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Despite the popularity and practical success of total variation (TV) regu-
larization for function estimation, surprisingly little is known about its the-
oretical performance in a statistical setting. While TV regularization has
been known for quite some time to be minimax optimal for denoising one-
dimensional signals, for higher dimensions this remains elusive until today.
In this paper, we consider frame-constrained TV estimators including many
well-known (overcomplete) frames in a white noise regression model, and
prove their minimax optimality w.r.t. Lq -risk (1 ≤ q < ∞) up to a logarith-
mic factor in any dimension d ≥ 1. Overcomplete frames are an established
tool in mathematical imaging and signal recovery, and their combination with
TV regularization has been shown to give excellent results in practice, which
our theory now confirms. Our results rely on a novel connection between
frame-constraints and certain Besov norms, and on an interpolation inequal-
ity to relate them to the risk functional. Additionally, our results explain a
phase transition in the minimax risk for BV functions.

1. Introduction. We consider the problem of estimating a real-valued function f from
observations in the commonly used Gaussian white noise regression model (see, e.g., [3, 69]
and [76])

(1) dY (x) = f (x) dx + σ√
n

dW(x), x ∈ [0,1)d .

Here, dW denotes the standard Gaussian white noise process in L2(Td), and we identify the
d-torus T

d ∼ R
d/Zd with the set [0,1)d , that is, to simplify the presentation we assume f

to be a 1-periodic function. In Section 3, we present the extension to nonperiodic functions.
To ease notation, we will henceforth drop the symbol Td , and write for instance, L2 instead
of L2(Td), and so on. The function f is assumed to be of bounded variation (BV), written
f ∈ BV , meaning that f ∈ L1 and its weak partial derivatives of first order are finite Radon
measures on T

d (see Section 2.1 or Chapter 5 in [29]). Note that, for (1) to be well defined, we
need to assume additionally that f ∈ L2 if d ≥ 3, since only in d = 1,2 we have f ∈ BV ⊂
L2. In the following, we assume that σ is known, otherwise it can be estimated

√
n-efficiently

(see, e.g., [62] or [74]), which will not affect our results. In the following, we use the terms
bounded variation (BV) and total variation (TV) indistinctly. The former is commonly used
in analysis, while the latter appears in imaging.

Functions of bounded variation can have discontinuities, and are thus ideal to model ob-
jects with edges and abrupt changes. This is a desirable property for instance, in medical
imaging applications, where sharp transitions between tissues occur, and smoother functions
would represent them inadequately (see, e.g., [57] for a TV-based optical flow method in real
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time magnetic resonance imaging or [45] for its use in photoacoustic tomography). Conse-
quently, BV functions have been studied extensively in the applied and computational anal-
ysis literature; see, for example, [9, 61, 70, 72] and references therein. Remarkably, the very
reason for the success of functions of bounded variation in applications, namely their low
smoothness, has hindered the development of a rigorous theory for the corresponding esti-
mators in a statistical setting. With the exception of the one-dimensional case d = 1, where
total variation (TV) penalized least squares [60] and wavelet thresholding [24] applied to BV
functions are known to attain the minimax optimal convergence rate O(n−1/3), there are to
the best of our knowledge no statistical guarantees for estimating BV functions in dimension
d ≥ 2. Roughly speaking, the main challenges in higher dimensions are twofold: first, the
embedding BV ↪→ L∞ fails if d ≥ 2; and second, the space BV does not admit a character-
ization in terms of the size of wavelet coefficients. More generally, BV does not admit an
unconditional basis (see Sections 17 and 18 in [61]).

Our goal in this paper is to fill that gap. We consider the continuous model (1) and present
estimators for f ∈ BV that are minimax optimal up to logarithmic factors in any dimension,
that is, they attain the polynomial rate n−1/(d+2) for the Lq -risk, q ∈ [1,1 + 2/d], and the
rate n−1/dq for q ∈ [1 + 2/d,∞). While the first regime is well known (e.g., for d = 1 and
q = 2; see again [60] and [24]), much less attention has been paid to the second regime. We
mention [36] and [52] for estimation over anisotropic Nikolskii classes, which in the isotropic
case coincide with Besov spaces Bs

p,∞, and [71] for the case of discrete total variation when
q = 2 (see “Related work” later in this section for a comprehensive discussion). These risk
regimes explain the recently observed phase transitions in discrete TV-regularization [71]
and componentwise isotone estimation [21, 42] (see Figure 1 and the remarks after the main
theorem in the Introduction for more details). As a remarkable statistical consequence„ we
also show that there is no L∞-consistent estimator of BV functions.

The estimators that achieve these rates are not a straightforward extension of those for
d = 1 [60]. There it is sufficient to penalize a global least-squares data-fidelity term by the
TV function,

(2) f̂λn ∈ arg min
g

‖g − Y‖2
2 + λn|g|BV

for a suitable sequence of Lagrange multipliers λn, where |g|BV denotes the BV-seminorm of
g (Section 2.1). Instead, we consider estimators that combine the strengths of TV and mul-
tiscale data-fidelity constraints. Multiscale data-fidelity terms and the associated reconstruc-
tions by the corresponding dictionary are widely used since the introduction of wavelets (see,
e.g., [17] and [23]), and specially for imaging tasks overcomplete frames such as curvelets
[5], shearlets ([39, 46]) and other multiresolution systems (see [41] for a survey) have been

FIG. 1. Exponent of the minimax rate over BVL, min{ 1
d+2 , 1

dq
}, plotted as a function of d ∈N and 1/q ∈ [0,1].

The line 1/q = d/(d + 2) is marked in blue, and the red line corresponds to the L2-risk, q = 2. The phase
transition observed in [71] for the L2-minimax risk corresponds to the change of behavior of the red curve.
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shown to perform well in theory and numerical applications. In contrast, for the multiscale
TV-estimators a theoretical understanding in a statistical setup when d ≥ 2 is lacking, al-
though its good empirical performance has been reported for specific choices of dictionaries
in several places [7, 22, 30, 31]; see also Figure 2. Further, these methods were rarely used
in routine applications, as they need large scale nonsmooth convex optimization methods for
their computation. However, in the meantime such methods have become computationally
feasible due to recent progress in optimization, the development of primal-dual algorithms
[10] or semismooth Newton methods [11]. See Section 5, where we discuss the practical
implementation of these estimators. Hence, we do see practical potential for such multiscale
TV-methods, for which we give a theoretical justification in this paper in large generality.

Multiscale total variation estimators. Let � = {φω | ω ∈ �} ⊂ L2 be a dictionary of
functions indexed by a countable set � and satisfying ‖φω‖L2 = 1, ω ∈ �. Consider the
projection of the white noise model (1) onto �,

(3) Yω := 〈φω,f 〉 + σ√
n

∫
Td

φω(x) dW(x), ω ∈ �,

where 〈·, ·〉 denotes the standard inner product in L2. For each n ∈N, � and given the obser-
vations Yω, our estimator f̂� for f is defined as any solution to the constrained minimization
problem

(4) f̂� ∈ arg min
g∈Xn

|g|BV subject to max
ω∈�n

∣∣〈φω,g〉 − Yω

∣∣≤ γn.

Here, Xn ⊂ BV is a suitable closed, convex set which may depend on n (see (15) for the
definition). Hence, the existence of a minimizer is guaranteed by the convexity and lower-
semicontinuity of the objective function and the constraint. The finite subsets �n ⊂ � index-
ing a proper sequence of subsets of the dictionary � will be specified later (see Assumption 1
and (6) below). For instance, if � is a wavelet basis, �n corresponds to the wavelet coeffi-
cients at all scales j such that 2jd ≤ n.

The constraint in (4) can be interpreted statistically as testing whether the data Yω is com-
patible with the coefficients 〈φω, f̂�〉, simultaneously for all ω ∈ �n, an approach that dates
back to [64]. This testing interpretation suggests how to choose the parameter γn in (4): the
coefficients 〈φω,f 〉 of the truth should satisfy the constraint with high probability. This can
be achieved by the universal threshold

(5) γn(κ) = κσ

√
2 log #�n

n
for κ > κ∗

with κ∗ > 0 depending on d and the dictionary � in an explicit way (see Theorem 1). This
universal choice of the parameter γn appears to us as a great conceptual and practical advan-
tage of the estimator (4), in contrast to its penalized formulation, requiring more complex
parameter-choice methods (e.g. [54] or [77]). In particular, γn in (5) can be precomputed
using known or simulated quantities only.

The main conceptual contribution of this paper is to link the multiscale constraint in (4)
and the Besov B

−d/2∞,∞ norm. In fact, several dictionaries � used in practice have the following
property: for each n ∈ N there is a finite subset �n ⊂ � such that

(6) ‖g‖
B

−d/2∞,∞
≤ C max

ω∈�n

∣∣〈φω,g〉∣∣+ C
‖g‖L∞√

n

holds for any function g ∈ L∞. This is a Jackson-type inequality [13], representing how
well a function can be approximated in the Besov B

−d/2∞,∞ norm by its coefficients with re-
spect to �. It is well known that smooth enough wavelet bases satisfy this condition [13]. In
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Section 2.3 we will show that (6) holds for more general multiscale systems, for example,
systems of indicator functions of dyadic cubes, and mixed frames of wavelets and curvelets
and of wavelets and shearlets.

For fixed L > 0, define the BV ∩ L∞-ball of radius L,

(7) BVL := {
g ∈ BV ∩ L∞ | ‖g‖L∞ ≤ L, |g|BV ≤ L

}
.

The main contribution of this paper (Theorems 1 and 2 in Section 2.2) can be informally
stated as follows.

MAIN THEOREM (Informal). Fix the dimension d ∈ N, and let � satisfy an inequality of
the form (6) (see Assumption 1 in Section 2.2). Let the threshold γn in (4) be as in (5). Then
the estimator f̂� in (4) attains the minimax optimal rate of convergence over BVL possibly
up to a logarithmic factor ((logn)2 in d = 1 and logn else)

(8) sup
f ∈BVL

E
[‖f̂� − f ‖Lq

]≤ CL polylog(n)n
−min{ 1

d+2 , 1
dq

}

for n large enough, for any q ∈ [1,∞), any L > 0 and a constant CL > 0 independent of n

and q , but dependent on L, σ , d and �.

