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This paper is concerned with estimating the column space of an unknown
low-rank matrix A� ∈R

d1×d2 , given noisy and partial observations of its en-
tries. There is no shortage of scenarios where the observations—while being
too noisy to support faithful recovery of the entire matrix—still convey suffi-
cient information to enable reliable estimation of the column space of interest.
This is particularly evident and crucial for the highly unbalanced case where
the column dimension d2 far exceeds the row dimension d1, which is the focal
point of the current paper.

We investigate an efficient spectral method, which operates upon the sam-
ple Gram matrix with diagonal deletion. While this algorithmic idea has been
studied before, we establish new statistical guarantees for this method in
terms of both �2 and �2,∞ estimation accuracy, which improve upon prior
results if d2 is substantially larger than d1. To illustrate the effectiveness of
our findings, we derive matching minimax lower bounds with respect to the
noise levels, and develop consequences of our general theory for three appli-
cations of practical importance: (1) tensor completion from noisy data, (2)
covariance estimation/principal component analysis with missing data and
(3) community recovery in bipartite graphs. Our theory leads to improved
performance guarantees for all three cases.

1. Introduction. Consider the problem of estimating the column space of a low-rank
matrix A� = [A�

i,j ]1≤i≤d1,1≤j≤d2 , based on noisy and highly incomplete observations of its
entries. To set the stage, suppose we observe

(1.1) Ai,j = A�
i,j + Ni,j ∀(i, j) ∈ �,

where � ⊆ {1, . . . , d1} × {1, . . . , d2} is the sampling set, and Ai,j denotes the observed entry
at location (i, j), which is corrupted by noise Ni,j . In contrast to the classical matrix comple-
tion problem that aims to fill in all missing entries [21, 28, 36, 65], the current paper focuses
solely on estimating the column space of A�, which is oftentimes a less stringent requirement.

Motivating applications. A problem of this kind arises in numerous applications. We imme-
diately point out several representative examples as follows, with precise descriptions post-
poned to Section 4:

• Tensor completion. Imagine we seek to estimate a low-rank symmetric tensor from partial
observations of its entries [11, 84, 107], a task that spans various applications like visual
data inpainting [76] and medical imaging [99]. Consider, for example, an order-3 tensor
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T � =∑r
s=1 w�

s ⊗w�
s ⊗w�

s ∈ R
d×d×d , where {w�

s} represents a collection of tensor factors.1

An alternative representation of T � can be obtained by unfolding the tensor of interest into
a low-rank matrix A� ∈ R

d×d2
. Consequently, estimation of the subspace spanned by {w�

s}
from partial noisy entries of T �—which serves as a common and crucial step for tensor
completion [14, 84]—is equivalent to estimating the column space of A� from incomplete
data; see Section 4.1. Notably, the unfolded matrix becomes extremely fat as the dimension
d grows.

• PCA with missing data. Suppose we have available a sequence of n independent sample
vectors {xi ∈ R

d}ni=1, whose covariance matrix exhibits certain low-dimensional structure.
Several statistical models fall in the same vein of this model, for example, the generalized
spiked model [9] and the factor model [44]. An important task amounts to estimating the
principal subspace of the covariance matrix of interest, possibly in the presence of missing
data (where we only get to see highly incomplete entries of {xi}). If a substantial amount
of data are missing, then individual sample vectors cannot possibly be recovered, thus
enabling privacy protection for individual data. Fortunately, one might still hope to estimate
the principal subspace, provided that a large number of sample vectors are queried (which
might yield a fat data matrix X := [x1, . . . ,xn]); see Section 4.2.

• Community recovery in bipartite graphs. Community recovery is often concerned with
clustering a collection of individuals or nodes into different communities, based on sim-
ilarities between pairs of nodes. In many complex networks, such pairwise interactions
might only occur when the two nodes involved belong to two disjoint groups (denoted by
U and V, resp.). This calls for community recovery in bipartite networks (sometimes re-
ferred to as biclustering) [7, 41, 71, 116]. As we shall detail in Section 4.3, the biclustering
problem is tightly connected to subspace estimation; for instance, the column subspace of
some biadjacency matrix A ∈ R

|U |×|V| (which is a noisy copy of a low-rank matrix) reveals
the community memberships in U . When the size of V is substantially larger than that of U ,
one might encounter a situation where only the nodes in U (rather than V) can be reliably
clustered. This calls for development of “one-sided” community recovery algorithms, that
is, the type of algorithms that guarantee reliable clustering of U without worrying about
the clustering accuracy in V .

Contributions. Since we concentrate primarily on estimating the column space of A�, it
is natural to expect a reduced sample complexity as well as a weaker requirement on the
signal-to-noise ratio, in comparison to the conditions required for reliable reconstruction of
the whole matrix—particularly for those highly unbalanced problems with drastically dif-
ferent dimensions d1 and d2. Focusing on a spectral method applied to the Gram matrix
AA� with diagonal deletion (whose variants have been studied in multiple contexts [43, 47,
77, 79, 84]), we establish new statistical guarantees in terms of the sample complexity and
the estimation accuracy, both of which strengthen prior theory. Our results deliver optimal
�2,∞ estimation risk bounds with respect to the noise level, which are previously unavailable.
All of this is accomplished via a powerful leave-one-out/leave-two-out analysis framework.
Further, we develop minimax lower bounds under Gaussian noise, revealing that the sam-
ple complexity and the signal-to-noise ratio (SNR) required for spectral methods to achieve
consistent estimation are both minimax optimal (up to some logarithmic factor). Finally, we
develop concrete consequences of our general theory for all three applications mentioned
above, leading to improved performance guarantees.

It is worth noting that low-rank subspace estimation from noisy and incomplete data has
been extensively studied in a large number of prior work (e.g., [4, 27, 35, 38, 79, 113,

1For any vectors a,b, c ∈ R
d , we use a ⊗ b ⊗ c to denote a d × d × d array whose (i, j, k)th entry is given by

aibj ck .
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117]). While many of these prior results allow d1 and d2 to differ, they typically fall short of
establishing optimal dependency on d1 and d2 in the highly unbalanced scenarios. The focal
point of this paper is thus to characterize the effect of such unbalancedness (as reflected by
the aspect ratio d2/d1) upon consistent subspace estimation.

Paper organization. The rest of this paper is organized as follows. Section 2 formulates the
problem and introduces basic definitions and notation. In Section 3, we present our theoretical
guarantees for a spectral method, as well as minimax lower bounds. Section 4 applies our
general theorem to the aforementioned applications, and corroborate our theory by numerical
experiments. Section 5 provides an overview of related prior works. The proof of our main
theory and auxiliary lemmas are postponed to the Supplementary Material [13]. We conclude
the paper with a discussion of future directions in Section 6.

2. Problem formulation.

2.1. Models.

Low-rank matrix. Suppose that the unknown matrix A� ∈ R
d1×d2 is rank-r , where the row

dimension d1 and the column dimension d2 are allowed to be drastically different. Assume
that the (compact) singular value decomposition (SVD) of A� is given by

A� = U ���V �� =
r∑

i=1

σ�
i u�

i v
��
i .(2.1)

Here, σ�
1 ≥ σ�

2 ≥ · · · ≥ σ�
r > 0 represent the r nonzero singular values of A�, and �� ∈ R

r×r

is a diagonal matrix whose diagonal entries are given by {σ�
1 , . . . , σ �

r }. The columns of U � =
[u�

1, . . . ,u
�
r ] ∈ R

d1×r (resp., V � = [v�
1, . . . ,v

�
r ] ∈ R

d2×r ) are orthonormal, which are the top-r
left (resp., right) singular vectors of A�. We define and denote the condition number of A� as
κ := σ�

1 /σ �
r , and take d := max{d1, d2}.

