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A RULE OF THUMB: RUN LENGTHS TO FALSE ALARM OF MANY
TYPES OF CONTROL CHARTS RUN IN PARALLEL ON DEPENDENT

STREAMS ARE ASYMPTOTICALLY INDEPENDENT

BY MOSHE POLLAK

Statistics Department, The Hebrew University of Jerusalem, moshe.pollak@mail.huji.ac.il

Consider a process that produces a series of independent identically dis-
tributed vectors. A change in an underlying state may become manifest in
a modification of one or more of the marginal distributions. Often, the de-
pendence structure between coordinates is unknown, impeding surveillance
based on the joint distribution. A popular approach is to construct control
charts for each coordinate separately and raise an alarm the first time any (or
some) of the control charts signals. The difficulty is obtaining an expression
for the overall average run length to false alarm (ARL2FA).

We argue that despite the dependence structure, when the process is in
control, for large ARLs to false alarm, run lengths of many types of con-
trol charts run in parallel are asymptotically independent. Furthermore, often,
in-control run lengths are asymptotically exponentially distributed, enabling
uncomplicated asymptotic expressions for the ARL2FA.

We prove this assertion for certain Cusum and Shiryaev–Roberts-type
control charts and illustrate it by simulations.

1. Introduction. In many applications, observations are multivariate, with the marginal
behavior of each of p coordinates governed by its particular distribution. For example, vital
statistics of a sequence of newborn infants may be monitored for public health purposes,
where the distributions of the various measurements may be a mixed bag; the daily change
in the price of a stock or a portfolio may be monitored for a change of volatility, where
observations may be normally distributed; weekly traffic accidents on an assortment of roads
may be monitored for an increase in mean, where observations may be Poisson-distributed;
a behavioral change of measurements taken on a succession of articles emanating from a
production line may be indicative of a deterioration of a machine, where the distributions of
the various measurements may not even belong to a parametric family. A significant change
in the state of affairs may express itself by a change of the stochastic behavior of any/some/all
of the coordinates.

In many applications, the vector observations are independent but the coordinates are not.
Whereas the marginal distributions of the coordinates may belong to a known parametric fam-
ily, typically the dependence structure is nebulous, impeding the construction of an efficient
surveillance scheme, based on the joint distribution of the coordinates.

Many approaches to this problem have been proposed. Most have suggested combining
the coordinates in one form or another into one or two statistics and applying a univariate
control chart to each of the resulting sequences of statistics. For a review, see Epprecht (2015).
Shewhart-type control charts seem to be the choice of most of these.

An intuitively attractive approach is to construct control charts separately for each stream
and stop the first time any of them (or some of them) calls for raising an alarm. In particular,
this approach facilitates straightforward identification of the stream(s) where a change has
taken place. A number of authors have considered this approach (cf. Meneces et al. (2008);
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Mei (2010)) and compared it to alternative methods. It is this approach that is the focus of the
present article.

The inherent methodological problem that behooves all approaches to address is the ram-
ifications of dependence between streams. Since this dependence could be thought to bring
about dependence between the control statistics, the initial technical problem that needs to be
addressed is the evaluation of the overall average run length to false alarm (ARL2FA). Some
of the proposals described in Epprecht (2015) neglect this need; others (such as Meneces
et al. (2008)) try to account for the dependence. Methods that ignore the dependence may
have an ARL2FA that is quite different from the nominal one.

We find that despite the dependence between streams, the in-control run lengths of various
control charts applied individually to each stream behave asymptotically (as ARL2FA → ∞)
as if they are independent, a result that enables an asymptotic approximation to the over-
all ARL2FA. The intuition behind this is the following. Heuristically, a false alarm arises
when “recent” observations aggregate in a way that gives credence to the impression that
the process is out of control. When such a “spurt” takes place in one control sequence, it is
plausible that corresponding observations in a parallel sequence may exhibit a “blip.” How-
ever, if the dependence between coordinates is not too strong, the “blip” will most likely be
weaker than the “spurt” (recall regression toward the mean), and will not be strong enough to
signal a false alarm in the parallel sequence, too. A false alarm in the parallel sequence will
take (or shall have taken) place at a distant point in time, rendering the stopping times ap-
proximately independent. Since the in-control run length of a Cusum or a Shiryaev–Roberts
control chart is asymptotically exponentially distributed (cf. Pollak and Tartakovsky (2008);
Yakir (1995, 1998)), the overall average run length to false alarm of a policy of stopping after
k of p control charts have signaled an alarm can be readily approximated. Hence, the practi-
cal aspect of our results is a contribution to the arsenal of methods of monitoring dependent
streams.