We remark that this reproduces the results by [71] for estimating BV functions in a discrete
model for q = 2 (quadratic risk). Indeed, [71] shows that the minimax rate with respect to the
empirical �2-risk scales as n−min{ 1

d+2 , 1
2d

}. Our theorem explains this “phase transition” in the
risk between d ≤ 2 and d > 2 as arising from the low smoothness of BV functions and from
the Lq -risk employed (see Figure 1 for an illustration of this).

Notably, the minimax rate in the Main Theorem for q = 2 also matches the minimax
rate for estimating componentwise isotonic functions in the discrete regression model with
respect to the empirical �q risk (see [42] for q = 2 and [21] for the general case q ∈ [1,∞)).
Remarkably, this means that the statistical complexity of estimating BV functions equals
the complexity of estimating componentwise isotone functions. This result is well known
in dimension d = 1, as a function of bounded variation can be written as the difference of
two monotone functions, but we are not aware of any such result in d ≥ 2. Moreover, this
complements the recent finding that entirely monotone functions have the same statistical
complexity as functions of bounded variation in the sense of Hardy–Krause [51]. We remark,
however, that bounded variation in the sense of Hardy–Krause is a much stronger assumption
than bounded variation in the sense that we use here (see “Related work” for a discussion).

The proof of (8) relies on the compatibility between the frame constraint and the B
−d/2∞,∞

norm, as expressed in (6). Indeed, (6) allows us to relate the statistical multiscale constraint
in (4) to an analytic object (the Besov norm). We can thus use techniques from harmonic

analysis to analyze f̂�, such as the interpolation inequality between B
−d/2∞,∞ and BV [14],

(9) ‖g‖Lq ≤ C‖g‖
2

d+2

B
−d/2∞,∞

‖g‖
d

d+2
BV ∀g ∈ B−d/2∞,∞ ∩ BV

for any q ∈ [1, d+2
d

], d ≥ 2. This interpolation inequality relates the risk functional on the left-
hand side with the data-fidelity and the regularization functionals on the right-hand side. It can
be proven by a delicate analysis of the wavelet coefficients of functions of bounded variation
(the original proof is in [14], and here we use an extension of (9) to periodic functions). The
inequality (9) is the first step towards bounding the Lq -risk of f̂�: inserting g = f̂� − f

we can bound it in terms of the B
−d/2∞,∞ and the BV-risks. It can be shown that the BV-risk
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is bounded by a constant with high probability, while the B
−d/2∞,∞-risk can be handled using

inequality (6) as follows:

(10)

‖f̂� − f ‖
B

−d/2∞,∞
≤ C max

ω∈�n

∣∣〈φω, f̂�〉 − Yω

∣∣+ C
σ√
n

max
ω∈�n

∣∣∣∣∫ φω(x) dW(x)

∣∣∣∣
+ C

‖f̂� − f ‖L∞√
n

.

The first term is bounded by γn = O(n−1/2√log #�n) as in (5) by construction, and it repre-
sents the error that we allow the minimization procedure to make. The second term behaves
as O(n−1/2√log #�n) asymptotically almost surely, and it represents the stochastic error of
the estimator. The third term arises from the compatibility between � and the Besov space
B

−d/2∞,∞ stated in (6). Inserting the result in (9) (which requires d ≥ 2) yields the conclusion

that ‖f̂� − f ‖Lq ≤ Cn− 1
d+2 logn with high probability. The bounds for q ≥ 1 + 2/d follow

from Hölder’s inequality between L1+2/d and L∞. The proof for d = 1 follows the same
lines, but it is slightly different. See Section 6 for the full proof.

The inequality (9) is sharp, in the sense that the norms in the right-hand side cannot both
be replaced by weaker norms. In this sense, it is important that our estimator (4) combines
a bound on the frame coefficients (related to the B

−d/2∞,∞-norm) with control on the BV-
seminorm. Finally, notice that the argument above does not rely on Gaussianity of the process
dW : it holds whenever the random variables

∫
φω(x) dW(x) have sub-Gaussian tails.

EXAMPLE 1. In order to illustrate the performance of the estimator f̂�, consider the sit-
uation where d = 2 and the dictionary � consists of normalized mollified indicator functions
of dyadic squares [63],

� =
{

1√|B| 1̃B(x)
∣∣∣ B dyadic square ⊆ [0,1]2

}
,

where |B| denotes the Lebesgue measure of the set B , 1̃B = ϕε ∗1B , ϕε = ε−dϕ(x/ε) denotes
the standard mollifier with ϕ(x) = c̃ exp{− 1

1−|x|2 }1{|x|<1}, and ε = cn−1/d for c < 1. Now, the

estimator f̂� in (4) has to be computed under the constraint

max
dyadic |B|≥ 1

n

1√|B|
∣∣∣∣∫ 1̃B(x)

(
g(x) − f (x)

)
dx − σ√

n

∫
1̃B(x) dW(x)

∣∣∣∣≤ γn,

that is, �n consists of all squares B ⊆ [0,1]2 of area |B| ≥ 1/n with vertices at dyadic posi-
tions (see Section 2.3.2 for the details). In particular, the frame � satisfies Assumption 2 in
Section 2.3.2, and hence also Assumption 1. The main peculiarity of f̂� is the data-fidelity
term, which encourages proximity of f̂� to the truth f simultaneously at all dyadic squares B .
This results in an estimator that preserves features of the truth in both the large and the small
scales, thus giving a spatially adaptive estimator. This is illustrated in Figure 2 (see Section 5
for computational details): the estimator f̂� succeeds to reconstruct the image well at both
the large (sky and building) and small scales (stairway). For comparison, we also show the
classical TV-regularization estimator, a.k.a. Rudin–Osher–Fatemi (ROF) estimator [70], de-
fined in (2), which employs a global L2 data-fidelity term. The parameter λn in (2) is chosen
in an oracle way so as to minimize the distance to the truth, which serves as a benchmark
for any data-driven parameter choice. Here we measure the “distance” by the symmetrized
Bregman divergence of the BV seminorm (see Section 3 of [30] for a motivation for this and
other distances). The ROF estimator successfully denoises the image in the large scales at the
cost of losing details in the small scales. The reason is simple: the use of the L2 norm as a
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FIG. 2. (a) Original image, (b) noisy version with signal-to-noise ratio SNR = 5, (c) zoom in of the multi-
scale TV estimator in Example 1 with κ = 1/2 in (5), and (d) zoom in of the estimator f̂λn

from (2) with oracle

λ∗
n = arg minE[DBV (f̂λn

, f )], where DBV (·, ·) denotes the symmetrized Bregman divergence of the BV semi-
norm.
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data-fidelity, which only measures the proximity to the data globally. As a consequence, the
optimal parameter λn is forced to achieve the best trade-off between regularization and data
fidelity in the whole image: in particular, in rich enough images there will be regions where
one either over-regularizes or under-regularizes, for example, in the stairway in Figure 2(d).

OTHER EXAMPLES. Other estimators that minimize the BV seminorm and fall into our
framework (4), covered by our theory, result from dictionaries � consisting of a wavelet basis
([23, 43]), a curvelet frame [5] or a shearlet frame [46]. Such estimators have been proposed
in the literature [7, 30, 59] and have been shown to perform very well in numerical examples,
outperforming wavelet and curvelet thresholding, and TV-regularization with global L2 data-
fidelity, as illustrated in Figure 2.

Related work. This paper is related to a number of results at the cutting edge of statis-
tics, mathematical imaging and applied harmonic analysis. As the literature is vast, we only
mention some selective references. Starting with the seminal paper [70] that proposed the
TV-penalized least squares estimator (2) for image denoising (the ROF estimator), the subse-
quently developed theory of TV-based estimators depends greatly on the spatial dimension. In
dimension d = 1, [60] showed that the ROF-estimator attains the optimal rate of convergence
in the discretized nonparametric regression model, and [24] proved that wavelet thresholding
for estimation over BV attains the minimax rates with the exact logarithmic factors. We also
refer to [18] and [26] for a combination of TV-regularization with related multiscale data-
fidelity terms in d = 1, and to [32] and [56] for the combination of a multiscale constraint
with a jump penalty for segmentation of one-dimensional functions

In higher dimensions, the situation becomes more involved due to the low regularity of
functions of bounded variation. There are roughly two approaches to deal with this: either
employ a finer data-fidelity term, or discretize the problem. Concerning the first approach,
we distinguish three different variants that are related to our work. First, [61] proposed the
replacement of the L2-norm in the ROF functional by a weaker norm designed to match
the smoothness of Gaussian noise. Several algorithms and theoretical frameworks using the
Besov norm B−1∞,∞ [33], the G-norm [40] and the Sobolev norm H−1 in d = 2 [67] were
proposed, but the statistical performance of these estimators has not been analyzed. A second
variant (see [28, 58] and [59]) involved estimators of the form (4) with a wavelet basis �.
Following this approach and the development of curvelets (see, e.g., [5] for an early refer-
ence), [7] and [25] proposed the estimator (4) with � being a curvelet frame and a mixed
curvelet and wavelet family, respectively, which showed good numerical behavior. The third
line of development that leads to the estimator (4) is based on Nemirovski’s work [64], who
credits S. V. Shil’man for the original idea (see also [63]), and on Donoho’s work on soft-
thresholding [23]. Nemirovski proposed a variational estimator for nonparametric regression
over Hölder and Sobolev spaces that used a data-fidelity term based on the combination of lo-
cal likelihood ratio (LR) tests: the multiresolution norm. In statistical inverse problems, [22]
proposed an estimator using TV-regularization constrained by the sum of local averages of
residuals, instead of the maximum we employ in (4), which was proposed by [30]. Finally,
during revision of this work we became aware of the work by [51], who consider estima-
tion of functions of bounded variation in the sense of Hardy–Krause. This class of functions
has higher regularity than BV , and hence is much smaller: it corresponds roughly to Sobolev
Wd,1 functions, that is, with d partial derivatives in L1, which explains the faster minimax
rate n−1/3 in any dimension.