Incoherence. Further, we impose certain incoherence conditions on the unknown matrix A�,
which are commonly adopted in the matrix completion literature (e.g., [21, 36, 65]).

DEFINITION 2.1 (Incoherence parameters). Define the incoherence parameters μ0, μ1

and μ2 as follows:

μ0 := d1d2 maxi,j |A�
i,j |2

‖A�‖2
F

,(2.2a)

μ1 := d1

r
max

i

∥∥U ��ei

∥∥2
2 and μ2 := d2

r
max

i

∥∥V ��ei

∥∥2
2,(2.2b)

where ei is the ith standard basis vector of compatible dimensionality.

Intuitively, when μ0, μ1 and μ2 are all small, the energies of the matrices A�, U � and V �

are (nearly) evenly spread out across all entries, rows and columns. For notational simplicity,
we shall set

(2.3) μ := max{μ0,μ1,μ2}.
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Random sampling and random noise. Suppose that we have only collected noisy observa-
tions of the entries of A� over a sampling set � ⊆ {1, . . . , d1} × {1, . . . , d2}. Specifically, we
observe

(2.4) Ai,j =
{
A�

i,j + Ni,j (i, j) ∈ �,

0 else,

where Ni,j is the noise at location (i, j). For notational simplicity, we write

A = P�(A) = P�

(
A�)+P�(N),(2.5)

where P� represents the Euclidean projection onto the subspace of matrices supported on �.
In addition, this paper concentrates on random sampling and random noise as follows.

ASSUMPTION 2.2 (Random sampling). Each (i, j) is included in the sampling set �

independently with probability p.

ASSUMPTION 2.3 (Random noise). The noise components {Ni,j } are independent and
satisfy the following conditions: for each 1 ≤ i ≤ d1,1 ≤ j ≤ d2,

(1) (Zero mean) E[Ni,j ] = 0;
(2) (Variance) Var(Ni,j ) ≤ σ 2;
(3) (Magnitude) Each Ni,j satisfies either of the following condition:

(a) |Ni,j | ≤ R;
(b) Ni,j has a symmetric distribution satisfying P{|Ni,j | > R} ≤ crd

−12 for some uni-
versal constant cr > 0.

Here, R is some quantity obeying

(2.6)
R2

σ 2 ≤ Cr
min{p√

d1d2,pd2}
logd

for some universal constant Cr > 0.

As a remark, Assumption 2.3 allows the largest possible size R of each noise compo-
nent to be substantially larger than its typical size σ . For example, if p � 1, then R can be
min {(d1d2)

1/4,
√

d2} times larger than σ (ignoring log factors). In addition, the Ni,j ’s do not
necessarily have identical variance; in fact, our formulation allows us to accommodate the
heteroscedasticity of noise (i.e., the scenario where the noise has location-varying variance).

Goal. Given incomplete and noisy observations about A� ∈ R
d1×d2 (cf. (2.4)), we seek to

estimate U � ∈ R
d1×r modulo some global rotation. We emphasize once again that the aim

here is not to estimate the entire matrix. In truth, there are many unbalanced cases with
d2  d1 such that (1) reliable estimation of U � is feasible, but (2) faithful estimation of the
whole matrix A� is information theoretically impossible.

2.2. Notation. We denote [n] := {1, . . . , n}. For any matrix A ∈ R
d1×d2 , we use σi(A)

and λi(A) to represent the ith largest singular value and the ith largest eigenvalue of A,
respectively. Let Ai,: and A:,j denote respectively the ith row and the j th column of A. Let
‖A‖ (resp., ‖A‖F) represent the spectral norm (resp., the Frobenius norm) of A. We also
denote by ‖A‖2,∞ := maxi∈[d1] ‖Ai,:‖2 and ‖A‖∞ := maxi∈[d1],j∈[d2] |Ai,j | the �2,∞ norm
and the entrywise �∞ norm of A, respectively. Similarly, for any tensor T , we use ‖T ‖∞
to represent the largest magnitude of the entries of T . Moreover, we denote by Pdiag the
projection onto the subspace that vanish outside the diagonal, and define Poff- diag such that
Poff- diag(A) := A − Pdiag(A). Let Or×r stand for the set of r × r orthonormal matrices. In
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addition, we use diag(a) to represent a diagonal matrix whose (i, i)th entry is equal to ai .
Throughout this paper, the notation C,C1, . . . , c, c1, . . . denote absolute positive constants
whose values may change from line to line.

For any real-valued functions f (d1, d2) and g(d1, d2), f (d1, d2) � g(d1, d2) or
f (d1, d2) = O(g(d1, d2)) mean that |f (d1, d2)/g(d1, d2)| ≤ C1 for some constant C1 > 0;
f (d1, d2) � g(d1, d2) means that |f (d1, d2)/g(d1, d2)| ≥ C2 for some universal constant
C2 > 0; f (d1, d2) � g(d1, d2) means that C1 ≤ |f (d1, d2)/g(d1, d2)| ≤ C2 for some univer-
sal constants C1,C2 > 0; f (d1, d2) = o(g(d1, d2)) means that f (d1, d2)/g(d1, d2) → 0 as
min{d1, d2} → ∞. In addition, f (d1, d2) � g(d1, d2) (resp., f (d1, d2)  g(d1, d2)) means
that there exists some sufficiently small (resp., large) constant c1 > 0 (resp., c2 > 0) such that
f (d1, d2) ≤ c1g(d1, d2) (resp. f (d1, d2) ≥ c2g(d1, d2)) holds true for all sufficiently large d1
and d2.

3. Main results.

3.1. Algorithm: A spectral method with diagonal deletion. Recall that A =
[Ai,j ]1≤i≤d1,1≤j≤d2 is the zero-padded data matrix (see (2.4)). It is easily seen that, under
our random sampling model (i.e., Assumption 2.2), p−1A serves as an unbiased estimator of
A�. One might thus expect the left singular subspace of A to form a reasonably good esti-
mator of the subspace spanned by U �. As it turns out, when A� is a very fat matrix (namely,
d2  d1), this approach might fail to work when the sample complexity is not sufficiently
large or when the noise size is not sufficiently small.

This paper adopts an alternative route by resorting to the sample Gram matrix AA� (prop-
erly rescaled). Straightforward calculation reveals that

1

p2E
[
AA�]

(3.1)

= A�A�� +
(

1 − p

p

)
Pdiag

(
A�A��)+ 1

p
diag

([
d2∑

j=1

Var(Ni,j )

]
1≤i≤d1

)
︸ ︷︷ ︸

a diagonal matrix

,

where diag(a) with a ∈ R
d1 represents a diagonal matrix whose (i, i)th entry equals ai . The

identity (3.2) implies that the diagonal components of p−2
E[AA�] are significantly inflated,

which call for special care.
In order to remedy the above-mentioned diagonal inflation issue, we adopt a simple strat-

egy that zeros out all diagonal entries; that is, performing the spectral method on the following
matrix:

(3.2) G = 1

p2Poff- diag
(
AA�)

with Poff- diag(M) := M −Pdiag(M) denoting projection onto the set of zero-diagonal matri-
ces. This clearly satisfies

E[G] =Poff- diag
(
A�A��)= Poff- diag

(
U ���2U ��).

