy pattern in (3) and its most common
approximation by a Gaussian.

In the case of the VSG and the Poisson models, we need a stronger condition.

ASSUMPTION 3.2 (VSG and P models). Suppose that the psf h is even and nonconstant.
Furthermore, let h > 0 and h(· − xi) ∈ C4[0,1] for all i ∈ {0,1,2}.
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Note that due to compactness of [0,1], Assumption 3.2 implies that h ≥ c > 0 for some
constant c.

REMARK 3.3. We emphasize that the Airy pattern in (3) does not satisfy h > 0. How-
ever, in accordance with many models considered in the literature it is pertinent to include
so-called background contributions, that is, photons arising from other sources than the psf
(cf. Remark 2.2). Examples of such modeling include [2] and [65], which in the notation of
(8) would correspond to Yi ∼ Ft

∫
Bi

g(x)dx+γ /n with a positive constant γ and g given by (9).
If we were to incorporate this background noise into the psf h, and hence due to (2) into the
image g, we would obtain (8) with g̃ = g + γ > 0. From this point of view, the assumption
h > 0 corresponds to the natural requirement that photons can be detected everywhere. We
also note that a Gaussian psf on [0,1] (18), which is the most commonly used approximation
to the Airy pattern (see, e.g., [65] or Figure 1(B)), clearly satisfies Assumption 3.2.

3.2. Main theorem. For two sequences (an)n∈N and (bn)n∈N, we write an � bn, an � bn,
an � bn and an ∼ bn if limn→∞ an/bn = 1, limn→∞ an/bn = 0, limn→∞ bn/an = 0 and
limn→∞ an/bn = c for some constant c > 0, respectively. Note that, due to asymptotic con-
siderations, we may restrict to nonrandomized tests in what follows, that is, to set γ = 0 in
(10). Recall that we consider asymptotics as d → 0 and n, t → ∞. We are now ready to state
our main result on the asymptotic behavior of d .

THEOREM 3.4. Assume model (8) and consider the testing problem (9) with x0, x1, x2 ∈
(0,1) such that x0 = (x1 + x2)/2 and d = |x1 − x2| → 0, n, t → ∞. Let 0 < α,β < 1/2 be
fixed type I and II errors, respectively. For fixed 0 < ν < 1, denote by qν the ν quantile of the
standard normal distribution N (0,1).

(a) Poisson model
Let the distribution in (8) be given by Ftθ = Poi(tθ) and the psf h satisfy Assumption 3.2.

Then the statistical resolution d of the corresponding microscope is

(14) d � 2
√

2
√

q1−β − qα

(∫ 1

0

h′′(x − x0)
2

h(x − x0)
dx

)−1/4
t−1/4.

(b) Variance stabilized Gaussian model
Let the distribution in (8) be given by Ftθ = N (2

√
tθ,1) and the psf h satisfy Assump-

tion 3.2. Then the statistical resolution d of the corresponding microscope also satisfies (14).
(c) Homogeneous Gaussian model
Let the distribution in (8) be given by Ftθ = N (tθ,1), n = o(t2) and the psf h satisfy

Assumption 3.1. Then the statistical resolution d of the corresponding microscope is

(15) d � 2
√

2
√

q1−β − qα

(∫ 1

0
h′′(x − x0)

2 dx

)−1/4
t−1/2n1/4.

REMARK 3.5. The assumption n = o(t2) for the HG model is necessary to get d ↘ 0
asymptotically as t, n → ∞. This assumption is not restrictive for modern microscopy—
in most modern experiments there is at least one photon per pixel [65] already from the
background, that is, t ≥ n seems natural.

REMARK 3.6. In case of constant background noise γ > 0 (Remarks 2.2 and 3.3) and
thinning with factor 0 < η ≤ 1 (Remark 2.2), we get

(16) d � 2
√

2
√

q1−β − qα

(
η

∫ 1

0

h′′(x − x0)
2

h(x − x0) + γ
dx

)−1/4
t−1/4
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for (14) and

(17) d � 2
√

2
√

q1−β − qα

(
η2

∫ 1

0
h′′(x − x0)

2 dx

)−1/4
t−1/2n1/4

for (15).
From (17), we see that possible background noise does not play any role in the HG model,

thereby showing that the HG model is too simple for describing resolution accurately. The
dependence on γ in other models is as expected: the larger the background noise γ , the larger
(i.e. poorer) the resolution d at a scaling rate of γ −1/4.

