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Distributed statistical learning problems arise commonly when dealing
with large datasets. In this setup, datasets are partitioned over machines,
which compute locally, and communicate short messages. Communication is
often the bottleneck. In this paper, we study one-step and iterative weighted
parameter averaging in statistical linear models under data parallelism. We
do linear regression on each machine, send the results to a central server and
take a weighted average of the parameters. Optionally, we iterate, sending
back the weighted average and doing local ridge regressions centered at it.
How does this work compared to doing linear regression on the full data?
Here, we study the performance loss in estimation and test error, and confi-
dence interval length in high dimensions, where the number of parameters is
comparable to the training data size.

We find the performance loss in one-step weighted averaging, and also
give results for iterative averaging. We also find that different problems are
affected differently by the distributed framework. Estimation error and con-
fidence interval length increases a lot, while prediction error increases much
less. We rely on recent results from random matrix theory, where we develop
a new calculus of deterministic equivalents as a tool of broader interest.

1. Introduction. Datasets are constantly increasing in size and complexity. This leads to
important challenges for practitioners. Statistical inference and machine learning, which used
to be computationally convenient on small datasets, now bring an enormous computational
burden.

Distributed computation is a universal approach to deal with large datasets. Datasets are
partitioned across several machines (or workers). The machines perform computations lo-
cally and communicate only small bits of information with each other. They coordinate to
compute the desired quantity. This is the standard approach taken at large technology compa-
nies, which routinely deal with huge datasets spread over computing units. What are the best
ways to divide up and coordinate the work?

The same problem arises when the data is distributed due to privacy, security or ethical
concerns. For instance, medical and healthcare data is typically distributed across hospitals
or medical units. The parties agree that they want to aggregate the results. At the same time,
they do not want other parties access their data. How can they compute the desired aggregates,
without sharing the data?

In both cases, the key question is how to do statistical estimation and machine learning in
a distributed setting. And what performance can the best methods achieve? This is a question
of broad interest, and it is expected that the area of distributed estimation and computation
will grow even more in the future.

In this paper, we develop precise theoretical answers to fundamental questions in dis-
tributed estimation. We study one-step and iterative parameter averaging in statistical linear
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models under data parallelism. Specifically, suppose in the simplest case that we do lin-
ear regression (Ordinary Least Squares, OLS) on each subset of a dataset distributed over k

machines, and take an optimal weighted average of the regression coefficients. How do the
statistical and predictive properties of this estimator compare to doing OLS on the full data?

We study the behavior of several learning and inference problems, such as estimation error,
test error (i.e., out-of-sample prediction error) and confidence intervals. We also consider a
high-dimensional (or proportional-limit) setting where the number of parameters is of the
same order as the number of total samples (i.e., the size of the training data). We also study
an analogous iterative algorithm, where we do local ridge regressions, take averages of the
parameters on a central machine, send back the update to the local machines, and then again
do local ridge, but where the penalty is centered around the previous mean. Our iterative
algorithm falls between several classical methods such as ADMM and DANE, and we discuss
connections.

We discover the following key phenomena, some of which are surprising in the context of
existing work:

1. Suboptimality. One-step averaging is not optimal (even with optimal weights), meaning
that it leads to a performance decay. In contrast to some recent work (see the related work
section), we find that there is a clear performance loss due to one-step averaging even if we
split the data only into two subsets. This loss is because the number of parameters is of the
same order as the sample size. However, we can quantify this loss precisely.

2. Strong problem-dependence. Different learning and inference problems are affected
differently by the distributed framework. Specifically, estimation error and the length of con-
fidence intervals increases a lot, while prediction error increases less. The intuition is that
prediction is a noisy task, and hence the extra error incurred is relatively smaller.

3. Simple form and universality. The asymptotic efficiencies for one step distributed learn-
ing have simple forms that are often universal. Specifically, they do not depend on the co-
variance matrix of the data, or on the sample sizes on the local machines. For instance, the
estimation efficiency decreases linearly in the number of machines k (see Figure 1 and Ta-
ble 1).

4. Iterative parameter averaging has benefits. We show that simple iterative parameter
averaging mechanisms can reduce the error efficiently. We also exhibit computation-statistics

FIG. 1. How much accuracy do we lose in distributed regression? The plots show the relative efficiency, that is,
the ratio of errors, of the global least squares (OLS) estimator, compared to the distributed estimator averaging
the local least squares estimators. This efficiency is at most unity, because the global estimator is more accurate.
If the efficiency is close to unity, then averaging is accurate. We show the behavior of estimation and test error, as
a function of number of machines. We see that estimation error is much more affected than test error. The specific
formulas are given in Table 1.
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TABLE 1
Estimation, confidence interval and test efficiency as a function

of number of machines k, the sample size n, and the
dimension p. This is how much smaller the error of the global

estimator is compared to the distributed estimator. These
functions are plotted and described in Figure 1

Quantity Relative efficiency (n, p, k)

Estimation and CIs n−kp
n−p

Test error 1

1+ p2(k−1)
n(n−kp)

tradeoffs: depending on the hyperparameters, we can converge fast to statistically suboptimal
solutions or vice versa.

While there is already a lot of work in this direction (see Section 2) our results are new
and complementary. The key elements of novelty of our setting are: (1) The sample size and
the dimension are comparable, and we do not assume sparsity. (2) We have a new mathemat-
ical approach, using recent results from asymptotic random matrix theory such as (Rubio and
Mestre (2011)). Our approach also develops a novel theoretical tool, the calculus of deter-
ministic equivalents, and we illustrate how it can be useful in other problems as well. (3) We
consider several accuracy metrics (estimation, prediction) in a unified framework of so-called
general linear functionals.

The code for our paper is available at http://www.github.com/dobriban/dist.

2. Some related work. In this section, we discuss some related work. There is a great
deal of work in computer science and optimization on parallel and distributed computation
(see, e.g., Bertsekas and Tsitsiklis (1989), Boyd et al. (2011), Bekkerman, Bilenko and Lang-
ford (2011)). In addition, there are several popular examples of distributed data processing
frameworks: for instance, MapReduce (Dean and Ghemawat (2008)) and Spark (Zaharia et al.
(2010)).

In contrast, there is less work on understanding the statistical properties, and the inherent
computation-statistics tradeoffs, in distributed computation environments. This area has at-
tracted increasing attention only in recent years; see, for instance, Mcdonald et al. (2009),
Zhang, Wainwright and Duchi (2012), Zhang, Duchi and Wainwright (2013a, 2013b, 2015),
Duchi et al. (2014), Braverman et al. (2016), Jordan, Lee and Yang (2019), Rosenblatt and
Nadler (2016), Smith et al. (2017), Fan et al. (2019), Lin, Guo and Zhou (2017), Lee et al.
(2017), Battey et al. (2018), Zhu and Lafferty (2018) and the references therein. See Huo and
Cao (2019) for a review. We can only discuss the most closely related papers due to space
limitations.

Zinkevich, Langford and Smola (2009) study the parallelization of SGD for learning, by
reducing it to the study of delayed SGD; giving positive results for low latency “multicore”
settings. They give an insightful discussion of the impact of various computational platforms,
such as shared memory architectures, clusters and grid computing. Mcdonald et al. (2009)
propose averaging methods for special conditional maximum entropy models, showing vari-
ance reduction properties. Zinkevich et al. (2010) expand on this, proposing “parallel SGD”
to average the SGD iterates computed on random subsets of the data. Their proof is based on
the contraction properties of SGD.

Zhang, Duchi and Wainwright (2013b) bound the leading order term for MSE of averaged
estimation in empirical risk minimization. Their bounds do not explicitly take dimension into

http://www.github.com/dobriban/dist
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account. However, their empirical data example clearly has large dimension p, considering
a logistic regression with sample size n = 2.4 · 108, and p = 740,000, so that n/p ≈ 340. In
their experiments, they distribute the data over up to 128 machines. So, our regime, where k

is of the same order as n/p, matches well their simulation setup. In addition, their concern is
on regularized estimators, where they propose to estimate and reduce bias by subsampling.