The other approach to TV-regularization in higher dimensions is to discretize the obser-
vational model (1), thereby reducing the problem of estimating a function f ∈ BV to that of
estimating a vector of function values (f (x1), . . . , f (xn)) ∈R

n, where {xi} are design points
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in [0,1]d . In particular, the risk is measured by the Euclidean norm �2 of R
n, and not by

the continuous L2-norm. TV-regularized least squares in this discrete setting is nowadays
fairly well understood for the �2 risk. We mention [16] and [44], who proved convergence
rates in any dimension d , which were shown to be minimax optimal in that model [71]. Its
generalization to trend-filtering, where higher order derivatives are assumed to belong to BV ,
is a current research topic [38, 78]. However, this discretized model is substantially differ-
ent from the continuous model that we consider. In fact, the works just mentioned deal with
a finite dimensional parameter space of discretized signals and regularize with the �1-norm
of the discrete gradient, which in the limit of finer discretization converges to the Sobolev
W 1,1 seminorm. Hence, BV functions are indistinguishable from Sobolev W 1,1 functions in
the discretized model for any dimension d ∈ N. However, the difference between W 1,1 and
BV functions is significant: while the gradients of the former are finite Lebesgue continuous
measures, the gradients of the latter can be any finite Radon measure, that is, Lebesgue sin-
gular measures are allowed. Consequently, BV functions can have jump singularities, which
makes their estimation significantly more challenging than estimating a Sobolev function.
Therefore, in contrast to the analysis of discrete TV-regularization, the continuous setting is
more subtle and genuinely analytical tools are needed, such as the interpolation inequality
(9). Moreover, a limitation of discretized models is that they typically discretize the func-
tions and the TV functional with respect to the same grid. The discretization of the signals
is usually determined by the application, while different discretizations of the TV functional
can have different effects (see, e.g., [15]). It is hence useful to study the estimation of BV
functions in the continuous setting, since it gives insight into the problem, independently of
the discretization of signals or functionals.

Regarding the tools and techniques we use, we mention in particular the concept of an
interpolation inequality that relates the risk functional, the regularization functional and the
data-fidelity term (see [64] and [37]). While the inequality in those papers is essentially the
Gagliardo–Nirenberg inequality for Sobolev norms (see Lecture II in [66]), we extend and
make use of interpolation inequalities for the BV norm, for example, equation (9), see [14]
and [50]. Finally, as opposed to [37], we formulate our results in the white noise model. This
eases the incorporation of results from harmonic analysis (e.g., the interpolation inequalities
between BV and B

−d/2∞,∞ and the characterization of Besov spaces by local means) into our
statistical analysis, as discretization effects (due to sampling) do not occur. See, however,
Section 7 for a discussion of our results in the latter case, where we show that the discretiza-
tion leads to a qualitative difference between estimation in dimensions d = 1,2 than in d ≥ 3.

Organization of the paper. In Section 2, we state general assumptions on the family �

under which the estimator f̂� is shown to be nearly minimax optimal over the set BVL. We
give a complete statement of the main theorem. Then we present examples of the estimator
(4) where � is a wavelet basis, a multiresolution system, and a curvelet or shearlet frame
combined with wavelets. In Sections 3 and 4, we present the extension of our results to
the nonperiodic setting and to the discrete nonparametric regression model, respectively. In
Section 5, we discuss the efficient numerical implementation of the frame-constrained TV
estimator. The proof of the main theorem is given in Section 6, while some analytical results
and proofs are relegated to the Supplementary Material [19]. In Section 7, we briefly discuss
possible extensions.

Notation. We denote the Euclidean norm of a vector v = (v1, . . . , vd) ∈ R
d by |v| :=

(v2
1 + · · · + v2

d)1/2. For a real number x, define �x� := max{m ∈ Z | m ≤ x} and �x� :=
min{m ∈ Z | m > x}. The cardinality of a finite set X is denoted by #X. We say that two
norms ‖ · ‖α and ‖ · ‖β in a normed space V are equivalent, and write ‖v‖α � ‖v‖β , if there
are constants c1, c2 > 0 such that c1‖v‖α ≤ ‖v‖β ≤ c2‖v‖α for all v ∈ V . Finally, we denote
by C a generic positive constant that may change from line to line.
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2. Results.

2.1. Basic definitions. For k ∈ N, let Ck denote the space of k-times continuously dif-
ferentiable periodic functions on [0,1)d , which we identify with the d-torus T

d . The space
of 1-periodic functions of bounded variation BV consists of functions g ∈ L1 whose weak
distributional gradient ∇g = (∂x1g, . . . , ∂xd

g) is a periodic, Rd -valued finite Radon measure
on [0,1)d [29]. The finiteness implies that the bounded variation seminorm of g, defined by

(11) |g|BV := sup
{∫

Td
g(x)div

(
h(x)

)
dx
∣∣∣ h ∈ C1(

T
d;Rd),∥∥|h|∥∥L∞ ≤ 1

}
,

is finite, where div(h) is the divergence of the vector field h = (h1, . . . , hd), and ‖|h|‖L∞ :=
supx∈Td (

∑d
i=1 |hi(x)|2)1/2 denotes the supremum of its magnitude. BV is a Banach space

with the norm ‖g‖BV = ‖g‖L1 + |g|BV , see [29]. For S ∈ N, let � = {ψj,k,e | (j, k, e) ∈ �}
be an S-regular wavelet basis for L2 whose elements are S times continuously differentiable
with absolutely integrable Sth derivative, indexed by the set

(12)

� := {
(j, k, e) | j ≥ 0, k ∈ P d

j , e ∈ Ej

}
, with

P d
j := {

k = (k1, . . . , kd) | ki = 0, . . . ,2j − 1, i = 1, . . . , d
}
,

Ej :=
{{0,1}d if j = 0,

{0,1}d\(0, . . . ,0) else.

In particular, we consider wavelets of the form

ψj,k,e(x) = 2jd/2ψe

(
2j x − k

)
,

where ψe(z1, . . . , zd) = ∏d
i=1 ψei

(zi) is a tensor product of periodized one-dimensional
wavelets, and

ψei
(·) =

{
ψ(·) if ei = 1,

ϕ(·) else,

denotes either the mother wavelet or the father wavelet of a one-dimensional wavelet basis of
L2. The index (0, . . . ,0) ∈ E0 refers here to (shifts of) the father wavelet ψ0,k,0 = ϕ(· − k).
See, for example, Section 4.3.6 in [34] for the construction of such a basis. Then for p,q ∈
[1,∞] and s ∈ R with S > |s|, the Besov norm of a (generalized) function is defined by

(13) ‖g‖Bs
p,q

:=
(∑

j∈N0

2jq(s+d( 1
2 − 1

p
))
( ∑

k∈Pd
j

∑
e∈Ej

∣∣〈ψj,k,e, g〉∣∣p)q/p)1/q

,

with the usual modifications if p = ∞ or q = ∞. If s > 0 and p ∈ [1,∞), the Besov space
Bs

p,q consists of Lp functions with finite Besov norm, while if s > 0 and p = ∞, then Bs
p,q

consists of continuous functions with finite Besov norm. In these cases, 〈·, ·〉 denotes the
standard inner product in L2. If s ≤ 0, Bs

p,q consists of periodic distributions D∗(Td) with
finite Besov norm. Here, D∗(Td) denotes the space of periodic distributions, defined as the
topological dual to the space of infinitely differentiable periodic functions C∞(Td) (see Sec-
tion 4.1.1 in [34]). In that case, 〈ψj,k,e, g〉 is interpreted as the action of g ∈ D∗(Td) on the
function ψj,k,e.

Finally, we define the Fourier transform of a function g ∈ L1(Td) by

(14) F[g](ξ) :=
∫
Td

g(x)e−2πiξx dx, ξ ∈ Z
d .

The Fourier transform of a function g ∈ L1(Rd) is defined as in (14) extending the integration
over Rd . The formal definition of the Fourier transform is as usual extended to functions in
L2 and, by duality, to distributions D∗(Td) (see, e.g., Section 4.1.1 in [34]).
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2.2. Main result. The main ingredient of the estimator (4) is the dictionary �, on which
we impose the following assumptions.

ASSUMPTION 1. � is of the form � = {φω | ω ∈ �} ⊂ L2 for a countable set � and
functions satisfying ‖φω‖L2 = 1 for all ω ∈ �. For each n ∈ N, consider a subset �n ⊂ �

of polynomial growth, meaning that cn� ≤ #�n ≤ Q(n) for all n for a polynomial Q and
constants c,� > 0. The sets �n are assumed to satisfy the inequality (6) for any g ∈ L∞.

EXAMPLES. (a) The simplest example of a system � satisfying Assumption 1 is a suf-
ficiently smooth wavelet basis. Indeed, the assumption follows from the characterization of
Besov spaces in terms of wavelets (see Proposition 1 below).

(b) Another family � satisfying Assumption 1 is given by translations and rescalings of
(the smooth approximation to) the indicator function of a cube. In Section 2.3.2, we verify
the assumption for such a system, that has been used previously as a dictionary for function
estimation (see [37]).

(c) In Section 2.3.3, we show that frames containing a smooth wavelet basis and a curvelet
or a shearlet frame (which play a prominent role in imaging) satisfy Assumption 1.

DEFINITION 1. Assume the model (1), and let Yω be as in (3) the projections of the white
noise model onto a dictionary � satisfying Assumption 1. We denote the estimator in (4) as
frame-constrained TV-estimator with respect to the dictionary �, where we minimize over
the set

(15) Xn := {
g ∈ BV ∩ L∞ | ‖g‖L∞ ≤ logn

}
.

We use the convention in (4) that, whenever the arg min is taken over the empty set, f̂� is the
constant zero function.

In the following, we assume that n ≥ 2 in order to avoid log 1 = 0. The reason for the
additional constraint ‖g‖L∞ ≤ logn is technical: We will need upper bounds on the supre-
mum norm of f̂�. As it turns out, the upper bound logn will not affect the minimax poly-
nomial rate of convergence of the estimator (but it yields additional logarithmic factors).
Alternatively, if we knew an upper bound L for the supremum norm of f , we could choose
Xn = {g ∈ BV ∩L∞ | ‖g‖L∞ ≤ L}. In that case, the risk bounds in Theorem 1 would improve
in some logarithmic factors (see Remark 2).

THEOREM 1. Let d ∈ N, and assume the model (1) with f ∈ BVL for some L > 0. Let
further q ∈ [1,∞).