As for for the thinning η, we see that whenever η < 1, this effectively reduces the illumi-
nation time precisely by the same factor, which agrees with intuition of the thinning factor as
the probability of a photon detection in the sensing device.

3.3. Strategy of the proof. Let us briefly comment on the techniques employed in the
proof of Theorem 3.4 presented in the Supplementary Material [37]. In both Gaussian models,
the level and power of the LRT can be computed explicitly. The formulas (14) and (15)
are then derived by straightforward approximations of integrals by sums as t, n → ∞ and
d → 0. In the Poisson model, the analysis is more difficult, as the LRT statistic consists of
n weighted Poisson random variables of varying intensity which might tend to any value in
[0,∞] depending on the asymptotic relation between t and n. We prove a CLT for the LRT
statistic in case of t � n2−δ for some constant δ > 0. If t � √

n log8 n, we can exploit recent
results from [50] stating that the Poisson model is asymptotically equivalent in the Le Cam
sense to the VSG model, and hence (14) holds true. Hence, both regimes together cover the
whole parameter space. Note that in the overlapping regime there is no contradiction, since
in both regimes we get the same asymptotic statistical resolution.

3.4. Physical implications. Since in most microscopy experiments type I and type II
errors are of equal importance, for the rest of this section we set the type I and II errors to
be equal β = α. To understand the experimental implications of Theorem 3.4, recall that for
many (superresolution) microscopes the psf can be well approximated by a Gaussian kernel

(18) h(x − x0) = 1√
2πσ 2

exp
(
− 1

2σ 2 (x − x0)
2
)

centered at x0 with variance σ 2 > 0, see Figure 1(B) for an illustration. In this case,

FWHM = 2
√

2 log 2σ ≈ 2.355σ

and setting x0 = 1/2, we get

∫ 1

0
h′′(x − x0)

2 dx = 6
√

πσ 3 erf( 1
2σ

) + e
− 1

4σ2 (2σ 2 − 1)

16πσ 8 = 3

8
π−1/2 erf

(
1

2σ

)
σ−5 + o

(
σ−5)

= 3

8
π−1/2σ−5 + o

(
σ−5)

,

∫ 1

0

h′′(x − x0)
2

h(x − x0)
dx =

2 erf( 1
2
√

2σ
)

σ 4 − e
− 1

8σ2 (4σ 2 + 1)

4
√

2πσ 7
= 2 erf

(
1

2
√

2σ

)
σ−4 + o

(
σ−4)

= 2σ−4 + o
(
σ−4)

,

as σ ↘ 0 with the error function

erf(x) = 1√
π

∫ x

−x
e−t2

dt = 2
(
√

2x) − 1.
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Thus, according to (15) we obtain in the homogeneous Gaussian model the following
asymptotic behavior for the statistical resolution:

d � 8π1/8

61/4

√
q1−α

n1/4
√

t
σ 5/4 = 27/8π1/8

31/4(log 2)5/8

√
q1−α

n1/4
√

t
FWHM5/4 .(19)

Note that this is not in agreement with the previously discussed FWHM resolution criterion
(5), which postulates a linear dependency of d on the FWHM; see also [18] or [14]. From
this point of view, it becomes evident that the homogeneous Gaussian model is statistically
too simple to capture the actual difficulty of the practical experiment.