If the diagonal entries of A�A�� are not too large, then one has A�A�� ≈ Poff- diag(A
�A��)

and, as a result, the rank-r eigen-subspace of G might form a reliable estimate of the subspace
spanned by U �. The procedure is summarized in Algorithm 1.

We remark that this is clearly not a new algorithmic idea. In fact, proper handling of the di-
agonal entries (e.g., diagonal deletion, diagonal reweighting) has already been recommended
in several different applications, including bipartite stochastic block models [47], covariance
estimation [43, 77–79], tensor completion [84], to name just a few.
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Algorithm 1 The spectral method on the diagonal-deleted Gram matrix
1: Input: sampling set �, observed entries {Ai,j | (i, j) ∈ �}, sampling rate p, rank r .
2: Compute the (truncated) rank-r eigendecomposition U�U� of G, where U ∈ R

d1×r ,
� ∈ R

r×r , and

G := Poff- diag

(
1

p2 AA�
)
.(3.3)

Here, A is defined in (2.5) and Poff- diag(M) zeros out the diagonal entries of M .
3: Output U as the subspace estimate, and � = �1/2 as the spectrum estimate.

3.2. Theoretical guarantees. In general, one can only hope to estimate U � up to global
rotation. With this in mind, we introduce the following rotation matrix:

(3.4) R := arg min
Q∈Or×r

∥∥UQ − U �
∥∥

F.

In words, R is the global rotation matrix that best aligns U and U �. Equipped with this
notation, the following theorem delivers upper bounds on the difference between the obtained
estimate U and the ground truth U �. The proof is postponed to the Supplementary Material
[13].

THEOREM 3.1. Assume that the following conditions hold:

p ≥ c0 max
{
μκ4r log2 d√

d1d2
,
μκ8r log2 d

d2

}
,(3.5a)

σ

σ�
r

≤ c1 min
{ √

p

κ 4
√

d1d2
√

logd
,

1

κ3

√
p

d1 logd

}
,(3.5b)

r ≤ c2
d1

μ1κ4 ,(3.5c)

where c0 > 0 is some sufficiently large constant and c1, c2 > 0 are some sufficiently small
constants. Then with probability at least 1 − O(d−10), the matrices U and � returned by
Algorithm 1 satisfy ∥∥UR − U �

∥∥� Egeneral,(3.6a)

∥∥UR − U �
∥∥

2,∞ � κ2

√
μr

d1
· Egeneral,(3.6b)

∥∥� − ��
∥∥� σ�

r · Egeneral,(3.6c)

where R is defined in (3.4), and

Egeneral := μκ2r logd√
d1d2p

+
√

μκ4r logd

d2p︸ ︷︷ ︸
missing data effect

+ σ 2

σ�2
r

√
d1d2 logd

p
+ σκ

σ�
r

√
d1 logd

p︸ ︷︷ ︸
noise effect

(3.7)

+ μ1κ
2r

d1︸ ︷︷ ︸
diagonal deletion

.
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REMARK 3.2. If there is no missing data (i.e., p = 1), then Theorem 3.1 holds un-
changed if the first two terms on the right-hand side of (3.7) are removed.

In a nutshell, Theorem 3.1 asserts that Algorithm 1 produces reliable estimates of the
column subspace of A�—with respect to both the spectral norm and the ‖·‖2,∞ norm—under
certain conditions imposed on the sample size and the noise size. For instance, consider the
settings where μ,κ � 1 and r � d1 ≤ d2. Then as long as the following condition holds:

p � r log2 d√
d1d2

and
σ 2

σ�2
r

= o

(
p√

d1d2logd

)
,(3.8)

the proposed spectral method achieves consistent estimation with high probability, namely,

min
Q∈Or×r

‖UQ − U �‖
‖U �‖ = o(1), min

Q∈Or×r

‖UQ − U �‖2,∞
‖U �‖2,∞

= o(1),

‖� − ��‖
‖��‖ = o(1).

(3.9)

Our upper bound (3.7) on the spectral norm error contains five terms. The first two terms
of (3.7) are incurred by missing data; the third and the fourth terms of (3.7) represent the
influence of observation noise; and the last term of (3.7) arises due to the bias caused by
diagonal deletion. In particular, the last term is expected to be vanishingly small in the low-
rank and incoherent case. Interestingly, both the missing data effect and the noise effect are
captured by two different terms, which we shall interpret in what follows. Note that a primary
focus of this paper is to demonstrate the feasibility of obtaining a tight control of the �2,∞
statistical error. This is particularly evident for the low-rank, incoherent and well-conditioned
case with r,μ, κ = O(1), in which our theory (cf. (3.6a) and (3.6b)) reveals that the �2,∞ error
can be a factor of

√
1/d1 smaller than the spectral norm error. The discussion below focuses

on this case (namely, r,μ, κ = O(1)), with all logarithmic factors omitted for simplicity of
presentation.

• Let us first examine the influence of observation noise, which reads

σ 2

σ�2
r

√
d1d2

p
+ σ

σ�
r

√
d1

p
.(3.10)

This contains a quadratic term as well as a linear term w.r.t. σ/σ�
r . To interpret this, con-

sider, for example, the case without missing data (i.e., p = 1) and decompose

AA� = A�A�� + A�N� + NA��︸ ︷︷ ︸
linear perturbation

+ NN�︸ ︷︷ ︸
quadratic perturbation

,

which clearly explains why eigenspace perturbation bounds depend both linearly and

quadratically on the noise magnitudes. In general, the quadratic term σ 2

σ�2
r

√
d1d2
p

is domi-

nant when the signal-to-noise ratio (SNR) is not large enough; as the noise decreases to a
sufficiently low level, the linear term starts to enter the picture. See Table 1 for a more pre-
cise summary. As we shall demonstrate momentarily, the terms (3.10) match the minimax
limits (up to some logarithmic factor), meaning that it is generally impossible to get rid of
either the linear term or the quadratic term.

• Next, we examine the influence of missing data and assume σ = 0 to simplify the discus-
sion. If we view Nmissing = 1

p
A − A� as a zero-mean perturbation matrix, then one can

write
1

p2 AA� = A�A�� + A�N�
missing + NmissingA

��︸ ︷︷ ︸
linear perturbation

+ NmissingN
�
missing︸ ︷︷ ︸

quadratic perturbation

.
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TABLE 1

The dominant term of the noise effect in σ 2

σ�2
r

√
d1d2
p + σ

σ�
r

√
d1
p if d2 ≥ d1 (omitting logarithmic factors and

assuming r, κ,μ � 1)

Large-noise (i.e., σ/σ�
r �

√
p/d2) Small-noise (i.e., σ/σ�

r �
√

p/d2)

Dominant term σ 2

σ�2
r

√
d1d2
p

σ
σ�

r

√
d1
p

Similar to the above noisy case with p = 1, this decomposition explains why the influence
of missing data also contains two terms (see Table 2)

1√
d1d2p︸ ︷︷ ︸

quadratic term in 1/
√

p

+ 1√
d2p︸ ︷︷ ︸

linear term in 1/
√

p

.