Here, we spell things out explicitly for (generalized) Cusum and Shiryaev–Roberts con-
trol charts, although it is easy to conjecture that our results hold for other control charts as
well. We do not make comparisons to other approaches, although the application of Cusum or
Shiryaev–Roberts procedures promises faster detection than Shewhart charts. Comparisons
are of course begged for, but prior to making them one needs a handle on the ARL2FA, which
is the heart of this paper. Suffice it to say that in a narrower context, application of separate
Cusums has been shown to have merit: Mei (2010) proposed a surveillance method (based on
the sum of Cusum statistics) in the case that all of the coordinates are independent, and com-
pared his method with stopping after k of p Cusums defined separately on each stream have
signaled. Mei’s results indicate that when many streams are affected by a change, his method
may be superior; when few streams are affected then {k of p} may be a preferred method.
The implication of our results is that since (when streams are dependent, asymptotically) run
lengths to false alarms are independent, Mei’s insight may be extendable to the dependent
streams case, too.

The paper is organized as follows. In Section 2, we present our main results. We illustrate
them in Section 3 with a simulation study. In Section 4, we present a number of remarks.
In Section 5, we give a short sketch of the idea behind the proofs. We relegate proofs to
the Supplementary Material; a formal proof is provided for the case where the sequential
vector observations are independent and in-control observations are identically distributed
with known marginal distributions. For ease of exposition, we deal formally with the case
p = 2; the extension to p > 2 is straightforward (see Remark 1).

2. Main results. Let {Xi,Yi} be a sequence of independent vectors. We assume that the
in-control and out-of control marginal distributions of {Xi} and {Yi} belong to exponential
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families. Specifically, the marginal density of X (with respect to a sigma-finite measure μX)
is f X

θ (x) = exp(θx − �X(θ)); −∞ < θ < ∞, where the difference between in-control and
out-of-control manifests itself in a change in the parameter θ and the marginal density of Y

(with respect to a sigma-finite measure μY ) is f Y
λ (y) = exp(λy − �Y (λ)); −∞ < λ < ∞,

where the difference between in-control and out-of-control manifests itself in a change in
the parameter λ. (By abuse of notation, we use f0, f1, fθ , fλ to denote both univariate and
multivariate (joint) densities.) Without loss of generality, the in-control parameters of Xi and
Yi are θ = 0 and λ = 0, respectively, and 0 = �X(0) = � ′

X(0), 0 = �Y (0) = � ′
Y (0). We

assume that � ′′
X(θ) �= 0, � ′′

Y (λ) �= 0 for all θ , λ. Thus, denoting HX
0 : θ = 0 and HY

0 : λ = 0
obtains log-likelihood ratios ZX(θ) = θX − �X(θ) and ZY (λ) = λY − �Y (λ). Let GX , GY

be prior distributions on {θ �= 0}, {λ �= 0}, respectively. To avoid cumbersome proofs, we
assume that θ and λ are such that ZX(θ) and ZY (λ) are nonlattice. For technical reasons, if
GX , GY are not concentrated on a finite set of atoms, we assume that the exponential families
are strongly nonlattice (in the sense of Stone (1965)).