In contrast, in the variance stabilized Gaussian, and Poisson models we compute

(20) d � 27/4√q1−αt−1/4σ = 21/4
√

log 2

√
q1−αt−1/4 FWHM,

which shows in fact a linear dependency of d on the FWHM in good agreement with the
criteria discussed in Section 1.1. We summarize these results in Table 1. To interpret the
results, let us look at the FWHM values in [0.1,0.5]. This interval is well justified since in
practice, for example, for STED microscopes, the resolution is around 50 nm [18, 27] and
for measuring a single molecule, the field of view would naturally be restricted to a region
of around 100–500 nm. For such FWHM values the ratio between the resolutions of (19)
and (20) lies in the interval [0.795n1/4t−1/4,1.19n1/4t−1/4] with it being equal if FWHM ≈
0.250t/n. Therefore, if t = n, then the difference between the homogeneous Gaussian and
other models’ resolution is ≈ ±20%. The difference is larger if the discretization n is greater
than the illumination time t and vice versa. Moreover, if n ≥ 2.57t , then the resolution in
the homogeneous Gaussian model is always larger than in the other models, and hence too
pessimistic for short illumination times. It is always smaller if n ≤ 0.498t , and thus is too
optimistic for long illumination times.

Even though we have argued before that t ≥ n is a natural assumption due to the back-
ground contributions, the case n ≥ t is especially interesting in superresolution microscopy
if the background is neglected. In two-dimensional experiments, it is common to scan with
bin-sizes of 10 × 10 nm, which for a single molecule requires around 10 × 10 bins. For
modern dyes, the number of expected photons from one marker can be around 500 in a stan-
dard confocal experiment, but in superresolutions setups, this number can be considerably
smaller due to the smaller region of excitation, for example, around 50–100. Hence, in our
one-dimensional explanatory setup, values of around 10 for n and 7–10 for t are realistic
when considering superresolution setups without background.

Once the value of t has been fixed, the asymptotic statistical resolution (20) allows to
compare our results to the classical resolution limits of Abbe (1) and Rayleigh (4). Recall that
the FWHM of the Airy pattern is 0.51λ/NA, and hence both criteria can be read as c ·FWHM
with a constant c > 0. Consequently, we can compute the corresponding value of α such that
the right-hand side in (20) equals c · FWHM. The results are shown in Table 2. We find that,

TABLE 1
Limiting asymptotic statistical resolution as given by Theorem 3.4 for the Gaussian psf (18).For ease of

comparison, here we have set n = t in the homogeneous Gaussian model

Error α = β

Model 0.01 0.05 0.1

Homogeneous Gaussian 3.08t−1/4 FWHM5/4 2.59t−1/4 FWHM5/4 2.29t−1/4 FWHM5/4

VSG / Poisson 2.18t−1/4 FWHM 1.83t−1/4 FWHM 1.62t−1/4 FWHM
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TABLE 2
The type I and II errors (α = β) such that Abbe or Rayleigh criterion is fulfilled for the VSG and Poisson models
for different values of the expected number of photons t in 1D. Here, we have assumed a Gaussian psf (18), so

the formula (20) can be simply inverted to calculate α

E[N ] = t

Error α = β 10 20 30 40 50

Abbe criterion 6.81% 1.76% 0.494% 0.144% 0.0432%
Rayleigh criterion 1.33% 0.0857% 0.00614% 4.61 · 10−4% 3.56 · 10−5%

for example, for t = 10 the Abbe criterion allows for a type I error of roughly 6.81%, whereas
the Rayleigh criterion allows only 1.33%. We expect a higher number of photons necessary in
actual experiments, since we have completely disregarded the background noise by choosing
the psf (18).

We can also use (20) to analyze the actual improvement by STED over a classical confocal
microscope in our statistical context. To this end, recall that the FWHM is decreased by
a factor determined by the maximal intensity within the depletion spot; cf. (6). However,
increasing the maximal intensity within the depletion spot automatically reduces the number
of emitted and hence observable photons, which leads to an increased statistical error. Even
though in practical examples (6) is still a good approximation of the actual resolution [27],
we can make this more precise using (20) and explain the well-known observation that, unlike
Abbe or Rayleigh criteria would suggest, the resolution improvement is not proportional to
the FWHM decrease. In experiments, the parameter ξ in (6) is typically chosen such that
FWHMconf ≈ 6 FWHMSTED. As the expected number of photons is determined by the total
amount of light emitted by the dyes, tSTED will be significantly smaller than tconf. To estimate
tSTED, in 1D we can use the first-order approximation

tSTED ≈ 1

FWHM improvement
tconf = 1

6
tconf.