Comparison with prior results. To demonstrate the effectiveness of our theory, we take a
moment to compare them with several prior results. Once again, the discussion below focuses
on the case with max{μ,κ, r} � 1. To be fair, it is worth noting that most papers discussed
below either have different objectives (e.g., aiming at matrix estimation rather than subspace
estimation [22, 29, 65]), or work with different (and possibly more general) model assump-
tions (e.g., square matrices [4] or heteroskedastic noise [113]). Our purpose here is not to
argue that our results are always stronger than the previous ones, but rather to point out the
insufficiency of prior theory when directly applied to some basic settings.

• To begin with, we compare our spectral norm bound with that required for matrix com-
pletion [4, 22, 29, 36, 65] in the noise-free case (i.e., σ = 0), in order to show how
much saving can be harvested when we move from matrix estimation to subspace esti-
mation. Suppose that d2 ≥ d1. As is well known, for both spectral and optimization-based
methods, the sample complexities required for faithful matrix completion need to satisfy
pd1d2 � d2poly logd . In comparison, faithful estimation of the column subspace becomes
feasible under the sample size pd1d2 �

√
d1d2poly logd , which can be much lower than

that required for matrix completion (i.e., by a factor of
√

d2/d1). Further, we compare
our ‖ · ‖2,∞ bound with the theory derived in [4] when d2 � d1 log2 d . The theory in
[4], Theorem 3.4, requires the sample size and the noise level to satisfy p � d−1

1 logd

and σ/σ�
r �

√
p

d2 logd
, both of which are more stringent requirements than ours (namely,

p � log2 d√
d1d2

and σ/σ�
r �

√
p

4√d1d2
√

logd
). Again, this arises primarily because [4] seeks to esti-

mate the whole matrix as opposed to its column subspace.
• We then compare our results with [84], which studies a diagonal-rescaling algorithm for

the noise-free case (i.e., σ = 0). Combining [84], Theorem 6.2, with the standard Davis–
Kahan matrix perturbation theory, we can easily see that their spectral norm bound for

TABLE 2
The dominant term of the missing data effect in 1√

d1d2p
+ 1√

d2p
if d2 ≥ d1 (omitting logarithmic factors and

assuming r, κ,μ � 1)

High-missingness (i.e., p � 1/d1) Low-missingness (i.e., p � 1/d1)

Dominant term 1√
d1d2p

1√
d2p
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subspace estimation reads poly logd√
d1d2p

+ poly logd√
d2p

. This coincides with our bound except for the
last term of (3.7) (due to the bias incurred by diagonal deletion). In comparison, our theory
offers additional �2,∞ statistical guarantees and covers the noisy case, thus strengthening
the theory presented in [84].

• Additionally, we compare our spectral norm bound with the results derived in [113]. Con-
sider the noiseless case where σ = 0. It is proven in [113], Theorem 6, (see also the remark
that follows) that: if the sample size satisfies pd1d2 � max{d1/3

1 d
2/3
2 , d1}poly logd , then

the HeteroPCA estimator is consistent in estimating the column subspace (namely, achiev-
ing a relative �2 estimation error not exceeding o(1)). In comparison, our theory claims that
Algorithm 1 is guaranteed to yield consistent column subspace estimation as long as the
sample size obeys pd1d2 �

√
d1d2poly logd . Consequently, if we omit logarithmic terms,

then our sample complexity improves upon the theoretical support of HeteroPCA by a fac-
tor of (d2/d1)

1/6 if d2 ≥ d1. Once again, the comparison here focuses on the effect of the
aspect ratio d2/d1, without accounting for the influence of other parameters like μ,κ, r .

SVD applied directly to A? Finally, another natural spectral method that comes immedi-
ately into mind is to compute the rank-r SVD of A, and return the matrix containing the r

left singular vectors as the column subspace estimate. The �2 risk analysis of this approach
is typically based on classical matrix perturbation theory like Wedin’s theorem [105]. We
caution, however, that this approach becomes highly suboptimal when the aspect ratio d2/d1
grows. Take the case with Gaussian noise and no missing data (i.e., p = 1) for example: in
order for Wedin’s theorem to be applicable, a basic requirement is ‖N‖ < σ�

r , which trans-
lates to the condition σ

σ�
r
� 1√

d2
since ‖N‖ � σ

√
d2. In comparison, our theory covers the

range σ
σ�

r
� 1

(d1d2)
1/4 (modulo some log factor), which allows the noise level to be (d2/d1)

1/4

times larger than the upper bound derived for the above SVD approach. The suboptimality of
this approach can also be easily seen from numerical experiments as well; see Section 4 for
details.

3.3. Minimax lower bounds. It is natural to wonder whether our theoretical guarantees
are tight, and whether there are other estimators that can potentially improve the performance
of Algorithm 1. To answer these questions, we develop the following minimax lower bounds
under Gaussian noise; the proof is deferred to Appendix 12.1.

THEOREM 3.3. Suppose 1 ≤ r ≤ d1/2, and Ni,j
i.i.d.∼ N (0, σ 2). Define

M� := {
B ∈ R

d1×d2 | rank(B) = r, σr(B) ∈ [0.9σ�
r ,1.1σ�

r

]}
.

Denote by U(B) ∈ R
d1×r the matrix containing the r left singular vectors of B . Then there

exists some universal constant clb > 0 such that

inf
Û

sup
A�∈M�

E

[
min

R∈Or×r

∥∥ÛR − U
(
A�)∥∥]

(3.11a)

≥ clb min
{

σ 2

σ�2
r

√
d1d2

p
+ σ

σ�
r

√
d1

p
,1
}
,

inf
Û

sup
A�∈M�

E

[
min

R∈Or×r

∥∥ÛR − U
(
A�)∥∥

2,∞
]

(3.11b)

≥ clb min
{

σ 2

σ�2
r

√
d1d2

p
+ σ

σ�
r

√
d1

p
,1
}

1√
d1

,

where the infimum is taken over all estimators for U(A�) based on the observation P�(A� +
N).
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If we again consider the case where r, κ,μ � 1, then the above lower bounds (3.11) match
the noise effect terms in Theorem 3.1 (or equivalently, (3.10)) up to logarithmic factors.
This unveils a fundamental reason why the linear and the quadratic terms in (3.10) are both
essential in determining the estimation risk.

Another information-theoretic limit that concerns only the influence of subsampling is
supplied as follows; the proof is postponed to Appendix 12.2.

THEOREM 3.4. Suppose d1 ≤ d2 and p < 1−ε√
d1d2

for any small constant 0 < ε < 1. With

probability approaching one, there exist unit vectors u�, ũ� ∈R
d1 and v�, ṽ� ∈ R

d2 such that:

• min‖u� ± ũ�‖2 � 1 and ‖u�v�� − ũ�ṽ��‖F � 1;
• one cannot distinguish u�v�� and ũ�ṽ�� from the entries in �, that is, P�(u�v��) =

P�(ũ�ṽ��).