(a) Let γn be as in (5) with κ > 1, and let � be a family of functions satisfying Assump-
tion 1. Then for any n ∈ N with n ≥ eL, the estimator f̂� in (4) with parameter γn satisfies

(16) ‖f̂� − f ‖Lq ≤ Cn
−min{ 1

d+2 , 1
dq

}
(logn)3−min{d,2}

with probability at least 1 − (#�n)
1−κ2

uniformly over f ∈ BVL.
(b) Under the assumptions of part (a), if κ2 > 1 + 1

(d+2)�
with � as in Assumption 1, then

(17) sup
f ∈BVL

E
[‖f̂� − f ‖Lq

]≤ Cn
−min{ 1

d+2 , 1
dq

}
(logn)3−min{d,2}

holds for n large enough and a constant C > 0 independent of n.
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REMARK 1. (a) Notice that part (a) of the theorem implies that (16) holds asymptotically
almost surely if κ2 > 2.

(b) By the assumption that ‖φω‖L2 = 1 ∀ω ∈ �, we have the tail bound

P

(
max
ω∈�n

∣∣∣∣∫
Td

φω(x) dW(x)

∣∣∣∣≥ t

)
≤ #�ne

−t2/2,

for any n ∈ N and t ≥ 0, where dW denotes the white noise process in L2(Td). This bound
follows from Chernoff’s inequality and the union bound, and it will play an important role
for bounding the stochastic estimation error of the estimator f̂�.

(c) The constants in the right-hand side of the theorem depend on the noise level σ like

Cσ � max{σ 2,1}min{ 1
d+2 , 1

dq
}. This matches the lower bound in Theorem 2 for σ ≥ 1.

REMARK 2. The logarithmic factors in (16) and (17) are equal to (logn)2 for d = 1
and to logn for d ≥ 2. They arise in part from the bound ‖f̂�‖L∞ ≤ logn (that we get from
minimizing over Xn in (15)). Indeed, if we additionally constrain the estimator to ‖f̂�‖L∞ ≤
C, the factors can be improved to (logn)

1+min{ 1
d+2 , 1

dq
} and (logn)

min{ 1
d+2 , 1

dq
} for d = 1 and

d ≥ 2, respectively. See Proposition 5 in Section 6 for an explanation of the different factors
in d = 1 and d ≥ 2.

Regarding the optimality of the log factors, we distinguish two cases:

– Case q < 1 + 2/d . It is known that the minimax rate for BV functions is exactly of order
n−1/(d+2), see [52] (where the same rate is shown for a larger Besov class B1

1,∞). Here
we do lose a logarithmic factor, and it is unclear whether this is due to our analysis or the
method itself.

– Case q ≥ 1 + 2/d . It is not known whether our lower bounds in Theorem 2 are optimal or
not. We conjecture that the minimax optimal rate should have some logarithmic factors, as
it is seen in the discrete setting [71], Theorem 2, when q = 2 and d ≥ 2. In this case, the
logarithmic factors in our results might be potentially optimal.

REMARK 3. Recall that our parameter set BVL involves a bound on the supremum norm.
This bound can be relaxed to a bound on the Besov B0∞,∞ norm without changing the con-

vergence rate n
−min{ 1

d+2 , 1
dq

} for f̂�. Indeed, assume for simplicity that � is an orthonor-
mal wavelet basis of L2, and for n ∈ N let �n index the wavelet coefficients up to level
J = � 1

d
logn
log 2�. In the proof of Theorem 1 we need a relaxed form of Assumption 1, namely an

inequality of the form

(18) max
(j,k,e)∈�

∣∣〈ψj,k,e, g〉∣∣≤ max
(j,k,e)∈�n

∣∣〈ψj,k,e, g〉∣∣+ C2−Jd/2 ∀J ∈ N

for sufficiently smooth g. But this inequality for all J ∈ N is equivalent to ‖g‖B0∞,∞(Td ) ≤ C

(see Berstein-type inequalities for Besov spaces, e.g., in Section 3.4 in [13]). Consequently,
Theorem 1 can be extended to show that the estimator f̂� with an orthonormal wavelet basis
� attains the optimal polynomial rates of convergence uniformly over the enlarged parameter
space B̃VL := {g ∈ BV | |g|BV ≤ L,‖g‖B0∞,∞ ≤ L}.

One could ask whether the requirement ‖g‖B0∞,∞ ≤ L can be relaxed further. This is not

the case if d ≥ 2. Indeed, since the embedding B1
1,∞ ⊂ B0∞,∞ holds for d = 1 only (see

(13)), and since we have BV ⊂ B1
1,∞, we see that a typical function of bounded variation

does not belong to B0∞,∞ if d ≥ 2. Hence, the Jackson-type inequality in (18) cannot hold for
general functions of bounded variation in d ≥ 2. This explains why our parameter space is
the intersection of a BV-ball with an L∞-ball (or a B0∞,∞-ball). Finally, we remark that most
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works in function estimation deal with Hölder functions, or Sobolev Wk,p functions with
k > d/p, so the assumption f ∈ L∞ is implicit. Alternatively, we refer to Section 3 in [53]
and to [20] for examples of estimation over Besov bodies Bs

p,q where uniform boundedness
has to be assumed explicitly if s < d/p.

We can now state the main result of this paper, which is a direct consequence of Theorem 1.

THEOREM 2. Under the assumptions of Theorem 1, the estimator f̂� is minimax optimal
up to logarithmic factors over the parameter set BVL defined in (7) with respect to the Lq -risk
for q ∈ [1,∞) in any dimension d ∈ N, that is,

inf
f̂

sup
f ∈BVL

E
[‖f̂ − f ‖Lq

]≥ C
(
σ 2/n

)min{ 1
d+2 , 1

dq
}

for any q ∈ [1,∞), where the infimum runs over all measurable functions from the sample
space of dY in (1) to the reals.

The proof of Theorem 2 is given in Section 6.2. It consists of proving a lower bound for the
minimax risk over BVL, which we show agrees with the upper bound proven in Theorem 1.

2.3. Examples.

2.3.1. Wavelet-based estimator. For S ∈ N, let � = {ψj,k,e | (j, k, e) ∈ �} be an S-
regular wavelet basis of L2(Td) as described in Section 2.1. For n ∈ N, n ≥ 2d , define the
subset

(19) �n := {
(j, k, e) ∈ � | j = 0, . . . , J − 1

}
,

with J = � 1
d

logn
log 2�. Note that 2−dn ≤ #�n = 2Jd ≤ n for any n ≥ 2d .

PROPOSITION 1. An S-regular wavelet basis of L2 as in Section 2.1 with S >

max{1, d/2} satisfies Assumption 1 with the sets �n in (19), a linear polynomial Q(x) = x

and parameter � = 1.

For the proof, see Section 2.1 in the Supplementary Material [19]. A direct consequence
of this proposition and of Theorem 1 is that the frame-constrained TV-estimator with the
wavelet basis above is nearly minimax optimal over BVL.

REMARK 4. In dimension d = 1, [24] proved that thresholding of the empirical wavelet
coefficients of the observations gives an estimator that attains the minimax optimal conver-
gence rate over BV . In contrast, our estimator combines a constraint on the wavelet coeffi-
cients with a control on the BV-seminorm: this second aspect is crucial in higher dimensions.
Indeed, in the proof of Theorem 1 we bound the risk by the B

−d/2∞,∞-norm of the residuals,
which is the maximum of their wavelet coefficients, and the BV-norm of the residuals. The
optimality of the estimator (4) depends crucially on the bound ‖f̂� − f ‖BV � logn, which
essentially amounts to a bound on the high frequencies of the residuals. But that is precisely
the difficulty with wavelet thresholding of BV functions in higher dimensions. To the best
of our knowledge, wavelet thresholding has been shown to perform optimally over Besov
spaces Bs

p,t for s > d(1/p − 1/2) only (see, e.g., [20]). This condition guaranties that the
wavelet coefficients of the truth f decay fast enough, which itself allows one to control the
high frequencies of the residuals. But that assumption is not satisfies for BV in dimension
d ≥ 2, since we have B1

1,1 ⊂ BV , which satisfies 1 > d/2 for d = 1 only.
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2.3.2. m-Adic multiscale systems. We construct the multiscale TV-estimator by choos-
ing � to be a family of smooth functions supported in cubes of different sizes at different
locations. Assumption 2 makes this precise. For notational simplicity, we sometimes index
the set functions in � by the cube B ⊂ [0,1)d in which they are supported, and the set of all
cubes considered is denoted by �.

ASSUMPTION 2. The system of functions � = {φB | B ∈ �} satisfies the following con-
ditions:

(a) for fixed m ∈ N, m ≥ 2, the set � consists of the intersections with [0,1)d of all m-
adic cubes at m-adic positions contained in [0,2)d . For each n ∈ N with n ≥ md , define
J = � 1

d
logn
logm

�, R = J max{1, d
2 } and

DR := {
k = (

k1m
−R, . . . , kdm−R) | ki = 0, . . . ,mR − 1, i = 1, . . . , d

}
,

�n := {(
k + [0,m−j )d)∩ [0,1)d | j = 0, . . . , J − 1, k ∈DR

};
(b) there is a function K ∈ C∞(Rd) with supp K ⊆ [0,1)d , |F[K](ξ)| > 0 in |ξ | < 2

and ‖K‖L2(Rd ) = 1, ‖K‖L∞(Rd ) ≤ 2 such that all functions φB ∈ � are given by translation,
dilation and rescaling of K . More precisely, for each cube B ∈ � of the form B = kB +
[0, |B|1/d)d , the function φB ∈ � is given by

φB(z) = |B|−1/2K
(|B|−1/d(z − kB)

)
.

REMARK 5. (a) An example of a function K satisfying the above assumptions is the
(L2-normalized) convolution of the indicator function of the cube [1

4 , 3
4 ]d with the stan-

dard mollifier. More generally, the Fourier transform of the indicator function of the cube
[a, b] ⊂ [0,1]d satisfies |F[1[a,b]](ξ)| > 0 for |ξ · (b − a)| < 1. Taking K to be a smooth
approximation to an indicator function, the estimator (4) is reminiscent of that proposed by
[30].