The rationale behind it is that when the psf is thinned by a factor equal to the FWHM im-
provement, the same holds for the total number of photons since it is proportional to the
integral over the psf. Using (20), this yields

dSTED = 1

6
3
4

dconf ≈ dconf

4
,

that is, even though the FWHM is decreased by a factor of 6, the resolution is only decreased
by a factor of around 4. This agrees quite well with experimental observations; see, for ex-
ample, [18].

To some extent, this seems contradictory to the common interpretation derived from (5)
that the resolution depends linearly on the FWHM. However, this experimentally well-
supported interpretation is only true if the other experimental parameters such as discretiza-
tion, number of photon counts, etc. are fixed, and hence does not explicitly provide the de-
pendency on noise, as our criteria clearly do. In practice, it is in fact well known that the
resolution will also depend on other parameters of the sensing system such as the noise.
On the other hand, due to the development of more stable dyes, the number of observable
photons has increased during the last decades along with the development of superresolu-
tion microscopes. Thus, the decrease of the FWHM was accompanied by an increase of the
signal-to-noise ratio, such that the rule of thumb “resolution ∼ FWHM” can still be consid-
ered valid. Our results give a mathematically rigorous and explicit formula involving both
effects, and at the same time explain the experimental observations quite well.
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Note that the above argumentation can be readily extended to the two- or three-dimensional
setting, as then the corresponding improvement can be computed for each spatial dimension
separately.

3.5. Related work. Investigation of resolution in a statistical setting is not new. The HG
model (and variations) was considered in [24, 42, 54–56] and the Poisson model (and vari-
ations) in [2, 29, 31]. However, with the exception of [2], most of these works lack mathe-
matical rigor, whereas [2] instead of defining resolution statistically suggest a redefinition in
terms of the power function (see also (A.18) of the Supplementary Material [37]) and do not
work out the dependency on the FWHM; see below for more details.

Already in the 1960s, resolution has been investigated from a decision theoretic point of
view in signal processing theory. Early references include Harris [24] for the homogeneous
Gaussian model and Helstrom [29, 30] for the Poisson model. In [29, 30] Helstrom consid-
ered signals consisting of different wavelengths varying in space, noting that using Reiffen
and Sherman’s paper [51] on optimum demodulation for time-varying Poisson processes one
could consider a signal varying in both space and time. For ease of understanding, we as-
sumed that our psf intensity does not vary with time and is monochromatic; see (3). Harris
[24] only calculated the probability of a correct decision (power) without any consideration
of the level. Helstrom [29] assumed a CLT and basically obtained type I error and power
expressions in the CLT regime (Section A.3.2 of [37]) for our Poisson model in his equation
(15). To see this, we have to set g0 = q∗

α,t,n,d := q1−α

√
VH0Tt,n,d + EH0Tt,n,d (see (A.27)

of [37]), as the threshold in Helstrom’s theory (which is not specified there), M0(x) = p0i ,
M1(x) = p1i , where M·(x) is the effective photon count rate density at x ∈ [−1/2,1/2]2, and
change integrals in his work to sums.

In [31], Helstrom went even further than in [29] and considered (9) in the context of quan-
tum information theory, following the statistical paradigm originally set out by Middleton
[41]. Among other things, Helstrom found out that Pe, the average of type I and type II er-
rors, converges to 1/2 exp(−t) with increasing distance d . Here, t is interpreted as the average
number of photons. As expected, the bound tends to zero in the classical regime as t → ∞.
Reassuringly, the form of his combined error probability Pe becomes the same as ours with
increasing t . However, Helstrom’s results cannot be transferred to our case due to the quan-
tum information theoretic setting, and his proofs are not mathematically rigorous. Notably,
he found that Pe is very close to its asymptotic minimum 1/2 exp(−t) whenever d approx-
imately equals twice the Rayleigh criterion, which led him to define the resolution as twice
the Rayleigh limit. Much of the current research on resolution in quantum information theory
revolves around trying to design different measurement techniques [40, 46, 63, 64], which
would allow to experimentally come as close as possible to the theoretical limits calculated
by Helstrom [31]. Some of these measurement techniques have been already confirmed by
proof of principle experiments (see, for e.g., [62]); others even applied to biological imaging
[60]. We emphasize that our theory is designed to describe everyday microscopy experiments
with rather many photons so that Helstrom’s limit 1/2 exp(−t) can be safely disregarded.
Even though the mathematical treatment of quantum optics experiments is beyond the scope
of this paper, we think that it is a fruitful research direction also for statisticians (see, e.g.,
[68], where the authors have defined a quantum likelihood ratio).