In words, Theorem 3.4 asserts that one cannot hope to achieve consistent subspace esti-
mation (in the sense of (3.9)) at all, as soon as the sampling rate p falls below the threshold
1/

√
d1d2. Putting Theorems 3.3–3.4 together reveals that: consistent estimation can by no

means be guaranteed unless

p � 1√
d1d2

and
σ 2

σ�2
r

� p√
d1d2

,(3.12)

which agrees with our theoretical guarantees (3.8) (up to some logarithmic term). As a result,
our minimax lower bounds confirm the near optimality of Algorithm 1 in enabling consistent
estimation.

On the other hand, it is widely recognized that spectral methods are typically unable to
achieve exact recovery or optimal estimation accuracy in the presence of missing data, even
in the balanced case with d1 = d2. For instance, if there is no noise, namely σ = 0, the
spectral methods fail to achieve perfect recovery as long as p < 1 (basically the first two
terms of (3.7) do not vanish) [66], whereas exact recovery might sometimes be feasible with
the aid of optimization-based approaches [21]. More often than not, spectral methods are
employed to produce a rough initial estimate that outperforms the random guess, which can
then be refined via other algorithms (e.g., nonconvex optimization algorithms like gradient
descent and alternating minimization [14, 66, 80, 102]).

4. Consequences for concrete applications. We showcase the consequence of Theo-
rem 3.1 in three concrete applications previously introduced in Section 1 in relatively simple
settings. Rather than striving for full generality, our purpose is to highlight the broad appli-
cability of our main results.

4.1. Noisy tensor completion.

Problem settings. We begin by considering the problem of symmetric tensor completion.
Consider an unknown order-3 tensor

T � =
r∑

s=1

w�
s ⊗ w�

s ⊗ w�
s :=

r∑
s=1

(
w�

s

)⊗3 ∈ R
d×d×d,

with canonical polyadic (CP) rank r . The goal is to estimate the subspace spanned by
{w�

s}rs=1, based on the noisy tensor T = [Ti,j,k]1≤i,j,k≤d obeying

(4.1) Ti,j,k =
{
T �

i,j,k + Ni,j,k, (i, j, k) ∈ �,

0, (i, j, k) /∈ �.
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Algorithm 2 The spectral method for tensor completion
1: Input: sampling set �, observed entries {Ti,j,k | (i, j, k) ∈ �}, sampling rate p, CP-rank

r .
2: Let A ∈ R

d×d2
be the mode-1 matricization of the observed tensor T (see (4.1)), namely,

set Ai,(j−1)d+k = Ti,j,k for each (i, j, k) ∈ [d]3, and employ A as the input of Algorithm
1.

3: Output U ∈ R
d×r returned by Algorithm 1 as the subspace estimate.

Here, Ti,j,k is the observed entry in location (i, j, k), Ni,j,k is the associated independent
random noise satisfying Assumption 2.3, and � ⊆ [d]3 stands for a sampling set obtained
via uniform random sampling with sampling rate p (namely, each entry is observed indepen-
dently with probability p).

Algorithm. Observe that the mode-1 matricization of T � is given by2

(4.2) A� =
r∑

s=1

w�
s

(
w�

s ⊗ w�
s

)� ∈ R
d×d2

,

indicating that the column subspace of A� is essentially the subspace spanned by the tensor
factors {w�

s}rs=1. Therefore, if we denote by A ∈ R
d×d2

the mode-1 matricization of T , then
we can invoke our general spectral method to estimate the column subspace of A� given A.
This procedure is summarized in Algorithm 2.

Theoretical guarantees. In order to provide theoretical support for Algorithm 2, we intro-
duce a few more notation. First, we introduce

(4.3) κtc := λ�
max/λ

�
min, λ�

min := min
1≤i≤r

∥∥w�
i

∥∥3
2, λ�

max := max
1≤i≤r

∥∥w�
i

∥∥3
2.

Note that ‖w�
i ‖3

2 is precisely the Frobenius norm of the rank-1 tensor w�⊗3
i —the ith tensor

component. Informally, κtc captures the condition number of the unknown tensor. Addition-
ally, similar to matrix completion, we introduce the following incoherence definitions that
enable efficient tensor completion:

DEFINITION 4.1 (Incoherence). Define the incoherence parameters μ3,μ4,μ5 for the
tensor T � and its tensor factors {w�

s}rs=1 as follows:

μ3 := d3‖T �‖2∞
‖T �‖2

F

, μ4 := max
1≤i≤r

d‖w�
i ‖2∞

‖w�
i ‖2

2

, μ5 := max
1≤i �=j≤r

d〈w�
i ,w

�
j 〉2

‖w�
i ‖2

2‖w�
j‖2

2

.

(4.4)

For notational convenience, we also set

(4.5) μtc := max
{
μ3,μ

2
4
}
.

Given that the tensor factors {w�
s}1≤s≤r are in general not orthogonal to each other, we in-

troduce the following orthonormal matrix U � ∈ R
d×r to represent the subspace spanned by

{w�
s}1≤s≤r :

(4.6) U � := W �(W ��W �)−1/2
, W � := [

w�
1, . . . ,w

�
r

] ∈ R
d×r .

2We let a ⊗ b :=
⎡⎣a1b

.

.

.

ad b

⎤⎦ represent a d2-dimensional vector.
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Note that the particular choice of U � in (4.6) is not pivotal, and can be replaced by any d1 × r

orthonormal matrix that spans the same column space as W �. With these in place, we are
now ready to quantify the estimation error of this spectral algorithm. The proof is deferred to
Appendix 9.1.

COROLLARY 4.2 (Symmetric tensor completion). Consider the above tensor completion
model. There exist some universal constants c0, c1, c2 > 0 such that if

p ≥ c0 max
{
μtcκ

4
tcr log2 d

d3/2 ,
μtcκ

8
tcr log2 d

d2

}
,(4.7a)

σ

λ�
min

≤ c1 min
{ √

p

κtcd3/4
√

logd
,

1

κ3
tc

√
p

d logd

}
,(4.7b)

r ≤ c2 min
{

d

κ4
tcμ4

,
1

κ2
tc

√
d

μ5

}
,(4.7c)

then with probability exceeding 1 − O(d−10), Algorithm 2 yields∥∥UR − U �
∥∥� Etc,(4.8a) ∥∥UR − U �

∥∥
2,∞ � κ2

tc

√
μtcr

d
· Etc,(4.8b)

where R := arg min
Q∈Or×r

‖UQ − U �‖F and

(4.9) Etc := μtcκ
2
tcr logd

d3/2p
+
√

μtcκ
4
tcr logd

d2p
+ σ 2

λ�2
min

d3/2 logd

p
+ σκtc

λ�
min

√
d logd

p
+ μ4κ

2
tcr

d
.

As discussed in several related work (e.g., [14, 59, 84, 106, 107]), once we obtain reliable
estimates of the subspace spanned by the tensor factors, we can further exploit the tensor
structure to estimate the unknown tensor. Indeed, in many tensor completion algorithms,
subspace estimation serves as a crucial initial step for tensor completion. Moreover, while
prior works only provide �2 estimation error bounds, Corollary 4.2 further delivers �2,∞
statistical guarantees, which reflect a stronger sense of statistical accuracy. We note that [108],
Theorem 4, derived an appealing �2,∞ statistical error bound for an algorithm called HOSVD,
under the tensor denoising setting. In comparison to the Gaussian noise considered therein,
our results accommodate the case with missing data and possibly spiky noise.