Liu and Ihler (2014) study distributed estimation in statistical exponential families, con-
necting the efficiency loss from the global setting to the deviation from full exponential fam-
ilies. They also propose nonlinear KL-divergence-based combination methods, which can be
more efficient than linear averaging.

Zhang, Duchi and Wainwright (2015) study divide and conquer kernel ridge regression,
showing that the partition-based estimator achieves the statistical minimax rate over all esti-
mators. Due to their generality, their results are more involved, and also their dimension is
fixed. Lin, Guo and Zhou (2017) improve those results. Duchi et al. (2014) derive minimax
bounds on distributed estimation where the number of bits communicated is controlled.

Rosenblatt and Nadler (2016) consider the distributed learning problem in three different
settings. The first two settings are fixed dimensional. The third setting is high-dimensional
M-estimation, where they study the first-order behavior of estimators using prior results from
Donoho and Montanari (2016), El Karoui et al. (2013). This is possibly the most closely
related work to ours in the literature. They use the following representation, derived in the
previous works mentioned above: a high-dimensional M-estimator can be written as β̂ =
β + r(γ )�−1/2ζ(1 + oP (1)), where ζ ∼ N (0, Ip/p), γ is the limit of p/n, and r(γ ) is
a constant depending on the loss function, whose expression can be found in Donoho and
Montanari (2016), El Karoui et al. (2013).

They derive a relative efficiency formula in this setting, which for OLS takes the form

E‖β̂dist − β‖2

E‖β̂ − β‖2
= 1 + γ (1 − 1/k) + O

(
γ 2)

.

In contrast, our result for this case (Theorem 5.1) is equal to

1 − γ

1 − kγ
= 1 + γ

k − 1

1 − kγ
.

Thus, our result is much more precise, and in fact exact, while of course being limited to the
special case of linear regression.

In a heterogeneous data setting, Zhao, Cheng and Liu (2016) fit partially linear models,
and estimate the common part by averaging. For model selection problems in GLM, Chen
and Xie (2014) propose weighted majority voting methods. Lee et al. (2017) study sparse
linear regression, showing that averaging debiased lasso estimators can achieve the optimal
estimation rate if the number of machines is not too large. Battey et al. (2018) study a sim-
ilar problem, also including hypothesis testing under more general sparse models. Shi, Lu
and Song (2018), Banerjee, Durot and Sen (2019) show that in problems with nonstandard
rates, averaging can lead to improved pointwise inference, while decreasing performance in a
uniform sense. Volgushev, Chao and Cheng (2019) (among other contributions) provide con-
ditions under which averaging quantile regression estimators have an optimal rate. Banerjee
and Durot (2018) propose improvements based on communicating smoothed data, and fitting
estimators after. Szabo and van Zanten (2018) study estimation methods under communica-
tion constraints in nonparametric random design regression model, deriving both minimax
lower bounds and optimal methods.

See Section 7 for more discussion of multiround methods.
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3. One-step weighted averaging: General linear functionals. We consider the stan-
dard linear model

Y = Xβ + ε.

Here, we have an outcome variable y along with some p covariates x = (x1, . . . , xp)�, and
want to understand their relationship. We observe n such data points, arranging their out-
comes into the n × 1 vector Y , and their covariates into the n × p matrix X. We assume that
Y depends linearly on X, via some unknown p × 1 parameter vector β .

We assume there are more samples than training data points, that is, n > p, while p can
also be large. In that case, a gold standard is the usual least squares estimator (ordinary least
squares or OLS)

β̂ = (
X�X

)−1
X�Y.

We also assume that the coordinates of the noise ε are uncorrelated and have variance σ 2.
Suppose now that the samples are distributed across k machines (these can be real ma-

chines, but they can also be—say—sites or hospitals in medical applications, or mobile de-
vices in federated learning). The ith machine has the ni ×p matrix Xi , containing ni samples,
and also the ni × 1 vector Yi of the corresponding outcomes for those samples. Thus, the ith
worker has access to only a subset of training ni data points out of the total of n training data
points. For instance, if the data points denote n users, then they may be partitioned into k

sets based on country of residence, and we may have n1 samples from the United States on
one server, n2 samples from Canada on another server, etc. The broad question is: How can
we estimate the unknown regression parameter β if we need to do most of the computations
locally?

Let us write the partitioned data as

X =
⎡⎣X1

· · ·
Xk

⎤⎦ , Y =
⎡⎣Y1
· · ·
Yk

⎤⎦ .

We also assume that each local OLS estimator β̂i = (X�
i Xi)

−1X�
i Yi is well defined, which

requires that the number of local training data points ni must be at least p on each machine
(so ni ≥ p). We first consider combining the local OLS estimators at a parameter server via
one-step weighted averaging. Since they are uncorrelated and unbiased for β , we consider
unbiased weighted estimators

β̂dist(w) =
k∑

i=1

wiβ̂i

with
∑k

i=1 wi = 1.
Here, we want to mention a crucial difference between distributed linear regression and

other more complicated distributed statistical learning problems. That is, the local OLS esti-
mators are unbiased, but in more complex problems there is usually a local bias term of order
1/ni . If a local problem has too few samples: ni ≤ √

n, the bias starts to dominate the con-
vergence rate of the averaged estimator. This is the so-called “

√
n-barrier” in distributed sta-

tistical learning (Zhang, Duchi and Wainwright (2013b, 2015), Fan, Guo and Wang (2019)).
Luckily, this does not occur in our setting.

We introduce a “general linear functional” framework to study learning tasks such as esti-
mation and prediction in a unified way. In the general framework, we predict linear function-
als of β of the form

LA = Aβ + Z.
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Here, A is a fixed d × p matrix, and Z is a zero-mean Gaussian noise vector of dimension
d , with covariance matrix Cov[Z] = hσ 2Id , for some scalar parameter h ≥ 0. We denote the
covariance matrix between ε and Z by N , so that Cov[ε,Z] = N . If h = 0, we say that there
is no noise. In that case, we necessarily have N = 0.

We predict the linear functional LA via plug-in based on some estimator β̂0 (typically OLS
or distributed OLS)

L̂A(β̂0) = Aβ̂0.

We measure the quality of estimation by the mean squared error

M(β̂0) = E
∥∥LA − L̂A(β̂0)

∥∥2
.

We compute the relative efficiency of OLS β̂ compared to a weighted distributed estimator
β̂dist = β̂dist(w):

E(A,d;X1, . . . ,Xk) := M(β̂)

M(β̂dist)
.

The relative efficiency is a fundamental quantity, giving the loss of accuracy due to dis-
tributed estimation.

3.1. Examples. We now show how several learning and inference problems fall into the
general framework. See Table 2 for a concise summary.

• Parameter estimation. In parameter estimation, we want to estimate the regression coeffi-
cient vector β using β̂ . This is an example of the general framework by taking A = Ip , and
without noise (so that h = 0).

• Regression function estimation. We can use Xβ̂ to estimate the regression function
E(Y |X) = Xβ . In this case, the transform matrix is A = X, the linear functional is
LA = Xβ , the predictor is L̂A = Xβ̂ , and there is no noise.

• Out-of-sample prediction (Test error). For out-of-sample prediction, or test error, we con-
sider a test data point (xt , yt ), generated from the same model yt = x�

t β + εt , where xt , εt

are independent of X, ε, and only xt is observable. We want to use x�
t β̂ to predict yt .

This corresponds to predicting the linear functional Lxt = x�
t β + εt , so that A = x�

t ,
and the noise is Z = εt , which is uncorrelated with the noise ε in the original problem.