We also mention contributions from the field of modern signal processing and engineering,
namely the works by Milanfar and collaborators [42, 55, 56]; see also [54] for an overview.
These authors also investigate resolution in terms of statistical measurement errors, and they
derive a dependency of the resolution on the inverse fourth root of the so-called measurement
signal-to-noise-ratio; see also [57]. Note that this has some similarity with the dependency
on t in (14). However, even though resolution is treated as a statistical testing problem, in
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all of these papers a homogeneous Gaussian model (which is challenged by our analysis) is
assumed and the estimation error (quantified by a Cramer–Rao type lower bound in [57])
rather than the detection error, which we believe provides a more accurate description of
resolution in a statistical context, is used. See also Terebizh [61] for a non-Bayesian view on
this. Ferreira da Costa and Chi [22] have recently introduced support stability which means—
roughly speaking—that the true number of support points has to be recovered exactly (in our
context one support point in the hypothesis and two support points in the alternative). In
the context of a deterministic noise model with band-limited PSF, they determine conditions
when for a LASSO type estimator such support stability is valid.

Closest to our paper appears to be the work [2] by Acuña and Horowitz on telescope
resolution. There, the testing problem H0 : d = 0 versus H1 : d > 0 in a 2D model on a line
is considered. This corresponds to our Poisson model, but with explicit constant background
noise (see Remark 3.3 on how to incorporate such noise into our model and Remark 3.6 for
corresponding results). Their main quantity of interest is p1i (13) considered as a function
of d . Under assumptions on p1i ’s roughly corresponding to our assumptions on the psf h,
they analyzed the likelihood ratio test in the regime where t → ∞, but kept the number of
measurements (discretization) n fixed and finite. Clearly, a finite value of n will at some point
restrict the resolution to be of the order 1/n, as no information finer than the bin-size can be
obtained. Moreover, the mathematical treatment of this regime is substantially simpler, as
the LRT statistic is given by a finite sum of independent weighted Poisson random variables,
whose intensity tends to ∞, and hence one obtains a CLT trivially. Acuña and Horowitz [2]
also note that there is a different regime with finite fixed t and n → ∞, but do not treat this.
All of our results except for asymptotic equivalence also hold in this regime; see Remarks A.1
and A.2 from the Supplementary Material [37], and note that the relation between t and n

necessary for Theorem A.6 from [37] is trivially satisfied for constant t . The authors define
resolution as the (asymptotic) power function of the likelihood ratio test rather than as a single
number, which in some sense, is close to our Definition 2.5. However, we believe that it is
not intuitive for practitioners to define the resolution as a probability, since they are used to
thinking of resolution as a distance. The main result of [2] is the calculation of this power
function in the regime t → ∞, n = const, which we can reproduce asymptotically for large n

and t from our more general results (up to dimension) if we keep a sum instead of the integral
in (14), see Remark A.2 of [37]. Note furthermore that the power expression of [2] is only
valid if d = const × t−1/4 in accordance with our result (14). We stress that our results give
an explicit dependency on the FWHM.

Finally we mention, that the term “superresolution” is used in mathematical and statisti-
cal communities also in a different context; see [10, 11, 15, 21, 44]. There superresolution
addresses the ways to localize signals with (un)known amplitudes by observing their (noisy)
Fourier samples, that is, samples in the frequency domain. The domain is always assumed
to have some cut-off frequency fc corresponding to the inverse Abbe limit in our context. In
contrast, in this paper we assume that the locations of our signals are always known, that is,
we will follow the experimentalists’ terminology.