(b) For given m ≥ 2 and n ∈ N with n ≥ md , #�n = JmdR = JmdJ max{1,d/2}, whence

nmax{1,d/2} ≤ #�n ≤ nmax{1,d/2} logn.

PROPOSITION 2. Let � = {φB | B ∈ �} satisfy Assumption 2. Then it satisfies Assump-
tion 1 with polynomial Q(x) = xmax{1,d/2}+1 and � = max{1, d/2}.

See Section 2.2 of the Supplementary Material [19] for the proof of Proposition 2. We
remark that part of the proof of Proposition 2 is based on a characterizations of Besov spaces
via local means [75]. Again this proposition together with Theorem 1 proves near minimax
optimality for the multiscale TV-estimator.

2.3.3. Shearlet and curvelet estimators. Another relevant example of the estimator in (4)
in d ≥ 2 corresponds to the case when � contains a frame of shearlets or curvelets. While
classical curvelets are defined for d = 2 (see, e.g., [5]), there are several extensions to higher
dimensions. In order to simplify and unify the analysis, in this paper we will work with the
construction of shearlets in Section 3 of [47], and the curvelet frame from Section 7 of [2].
The reason for working with these constructions is that they are defined in all dimensions by
a partition of frequency space, thus simplifying the notation. We nevertheless remark that the
analysis presented here can be easily adapted to other curvelet and shearlet constructions.

Let {ϕj,θ̃ | (j, θ̃) ∈ �} denote either the tight shearlet frame or the tight curvelet frame
mentioned above. Then {ϕj,θ̃ | (j, θ̃) ∈ �} consists of the normalized periodizations of the
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elements ϕj,θ̃ that have a nonzero overlap with the indicator function of the unit cube, that
is,
∫
[0,1]d ϕj,θ̃ (z) dz �= 0. For simplicity of the notation, we index the elements by (j, θ̃ ) ∈

� ⊂ N0 × �̃, where j ≥ 0 plays the role of a scale index, and θ̃ indexes the position and
orientation of the frame elements (see the references above for the precise construction in
each case). In the rest of this section, we will consider frames of L2(Td) that contain the set
{ϕj,θ̃ | (j, θ̃ ) ∈ �}.

ASSUMPTION 3. Let {ψj,k,e | (j, k, e) ∈ �W } denote an S-regular wavelet basis of
L2(Td) with S > max{1, d/2}, and let {ϕj,θ̃ | (j, θ̃) ∈ �} denote the set of functions con-
structed above. Then define � := {ψj,k,e | (j, k, e) ∈ �W } ∪ {ϕj,θ̃ | (j, θ̃) ∈ �}. Further, for
n ∈N define J = � 1

d
logn
log 2� and let �n := {ψj,k,e | (j, k, e) ∈ �W

n }∪{ϕj,θ̃ | (j, θ̃) ∈ �n}, where

�W
n := {

(j, k, e) ∈ �W | j = 0, . . . , J − 1
}
,

�n := {
(j, θ̃) ∈ � | j = 0, . . . , J̃ − 1

}
,

where J̃ ∈ N is the largest possible natural number such that 2d(J−1) ≤ #�n ≤ 2dJ . For
consistency with the notation in the previous sections, we define the joint index set �n :=
�W

n ∪ �n.

REMARK 6. (a) The assumption that � contains a wavelet basis as well as a directional
frame is crucial. Indeed, the wavelet basis allows us to upper-bound the Besov norm B

−d/2∞,∞
by the maximum over the frame coefficients with respect to �, which we need in order to
establish Assumption 1. Alternatively, if � consisted on a curvelet frame only, the embed-
dings in Lemma 9 in [2] together with classical embeddings of Besov spaces (see Remark 4
of Section 3.5.4 in [73]) would give the bound

‖g‖
B

−d/2∞,∞(Rd )
≤ C max

(j,θ̃ )∈�

2jδ
∣∣〈ϕj,θ̃ , g〉∣∣

for smooth enough functions g, and a δ > 0 that depends on the dimension. Accordingly, the
third step in the sketch of the proof of Theorem 1 would deteriorate to

‖f̂� − f ‖
B

−d/2∞,∞(Td )
≤ C

nδ′
√

n
Polylogd,δ′(n)

for some δ′ > 0, and a polylogarithmic factor that diverges as δ′ → 0. This results in a polyno-
mially suboptimal rate of convergence. We remark that this limitation arises from the subopti-
mal embeddings between Besov spaces and decomposition space associated with the curvelet
frame. The situation for the shearlet frame is analogous, as its associated decomposition space
equals that of the curvelet frame (see Proposition 4.4 in [47]).

(b) We make the assumption that #�n ≤ 2dJ for any n ∈ N and J = � 1
d

logn
log 2� in order to

simplify subsequent computations. The assumption is justified, since the cardinality of �n

behaves indeed like O(2dJ ). In fact, the number of curvelet (or shearlet) frame elements
at scale 2−j that have a nonzero overlap with the unit cube behaves as 2dj , since there are

O(2j+ d−1
2 j ) positions and O(2

d−1
2 j ) orientations. We refer to Section 8.2 in [6] and [2] for

the details. The claim for the shearlet frame follows from that of the curvelet frame by the
comparison in Section 4.4 in [47].

The constructions of tight curvelet frames in [2] and of shearlet frames in [47] yield smooth
frame elements that are exponentially decaying in space. We use this to show that the family
� satisfies Assumption 1.
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PROPOSITION 3. Let � satisfy Assumption 3 with either the shearlet or the curvelet
frame. Then it satisfies Assumption 1 with Q(x) = 2x and � = 1.

The proof of Proposition 3 is given in Section 2.3 of the Supplementary Material [19]. As a
consequence, we conclude from Theorem 1 that the curvelet TV-estimator is nearly minimax
optimal for estimating BVL functions.

We close this section presenting some dictionaries � that do not satisfy Assumption 1,
where hence Theorem 1 does not apply.

(a) Wavelet systems of low smoothness do not satisfy Assumption 1. Our result relies
crucially on the fact that the Besov spaces B

−d/2∞,∞ and B1
1,1 can be characterized by the size of

wavelet coefficients. For that, wavelet bases with S − 1 vanishing moments and smoothness
S are needed with S > max{1, d/2} (see Section 4.3 in [34]).

(b) For the multiscale TV-estimator in Section 2.3.2 we considered a dictionary � consist-
ing on smoothed indicator functions of cubes in [0,1]d . The smoothing part is essential, since
we need enough regularity in order to bound the Besov B

−d/2∞,∞-norm in terms of this dictio-
nary, which is done by the characterization of Besov spaces by local means (see Section 2.2
of the Supplementary Material [19]).

(c) As argued in part (a) of Remark 6, a dictionary consisting solely of a curvelet frame or
a shearlet frame does not suffice, since the decomposition spaces they generate (in the sense
of [2]) do not match Besov spaces exactly, whence Assumption 1 does not hold.

3. Extension to nonperiodic functions. In this section, we show how our approach gen-
eralizes to the estimation of nonperiodic functions. For simplicity, we consider functions
supported on [0,1]d , but our approach applies to functions supported on bounded sets whose
boundary has bounded (d − 1)-Lebesgue measure. Consider observations from the white
noise model

(20) dY (x) = f (x) dx + n−1/2 dW(x), x ∈ [0,1]d,

where

f ∈ BVL

([0,1]d) := {
f ∈ BV

([0,1]d) | |f |BV([0,1]d ) ≤ L,‖f ‖L∞ ≤ L
}
,

and the BV([0,1]d) seminorm is defined as in (11) with the difference that h runs over
C1

c ([0,1]d;Rd).
In a nutshell, our approach to estimate f in (20) is to embed that model into the periodic

model (1), apply the periodic estimator there, and then restrict back to [0,1]d . In the following
we explain this approach.

3.1. Embedding into the periodic setting. Given the data (20), we define new observa-
tions by “padding” dY with periodic white noise, that is,

(21) dỸ (x) =
{
dY (x) if x ∈ [0,1]d,

dW̃ (x) if x ∈ [−ε,1 + ε]d\[0,1]d
for a fixed ε > 0, where dW̃ is a Gaussian white noise process over the torus Td , which we
identify with [−ε,1 + ε]d with periodic boundary conditions.

Defining the function fext = f 1[−ε,1+ε]d and its periodic extension fper, we easily see that

‖fper‖L∞(Td ) = ‖f ‖L∞([0,1]d ) ≤ L,

|fper|BV(Td ) = |f 1[−ε,1+ε]d |BV(Rd ) ≤ |f |BV([0,1]d ) + ∣∣∂[0,1]d ∣∣‖f ‖L∞([0,1]d )

≤ (1 + 2d)L.
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These last inequalities follow from the fact that, by extending f by zero outside of [0,1]d , we
are potentially introducing jumps at the boundary of [0,1]d . Therefore, the total variation of
f over Rd is bounded by its total variation inside the hypercube plus the worst case variation
at the boundary, which is bounded by the maximum jump size (i.e., ‖f ‖L∞ ) times the d − 1-
Lebesgue measure of the boundary, which equals 2d for [0,1]d . This implies that fper ∈
BVL(Td) as defined in (7) (up to relabeling of the constant L).

3.2. Nonperiodic estimator. Given observations dỸ as in (21), which follow model (1)
with drift fper, we compute the estimator f̂� as in (4), which for suitable frame and threshold
γn attains the optimal convergence rate. In order to estimate the original function f , we
remove the padding of f̂�, that is,

(22) f̂ (x) := f̂�(x)1[0,1]d (x), x ∈ [0,1]d .

THEOREM 3. Let d ∈ N, q ∈ [1,∞) and assume model (20). Let � satisfy Assumption 1,
and γn be as in (5) with κ2 > 1 + 1

(d+2)�
. Let the estimator f̂� be as in (4) with parameter

γn, and define f̂ as in (22). We have that

sup
f ∈BVL([0,1]d )

E
[‖f̂ − f ‖Lq([0,1]d )

]≤ Cn
−min{ 1

d+2 , 1
dq

}
(logn)3−min{d,2}

holds for n large enough and a constant C > 0 independent of n.

The proof of Theorem 3 is given in Section 3 of the Supplementary Material [19].