• In-sample prediction (Training error). For in-sample prediction, or training error, we con-
sider predicting the response vector Y , using the model fit Xβ̂ . Therefore, the functional

TABLE 2
A general framework for finite-sample efficiency calculations. The rows show the
various statistical problems studied in our work, namely estimation, confidence

interval formation, in-sample prediction, out-of-sample prediction and
regression function estimation. The elements of the row show how these tasks fall

in the framework of linear functional prediction described in the main body

Statistical learning problem LA L̂A A h N

Estimation β β̂ Ip 0 0
Regression function estimation Xβ Xβ̂ X 0 0
Confidence interval βj β̂j E�

j 0 0

Test error x�
t β + εt x�

t β̂ x�
t 1 0

Training error Xβ + ε Xβ̂ X 1 σ 2In



924 E. DOBRIBAN AND Y. SHENG

LA is LA = Y = Xβ + ε. This agrees with regression function estimation, except for the
noise Z = ε, which is identical to the original noise. Hence, the noise scale is h = 1, and
N = Cov[ε,Z] = σ 2In.

• Confidence intervals. To construct confidence intervals for individual coordinates, we con-
sider the normal model Y ∼ N (Xβ,σ 2In). Assuming σ 2 is known, a confidence interval
with coverage 1 − α for a given coordinate βj is

β̂j ± σzα/2V
1/2
j ,

where zα = 	−1(α) is the inverse normal CDF, and Vj is the j th diagonal entry of
(X�X)−1.

Therefore, we can measure the difficulty of the problem by Vj . The larger Vj is, the
longer the confidence interval. This also measures the difficulty of estimating the coordi-
nate LA = βj . This can be fit in our general framework by choosing A = E�

j , the 1 × p

vector of zeros, with only a one in the j th coordinate. This problem is noiseless. In this
sense, the problem of confidence intervals is the same as the estimation accuracy for indi-
vidual coordinates of β .

If σ is not known, then we we first need to estimate it in a distributed way. This is an
interesting problem in itself, but beyond the scope of our current work.

3.2. Finite sample results. We now show how to calculate the efficiency explicitly in the
general framework. We start with the simpler case where h = 0. We then have for the OLS
estimator

M(β̂) = σ 2 · tr
[(

X�X
)−1

A�A
]
.

For the distributed estimator with weights wi summing to one, given by β̂dist(w) = ∑
i wiβ̂i ,

we have

M(β̂dist) = σ 2 ·
(

k∑
i=1

w2
i · tr

[(
X�

i Xi

)−1
A�A

])
.

Using a simple Cauchy–Schwarz inequality (see Section A for the argument for parameter
estimation), we find that the optimal efficiency for the optimal weights is

E(A;X1, . . . ,Xk) = tr
[(

X�X
)−1

A�A
] ·

k∑
i=1

1

tr[(X�
i Xi)−1A�A] .(1)

This shows that the key to understanding the efficiency are the traces tr[(X�
i Xi)

−1A�A].
Proving that the efficiency is at most unity turns out to require the concavity of the matrix
functional 1/ tr(X−1A�A). This is a consequence of classical results in convex analysis; see,
for instance, Davis (1957), Lewis (1996). For completeness, we give a short self-contained
proof in Section B of the Supplementary Material (Dobriban and Sheng (2021)). In addition,
from the formula, we observe that there is no loss of efficiency if the local datasets are i.i.d.
and all the Gram matrices X�

i Xi/ni converge to the true population covariance matrix.

PROPOSITION 3.1 (Concavity for general efficiency, Davis (1957), Lewis (1996)). The
function f (X) = 1/ tr(X−1A�A) is a concave function defined on positive definite matrices.
As a consequence, the general relative efficiency for distributed estimation is at most unity
for any matrices Xi :

E(A;X1, . . . ,Xk) ≤ 1.
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For the more general case when h 	= 0, we can also find the OLS MSE as

M(β̂) = σ 2 · [
tr

((
X�X

)−1
A�A

) − 2 tr
(
A

(
X�X

)−1
X�N

) + hd
]
.

For the distributed estimator, we can find, denoting Ni := Cov[εi,Z],

M(β̂dist) = σ 2 ·
(

k∑
i=1

w2
i · tr

[(
X�

i Xi

)−1
A�A

] − 2wi · tr
(
A

(
X�

i Xi

)−1
X�

i Ni

)) + σ 2hd.

Let ai = tr[(X�
i Xi)

−1A�A], and bi = tr(A(X�
i Xi)

−1X�
i Ni). The optimal weights can be

found from a quadratic optimization problem:

wi = λ∗ + bi

ai

, λ∗ := 1 − ∑k
i=1

bi

ai∑k
i=1

1
ai

.

The resulting formula for the optimal weights, and for the global optimum, can be cal-
culated explicitly. The details can be found in the Supplementary Material (Section C)
(Dobriban and Sheng (2021)).

4. Calculus of deterministic equivalents.

4.1. A calculus of deterministic equivalents in RMT. We saw that the relative efficiency
depends on the trace functionals tr[(X�X)−1 A�A], for specific matrices A. To find their
limits, we will use the technique of deterministic equivalents from random matrix theory. This
is a method to find the almost sure limits of random quantities; see, for example, Hachem,
Loubaton and Najim (2007), Couillet, Debbah and Silverstein (2011) and the related work
section below.

For instance, the well-known Marchenko–Pastur (MP) law for the eigenvalues of random
matrices (Marchenko and Pastur (1967), Bai and Silverstein (2009)) states that the eigenvalue
distribution of certain random matrices is asymptotically deterministic. More generally, one
of the best ways to understand the MP law is that resolvents are asymptotically deterministic.
Indeed, let �̂ = n−1X�X, where X = Z�1/2 and Z is a random matrix with i.i.d. entries of
zero mean and unit variance. Then the MP law means that for any z with positive imaginary
part, we have the equivalence

(�̂ − zI)−1 � (xp� − zI)−1,

for a certain scalar xp = x(�,n,p, z) (that will be specified later). At this stage, we can think
of the equivalence entrywise, but we will make this precise next. The above formulation has
appeared in some early works by VI Serdobolskii; see, for example, Serdobolskii (1983), and
Theorem 1 on page 15 of Serdobolskii (2007) for a very clear statement.

To elaborate, the MP law is usually stated in terms of the convergence of the empirical
spectral distribution of the sample covariance matrix �̂. This is derived directly from the
convergence of the Stieltjes transform of �̂. The Stieltjes transform is simply the trace of
the scaled resolvent n−1(�̂ − zI)−1, which is a linear functional of the entries of the resol-
vent. Hence, its convergence can be derived from the calculus. However, it is less commonly
discussed that the proof techniques used to derive the MP law also yield as a byproduct the
convergence of all linear functionals, not just those involving the diagonal, which leads to our
calculus.

The consequence is that simple linear functionals of the random matrix (�̂ − zI)−1 have
a deterministic equivalent based on (xp� − zI)−1. In particular, we can approximate the
needed trace functionals by simpler deterministic quantities. For this, we will take a princi-
pled approach and define some appropriate notions for a calculus of deterministic equivalents,
which allows us to do calculations in a simple and effective way.
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First, we make more precise the notion of equivalence. We say that the (deterministic
or random) not necessarily symmetric matrix sequences An, Bn of growing dimensions are
equivalent, and write

An � Bn

if

lim
n→∞

∣∣tr[Cn(An − Bn)
]∣∣ = 0

almost surely, for any sequence Cn of not necessarily symmetric matrices with bounded trace
norm, that is, such that

lim sup‖Cn‖tr < ∞.

We call such a sequence Cn a standard sequence. Recall here that the trace norm (or
nuclear norm) is defined by ‖M‖tr = tr((M�M)1/2) = ∑

i σi , where σi are the singular values
of M .