Implications. In what follows, we discuss the sample size and the signal-to-noise (SNR)
required for achieving consistent tensor estimation (namely, obtaining an o(1) relative esti-
mation error). For convenience of presentation, we again focus on the low-rank, incoherent,
and well-conditioned case with r,μ, κtc � 1. In this case, our results in Corollary 4.2 indicate
that

min
Q∈Or×r

∥∥UQ − U �
∥∥= o(1), min

Q∈Or×r

∥∥UQ − U �
∥∥

2,∞ = o(1/
√

d)(4.10)

with high probability, provided that the sample size and the noise satisfy

(4.11) p � log2 d

d3/2 and
σ

λ�
min

= o

(√
p

d3/2 logd

)
.

Several remarks are in order.
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• Sample complexity. It is widely conjectured that the sample complexity pd3 required to
reconstruct a order-3 tensor in polynomial time—even in the noiseless case—is at least
d3/2 (or equivalently, p � 1/d3/2) [11, 84, 107]. Therefore, our theory reveals that spectral
methods achieve consistent estimation (w.r.t. both ‖ · ‖ and ‖ · ‖2,∞), as long as the sample
size is slightly above the (conjectured) computational limit. Moreover, it is easily seen that
the bias incurred by deleting the diagonal is much smaller than the error due to missing
data, which justifies the rationale that diagonal deletion does not harm the performance by
much.

• Noise level. It is easily seen that the maximum magnitude of the entries of T � in this case
is ‖T �‖∞ � λ�

max/d
3/2. Thus, the noise condition in (4.11) is equivalent to

σ

‖T �‖∞
�
√

pd3/2.

Taken together with our sample size requirement p � log2 d

d3/2 , this condition allows the noise
magnitude in each observed entry to significantly exceed the size of the corresponding
entry, which covers a broad range of scenarios of practical interest. In addition, in the fully-
observed case (i.e., p = 1) with i.i.d. Gaussian noise, the authors in [114] showed that the
noise size condition (4.11)—up to some log factor—is necessary for any polynomial-time
algorithm to achieve consistent estimation, provided that a certain hypergraphic planted
clique conjecture holds.

Finally, we remark that in the fully-observed case (i.e., p = 1) with i.i.d. Gaussian noise,
it can be seen from [114], Theorem 1, that (4.8a) is suboptimal; in fact, the minimax risk
consists only of the linear term in σ (namely, σ

λ�
min

√
d , if we omit log factors and assume

r,μtc,μ5, κ � 1). This is a typical drawback of the spectral method for tensor estimation,
since it falls short of exploiting the low-complexity structure in the row subspace. However,
the spectral estimate offers a reasonably good initial estimate for this problem, and one can
often employ optimization-based iterative refinement paradigms (like gradient descent [14])
to obtain minimax optimal estimates.

4.2. PCA with missing data.

Model and algorithm. Next, we study covariance estimation with missing data, as previ-
ously introduced in Section 1. For concreteness, imagine a set of independent sample vectors
obeying

xi = B�f �
i + ηi ∈ R

d, f �
i

i.i.d.∼ N (0, I r ), 1 ≤ i ≤ n.

Here, B� ∈ R
d×r encodes the r-dimensional principal subspace underlying the data (some-

times referred to as the factor loading matrix in factor models [44, 72]), f �
i ∼ N (0, I r )

represents some random coefficients, and the noise vector ηi = [ηi,j ]1≤j≤d consists of inde-
pendent Gaussian components3 obeying

E[ηi,j ] = 0 and Var[ηi,j ] ≤ σ 2.

What we observe is a partial set of entries of xi = [xi,j ]1≤j≤d , namely, we only observe
xi,j for any (i, j) ∈ �, where � is obtained by random sampling with rate p. The goal is to
estimate the subspace spanned by B�, or even B�B��.

If we write F � = [f �
1,, . . . ,f

�
n] ∈ R

r×n and N = [η1, . . . ,ηn] ∈ R
d×n, then it boils down

to estimating the column space of A� := B�F � from the data P�(X) = P�(B�F � +N). Our
spectral method for covariance estimation is summarized in Algorithm 3.

3Here, we assume f �
i and ηi to be Gaussian for simplicity of presentation. The results in this subsection

continue to hold if they are sub-Gaussian random vectors.
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Algorithm 3 The spectral method for covariance estimation
1: Input: sampling set �, observed entries {Xi,j | (i, j) ∈ �}, sampling rate p, rank r .
2: Let A = P�(X) ∈ R

d×n with X = [x1, · · · ,xn], and use A as the input of Algorithm
1. Let U ∈ R

d×r and � ∈ R
r×r be the estimates returned by Algorithm 1, and set B :=

1√
n
U�.

3: Output U as the subspace estimate and S := BB� as the covariance estimate.

Theoretical guarantees. In order to present our theory, we make a few more definitions.
Without loss of generality, we shall define

(4.12) S� := B�B�� = U ���U �� and B� = U ���1/2,

where U � ∈ R
d×r consists of orthonormal columns and �� = diag(λ�

1, . . . , λ
�
r )

∈ R
r×r is a diagonal matrix with λ�

1 ≥ · · · ≥ λ�
r ≥ 0. We also define the condition number and

the incoherence parameter as

κce := λ�
1/λ

�
r and μce := d

r

∥∥U �
∥∥2

2,∞.(4.13)

We are now positioned to derive statistical estimation guarantees using our general theo-
rem. The following result is a consequence of Theorem 3.1; the proof is postponed to Ap-
pendix 9.2.

COROLLARY 4.3 (Covariance estimation). Consider the above covariance estimation
model with missing data. There exist universal constants c0, c1 > 0 such that if r ≤ c1

d
μceκ2

ce
and

(4.14)

n ≥ c0 max
{
μ2

ceκ
6
cer

2 log6(n + d)

dp2 ,
μceκ

5
cer log3(n + d)

p
,

σ 4

λ�2
r

κ2
ced log2(n + d)

p2 ,
σ 2

λ�
r

κ3
ced log(n + d)

p

}
,

then with probability exceeding 1 − O((n + d)−10), Algorithm 3 yields∥∥UR − U �
∥∥� Ece,(4.15a)

∥∥UR − U �
∥∥

2,∞ � κ
3/2
ce

√
μcer log(n + d)

d
· Ece,(4.15b) ∥∥S − S�

∥∥� κceλ
�
1 · Ece,(4.15c) ∥∥S − S�

∥∥∞ � κceμcer log(n + d)

d
λ�

1 · Ece.(4.15d)

Here, R := arg min
Q∈Or×r

‖UQ − U �‖F and

(4.16)

Ece := μceκ
2
cer log2(n + d)√

dnp
+
√√√√μceκ3

cer log2(n + d)

np

+ σ 2

λ�
r

√
d

n

log(n + d)

p
+ σ√

λ�
r

√
d

n

√
κce log(n + d)

p
+ μceκcer

d
.
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REMARK 4.4. We make note of a scaling issue that one shall bear in mind when com-
paring this result with our main theorem. In the settings of Theorem 3.1, the singular values
{σ�

i }ri=1 of the truth A� do not change as the column dimension d2 grows. In contrast, in the
settings of Corollary 4.3, the singular values of the sample covariance matrix keep growing
as we collect more sample vectors, which is equivalent to saying that these singular values
scale with the column dimension.