4. Extension to discretized model. In this section, we show how the frame-constrained
TV estimator can be extended to the discrete nonparametric regression model, and prove a
convergence result for it. Consider observations from the model

(23) Yi = f (xi) + σεi, xi ∈ �n, i = 1, . . . , n,

where we assume that n = md for some m ∈ N, and

(24) �n :=
{(

k1

m
, . . . ,

kd

m

) ∣∣∣ ki ∈ {1, . . . ,m}, i = 1, . . . , d

}
is the observation grid. Of course, different grids may be used. In (23), εi are independent
standard normal random variables, and σ > 0 plays the role of the standard deviation of
the noise. Additionally, we have to assume that f is well defined on the grid �n and that it
satisfies a form of continuity there:

f (x) = lim
r→0

1

|B(x, r)|
∫
B(x,r)

f (y) dy,

Df (x) = lim
r→0

1

|B(x, r)|
∫
B(x,r)

Df (y) dy and

(25)

lim
r→0

|[Df ]s |(B(x, r))

rd
= 0 for any x ∈ �n,(26)

where Df is the Lebesgue continuous part of the gradient of f , and [Df ]s is its singular part,
and B(x, r) is a ball of radius r around x. We remark that these equalities hold for almost
any x, since f is of bounded variation. Define now the parameter space

BVL,n

(
T

d)= {g ∈ BVL | g satisfies (25) and (26)},
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where BVL is defined in (7). In particular, we allow functions in BVL,n to have discontinu-
ities, provided they do not occur at the sampling points.

In order to apply our multiscale methodology here, we need a discrete frame on which to
project the data. For that, let �n = {φn

ω | ω ∈ �n} be a dictionary of discretized elements, that
is, each φn

ω is a vector of n values

(27)
(
φn

ω

)
i = n−1/2φω(xi) for i = 1, . . . , n,

which are the evaluations of φω at the grid points. The scaling factor n−1/2 is chosen so that
‖φn

ω‖�2 → ‖φω‖L2 = 1 as n → ∞. Define now

(28) f̂D ∈ arg min
g∈Xn

|g|BV subject to max
ω∈�n

∣∣∣∣ ∑
xi∈�n

(
φn

ω

)
i

(
g(xi) − Yi

)∣∣∣∣≤ κσ
√

2 log #�n.

THEOREM 4. Let d ∈ N and q ∈ [1,∞). Let � satisfy Assumption 1, and γn be as in (5)
with κ2 > 1+ 1

(d+2)�
. Let the estimator f̂D be as in (28) based on observations (23). We have

that

(29) sup
f ∈BVL,n(Td )

E
[‖f̂D − f ‖Lq

]≤ C
(
max

{
n− 1

2 , n− 1
d
})min{ 2

d+2 , 2
dq

}
(logn)3−min{d,2}

holds for n large enough and a constant C > 0 independent of n.

The proof of Theorem 4 is given in Section 4 of the Supplementary Material [19]. Notice
that the convergence rate consists of two terms: the term n−1/2 is the same as in the white
noise model, and arises from the stochastic fluctuations of the observations. The term n−1/d

is however not present in the white noise model, and it is the discretization error in which we
incur by observing discretized data only. Some remarks are due:

(a) The discretization error is unavoidable, and it is so large because of the roughness of
BV functions. Indeed, approximating the frame coefficients of a BV functions by its discrete
coefficients is subject to an error of order O(n−1/d). For comparison, that discretization error
for a β-Hölder function is of order O(n−β/d): this is consistent with the fact that, for β > d/2,
the white noise model and nonparametric regression models are Le Cam equivalent for β-
Hölder functions [69].

(b) The rate in Theorem 4 equals that in the white noise model for d = 1,2, while the
discretization error n−1/d dominates for d ≥ 3.

(c) As discussed in the Introduction, the only other works dealing with the minimax esti-
mation of functions of bounded variation in higher dimensions are [44] and [71]. A crucial
difference with our setting is that they consider a discretized model and measure convergence
with a discrete �2 risk. This amounts effectively to ignoring discretization effects, which is
why they do not observe the discretization error O(n−1/d). It is however well known that
discretization effects are often present in practice (e.g., in nanoscopy), and the error bound in
(29) faithfully represents that.

5. Computational aspects. In this section, we discuss how the multiscale TV-estimator
can be computed efficiently. For that, we encounter two challenges: one is the discretization
of the BV seminorm, the other is the numerical solution of the optimization problem in (4).

5.1. Discretization of the problem. We discretize (4) as follows:
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(i) We do not minimize over functions g ∈ Xn defined on the continuous domain [0,1]d ,
but over vectors of function values on a particular grid. Which particular grid we take (e.g.,
Cartesian, polar, etc.) is not crucial (see however point (iii) below). In fact, in applica-
tions, the discretization of the signals is determined by the measurement process. In the
following, we denote the discretization of a function g on a grid �n = {xi, i = 1, . . . , n}
by gn := {g(xi), xi ∈ �n}. We denote by V the space of all such vectors of function values,
which we identify with R

n.
(ii) We discretize the frame {φω} onto which we project gn. We do so by associating to

each function φω a vector of function values φn
ω as defined in (27). We also discretize the

inner product in (4) in order to have〈
gn,φ

n
ω

〉
�2 = n−1

∑
xi∈�n

g(xi)φω(xi).

(iii) Finally, we discretize the BV seminorm in (4). While there are many ways of dis-
cretizing it (see, e.g., [8] and [12]), we choose the discretization in Cartesian coordinates,
also known as isotropic discretization. We remark however that our theory also covers the
improved discretization proposed in [15] (see Remark 7 for a comparison of the different
discretizations). Finally, we stress that the discretization of the BV seminorm can be unstable
in some situations, but in our case we can guarantee stability (see Remark 8 below).

REMARK 7 (Different discretizations of the BV seminorm). Here we discuss different
possible discretizations of the BV seminorm and its practical effects on the final reconstruc-
tion. First of all, we distinguish between the anisotropic and the isotropic discretization,
which are given by

BVanis(gn) = ∑
xi∈�n

d∑
i=1

∣∣�ig(x)
∣∣ and BV iso(gn) = ∑

xi∈�n

√√√√ d∑
i=1

∣∣�ig(x)
∣∣2,

where �ig(x) is a discrete approximation to the partial derivative of g along the ith direction
by finite differences. Notice that our definition of the BV seminorm in (11) corresponds to
the isotropic discretization (since we use the Euclidean norm of the vector field h(x) in (11)).
However, we mention the anisotropic discretization here for two reasons. The first one is
that, in the mathematical statistics literature, the only convergence rates for TV-regularized
least squares in dimension d ≥ 2 have been proven for the anisotropic discretization (see
[44] and [71]). The second reason is that, in the numerical analysis literature, the isotropic
discretization is known to be superior to the anisotropic one [15]. The reason for that is that
the anisotropic discretization detects variations along the Cartesian axes well, but it performs
poorly for variations along different directions, for instance along curves. We illustrate this
difference in Figure 3.

On the other hand, the isotropic discretization has difficulties in detecting variations along
the diagonal directions, and refined discretizations of the BV seminorm have been proposed
in order to solve that issue. A remarkable example of such a refinement was proposed by
Condat [15], and it consists of discretizing the vector fields h(x) in the definition (11) on a
grid finer than �n, which allows the discretized TV functional to distinguish finer directional
information (we refer to [15] for the details). In Figure 3, we show a comparison of the
anisotropic, the isotropic BV iso and Condat’s isotropic discretizations.

Finally, we stress once again the value of deriving our theory in the continuous setting,
since then we can discretize the BV functional as we want (e.g., with Condat’s discretization)
in order to achieve better results.
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FIG. 3. Reconstructions by TV-regularization for different discretizations of the TV seminorm.

REMARK 8 (Stability of the discretization). Since we have discretized the BV seminorm
in order solve the problem (4), we have necessarily introduced an error, and we should ask
how far we are from the solution of the original problem. The answer is that, as n → ∞,
we do not lose anything, as the properly rescaled discretized BV functional �-converges
to the BV-seminorm [8]. Indeed, as explained in Section 5.2 below, we will iteratively use
Chambolle’s algorithm in the discretized model, which was shown to produce reconstructions
that converge to the minimizer of the continuous model in the limit n → ∞ [8].

While these results imply that one can rely on Chambolle’s algorithm, some authors have
shown that the discretization of the BV seminorm can be unstable. In the setting of Bayesian
inverse problems, [48] and [49] proved that imposing a discretized BV prior (analogous to
regularizing with the BV seminorm) shows the following phenomenon: as the level of dis-
cretization grows finer, the posterior mean estimator converges to the posterior mean corre-
sponding to a Sobolev H 1 prior (Theorem 5.1 in [49]). Further, [48] show that Besov B1

1,1
priors do not show this effect. This is a major computational difference between the BV and
the Besov B1

1,1 or Sobolev seminorms: the former is not discretization invariant, while the
latter are.

5.2. Optimization algorithm for (4). After discretizing the problem (4), we can write it
in the form

(30) min
v∈V

F (Kv) + BVdis(v),

where V is the set of vectors of Rn described in point (i) in Section 5.1, BVdis is a discretiza-
tion of the BV seminorm as discussed in point (iii) of Section 5.1, and K and F are defined
as follows:

(1) The operator K : Rn → R
#�n maps an vector gn to its coefficients with respect to the

(discretized) frame φn
ω, that is,

K : gn �→ {〈
φn

ω, gn

〉
,ω ∈ �n

} :=
{

1

n

∑
xi∈�n

φω(xi)g(xi),ω ∈ �n

}
.
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(2) The functional F is given by

F(z) = 1≤0(v − Y − γn) + 1≤0(−v + Y − γn) for v ∈R
#�n,

where γn is the threshold in (4), and Y = {Yω,ω ∈ �n} ∈ R
#�n denotes the vector of coeffi-

cients of Y with respect to the frame {φω}. The indicator functions in the above display are
defined as

1≤0(z) :=
⎧⎨⎩0 if max

ω∈�n

zω ≤ 0,

+∞ else
for z ∈ R

#�n.