4.2. General MP theorem. To find the limits of the efficiencies, the most important deter-
ministic equivalent will be the following result, essentially a consequence of the generalized
Marchenko–Pastur theorem of Rubio and Mestre (2011) (see Section D for the argument).
We study the more general setting of elliptical data. In this model, the data samples may have
different scalings, having the form xi = g

1/2
i �1/2zi , for some vector zi with iid entries, and

for datapoint-specific scale parameters gi . Arranging the data as the rows of the matrix X,
that takes the form

X = �1/2Z�1/2,

where Z and � are as before: Z has i.i.d. standardized entries, while � is the covariance
matrix of the features. Now � is the diagonal scaling matrix containing the scales gi of the
samples. This model has a long history in multivariate statistics (e.g., Mardia, Kent and Bibby
(1979)).

THEOREM 4.1 (Deterministic equivalent in elliptical models, consequence of Rubio and
Mestre (2011)). Let the n × p data matrix X follow the elliptical model

X = �1/2Z�1/2,

where � is an n × n diagonal matrix with nonnegative entries representing the scales of the
n observations, and � is a p × p positive definite matrix representing the covariance matrix
of the p features. Assume the following:

1. The entries of Z are i.i.d. random variables with mean zero, unit variance, and finite
8 + c-th moment, for some c > 0.

2. The eigenvalues of �, and the entries of �, are uniformly bounded away from zero and
infinity.

3. We have n,p → ∞, with γp = p/n bounded away from zero and infinity.

Let �̂ = n−1X�X be the sample covariance matrix. Then �̂ is equivalent to a scaled version
of the population covariance

�̂−1 � �−1 · ep.

Here, ep = ep(n,p,�) > 0 is the unique solution of the fixed-point equation

1 = 1

n
tr

[
ep�(I + γpep�)−1]

.
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Thus, the inverse sample covariance matrix has a deterministic equivalent in terms of a
scaled version of the inverse population covariance matrix. This result does not require the
convergence of the aspect ratio p/n, or of the e.s.d. of �, and �, as is sometimes the case in
random matrix theory. However, if the empirical spectral distribution of the scales � tends to
G, the above equation has the limit∫

se

1 + γ se
dG(s) = 1.

The usual MP theorem is a special case of the above result where � = In. As a result, we
obtain the following corollary.

COROLLARY 4.2 (Deterministic equivalent in MP models). Let the n × p data matrix
X follow the model X = Z�1/2, where � is a p × p positive definite matrix representing the
covariance matrix of the p features. Assume the same conditions on � from Theorem 4.1.
Then �̂ is equivalent to a scaled version of the population covariance

�̂−1 � 1

1 − γp

· �−1.

The proof is immediate, by checking that ep = 1/(1 − γp) in this case.
To motivate the need for this result, note that the relative efficiency (1) depends on lin-

ear functionals of �̂−1 and �̂−1
i . For instance, for estimation error, we will derive below

that the relative efficiency is tr[(X�X)−1] · [∑k
i=1

1
tr[(X�

i Xi)
−1] ]. Now, since tr[(X�X)−1] =

tr[�̂−1]/n, we can use the above result to calculate tr[�̂−1] � 1
1−γp

· tr[�−1] and get the form
of the efficiency.

4.2.1. Related work on deterministic equivalents. There are several works in random
matrix theory on deterministic equivalents. One of the early works is Serdobolskii (1983);
see Serdobolskii (2007) for a modern summary. The name “deterministic equivalents” and
technique was more recently introduced and repopularized by Hachem, Loubaton and Najim
(2007) for signal-plus-noise matrices. Later Couillet, Debbah and Silverstein (2011) devel-
oped deterministic equivalents for matrix models of the type

∑B
k=1 R

1/2
k XkTkX

�
k R

1/2
k , moti-

vated by wireless communications; see the book Couillet and Debbah (2011) for a summary
of related work. See also Müller and Debbah (2016) for a tutorial. However, many of these re-
sults are stated only for some fixed functional of the resolvent, such as the Stieltjes transform.
One of our points here is that there is a much more general picture.

Rubio and Mestre (2011) is one of the few works that explicitly states more general conver-
gence of arbitrary trace functionals of the resolvent. Our results are essentially a consequence
of theirs.

However, we think that it is valuable to define a set of rules, a “calculus” for working with
deterministic equivalents, and we use those techniques in our paper. Similar ideas for opera-
tions on deterministic equivalents have appeared in Peacock, Collings and Honig (2008), for
the specific case of a matrix product. Our approach is more general, and allows many more
matrix operations, see below.

4.3. Rules of calculus. The calculus of deterministic equivalents has several properties
that simplify calculations. We think these justify the name of calculus. Below, we will denote
by An, Bn, Cn, etc., sequences of deterministic or random matrices. See Section E in the
Supplementary Material (Dobriban and Sheng (2021)) for the proof.
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THEOREM 4.3 (Rules of calculus). The calculus of deterministic equivalents has the
following properties:

1. Equivalence. The � relation is indeed an equivalence relation.
2. Sum. If An � Bn and Cn � Dn, then An + Cn � Bn + Dn.
3. Product. If An is a sequence of matrices with bounded operator norms, that is,

‖An‖op < ∞, and Bn � Cn, then AnBn � AnCn.
4. Trace. If An � Bn, then tr{n−1An} − tr{n−1Bn} → 0 almost surely.
5. Stieltjes transforms. As a consequence, if (An − zIn)

−1 � (Bn − zIn)
−1 for symmetric

matrices An, Bn, then mAn(z) − mBn(z) → 0 almost surely. Here, mXn(z) = n−1 tr(Xn −
zIn)

−1 is the Stieltjes transform of the empirical spectral distribution of Xn.

In addition, the calculus of deterministic equivalents has additional properties, such as
continuous mapping theorems, differentiability, etc. We have developed the differentiability
in the follow-up work (Dobriban and Sheng (2019)).

We also briefly sketch several applications of the calculus of deterministic equivalents in
Section F in the Supplementary Material (Dobriban and Sheng (2021)), to studying the risk
of ridge regression in high dimensions, including in the distributed setting, gradient flow for
least squares, interpolation in high dimensions, heteroskedastic PCA, as well as exponen-
tial family PCA. We emphasize that in each case, including for the formulas of asymptotic
efficiencies in the current work, there are other proof techniques, but they tend to be more
case-by-case. The calculus provides a unified set of methods, and separate results can be seen
as applications of the same approach.

5. Examples. We now use the calculus of deterministic equivalents to find the limits of
the trace functionals in our general framework. We study each problem in turn. For asymp-
totics, we consider as before elliptical models. The data on the ith machine takes the form

Xi = �
1/2
i Zi�

1/2,

where �i contains the scales of the ith machine and Zi is the appropriate submatrix of X.
In this model, it turns out that the efficiencies can be expressed in a simple way via the

η-transform (Tulino and Verdú (2004)). The η-transform of a distribution G is

η(x) = EG

1

1 + xT
,

for all x for which this expectation is well defined. We will see that the efficiencies can be
expressed in terms of the functional inverse f of the η-transform evaluated at the specific
value 1 − γ :

(2) f (γ,G) = η−1
G (1 − γ ).

We think of elliptical models where the limiting distribution of the scales g1, . . . , gn is G.
For some insight on the behavior of η and f , consider first the case when G is a point
mass at unity, G = δ1. In this case, all scales are equal, so this is just the usual Marchenko–
Pastur model. Then we have η(x) = 1/(1 + x), while f (γ,G) = γ /(1 − γ ); see Figure 2
for the plots. The key points to notice are that η is a decreasing function of x, with η(0) =
1, and limx→∞ η(x) = 0. Moreover, f is an increasing function on [0,1] with f (0) = 0,
limη→1 f (η) = +∞. The same qualitative properties hold in general for compactly supported
distributions G bounded away from 0.
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FIG. 2. Plots of η and f for G being the point mass at unity.

5.1. Parameter estimation. For estimating the parameter, we have E‖β − β̂‖2 = σ 2

tr(X�X)−1. We find via (1) the estimation efficiency

RE(X1, . . . ,Xk) = tr
[(

X�X
)−1] ·

[
k∑

i=1

1

tr[(X�
i Xi)−1]

]
.