Discussion. To facilitate interpretation, let us again focus on the case where μce, κce � 1.
Corollary 4.3 demonstrates that for any given sampling rate p, we can achieve consistent
estimation4 as long as the number n of samples satisfies

(4.17) n� max
{

r2

dp2 ,
r

p
,

σ 4d

λ�2
r p2 ,

σ 2d

λ�
rp

}
poly logd.

Throughout this subsection, the sample size refers to n—the number of sample vectors
{xi}1≤i≤n available.

Next, we compare our �2,∞ bounds with several prior work for the case with r � 1. We
emphasize again that the foci and model assumptions of these prior papers might be quite
different from ours (e.g., [117] is able to accommodate inhomogeneous sampling patterns),
and the advantages of our results discussed below are restricted to the settings considered in
this paper. For simplicity, we ignore all log factors.

• Suppose that σ = 1. In this setting, [117], Theorem 4, demonstrates that if

n� max
{

1

p2 ,
d2

λ�2
r p2 ,

d

λ�
rp

2

}
poly logd,

then with high probability one has

min
Q∈Or×r

∥∥UQ − U �
∥∥

2,∞ � 1

p
√

n

(
1√
λ�

r

+ 1

λ�
r

)(
1 +

√
d

λ�
r

)
poly logd

In comparison, our sample size requirement for consistent estimation improves upon [117],
Theorem 4, by a factor of min{d,p−1}. Moreover, our estimation error bound improves

upon [117], Theorem 4, by a factor of min{√λ�
r ,

1√
p
} if

√
d � λ�

r � d , by a factor of
√

d
λ�

r

when λ�
r � 1, and by a factor of min{

√
d

λ�
r

√
p
,
√

d
λ�

r
} if 1 � λ�

r �
√

d .
• In the absence of missing data, the �2,∞ error bound presented in [23], Theorem 1.1, reads

(ignoring logarithmic terms)

min
Q∈Or×r

∥∥UQ − U �
∥∥

2,∞ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1

nd
for

σ√
λ�

r

� 1√
d

,

σ 2

λ�
r

√
d

n
for

1√
d

� σ√
λ�

r

� 1.

Consequently, our result improves upon the above error bound by a factor of σ
√

d√
λ�

r

if 1√
d

�
σ√
λ�

r

� 1, while being able to handle the case with larger noise (namely, σ√
λ�

r

 1).

4Here, consistent estimation is declared if minQ∈Or×r ‖UQ − U�‖ = o(1) and ‖S − S�‖ = o(λ�
r ).
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4.3. Community recovery in bipartite stochastic block models. As it turns out, if we de-
note by A ∈ R

|U |×|V| the biadjacency matrix of the observed random bipartite graph or its
centered version, then A� := E[A] exhibits a low-rank structure (as we shall elaborate mo-
mentarily). Perhaps more importantly, the column subspace of A� reveals the community
memberships of all nodes in U . As a result, this biclustering problem is tightly connected to
subspace estimation given noisy observations of a low-rank matrix. In particular, when the
size of V is substantially larger than that of U , one might encounter a situation where only
the nodes in U (rather than those in V) can be reliably clustered. This calls for development
of “one-sided” community recovery algorithms, that is, the type of algorithms that guarantee
reliable clustering of U without worrying about the clustering accuracy in V .

Model. This subsection investigates the problem of biclustering, by considering a bipartite
stochastic block model (BSBM) with two disjoint groups of nodes U and V . Suppose that the
nodes in U (resp., V) form two clusters. For each pair of nodes (i, j) ∈ (U,V), there is an
edge connecting them with probability depending only on the community memberships of i

and j . To be more specific:

• Biclustering structure. Consider two disjoint collections of nodes U and V , which are of
size nu and nv , respectively. Suppose that each collection of nodes can be clustered into
two communities. To be more precise, let I1 ⊆ U and I2 = U\I1 (resp., J1 ⊆ V and
J2 = V\J1) be two nonoverlapping communities in U (resp. V) that contain nu/2 (resp.
nv/2) nodes each. Without loss of generality, we assume that I1 contains the first nu/2
nodes of U , and J1 contains the first nv/2 nodes of V ; these are of course a priori unknown.

• Measurement model. What we observe is a random bipartite graph generated based on
the community memberships of the nodes. In the simplest version of BSBMs, a pair of
nodes (i, j) ∈ (U,V) is connected by an edge independently with probability qin if either
(i, j) ∈ (I1,J1) or (i, j) ∈ (I2,J2) holds, and with probability qout otherwise. Here, 0 ≤
qout ≤ qin ≤ 1 represent the edge densities. If we denote by C ∈ {0,1}nu×nv the biadjacency
matrix of this random bipartite graph, then one has

P{Ci,j = 1} ind.=
{
qin if (i, j) ∈ (I1,J1) or (i, j) ∈ (I2,J2),

qout otherwise.

Our goal is to recover the community memberships of the nodes in U , based on the above
random bipartite graph. In what follows, we define

(4.18) n := nu + nv,

and declare exact community recovery of U if the partition of the nodes returned by our
algorithm coincides precisely with the true partition (I1,I2).

While our theory covers a broad range of nu and nv , we emphasize the case where nv  nu

(namely, V contains far more nodes than U ). In such a case, it is not uncommon to encounter
a situation where one can only hope to recover the community memberships of the nodes in
U but not those in V .

Algorithm. To attempt community recovery, we look at a centered version of the biadja-
cency matrix5

A := C − qin + qout

2
1nu1�

nv
.(4.19)

5Here, we assume prior knowledge about qin and qout. Otherwise, the quantity qin+qout
2 can also be easily

estimated.
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Algorithm 4 The spectral method for BSBM
1: Input: observed biadjacency matrix C, edge probabilities qin, qout.
2: Employ A (cf. (4.19)) as the input of Algorithm 1, and let u = [ui] ∈ R

nu be the out-
put returned by Algorithm 1 (which serves as the estimate of the leading left singular
subspace of A�.

3: Output: for any i ∈ U , we claim that i belongs to the first community if ui > 0, and the
second community otherwise.

Recognizing that

(4.20)

A� := E[A] = qin − qout

2

[
1nu/21�

nv/2, −1nu/21�
nv/2

−1nu/21�
nv/2, 1nu/21�

nv/2

]

= qin − qout

2

[
1nu/2

−1nu/2

] [
1�
nv/2,−1�

nv/2
]
,

we see that the leading singular vectors of A� reveals the community memberships of all
nodes. Motivated by this observation, our algorithm for recovering the community member-
ships in U proceeds as follows:

Theoretical guarantees and implications. We are now ready to invoke our general theory to
demonstrate the effectiveness of the above algorithm, as asserted by the following result.

COROLLARY 4.5 (Bipartite stochastic block model). Consider the above bipartite
stochastic block model. There exists some universal constant c0 > 0 such that if

(4.21)
(qin − qout)

2

qin
≥ c0 max

{
logn√
nunv

,
logn

nv

}
,

then Algorithm 4 achieves exact community recovery of U with probability exceeding 1 −
O(n−10).

We then take a moment to discuss the implications of Corollary 4.5. For simplicity of
presentation, we shall focus on the scenario with qin � qout = o(1) and nu ≤ nv .