The first observation is that (30) is a large-scale, convex, nonsmooth optimization problem,
which renders standard techniques such as interior point methods inapplicable or unfeasible.
Instead, we used the Chambolle–Pock (CP) primal-dual algorithm [10] for nonsmooth opti-
mization. In order to do so, we write (30) as a saddle-point problem

(31) min
v∈V

max
w∈W

〈Kv,w〉 − F�(w) + G(v),

where F� is the convex conjugate of F . The CP algorithm solves (30) by writing the opti-
mality conditions for (31) in terms of the proximal operators of G and F�, and solving these
optimality conditions iteratively (we refer to [10] for the details). This means that the compu-
tational complexity of the CP algorithm is driven by the complexity of the proximal operators
of G and F�. In our setting, these proximal operators can be computed as follows:

(1) The convex conjugate of F , F�, is given by

F�(z) = ∑
ω∈�n

zωYω + γn|zω|.

The proximal operator of F� is given by

arg min
z∈R#�n

‖z − w‖2

2τ
+ γn

∑
ω∈�n

|zω − τYω|,

whose solution is soft-thresholding of w − τY by the threshold τγn.
(2) The proximal operator of G is given by the TV-L2 functional, that is,

arg min
gn∈R�n

‖gn − v‖2

2τ
+ G(gn).

This minimization problem can be solved efficiently by Chambolle’s algorithm [8], which
carefully employs the characterization of the BV seminorm as a supremum over differentiable
vector fields.

In this setting, we can apply the CP algorithm to compute the solution to (30) efficiently.
As an example of the runtime, in our implementation in Matlab the computation on a n = 512
one-dimensional signal takes of the order of 0.3 seconds, and around 3.5 minutes on a
n = 256 × 256 two-dimensional image. One comment is due regarding the choice of free
parameters in our problem, that is, regarding the choice of the threshold γn and of the frame
�. On one hand, the threshold should be chosen as in Theorem 1 in order to guarantee op-
timality. On the other and, regarding the frame �, in our simulations we have considered
several choices. We have worked with the discretization of frames given by orthonormal
bases of Daubechies wavelets, with mixed frames of Daubechies wavelets and curvelets (as
in Section 2.3.3), and with redundant sets of indicator functions at dyadic positions (as in
Section 2.3.2). We remark that there is no optimal choice of the frame, but that particular
frames may give better empirical results for certain functions. For example, if f has elon-
gated features or filaments, a curvelet frame should produce good reconstructions, whereas a
multiscale system as in Section 2.3.2 will work well for piecewise constant functions.
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REMARK 9 (Alternative algorithms). In [30], the optimization problem (4) was solved
by an Alternating Direction Method of Multipliers (ADMM) approach, which alternatively
minimizes the objective and projects to the constraint set. The drawback of this approach is
the projection step, which is typically extremely time consuming due to the large amount and
redundancy of the constraints. Additionally, the convergence guarantees for the projection
step can be quite slow if the sets in which we project intersect with a small angle. Instead, by
using the CP algorithm (which is a preconditioned version of ADMM algorithm) and using
a different splitting, we circumvent the projection step and replace it by the soft-thresholding
step mentioned above.

6. Proof of the main theorems.

6.1. Proof of Theorem 1. We begin with a preparation.

PROPOSITION 4. Let � satisfy Assumption 1 and, for n ∈ N, let f̂� be the estimator
defined in (4) with γn given by (5). Then conditionally on the event An in (32) we have:

(i) ‖f̂� − f ‖
B

−d/2∞,∞(Td )
≤ Cγn + C

‖f ‖L∞(Td ) + logn√
n

,

(ii) ‖f̂� − f ‖BV(Td ) ≤ ‖f ‖L∞(Td ) + 2|f |BV(Td ) + logn,

for any f ∈ BV ∩ L∞, and a constant C > 0 independent of n, f and f̂�.

PROOF. For part (i), apply Assumption 1 to g = f̂� − f , which yields

‖f̂� − f ‖
B

−d/2∞,∞(Td )
≤ C max

ω∈�n

∣∣〈φω, f̂� − f 〉∣∣+ C
‖f̂� − f ‖L∞(Td )√

n
.

The numerator in the second term can be bounded by ‖f ‖L∞(Td ) + logn by construction of
f̂�, while the first term can be bounded as

max
ω∈�n

∣∣〈φω, f̂� − f 〉∣∣≤ max
ω∈�n

∣∣〈φω, f̂�〉 − Yω

∣∣︸ ︷︷ ︸
≤γn

+ max
ω∈�n

|〈φω,f 〉 − Yω |

≤ γn + max
ω∈�n

σ√
n

∣∣∣∣∫
Td

φω(x) dW(x)

∣∣∣∣≤ 2γn

conditionally on An, where in the second inequality we used the definition of f̂�. This com-
pletes the proof of (i). For (ii), we have

‖f̂� − f ‖BV(Td ) ≤ ‖f̂� − f ‖L1(Td ) + |f̂� − f |BV(Td )

≤ ‖f̂� − f ‖L∞(Td ) + |f̂� − f |BV(Td ).

The first term is bounded by ‖f ‖L∞(Td ) + logn, while the second is bounded by |f̂�|BV(Td ) +
|f |BV(Td ). Finally, conditionally on An we have |f̂�|BV(Td ) ≤ |f |BV(Td ). This is so because

f̂� is defined as the minimizer of the bounded variation seminorm among the functions sat-
isfying maxω∈�n |〈φω,g〉−Yω| ≤ γn. Note that, conditionally on An, the function f satisfies
this constraint, and hence f is an admissible function for the minimization problem defining
f̂�, whence |f̂�|BV(Td ) ≤ |f |BV(Td ). This completes the proof. �

The proof of Theorem 1 relies heavily on results from the theory of function spaces. In
particular, we use the following interpolation inequalities.
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PROPOSITION 5 (Interpolation inequalities). (a) For d = 1 and q ∈ [1,3], there is a
constant C > 0 such that

‖g‖Lq ≤ C(logn)‖g‖2/3

B
−1/2∞,∞

‖g‖1/3
BV + Cn−1‖g‖2/3

L∞‖g‖1/3
BV

holds for any n ∈N and any g ∈ L∞ ∩ BV(Td).
(b) Let d ≥ 2 and q ∈ [1, d+2

d
]. Then there is a constant C > 0 such that

‖g‖Lq ≤ C‖g‖
2

d+2

B
−d/2∞,∞

‖g‖
d

d+2
BV

holds for any g ∈ B
−d/2∞,∞ ∩ BV(Td).

We give the proof of Proposition 5 in Section 1 of the Supplementary Material [19]. It is
the generalization to periodic functions of a result by [14]. The different results in d = 1 and
d ≥ 2 in Proposition 5 are due to the nature of certain embeddings between Besov and Lq

spaces.

PROOF OF PART (a) OF THEOREM 1. We prove the claim of part (a) Theorem 1 condi-
tionally on the event

(32) An :=
{

max
ω∈�n

∣∣∣∣∫
Td

φω(x) dW(x)

∣∣∣∣≤
√

n

σ
γn

}
.

By the choice of γn in (5) and part (b) of Remark 1, we have P(An) ≥ 1 − (#�n)
1−κ2

, which
tends to one as n → ∞.

Consider first the case q ≤ 1 + 2/d . For d ≥ 2, part (b) of Proposition 5 applies and gives
the interpolation inequality

‖f̂� − f ‖Lq(Td ) ≤ C‖f̂� − f ‖
2

d+2

B
−d/2∞,∞(Td )

‖f̂� − f ‖
d

d+2

BV(Td )
.

Conditionally on An, Proposition 4 gives us bounds for the terms in the right-hand side, and
using that f ∈ BVL gives

‖f̂� − f ‖Lq(Td ) ≤ C

(
γn + C

‖f ‖L∞(Td ) + logn√
n

) 2
d+2 (‖f ‖L∞(Td ) + 2|f |BV(Td ) + logn

) d
d+2

≤ Cn− 1
d+2 (σ

√
log #�n + L + logn)

2
d+2 (L + logn)

d
d+2

≤ C
(
1 ∨ σ 2) 1

d+2 n− 1
d+2 logn.

Since #�n ≤ Q(n) grows at most polynomially in n, the claim follows.
For the case d = 1, we use part (a) of Proposition 5, which yields

‖g‖Lq ≤ C(logn)‖g‖2/3

B
−1/2∞,∞

‖g‖1/3
BV + Cn−1‖g‖2/3

L∞‖g‖1/3
BV

for g = f̂� − f and q ∈ [1,3]. Proposition 4 now gives, conditionally on An,

‖f̂� − f ‖Lq ≤ C
(
1 ∨ σ 2)1/3

n−1/3(logn)2 + Cn−1 logn,

which yields the claim.
We have proved the claim for the Lq -risk with q ≤ 1 + 2/d . For larger q , we use Hölder’s

inequality between the L1+2/d and the L∞-risk. �
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PROOF OF PART (b) OF THEOREM 1. Using the convergence conditionally on An proved
in part (a), we can bound the expected risk as

E
[‖f̂� − f ‖Lq(Td )

]= E
[‖f̂� − f ‖Lq(Td )1An

]+E
[‖f̂� − f ‖Lq(Td )1Ac

n

]
≤ CrnP(An) +E

[‖f̂� − f ‖Lq(Td )1Ac
n

]
≤ Crn +E

[‖f̂� − f ‖Lq(Td )1Ac
n

]
,

(33)

where rn = ((1∨σ 2)/n)
min{ 1

d+2 , 1
dq

}
(logn)3−min{d,2}. The rest of the proof consists in showing

that the second term behaves as o(n−1/2) for κ2 > 1 + 1
(d+2)�

. By assumption we have the
bounds ‖f ‖L∞ ≤ L and ‖f̂�‖L∞ ≤ logn, so we can bound the second term as

E
[‖f̂� − f ‖Lq(Td )1Ac

n

]≤ E
[‖f̂� − f ‖L∞(Td )1Ac

n

]≤ (L + logn)P
(
Ac

n

)
.

By part (b) of Remark 1 we have P(Ac
n) ≤ (#�)1−κ2

, and inserting this back in (33) yields

E
[‖f̂� − f ‖Lq(Td )

]≤ C
((

1 ∨ σ 2)/n
)min{ 1

d+2 , 1
dq

}
(logn)3−min{d,2} + Cn−�(κ2−1) logn.