Recall that X�X = ∑k
i=1 X�

i Xi . Recall that the empirical spectral distribution (e.s.d.) of a
symmetric matrix M is simply the CDF of its eigenvalues (which are all real-valued). More
formally, it is the discrete distribution Fp that places equal mass on all eigenvalues of M .

THEOREM 5.1 (RE for elliptical and MP models). Under the conditions of Theorem 4.1,
suppose that, as ni → ∞ with p/ni → γi ∈ (0,1), the e.s.d . of � converges weakly to some
G, the e.s.d . of each �i converges weakly to some Gi , and that the e.s.d . of � converges
weakly to H . Suppose that H is compactly supported away from the origin, while G is also
compactly supported and does not have a point mass at the origin. Then the RE has almost
sure limit

ARE = f (γ,G) ·
k∑

i=1

1

f (γi,Gi)
.

For Marchenko–Pastur models, the RE has the form (1/γ − k)/(1/γ − 1).

See Section G in the Supplementary Material (Dobriban and Sheng (2021)) for the proof.
For MP models, for any finite sample size n, dimension p, and number of machines k, we
can approximate the ARE as

ARE ≈ n − kp

n − p
.

This efficiency for MP models depends on a simple linear way on k. We find this to be a
surprisingly simple formula, which can also be easily computed in practice. Moreover, the
formula has several more intriguing properties:

1. The ARE decreases linearly with the number of machines k. This holds as long as
ARE ≥ 0. At the threshold case ARE = 0, there is a phase transition. The reason is that
there is a singularity, and the OLS estimator is undefined for at least one machine.

However, we should be cautious about interpreting the linear decrease. For the root
mean squared error (RMSE), the efficiency is the square root of the ARE above, and thus
does not have a linear decrease.
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FIG. 3. Comparison of empirical and theoretical ARE for standard sample covariance matrices. Left:
n = 10,000, p = 20. Right: n = 10,000, p = 100.

2. The ARE has two important universality properties.

(a) First, it does not depend on how the samples are distributed across the different
machines, that is, it is independent of the specific sample sizes ni .

(b) Second, it does not depend on the covariance matrix � of the samples. This is
in contrast to the estimation error of OLS, which does in fact depend on the covariance
structure. Therefore, we think that the cancellation of � in the ARE is noteworthy.

The ARE is also very accurate in simulations. See Figure 3 for an example. Here, we report
the results of a simulation where we generate an n × p random matrix X such that the rows
are distributed independently as xi ∼ N (0,�). We take � to be diagonal with entries chosen
uniformly at random between 1 and 2. We choose n > p, and for each value of k such that
k < n/p, we split the data into k groups of a random size ni . To ensure that each group has
a size ni ≥ p, we first let n0

i = p, and then distribute the remaining samples uniformly at
random. We then show the theoretical results compared to the theoretical ARE. We observe
that the two agree closely.

5.2. Regression function estimation. For estimating the regression function, we have
E‖X(β − β̂)‖2 = σ 2p. We then find via equation (1) the prediction efficiency

FE(X1, . . . ,Xk) =
k∑

i=1

p

tr((X�
i Xi)−1X�X))

.

For asymptotics, we consider as before elliptical models.

THEOREM 5.2 (FE for elliptical and MP models). Under the conditions of Theorems 4.1
and 5.1, the FE has the almost sure limit

FE(X1, . . . ,Xk) →a.s.

k∑
i=1

1

1 + ( 1
γ
EGT − 1

γi
EGi

T )f (γi,Gi)
.

Under Marchenko–Pastur models, the conditions of Corollary 4.2, the FE has the almost sure
limit γ

1−γ

∑k
i=1

1−γi

γi
.

See Section G.6 for the proof. This efficiency is more complex than that for estimation
error; specifically it generally depends on the individual γi and not just γ .
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5.3. In-sample prediction (Training error). For in-sample prediction, we start with the
well-known formula

E
∥∥X(β − β̂) + ε

∥∥2 = σ 2[
n − tr(

(
X�X

)−1
X�X

] = σ 2(n − p).

As we saw, to fit in-sample prediction in the general framework, we need to take the transform
matrix A = X, the noise Z = ε, and the covariance matrices Ni = Cov[εi,Z] = Cov[εi, ε].
Then, in the formula for optimal weights we need to take ai = tr[(X�

i Xi)
−1X�X] and bi =

tr(X(X�
i Xi)

−1X�
i Ni) = tr[(X�

i Xi)
−1X�

i NiX] = tr[(X�
i Xi)

−1X�
i Xi] = p. Therefore, the

optimal error for distributed regression is achieved by the weights

wi = λ − bi

ai

= λ − p

ai

, λ = 1 − ∑k
i=1

bi

ai∑k
i=1

1
ai

= 1∑k
i=1

1
ai

− p.

Plugging these into M(β̂dist) given in the general framework, we find

M(β̂dist) = σ 2
(
n − 2p + 1∑k

i=1
1
ai

)
, ai = tr

((
X�

i Xi

)−1
X�X

)
.

Thus, the optimal in-sample prediction efficiency is

IE(X1, . . . ,Xk) = n − p

n − 2p + 1∑k
i=1

1
tr((X�

i
Xi )

−1X�X)

.

For asymptotics in elliptical models, we find the following.

THEOREM 5.3 (IE for elliptical and MP models). Under the conditions of Theorems 4.1
and 5.1, the IE has the almost sure limit

IE(X1, . . . ,Xk) →a.s.
1 − γ

1 − 2γ + 1∑k
i=1 ψ(γi ,Gi)

,

where ψ is the following functional of the distributions Gi and G, depending on the inverse
of the η-transform f defined in equation (2):

ψ(γi,Gi) = 1

γ + (EGT − γ
γi
EGi

T )f (γi,Gi)
.

Under the conditions of Corollary 4.2, the IE has the almost sure limit

IE(X1, . . . ,Xk) →a.s.
1 − γ

1 − 2γ + γ (1−γ )
1−kγ

= 1

1 + (k−1)γ 2

(1−kγ )(1−γ )

.

See Section G.7 for the proof. This efficiency does not depend on a simple linear way on
k, but rather via a ratio of two linear functions of k. However, it can be checked that many of
the properties (e.g., monotonicity) for ARE still hold here.

5.4. Out-of-sample prediction (Test error). In out-of-sample prediction, we consider a
test datapoint (xt , yt ), generated from the same model yt = x�

t β + εt , where xt , εt are inde-
pendent of X, ε, and only xt is observable. We want to use x�

t β̂ to predict yt . We compare
the prediction error of two estimators:

OE(xt ;X1, . . . ,Xk) := E[(yt − x�
t β̂)2]

E[(yt − x�
t β̂dist)2] .



932 E. DOBRIBAN AND Y. SHENG

In our general framework, we saw that this corresponds to predicting the linear functional
x�
t β + εt . Based on equation (1), the optimal out-of-sample prediction efficiency is

OE(xt ;X1, . . . ,Xk) = 1 + x�
t (X�X)−1xt

1 + 1∑k
i=1

1
x�
t (X�

i
Xi )

−1xt

.

For asymptotics in elliptical models, we find the following result. Since the samples have
the form xi = g

1/2
i �1/2zi , the test sample depends on a scale parameter gt .

THEOREM 5.4 (OE for elliptical and MP models). Under the conditions of Theorems 4.1
and 5.1, the OE has the almost sure limit, conditional on gt ,

OE(xt ;X1, . . . ,Xk) →a.s.
1 + gt · f (γ,G)

1 + gt∑k
i=1

1
f (γi ,Gi )

.

For Marchenko–Pastur models under the conditions of Corollary 4.2, the OE has the almost
sure limit

1
1−γ

1 + γ
1−kγ

= 1

1 + (k−1)γ 2

1−kγ

.

