CORRECTION NOTE: "STATISTICAL INFERENCE FOR THE MEAN OUTCOME UNDER A POSSIBLY NONUNIQUE OPTIMAL TREATMENT RULE"

BY ALEX LUEDTKE¹, AURÉLIEN BIBAUT^{2,*} AND MARK VAN DER LAAN^{2,†}

¹*Department of Statistics, University of Washington, aluedtke@uw.edu* ²*Division of Biostatistics, University of California, Berkeley,* **aurelien.bibaut@berkeley.edu;* †*laan@berkeley.edu*

The end of the proof of Lemma 6 in [\[2\]](#page-1-0) contains an error. Specifically, it is not generally true that $n^{\beta-1} \sum_{j=1}^n R_j \stackrel{d}{=} n^{\beta-1} \sum_{j=1}^n R'_j(\omega')$. As is evidenced by the counterexample in [\[1\]](#page-1-0), the claim of that lemma does not generally hold unless an additional condition is imposed. Below we state a correction to that lemma that adopts one such condition. Alternative sets of conditions that yield a similar conclusion can be found in [\[1\]](#page-1-0).

LEMMA 1 (Revision of Lemma 6 in [\[2\]](#page-1-0)). *Suppose that Rj is some sequence of realvalued random variables defined on a common probability space* $(\Omega, \mathcal{F}, \nu)$ *and such that* $j^{\beta}R_j \stackrel{a.s.}{\longrightarrow} 0$ *for some* $\beta \in [0, 1)$. *Then* $n^{\beta-1} \sum_{j=1}^n R_j \stackrel{a.s.}{\longrightarrow} 0$, and so $n^{-1} \sum_{j=1}^n R_j =$ $o_n(n^{-\beta})$.

PROOF. Let $\tilde{\Omega} \triangleq {\omega \in \Omega : \lim_{j \to \infty} j^{\beta} R_j(\omega) = 0}$. Fix $\epsilon > 0$ and let $\omega \in \tilde{\Omega}$. There exists some *N* that, for all $n \ge N$, $n^{\beta} |R_n(\omega)| < \frac{(1-\beta)\epsilon}{2}$. Also,

$$
\frac{1}{n^{1-\beta}}\sum_{j=1}^n j^{-\beta} \le \frac{1}{n^{1-\beta}} \int_1^n (j-1)^{-\beta} \, dj = \frac{1}{1-\beta}.
$$

Hence, for all $n \geq N$,

$$
\frac{1}{n^{1-\beta}} \sum_{j=1}^{n} |R_j(\omega)| = \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{1}{n^{1-\beta}} \sum_{j=N}^{n} \frac{1}{j^{\beta}} j^{\beta} |R_j(\omega)|
$$

$$
< \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{(1-\beta)\epsilon}{2n^{1-\beta}} \sum_{j=N}^{n} \frac{1}{j^{\beta}}
$$

$$
\leq \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{\epsilon}{2}.
$$

It follows that $\frac{1}{n^{1-\beta}}\sum_{j=1}^{n} |R_j(\omega)| < \epsilon$ for all *n* large enough, and thus that $n^{\beta-1}\sum_{j=1}^{n} R_j(\omega)$ converges to zero as $n \to \infty$. As $\omega \in \tilde{\Omega}$ was arbitrary and $\nu(\tilde{\Omega}) = 1$, $n^{\beta - 1} \sum_{j=1}^{n} R_j$ converges to zero almost surely and, therefore, also in probability. \square

The following statements in [\[2\]](#page-1-0) built on Lemma 6 and, therefore, must be modified to account for the above revision of this lemma:

Received October 2020.

[MSC2020 subject classifications.](https://mathscinet.ams.org/mathscinet/msc/msc2020.html) Primary 62G05; secondary 62N99.

Key words and phrases. Efficient estimator, nonregular inference, online estimation, optimal treatment, pathwise differentiability, semiparametric model, optimal value.

- • page 726, lines 5–6 from the bottom, should read: As will become apparent after reading Section 7, the almost-sure strengthening of (C6), namely that $n^{1/2} \Gamma_n[\Psi_{d_n}(P_0) - \psi_1] \xrightarrow{a.s.}$ 0, will typically imply (C7) (see Lemma 6).
- page 729, bottom: The condition in Theorem 7 that $\tilde{D}_1 \triangleq {\tilde{D}(d, \bar{Q}, g) : d, \bar{Q}, g}$ be a P_0 Glivenko–Cantelli class should be replaced by the stronger condition that $\tilde{\mathcal{D}}_1$ be a strong *P*₀ Glivenko–Cantelli class, that is, that $||P_n - P_0||_{\tilde{D}_1} \to 0$ almost surely.
- page 730, lines 19–20, should read: More generally, Lemma 6 shows that condition (C4) holds if $\tilde{\sigma}_{0,j}^2/\tilde{\sigma}_j^2$ $\stackrel{a.s.}{\longrightarrow}$ 1, Pr₀(0 < g_j(1|*W*) < 1) = 1 with probability 1 for all *j*, and

$$
j^{1/2} E_0 \bigg[\bigg(1 - \frac{g_0(d_j(W)|W)}{g_j(d_j(W)|W)} \bigg) (\bar{Q}_j(d_j(W), W) - \bar{Q}_0(d_j(W), W)) \bigg] \xrightarrow{a.s.} 0.
$$

• page 731, lines 9–12 should read: The above theorem thus shows that $j^{1/2}[\Psi_{d_i}(P_0)$ – $\Psi_{d_0^*}(P_0)$ *a.s.* \to 0 if the distribution of $|\bar{Q}_{b,0}(W)|$ and our estimates of $\bar{Q}_{b,0}$ satisfy reasonable conditions. If, additionally, $\tilde{\sigma}_{0,j}$ is estimated well in the sense that $\tilde{\sigma}_{0,j}^2/\tilde{\sigma}_j^2$ $\xrightarrow{a.s.} 1,$ then an application of Lemma 6 shows that (C5) is satisfied.

REFERENCES

- [1] BIBAUT, A. F., LUEDTKE, A. and VAN DER LAAN, M. J. (2020). Sufficient and insufficient conditions for the stochastic convergence of Cesàro means. Preprint. Available at [arXiv:2009.05974](http://arxiv.org/abs/arXiv:2009.05974).
- [2] LUEDTKE, A. R. and VAN DER LAAN, M. J. (2016). Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. *Ann*. *Statist*. **44** 713–742. [MR3476615](http://www.ams.org/mathscinet-getitem?mr=3476615) [https://doi.org/10.](https://doi.org/10.1214/15-AOS1384) [1214/15-AOS1384](https://doi.org/10.1214/15-AOS1384)