We denote: HX
0 : θ = 0, HY

0 : λ = 0, HX
1 : θ ∼ GX , HY

1 : λ ∼ GY .
We assume that the {HX

0 ,HY
0 }-distribution of ZX(θ) conditional on ZY (λ) is not degen-

erate and neither is the {HX
0 ,HY

0 }-distribution of ZY (λ) conditional on ZX(θ), for all θ , λ.
(If correlationHX

0 ,HY
0
(ZX,ZY ) = −1, this may be somewhat relaxed, though care must be

taken. See Remarks 2 and 3 in Section 4.) We also assume that whatever the joint density of
X, Y be, E(ZX(θ)|ZY (λ)), E(ZY (λ)|ZX(θ)), Var(ZX(θ)|ZY (λ)), Var(ZY (λ)|ZX(θ)) are
continuous in λ ∈ support(GY ), θ ∈ support(GX).

Denote the (separate) Cusum sequences by

WX
n = max

k=1,...,n

∫
e

∑n
i=k ZX

i (θ) dGX(θ)

and

WY
n = max

k=1,...,n

∫
e

∑n
i=k ZY

i (λ) dGY (λ)

and the Cusum stopping times by

NX = min
{
n|WX

n > ebX
}

and NY = min
{
n|WY

n > ebY
}
.

Denote the (separate) Shiryaev–Roberts sequences by

RX
n =

∫ n∑
k=1

e
∑n

i=k ZX
i (θ) dGX(θ) and RY

n =
∫ n∑

k=1

e
∑n

i=k ZY
i (λ) dGY (λ)

and the Shiryaev–Roberts stopping times by

MX = min
{
n|RX

n > ebX
}

and MY = min
{
n|RY

n > ebY
}
.

When both GX , GY are concentrated at an atom, NX , NY , MX , MY are classical (simple)
Cusum and Shiryaev–Roberts methods, respectively, where either the post-change parameter
is known or a (single) representative (i.e., the atom) is taken for the post-change parameter.
When GX , GY are continuous, the Cusum and Shiryaev–Roberts procedures are geared to
the more complex case where the post-change parameter is unknown and a prior is taken over
possible (or reasonable) post-change parameter values. We assume (in the continuous case)
that on their supports GX , GY have continuous positive densities gX , gY , respectively.

We assume that there exists a constant 0 < ζ < ∞ so that |bX − bY | < ζ and that for
all θ , λ neither the {HX

0 ,HY
0 }-distribution of ZX(θ) conditional on ZY (λ) nor that of the

{HX
0 ,HY

0 }-distribution of ZY (λ) conditional on ZX(θ) is degenerate.
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THEOREM 1. As bX, bY → ∞, the pair (NX/EHX
0
(NX),NY /EHY

0
(NY )) converges in

distribution to (EX,EY ) where EX and EY are independent Exponential(1)-distributed ran-
dom variables.

THEOREM 2. As bX, bY → ∞, the pair (MX/EHX
0
(MX),MY /EHY

0
(MY )) converges in

distribution to (EX,EY ) where EX and EY are independent Exponential(1)-distributed ran-
dom variables.

Consequently, the ARL2FA of a rule that raises an alarm the first time one of the two
stopping times signals is

1
1

E
HX

0
(NX)

+ 1
E

HY
0

(NY )

× (
1 + o(1)

)

and

1
1

E
HX

0
(MX)

+ 1
E

HY
0

(MY )

× (
1 + o(1)

)

for NX and MX , respectively, and the ARL2FA of a rule that raises an alarm after both
stopping times signal is respectively

[EHX
0
(NX)]2 + EHX

0
(NX)EHY

0
(NY ) + [EHY

0
(NY )]2

EHX
0
(NX) + EHY

0
(NY )

× (
1 + o(1)

)

and

[EHX
0
(MX)]2 + EHX

0
(MX)EHY

0
(MY ) + [EHY

0
(MY )]2

EHX
0
(MX) + EHY

0
(MY )

× (
1 + o(1)

)
.

Two other results that are used as lemmas in the proof of the theorems (they appear and are
proved in the Supplementary Material) may be of interest in their own right and are presented
here. Lemma 4 is a probabilistic statement that can be interpreted as a generalization of
regression toward the mean. Lemma 5 is a blueprint of the anatomy of a false alarm. Other
lemmas and proofs are relegated to the Supplementary Material (Pollak (2020)).