See Section G.8 for the proof. If the scale parameter gt is random, then the OE typically
does not have an almost sure limit, and converges in distribution to a random variable instead.
We mention that Theorem 5.4 holds under even weaker conditions, if we are only given the
4 + c-th moment of z1 instead of 8 + c-th one. The argument is slightly different, and is
presented in the location referenced above.

One can check that that OE ≥ RE. Thus, out-of-sample prediction incurs a smaller effi-
ciency loss than estimation. The intuition is that the out-of-sample prediction always involves
a fixed loss due to the irreducible noise in the test sample, which “amortizes” the problem.
Moreover,

OE ≥ IE ≥ RE .

The intuition here is that IE incurs a smaller fixed loss than OE, because the noise in the
training set is effectively reduced, as it is already partly fit by our estimation process. So the
graph of IE will be in between the other two criteria. See Figure 4. We also see that the IE is
typically very close to OE.

FIG. 4. Relative efficiency for the Marchenko–Pastur model.
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In addition, the increase of the reducible part of the error is the same as for estimation
error. The prediction error has two components: the irreducible noise, and the reducible error.
The reducible error has the same behavior as for estimation, and thus on Figure 4 it would
have the same plot as the curve for estimation.

5.5. Confidence intervals. To form confidence intervals, we consider the normal model
Y ∼ N (Xβ,σ 2In). Recall that in this model the OLS estimator has distribution β̂ ∼
N (β, σ 2(X�X)−1). Assuming σ 2 is known, an exact level 1 − α confidence interval for
a given coordinate βj can be formed as

β̂j ± σzα/2V
1/2
j ,

where zα = 	−1(α) is the inverse normal CDF, and Vj is the j th diagonal entry of (X�X)−1.
We follow the same program as before, comparing the length of the confidence intervals
formed based on our two estimators. However, for technical reasons it is more convenient to
work with squared length.

Thus we consider the criterion

CE(j ;X1, . . . ,Xk) := Vj

Vj,dist
.

Here, Vj,dist is the variance of the j th entry of an optimally weighted distributed estimator.
As we saw in our framework, this is equivalent to estimating the j th coordinate of β . Hence
the optimal confidence interval efficiency is

CE(j ;X1, . . . ,Xk) = [(
X�X

)−1]
jj ·

k∑
i=1

1

[(X�
i Xi)−1]jj .(3)

For asymptotics, we find the following.

THEOREM 5.5 (CE for elliptical and MP models). Under the conditions of Theorems 4.1
and 5.1, the CE has the same limit as the ARE from Theorem 5.1. Therefore, for Marchenko–
Pastur models, the CE also has the form before, CE(j) = (1/γ − k)/(1/γ − 1).

See Section G.9 for the proof.

5.6. Understanding and comparing the efficiencies. We give two perspectives for under-
standing and comparing the efficiencies. The key qualitative insight is that estimation and CIs
are much more affected than prediction.

Criticality of k. We ask: What is the largest number of machines such that the asymptotic
efficiency is at least 1/2? Let us call this the critical number of machines. It is easy to check
that for estimation and CIs, kR = (γ + 1)/(2γ ). For training error, kTr = (γ 2 − γ + 1)/γ ,
while for test error, kTe = (γ 2 + 1)/(γ 2 + γ ).

We also have the following asymptotics as γ → 0:

kR � 1/(2γ ),

while

kTr � kTe � 1/γ.

So the number of machines that can be used is nearly maximal (i.e., n/p) for training and
test error, while it is about half that for estimation error and CIs. This shows quantitatively
that estimation and CIs are much more affected by distributed averaging than prediction.
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Edge efficiency. The maximum number of machines that we can use is approximately
k∗ = 1/γ − 1, for small γ . Let us define the edge efficiency e∗ as the relative efficiency
achieved at this edge case. For estimation and CIs, we have e∗

R = γ /(1 − γ ). For training
error, e∗

Tr = (1 − γ )/(2 − 3γ ), and for test error, e∗
Te = 1/[2(1 − γ )].

We also have the following asymptotic values as γ → 0:

e∗
R � γ,

while

e∗
Tr � 1

2
+ γ

4
and e∗

Te � 1

2
+ γ

2
.

This shows that for n � p the edge efficiency is vanishing for estimation and CIs, while it is
approximately 1/2 for training and test error. Thus, even for the maximal number of machines,
prediction error is not greatly increased.

6. Insights for parameter estimation. There are additional insights for the special case
of parameter estimation. First, it is of interest to understand the performance of one-step
weighted averaging with suboptimal weights wi . How much do we lose compared to the
optimal performance if we do not use the right weights? In practice, it may seem reasonable to
take a simple average of all estimators. We have performed that analysis in the Supplementary
Material (Section H.1) (Dobriban and Sheng (2021)), and we found that the loss can be
viewed in terms of an inequality between the arithmetic and harmonic means.

There are several more remarkable properties. We have studied the monotonicity properties
and interpretation of the relative efficiency; see the Supplementary Material (Section H.2)
(Dobriban and Sheng (2021)). We have also given a multiresponse regression characterization
that heuristically gives an upper bound on the “degrees of freedom” for distributed regression
(Section H.3).

For elliptical data, the graph of ARE is a curve below the straight line from before. The
interpretation is that for elliptical distributions, there is a larger efficiency loss in one-step
weighted averaging. Intuitively, the problem becomes “more nonorthogonal” due to the ad-
ditional variability from sample to sample.

It is natural to ask which elliptical distributions are difficult for distributed estimation. For
what scale distributions G does the distributed setting have a strong effect on the learning
accuracy? Intuitively, if some of the scales are much larger than others, then they “domi-
nate” the problem, and may effectively reduce the sample size. We show that this intuition is
correct, and we find a sequence of scale distributions Gτ such that distributed estimation is
“arbitrarily bad,” so that the ARE decreases very rapidly, and approaches zero even for two
machines (see Section G.1 in the Supplementary Material (Dobriban and Sheng (2021))).

7. Multishot methods. While our focus has been on methods with one round of com-
munication, in practice it is more common to use iterative methods with several rounds of
communication. These usually improve statistical accuracy. A great deal of research has been
done on multi-shot distributed algorithms. Due to limited space, here we will only list and
analyze some of them. Our least squares objective can be written as a sum of least squares
objectives for each machine as

f (β) = 1

k

k∑
i=1

fi(β) = 1

k

k∑
i=1

‖Xiβ − Yi‖2
2.

Here, each machine has access only to local data (Xi, Yi). With this formulation, there are a
large number of standard optimization methods to minimize this objective: distributed gra-
dient descent, alternating directions method of multipliers, and several others we discuss
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below. We will focus on parameter server architectures, where each machine communicates
independently with a central server.

Distributed gradient descent. A simple multiround approach to distributed learning is syn-
chronous distributed gradient descent (DGD), as discussed, for example, in Chu et al. (2007).
This maintains iterates β̂t , started with some standard value, such as β̂0 = 0. At each iteration
t , each local machine calculates the gradient ∇fi(β̂

t ) at the current iterate β̂t , and then sends
the local gradient to the server to obtain the overall gradient

∇f
(
β̂t ) = 1

k

k∑
i=1

∇fi

(
β̂t ).

Then the center server sends the updated parameter β̂t+1 = β̂t − α∇f (β̂t ) back to the local
machines, where α is the learning rate (LR). This synchronous implementation is identical
to centralized gradient descent. Thus for smooth and strongly convex objectives and suitably
small α, O(L/λ log(1/ε)) communication rounds are sufficient to attain an ε-suboptimal
solution in terms of objective value, where L, λ are the smoothness and strong convexity
parameters (e.g., Boyd and Vandenberghe (2004)).