Choosing κ2 > 1 + 1/((d + 2)�) yields the claim. �

6.2. Minimax rate over BV . Here we prove Theorem 2 by showing a lower bound for the
minimax risk over Besov spaces B1

1,1 with respect to the Lq -risk. This implies a lower bound
for the minimax risk over BVL, since

BVL ⊃ (
B1

1,1 ∩ L∞)
L := {

g ∈ B1
1,1 | ‖g‖B1

1,1
≤ L,‖g‖L∞ ≤ L

}
.

The minimax Lq -risk for q ≤ 1 + 2/d (dense case) is well understood, and the associated
minimax rates have been known for a while to be n− 1

d+2 . Its proof follows the classical
strategy of constructing a set of alternatives in (B1

1,1 ∩ L∞)L that are well separated in the
Lq -norm, and applying an information inequality (e.g., Fano’s inequality). It can be found in
Chapter 10 of [43], so we do not reproduce it here.

On the other hand, the regime q ≥ 1 + 2/d is far less popular, and we have not found any
proof of what the minimax rate is there. The difficulty here is that B1

1,1 is a Besov space with
“s ≤ d/p”, and the literature has focused mainly on the case s > d/p (with some excep-
tions, see [36] and [52]). Our proof that the minimax rate is O(n

− 1
dq ) in that regime follows

the same idea as in the other regimes: we construct a set of well separated alternatives and
show that no statistical procedure can distinguish them perfectly. As in the dense regime, our
construction is based on Assouad’s cube [1].

PROOF OF THEOREM 2. Our proof follows the proof of Theorem 10.3 in [43] closely.
We structure it in several steps.

Construction of alternatives: Let g0 ∈ B1
1,1 ∩ L∞ satisfy

‖g0‖B1
1,1

≤ L/2 and ‖g0‖L∞ ≤ L/2.

Let ψj,k,e be a basis of Daubechies wavelets with S continuous partial derivatives, where
S > max{1, d/2}. For j ≥ 0 to be fixed later, let Rj ⊆ {0, . . . ,2j − 1}d × {1, . . . ,1} denote a
subset of wavelet indices such that

suppψj,k,e ∩ suppψj,k′,e′ = ∅ for (k, e) �= (
k′, e′) ∈ Rj .

Since Daubechies wavelets are compactly supported, there are at most O(2jd) such wavelets
with nonoverlapping supports. We will not need all of them, but only a subset of cardinality
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#Rj = Sj = �2j�� for a real number � ∈ [0, d] to be chosen later. Consider now vectors
ε ∈ {−1,+1}Sj with components indexed by (k, e) ∈ Rj . Our alternatives will have the form

gε := g0 + γ
∑

(k,e)∈Rj

εk,eψj,k,e

for γ > 0 to be chosen later. Define the set G := {gε | ε ∈ {−1,+1}Sj }. Notice that all func-
tions in this set satisfy ‖gε‖B1

1,1
≤ L and ‖gε‖L∞ ≤ L provided that

(34) γ ≤ L

2
2−j (1−d/2+�) and γ ≤ L

2‖ψ‖L∞
2−jd/2,

respectively. In the following, we choose � = d − 1 in order to balance these two terms.
Finally, the Lq -separation between these alternatives is

(35) δ := inf
ε �=ε′

∥∥gε − gε′∥∥
Lq = 21/q‖γψj,k,e‖Lq = 21/qγ 2jd( 1

2 − 1
q
)‖ψ‖Lq ,

where the first equality follows from the disjoint supports of the wavelets.
Lower bound: We use now Assouad’s lemma for lower bounding the Lq -risk over (B1

1,1 ∩
L∞)L. We reproduce the claim (Lemma 10.2 in [43]) for completeness.

LEMMA 1. For ε ∈ {−1,+1}Sj and (k, e) ∈ Rj , define ε∗k := (ε′
(k1,e1)

, . . . , ε′
(kSj

,eSj
)),

where

ε′
(k′e′) =

{
ε(k,e) if

(
k′, e′) �= (k, e),

−ε(k,e) if
(
k′, e′)= (k, e).

Assume there exist constants λ,p0 > 0 such that

(36) Pgε

(
LR

(
gε∗k , gε)> e−λ)≥ p0 ∀ε, n,

where Pgε denotes the probability with respect to observations drawn from gε in the white
noise model, and LR(gε∗k , gε) denotes the likelihood ratio between the observations associ-
ated to gε∗k and gε . Then any estimator f̂ satisfies

sup
gε∈G

Egε

∥∥f̂ − gε
∥∥
Lq ≥ e−λp0

2
δS

1/q
j ,

where δ is defined in (35).

Verification of (36): The condition (36) is easily verified in our setting with Gaussian
observations under the condition that nγ 2 ≤ c for n large enough (see Section 10.5 in [43]).
Indeed, by Markov’s inequality we have

Pgε

(
LR

(
gε∗k , gε)> e−λ)≥ 1 − 1

log eλ
Egε

∣∣logLR
(
gε∗k , gε)∣∣,

and using Proposition 6.1.7 in [34] to bound the expectation by the Kullback–Leibler diver-
gence we get

Pgε

(
LR

(
gε∗k , gε)> e−λ)≥ 1 − 1

λ

(
K(dPgε∗k , dPgε) +

√
2K(dPgε∗k , dPgε)

)
.

Using the Cameron–Martin theorem to interpret the Gaussian probability measures (see The-
orem 2.6.13 in [34]), the Kullback–Leibler divergence between Gaussian measures is easily
computer and gives

K(dPgε∗k , dPgε) = n

2σ 2

∥∥gε∗k − gε
∥∥2
L2 = nγ 2

2σ 2 ‖ψj,k,e‖2
L2 = nγ 2

2σ 2 .

Hence, choosing γ = t0σn−1/2 for a small enough constant t0 > 0 gives (36).
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Application of Lemma 1: The conclusion of the lemma applies, and we can lower bound
the Lq -risk over the class (B1

1,1 ∩ L∞)L by the risk over G, that is,

(37) sup
f ∈(B1

1,1∩L∞)L

Ef ‖f̂ − f ‖Lq ≥ sup
gε∈G

Egε

∥∥f̂ − gε
∥∥
Lq ≥ e−λp0

2
δ2j�/q

for any estimator f̂ . It remains to choose the scale parameter j ≥ 0. Recall that we have
chosen γ = t0σn−1/2. Further, by (34) we also need γ ≤ c2−j (1−d/2+�) = c2−jd/2, for the
choice � = d − 1. We choose j such that 2−jd/2 = cσn−1/2, which gives the bound in (37)

δ2j�/q = cγ 2jd( 1
2 − 1

q
)2j�/q = c

(
σ 2

n

) 1
2 −( 1

2 − 1
q
)− �

dq = c
(
σ 2/n

) 1
dq . �

7. Summary and outlook. We presented a family of estimators in the Gaussian white
noise model defined by minimization of the BV-seminorm under a constraint on the frame
coefficients of the residuals. Under conditions on the frame that amount to a certain compati-
bility with the Besov space B

−d/2∞,∞ , we show that these estimators attain the minimax optimal
rate of convergence in any dimension up to logarithmic factors. There are still several open
questions regarding extensions of our estimator. First, in the extension to a nonparametric
regression model with discretely sampled data presented in Section 4. There we showed that
an additional discretization error appears that slows down the rate as compared with the white
noise model. We do not know whether this rate is sharp in a minimax sense (up to logarith-
mic factors). Notice that the asymptotic equivalence of the white noise and the multivariate
nonparametric regression models derived by [69] does not apply for functions of bounded
variation, so the minimax rates need not be the same in the two models. It is thinkable that
the discretization error arises from the use of a continuous Lq -risk in the discretized model,
in which case the discrete �q risk might be better suited. We leave the clarification of this
question for future research.

A second question concerns the relation between the multiscale data-fidelity and statistical
testing. In fact, our use of dictionary elements with L2-norm equal to one is analogous to
the multiplicative scaling used by [27] to correctly weight their multiresolution test statistics.
This raises the question of whether an additive scaling in our data-fidelity is necessary in our
setting, as it is in theirs. The answer is that such an additive scaling would help us remove
some (but not all) of the logarithmic terms in the error bound in Theorem 1. However, it would
imply additional difficulties in the theoretical analysis of the estimator, since the constraint
would no longer match the Besov scale exactly. Alternatively, a different multiplicative scal-
ing could be used to link the multiscale data-fidelity with the logarithmic Besov spaces (see
Section 4.4 in [34]). We leave as an open question whether these modified data-fidelities and
Besov spaces could yield an improved performance.

Another interesting question concerns the choice of the risk functional. We have proven
convergence rates with respect to the Lq -risk, which measures the global error made by
the estimator. In contrast, the use of multiscale risk functionals has been proposed as an
alternative quality measure which takes spatial adaptation into account (see, e.g., [4] and
[55]). We expect that estimators like (4) should perform particularly well with respect to such
multiscale risks, and postpone the answer to that question for future work.

The extension of our theory to statistical inverse problems is particularly attractive, since
in many applications one only has access to a transformed version of the object of inter-
est (see, e.g., [31] and [65] for applications of TV-regularization to microscopy and to-
mography, respectively). The analysis done in the present paper is expected to be adapt-
able to inverse problems if the operator is assumed to have “good” mapping properties in
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the Besov scale Bs∞,∞. The modification would essentially involve a constraint of the form
maxω∈�n |〈φω,T g〉 − Yω| ≤ γn in (4), where T is the forward operator (see [31] and [55]
for examples and analysis of such an estimator). From this constraint, it is apparent that the
dictionary � has to depend on the forward operator T (see [68] for a similar construction). Fi-
nally, the extension to non-Gaussian noise models is of interest in many applications. In that
respect, note that the analysis of the estimator (4) depends on the tail behavior of the statistic
maxω∈�n |〈φω, dW 〉| being sub-Gaussian. Finally, the extension to SDE-based models (see,
e.g., [35]) appears to us of interest.
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SUPPLEMENTARY MATERIAL

Supplement to “Frame-constrained total variation regularization for white noise re-
gression” (DOI: 10.1214/20-AOS2001SUPP; .pdf). This Supplement is organized as follows.
In Section 1, we prove the interpolation inequalities of Proposition 5. In Section 2, we prove
Propositions 1, 2 and 3. In Sections 3 and 4, we prove Theorems 3 and 4, respectively.
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