LEMMA 4. Suppose GX and GY are concentrated on θ and on λ, respectively. Let HX
1 :

{Xi ∼ P X
θ } and HY

1 : {Yi ∼ P Y
λ }. Then

EHY
1

(
ZX

i (θ)
)
< EHY

1

(
ZY

i (λ)
)

and EHX
1

(
ZY

i (λ)
)
< EHX

1

(
ZX

i (θ)
)
.

For the second result, define and denote

X̄n = 1

n

n∑
i=1

Xi,

θ̂n via X̄n = � ′
X(θ̂n),

τX
b = min

{
n
∣∣∣ ∫ exp

(
n∑

i=1

ZX
i (θ)

)
dGX(θ) ≥ exp(b)

}
,
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γX(θ) = lim
b→∞Eθ exp

{
−

( τX
b∑

i=1

ZX
i (θ) − b

)}
for GX concentrated on {θ},

γGX
=

∫
γX(θ) dGX(θ) for general GX.

Regard the equation bX = ∫
eθh(t)−t�(θ) dGX(t). If the support of GX contains only non-

negative (or only nonpositive) values, then h(t) is unique; if the support contains both positive
and negative values then there are two solutions to h(t), one positive, one negative. In any
case, h(t) is a boundary that

∑n
i=1 Xi must cross for τX

b to be finite. Denote the excess of∑τX
b

i=1 Xi over/under the boundary by ς . Since OX
τX
b

is stochastically bounded, so is ς .

LEMMA 5. Conditional on {τX
b < ∞}:

(a) The P0-stochastic behavior of the trajectory X1,X2, . . . ,XτX
b

can be obtained by first
randomly procuring θ and then obtaining observations X1,X2, . . . ,XτX

b −1, (XτX
b

− ς), ς .
The stochastic behavior of the observations X1,X2, . . . ,XτX

b −1, (XτX
b

− ς) is Pθ .

(b) Given θ , θ̂τX
b

→ θ in Pθ -probability as b → ∞.
(c) As b → ∞, the asymptotic distribution of θ has density γX(θ) dG(θ)/γGX

and the
convergence is uniform on bounded intervals of θ .

3. Simulations. The following is a report of simulations of Shiryaev–Roberts statistics
and stopping times. When assessing the practical value of our results by the simulations, it
should be borne in mind that if ARL2FA = B then the average speed of detection (of a true
change) is proportional to logB (asymptotically, as B → ∞). Thus, when B is large, even
a moderate discrepancy between the nominal ARL2FA and the true value may not have a
marked effect on the speed of detection.

The simulation results reported in Table 1 are based on 1000 repetitions of Shiryaev–
Roberts stopping times MX , MY when the process is in control, where X and Y are standard
normal variables with correlation ρ when the process is in control (IC). The control schemes
are designed with out of control (OOC) parameters θ = λ = 1. The simulations are reported
for three cutoff levels A = exp(bX) = exp(bY ) = 100,500,1000 and six correlation values
ρ = 0.8,0.6,0.4,0.2,−0.4,−1. In each case EHX

0 ,HY
0
(MX) = EHX

0 ,HY
0
(MY ) (= 1.7845 × A

nominally, by Pollak’s (1987) renewal-theoretic approximation) and Theorem 2 implies that
asymptotically the mean of min{MX,MY } should be approximately half of the average of the
means of MX and MY . Table 1 exhibits the dependence on ρ and A of the rate that the asymp-
totics kicks in: for a given value of ρ, the larger the cut-off level the better the approximation
and for a given cut-off level, the larger the value of ρ the worse the approximation. The ap-
proximation indicated by Theorem 1 seems to work reasonably well for standard ARLs to
false alarm if ρ < 0.5. The near equality of the means and the standard deviations is con-
sistent with asymptotic exponentiality of the stopping times. The low correlations between
Mmax and Mmax − Mmin and between MX , MY (when ρ ≤ 0.4) are consistent with indepen-
dence.