• Exact recovery via the spectral method alone. Consider the following sparse regime, where

qin = a logn√
nunv

and qout = b logn√
nunv

for some absolute positive constants a ≥ b. Corollary 4.5 demonstrates that we can achieve

exact recovery when (a−b)2

a
� 1. This improves upon prior results presented in [47]. More

specifically, the results in [47] only guaranteed almost exact recovery of community mem-
berships (namely, obtaining correct community memberships for a fraction 1 − o(1) of the
nodes). In comparison, our results assert that the spectral estimates alone are sufficient to
reveal exact community memberships for all nodes in U ; there is no need to invoke further
refinement procedures to clean up the remaining errors.

• Near optimality. In the balanced case where nu � nv , the condition (a−b)2

a
� 1 above is

known to be information-theoretically optimal up to a constant factor. In the unbalanced
case with nv ≥ nu, prior work has identified a sharp threshold for detection—the problem
of recovering a fraction 1/2 + ε of the community memberships for an arbitrarily small
fixed constant ε > 0. Specifically, such results reveal a fundamental lower limit that re-

quires (qin−qout)
2

qin
� 1√

nunv
[46, 47], thus implying the information-theoretic optimality of

the spectral method (up to a logarithmic factor).
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5. Further related work. A natural class of spectral algorithms to estimate the lead-
ing singular subspace of a matrix—when given a noisy and sub-sampled copy of the true
matrix—is to compute the leading left singular subspace of the observed data matrix. Despite
the simplicity of this idea, this type of spectral methods provably achieves appealing perfor-
mances for multiple statistical problems when the true matrix is (nearly) square. A partial
list of examples includes low-rank matrix estimation and completion [25, 34, 58, 65, 80],
community detection [4, 74, 95, 111] and synchronization and alignment [4, 26, 100, 101].
However, the above-mentioned approach might lead to suboptimal performance when the row
dimension and the column dimension of the matrix differ dramatically. This issue has already
been recognized in multiple contexts, including but not limited to unfolding-based spectral
methods for tensor estimation [57, 84, 106, 108, 114] and spectral methods for biclustering
[47]. Motivated by this suboptimality issue, an alternative is to look at the “sample Gram
matrix” which, as one expects, shares the same leading left singular space as the original ob-
served data matrix. However, in the highly noisy or highly subsampled regime, the diagonal
entries of the sample Gram matrix are highly biased, thus requiring special care. Several dif-
ferent treatments of diagonal components have been adopted for different contexts, including
proper rescaling [52, 79, 84], deletion [47] and iterative updates [113]. The deletion strategy
is perhaps the simplest of this kind, as it does not require estimation of noise parameters. We
note, however, that performing more careful iterative updates might be beneficial for certain
heteroskedastic noise scenarios; see [113] for details.

An important application of our work is the problem of tensor completion and estima-
tion [48, 51, 56, 68, 76, 87, 94, 96, 98, 109, 110]. Despite its similarity to matrix comple-
tion, tensor completion is considerably more challenging; for concreteness and simplicity,
we shall only discuss order-3 symmetric rank-r tensors in R

d3
. Motivated by the success of

matrix completion, a simple strategy is to unfold the observed tensor into a d × d2 matrix
and to apply standard matrix completion methods for completion. However, existing statisti-
cal guarantees derived in the matrix completion literature [21, 53, 65] do not lead to useful
bounds unless the sample size exceeds the order of rd2, which far exceeds the requirement
for other methods such as the sum-of-squares (SOS) hierarchy [11, 93]. The work by [84]
demonstrates that spectral algorithms can also lead to useful estimates under minimal sample
size, as long as we look at the “Gram matrix” instead. In addition, such spectral algorithms
also play an important role in initializing other nonconvex optimization methods [14, 15, 106,
107].

In addition, there is an enormous literature on covariance estimation and PCA [12, 16,
18, 19, 62, 63, 81, 88, 91]. More recently, a computationally efficient algorithm called Het-
eroPCA has been proposed by [113] to achieve rate-optimal statistical guarantees for PCA in
the presence of heteroskedastic noise. When it comes to incomplete data, a variety of meth-
ods have been introduced [43, 64, 67]. For instance, Lounici considered estimating the top
eigenvector in the setting of sparse PCA in [78], and further proposed an estimator for the
covariance matrix in [79]. In [20], bandable and sparse covariance matrices are considered.
In addition, most of the prior work considered uniform random subsampling, and the recent
work [92, 117] began to account for heterogeneous missingness patterns.

Turning to the problem of community recovery, we note that extensive research has been
carried out on stochastic or censored block models, which can be viewed as special cases of
unipartite networks [2, 17, 31–33, 37, 50, 54, 55, 60, 61, 83, 85, 86]. The algorithms that
enable exact community recovery in these models include two-stage approaches [2, 85] and
semidefinite programming [6, 8, 10, 54, 55]. In addition, spectral clustering algorithms have
been extensively studied as well [4, 39, 40, 50, 73, 75, 89, 95, 103, 104, 111, 112]. While
this class of algorithms was originally developed to yield almost exact recovery (e.g., [2]), the
recent work by [4, 74] uncovered that spectral methods alone are sufficient to achieve optimal
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exact community recovery (a.k.a. achieving strong consistency) for stochastic block models.
The interested reader is referred to [1] for an in-depth overview. Our work contributes to
this growing literature by justifying the optimality of spectral methods in bipartite stochastic
block models [46, 47, 49].

Further, entrywise statistical analysis has recently received significant attention for various
statistical problems [4, 5, 23, 24, 27, 30, 42, 45, 74, 82, 90, 97, 108, 115]. For instance,
entrywise guarantees for spectral methods are obtained in [27, 42] based on an algebraic
Neumann trick, while the results in [4, 30, 115] were established based on a leave-one-out
analysis. The work by [27, 69, 70] went one step further by controlling an arbitrary linear
form of the eigenvectors or singular vectors of interest. These results, however, typically lead
to suboptimal performance guarantees when the row dimension and the column dimension
of the matrix are substantially different.

Finally, we recently became aware of [3], which also considers statistical guarantees of
PCA beyond the usual �2 analysis; in particular, they develop an analysis framework that
delivers tight �p perturbation bounds. Note, however, that their results are very different from
the ones presented here.

6. Discussion. In this paper, we have investigated the effects of unbalancedness (as re-
flected by a large aspect ratio d2/d1) upon column subspace estimation, and developed tight
�2,∞ statistical guarantees. Moving forward, there are many directions that are worth pursu-
ing. For example, our current theory is likely suboptimal with respect to the dependence on
the rank r and the condition number κ . For instance, the conditions (3.5) and the risk bound
(3.7) involve high-order polynomials of κ in multiple places, and the rank r in our current
theory cannot exceed the order of d1/κ

4; all of these might be improvable via more refined
analysis. In addition, it is natural to wonder whether we can extend our algorithm and the-
ory to accommodate more general sampling patterns. Going beyond estimation, an important
direction lies in statistical inference and uncertainty quantification for subspace estimation,
namely, how to construct valid and hopefully optimal confidence regions that are likely to
contain the unknown column subspace? It would also be interesting to investigate how to in-
corporate other structural prior (e.g., sparsity) to further reduce the sample complexity and/or
improve the estimation accuracy. Finally, another interesting avenue for future exploration is
the extension to distributed or decentralized settings.
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