4. Simulations.

4.1. Simulation setup. To investigate the finite sample validity of our asymptotic theory,
we have performed simulations exploring the (asymptotic) resolution’s d dependence on the
illumination time t , FWHM and discretization n; see (19) and (20).

In all simulations, we chose the level α = 0.1 and determined when the type II error is in
the range β ∈ [0.95α,1.05α). For simplicity, we only describe the simulation in Figure 5(a)
of d versus FWHM in detail, others were conducted similarly. Throughout the simulation, we
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FIG. 5. Simulations investigating finite sample validity of the asymptotic relations d = 2.29t−1/2n1/4 ×
FWHM5/4 (19) for the homogeneous Gaussian model, and d = 1.62t−1/4 FWHM (20) for the VSG and Poisson
models, see Section 2.1. Here we have set α = 0.1. For short illumination times t and small discretizations n only
the slopes of theoretical formulas are close to the slopes obtained from simulations (left column, see also Table 3).
As t and n increase, the theoretical formulas become accurate approximations also in terms of absolute error
(right column).

set discretization n = 20 and d = FWHM as the starting distance between the peaks in the
alternative. Then for 10,000 times we generated n independent random variables following
the corresponding model (8) under the alternative and calculated the type II error. We then
used the bisection method to advance d until the type II error became between 0.95α and
1.05α. We performed the above procedure for the FWHM range 0.15,0.16, . . . ,0.25.



WHAT IS RESOLUTION? 2309

TABLE 3
Limiting asymptotic statistical resolution as given by Theorem 3.4 for the Gaussian psf (18) for small values of t

and n. The entries in d(FWHM) correspond to Figure 5(a), in d(t) to Figure 5(c) and in d(n) to Figure 5(e)

Model d(FWHM)emp d(t)emp d(n)emp

d(FWHM)th d(t)th d(n)th

HG 1.23 FWHM1.26 1.17t−0.665 0.0502n0.368

1.08 FWHM5/4 0.647t−1/2 0.0685n1/4

Poisson 0.879 FWHM0.979 0.519t−0.352 0.177n0.00274

VSG 0.873 FWHM0.975 0.495t−0.336 0.183n−0.00464

0.765 FWHM 0.323t−1/4 0.153

4.2. Simulation results. The slopes obtained by log–log plots support our theory well
already for small t and n; see left column of Figure 5 and Table 3. We stress that in the
Gaussian models we only have to consider d ↘ 0, provided that we change the integrals in
Theorem 3.4 to sums (see Remarks A.1 and A.2 from the Supplementary Material [37]).
Therefore, it is expected that for given t and d the simulations are in general closer to the
theoretical results in Theorem 3.4 for the VSG and HG models. This is confirmed by the
simulations, where in general the HG simulated values are much closer to the theoretical

FIG. 6. Simulations investigating the finite sample validity of the asymptotic relations d = 2.29t−1/2n1/4 ×
FWHM5/4 (19) for the homogeneous Gaussian model, and d = 1.62t−1/4 FWHM (20) for the VSG and Poisson
models, see Section 2.1. Here we have set α = 0.1 and explored the intermediate parameter regime t = 50,100
and n = 50,100.
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ones. As a rule of thumb, if t ≥ 500 and n ≥ 500, the asymptotic formulas can be used as good
approximations; see the right column of Figure 5. In general, increasing the intensity t seems
to make asymptotic formulas closer to the simulations than increasing the discretization n.
This is displayed in Figure 6 which looks at the (t, n) plane in more detail: The asymptotic
formulas get much closer to the simulations when transitioning from (a) with (50,50) to (c)
with (100,50), than from (a) to (b) with (50,100).
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SUPPLEMENTARY MATERIAL

Supplement to “What is resolution? A statistical minimax testing perspective on su-
perresolution microscopy” (DOI: 10.1214/20-AOS2037SUPP; .pdf). The supplement con-
tains detailed proofs of Theorems 2.4 and 3.4.
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