1. Many works study the optimization properties of GD/synchronous DGD, in terms of
convergence rate to the optimal objective or parameter value. From a statistical point of view,
the GD iterates start with large bias and small variance, and gradually reduce bias, while
slightly increasing the variance. This has motivated work on the risk properties of GD, em-
phasizing early stopping (e.g., Yao, Rosasco and Caponnetto (2007), Ali, Kolter and Tibshi-
rani (2019)). Recently, Ali, Kolter and Tibshirani (2019) gave a more refined analysis of the
estimation risk of GD for OLS, showing that its risk at an optimal stopping time is at most
1.22 times the risk of optimally tuned ridge regression.

2. Compared to GD, one-shot weighted averaging has several advantages: it is simpler
to implement, as it requires no iterations. It requires fewer tuning parameters, and those
can be set optimally in an easy way, unlike the LR α. The weights are proportional to
1/ tr[(XT

i Xi)
−1], which can be computed locally. We point out that GD is sensitive to the

learning rate: this has to be bounded (by 2/λmax(X
�X) for OLS) to converge, and the con-

vergence can be faster for large LR, hence in practice sophisticated LR schedules are used.
This can make DGD complicated to use. In addition, in practice DGD is susceptible to strag-
glers, that is, machines that take too long to compute their answers. To mitigate this prob-
lems, asynchronous DGD algorithms (e.g., Tsitsiklis, Bertsekas and Athans (1986), Nedić
and Ozdaglar (2009)), and other sophisticated coding ideas (Tandon et al. (2017)) have been
proposed. However, those lead to additional complexity and hyperparameters to tune (e.g.,
for async algorithms: how much to wait, how to aggregate nonstraggler gradients).

3. One may also use other gradient based methods, such as accelerated or quasi-Newton
methods, for example, L-BFGS (Agarwal et al. (2014)).

Alternating Direction Method of Multipliers (ADMM). Another approach is the alternating
direction method of multipliers (see Boyd et al. (2011) for an exposition) and its variants.
In ADMM, we alternate between solving local problems, global averaging, and computing
local dual variables. For us, at time step t of ADMM, each local machine calculates a local
estimator

β̂t+1
i = (

X�
i Xi + ρI

)−1[
X�

i Yi + ρ
(
β̂t − ut

i

)]
(where ρ is a hyperparameter) and sends it to the parameter server to get an average

β̂t+1 = 1

k

k∑
i=1

β̂t+1
i .
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Finally, the server sends β̂t+1 back to the local machines to update the dual variables

ut+1
i = ut

i + β̂t+1
i − β̂t+1.

These three steps can be written as a linear recursion zt+1 = Azt + b for a state variable
zt including β̂t , β̂t

i and ut
i . If all singular values of A are less than one, then the iteration

converges to a fixed point solving z = Az + b, so that z = (I − A)−1b. However, it seems
hard to prove convergence in our asymptotic setting.

Distributed Approximate Newton-type Method (DANE). Shamir, Srebro and Zhang (2014)
proposed an approximate Newton-like method (DANE), which uses that the subproblems are
similar. For our problem, DANE aggregates the local gradients on the parameter server at
each step t , and sends this quantity, that is, X�(Xβ̂t − Y )/(2k) to all machines. Then each
machine computes a local estimator by a gradient step in the direction of a regularized local
Hessian X�

i Xi + ρI ,

β̂t+1
i = β̂t + η

k
· (

X�
i Xi + ρI

)−1
X�(

Y − Xβ̂t ),
where ρ is the regularizer and η is the learning rate. The machines send it to the server to get
the aggregated estimator

β̂t+1 = 1

k

k∑
i=1

β̂t+1
i .

For a noiseless model where Y = Xβ , we can summarize the update rule as

β̂t+1 − β =
(
I − η

k2 ·
k∑

i=1

(
X�

i Xi + ρI
)−1

X�X

)(
β̂t − β

)
,

so we have the error bound∥∥β̂t − β
∥∥

2 ≤
∥∥∥∥∥I − η

k2 ·
k∑

i=1

(
X�

i Xi + ρI
)−1

X�X

∥∥∥∥∥
t

2

· ∥∥β̂0 − β
∥∥

2.

In Shamir, Srebro and Zhang (2014), the authors showed that given a suitable learning rate η

and regularizer ρ, when X�
i Xi is close to X�X/k, β̂t → β as t → ∞.

For a noisy linear model Y = Xβ + ε, the limit of β̂t is exactly the OLS estimator of the
whole data set, and we have the following recursion formula:

β̂t+1 − (
X�X

)−1
X�Y =

(
I − η

k2 ·
k∑

i=1

(
X�

i Xi + ρI
)−1

X�X

)(
β̂t − (

X�X
)−1

X�Y
)
,

and the convergence guarantee is the same as for the noiseless case.
Iterative averaging method. Here, we describe an iterative averaging method for dis-

tributed linear regression. This method turns out to be connected to DANE, and it has the
advantage that it can be analyzed more conveniently. We define a sequence of local estimates
β̂t

i and global estimates β̂t with initialization β̂0 = 0. At the t th step, we update the local
estimate by the following weighted average of the local ridge regression estimator and the
current global estimate β̂t :

β̂t+1
i = (

X�
i Xi + niρiI

)−1(
X�

i Yi + niρiβ̂
t ).

Then we average the local estimates

β̂t+1 = 1

k

∑
i

β̂t+1
i .
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To understand this, let us first consider a noiseless model where Yi = Xiβ . In that case, we
can also write this update as a weighted average,

β̂t+1
i = (I − Wi)β + Wiβ̂

t ,

where

Wi = niρi · (
X�

i Xi + niρiI
)−1

is the weight matrix of the global estimate. Propagating the iterative update to the global
machine, we find a linear update rule:

β̂t+1 = 1

k

∑
i

Wiβ̂
t +

(
I − 1

k

∑
i

Wi

)
β = Wβ̂t + (I − W)β,

where W = 1
k

∑
i Wi . Hence, the error is updated as

β̂t+1 − β = W · [
β̂t − β

] =
(
I − 1

k

k∑
i=1

(
X�

i Xi + niρiI
)−1

X�
i Xi

)(
β̂t − β

)
.

This recursion relation is very similar to the one for DANE; we just need to replace X�X/k

by X�
i Xi (and in practice usually η = 1 is used). The only difference is that DANE has a step

where we need to collect the local gradients to get the global gradient, and then broadcast it
to all local machines. Our iterative averaging method has lower communication cost.

In terms of convergence, β̂t+1 will converge geometrically to β for all β , if and only if the
largest eigenvalue of W is strictly less than 1. It is not hard to see that this holds if at least
one X�

i Xi has positive eigenvalues by using the fact λmax(A + B) ≤ λmax(A) + λmax(B).
When the samples are uniformly distributed, we should have X�X/k ≈ X�

i Xi , which means
the convergence rates of DANE and iterative averaging should be very close. Hence, in terms
of the total cost (communication and computation), our iterative averaging should compare
favorably to DANE.

To summarize the noiseless case, we can formulate the following result.

THEOREM 7.1 (Convergence of iterative averaging, noiseless case). Consider the iter-
ative averaging method described above. In the noiseless case when Yi = Xiβ , we have the
following: If at least one X�

i Xi has positive eigenvalues, then the iterates converge to the true
coefficients geometrically, β̂t → β , and

∥∥β̂t − β
∥∥

2 ≤ λmax

(
1

k

k∑
i=1

niρi · (
X�

i Xi + niρiI
)−1

)t

· ‖β‖2.

Consider now the noisy case when Yi = Xiβ + εi with the same assumptions as in the rest
of the paper. We have

β̂t+1
i = Wiβ̂

t + (I − Wi)β + (
X�

i Xi + niρiI
)−1

X�
i εi

=d Wiβ̂
t + (I − Wi)β + (

X�
i Xi + niρiI

)−1
X�

i Xi · Zi

= Wiβ̂
t + (I − Wi)(β + Zi),

where Zi ∼ N (0, σ 2[X�
i Xi]−1). As before, defining Z appropriately

β̂t+1 = Wβ̂t + (I − W)β + 1

k

k∑
i=1

(I − Wi)Zi

= Wβ̂t + (I − W)β + Z,

so β̂t+1 − β = W · [β̂t − β] + Z.
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With noise, β̂t does not converge to OLS, but to the following quantity:

β̂∗ =
(

k∑
i=1

(
X�

i Xi + niρiI
)−1

X�
i Xi

)−1

·
k∑

i=1

(
X�

i Xi + niρiI
)−1

X�
i Yi .

We can check that β̂∗ is an unbiased estimator for β and β̂t+1 − β̂∗ = W · [β̂t − β̂∗].
Under the conditions of Theorem 7.1, we have β̂t → β̂∗, and the MSE for β̂∗ is

E‖β̂∗ − β‖2 = E
∥∥(I − W)−1Z

∥∥2 = E

∥∥∥∥∥1

k

k∑
i=1

(I − W)−1(I − Wi)Zi

∥∥∥∥∥
2

= σ 2

k2

k∑
i=1

tr
[
(I − W)−2(

X�
i Xi + niρiI

)−2
X�

i Xi

]

= σ 2
k∑

i=1

tr

[(
k∑

i=1

(
X�

i Xi + niρiI
)−1

X�
i Xi

)−2(
X�

i Xi + niρiI
)−2

X�
i Xi

]
.

How large is this MSE, and how does it depend on ρi? We have the following results.

THEOREM 7.2 (Properties of Iterative averaging, noisy case). Consider the iterative av-
eraging method described above. In the noisy case when Yi = Xiβ + ε, we have the follow-
ing:

1. If at least one X�
i Xi has strictly positive eigenvalues, then the iterates converge to the

following limiting unbiased estimator

β̂∗ =
(

k∑
i=1

(
X�

i Xi + niρiI
)−1

X�
i Xi

)−1

·
k∑

i=1

(
X�

i Xi + niρiI
)−1

X�
i Yi,

and the convergence is geometric

∥∥β̂t − β̂∗
∥∥

2 ≤ λmax

(
1

k

k∑
i=1

niρi · (
X�

i Xi + niρiI
)−1

)t

· ‖β̂∗‖2.

2. The mean squared error of β̂∗ has the following form:

E‖β̂∗ − β‖2 = σ 2
k∑

i=1

tr

[(
k∑

i=1

(
X�

i Xi + niρiI
)−1

X�
i Xi

)−2(
X�

i Xi + niρiI
)−2

X�
i Xi

]
.

3. Suppose the samples are evenly distributed, that is, n1 = n2 = · · · = nk = n/k and the
regularizers are all the same ρ1 = ρ2 = · · · = ρk = ρ. The MSE is a differentiable function
ψ(ρ) of the regularizer ρ ∈ [0,+∞), with derivative

ψ ′(ρ) = 2k

n
tr

[
�−1

k∑
i=1

(�̂i + ρI)−2�̂i · �−2
k∑

i=1

(�̂i + ρI)−2�̂i

− �−2
k∑

i=1

(�̂i + ρI)−3�̂i

]
,

where �̂i = X�
i Xi/ni and � := ∑k

i=1(�̂i + ρI)−1�̂i .
4. ψ(ρ) is a nonincreasing function on [0,+∞) and ψ ′(0) < 0. So for any ρ > 0, ψ(ρ) <

ψ(0), that is, the MSE of the iterative averaging estimator with positive regularizer is smaller
than the MSE of the one-step averaging estimator.
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5. When ρ = 0, β̂∗ reduces to the one-step averaging estimator 1/k ·∑k
i=1(X

�
i Xi)

−1X�
i Yi

with MSE

ψ(0) = σ 2/k2 ·
k∑

i=1

tr
(
X�

i Xi

)−1
.

When ρ → +∞, β̂∗ converges to the OLS estimator (X�X)−1X�Y with MSE

lim
ρ→+∞ψ(ρ) = σ 2 tr

(
X�X

)−1
.

See Section I of the Supplementary Material (Dobriban and Sheng (2021)) for the proof.
The argument for monotonicity relies on Schur complements, and is quite nontrivial. From
Theorem 7.2, it appears we should choose the regularizer ρ as large as possible, since the
limiting estimator β̂∗ will converge to the OLS estimator as ρ → ∞. This is true for statistical
accuracy. However, there is a computational tradeoff, since the convergence rate of β̂t to β̂∗
is slower for large ρ.

Moreover, one may argue that β̂∗ reduces to the naive averaging estimator but not the
optimally weighted averaging estimator when ρ = 0. However, we have shown in the Sup-
plementary Material (Section H.1) (Dobriban and Sheng (2021)) that for evenly distributed
samples, the MSE of the naive averaging estimator and the optimally weighted averaging
estimator is asymptotically the same. Thus, there exists a regularizer such that the iterative
averaging estimator has smaller MSE than the one-step weighted averaging estimator.

Other approaches. There are many other approaches to distributed learning. Dual averag-
ing for decentralized optimization over a network (Duchi, Agarwal and Wainwright (2012))
builds on Nesterov’s dual averaging method (Nesterov (2009)). It chooses the iterates to
minimize an averaged first-order approximation to the function, regularized with a proximal
function. The communication-efficient surrogate likelihood approximates the objective by an
expression of the form f̃ (β) = f1(β) − β�(∇f1(β̄) − ∇f (β̄)), where β̄ is a preliminary
estimator (Jordan, Lee and Yang (2019), Wang et al. (2017)). Chen, Liu and Zhang (2019)
propose a related method for quantile regression. Both are related to DANE (Shamir, Srebro
and Zhang (2014)).

Chen, Liu and Zhang (2018) study divide and conquer SGD (DC-SGD), running SGD on
each machine and averaging the results. They also propose a distributed first-order Newton-
type estimator starting with a preliminary estimator β̄ , of the form β̄ −�−1(k−1 ∑

i ∇fi(β̄)),
where � is the population Hessian. They show how to numerically estimate this efficiently,
and also develop a more accurate multiround version.

7.1. Numerical comparisons. We report simulations to compare the convergence rate
and statistical accuracy of the one-shot weighted method with some popular multishot meth-
ods described above (Figure 5). Here, we work with a linear model Y = Xβ + ε, where X, β

and ε all follow standard normal distributions. We take n = 10,000, p = 100 and k = 20. We
plot the relative efficiencies of different methods against the number of iterations.

We can see that the one-shot weighted method is good in some cases. The multishot meth-
ods usually need several iterations to achieve better statistical accuracy. When the communi-
cation cost is large, one-shot methods are attractive. Also, we can clearly see the computation
versus accuracy tradeoff for the iterative averaging method from the plots. When the regular-
izer is small, the convergence is fast, but in the end the accuracy is not as good as the other
multishot methods. On the other hand, if the regularizer is large, we have a better accuracy
with slower convergence. Moreover, the widely-used multishot methods can require a lot of
work for parameter tuning, and sometimes it is very difficult to find the optimal parameters.
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FIG. 5. Comparison of the one-shot weighted method and several widely used multishot methods.

See Figure 6 for an example. In contrast, weighted averaging requires less tuning, making it
a more attractive method.

We have performed several more numerical simulations to verify our theory, in addition
to the results shown in the paper. Due to space limitations, these are presented in the Supple-
mentary Material (Dobriban and Sheng (2021)). In Section K, we present an empirical data
example to assess the accuracy of our theoretical results for one-shot averaging. We find that
they can be quite accurate.

FIG. 6. Comparison of the one-shot weighted method and distributed GD with different stepsizes. The point of
this figure is that the behavior of GD depends strongly on the stepsize. In particular, the number of iterations
needed to reach the performance of one-shot regression can vary a lot.
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SUPPLEMENTARY MATERIAL

Supplement to “Distributed linear regression by averaging” (DOI: 10.1214/20-
AOS1984SUPP; .pdf). The supplement contains mathematical proofs and results to com-
plete the main text, additional numerical simulation results, and examples of empirical data
analysis.
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