Note that when the correlations are negative, things behave as expected by Theorem 2 even
if the cut-off level is low. Intuitively this makes sense; if the correlations are negative, high
values of X will go together with low values of Y , so if the values of the X’s are high (enough
to signal an alarm) the Y ’s will most likely not signal one. (See Remark 2 in the sequel for an
extreme example of this.)
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TABLE 1
Simulations: ARL2FA for monitoring(

X

Y

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))

when IC and E(X) = E(Y ) = 1 when OOC by separate Shiryaev–Roberts control charts

Threshold A = 100 500 1000 100 500 1000 100 500 1000

correlation(X,Y) ρ = 0.8 ρ = 0.6 ρ = 0.4

MX mean 183 863 1704 172 890 1806 179 862 1793
MX sd 177 885 1812 168 872 1749 170 864 1824
MY mean 180 948 1697 183 892 1789 167 892 1785
MY sd 173 974 1777 162 920 1828 174 850 1809
min{MX,MY } mean 119 567 1007 98 495 1002 100 457 922
min{MX,MY } sd 114 596 1015 90 484 1028 96 440 957
MX , MY corr 0.307 0.266 0.200 0.115 0.099 0.136 0.1000 0.020 0.044
Mmax, Mmax − Mmin corr 0.014 −0.024 0.050 0.009 0.003 0.005 0.009 −0.008 −0.009

correlation(X,Y) ρ = 0.2 ρ = −0.4 ρ = −1

MX mean 181 856 1784 167 869 1785 176 880 1787
MX sd 172 817 1772 155 881 1753 172 859 1755
MY mean 177 921 1814 174 922 1745 185 843 1697
MY sd 175 879 1807 161 906 1743 178 854 1748
min{MX,MY } mean 94 466 886 88 440 859 91 432 825
min{MX,MY } sd 87 459 875 81 451 828 87 413 770
MX , MY corr 0.026 0.065 −0.028 −0.013 −0.013 −0.067 −0.018 −0.004 −0.069
Mmax, Mmax − Mmin corr 0.023 0.035 −0.012 −0.007 −0.017 −0.046 −0.005 0.030 0.026

In Table 2, we describe what happens if each observation is a vector of five components,
each of which has a standard normal distribution when the process is in control and each pair
has correlation ρ. Suppose one is on the alert for an increase in the mean of the components
and sets up a Shiryaev–Roberts control chart for each of them separately for a putative in-
crease of one standard deviation. Suppose further that one is hesitant to raise an alarm caused
by one component only, and prefers to raise an alarm only after two charts have signalled. In
addition, suppose one wants an (overall) ARL2FA ∼ 741 (as in the Shewhart control chart
for a one-sided alternative). Theorem 2 (in a version extended to p > 2) implies that the five
control charts are approximately independent and exponentially distributed. (In fact, none of
the correlations between run lengths of different streams exceeded 0.1 as long as ρ ≤ 0.6.)
If a single control chart has ARL2FA = γ , then the average run length until the first of
the five signals (when the process is in control, streams are independent and run lengths to
false alarm are exponentially distributed) is γ /5 and the additional average run length un-
til the next one signals is γ /4, so the overall ARL2FA is 0.45γ . Applying Pollak’s (1987)
renewal-theoretic approximation to the ARL2FA, one gets (in this case) that for a single
chart ARL2FA = 1.7845A, where A is the Shiryaev–Roberts crossing boundary. Hence, if
one desires an overall ARL2FA ∼ 741, one should choose A = 741/(0.45 × 1.7845) = 923.

The results described in Table 2 are based on 10,000 repetitions of the Shiryaev–Roberts
stopping rule applied to each of the five streams. It is clear that the difference between the true
and the nominal ARL2FA is insignificant when there exists a light positive correlation and
even a moderate correlation does little harm, especially (as would be intuitively anticipated)
since the ARL2FA is conservative.
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TABLE 2
Simulations: monitoring⎛

⎜⎜⎜⎜⎜⎝

X1
X2
X3
X4
X5

⎞
⎟⎟⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

when IC and E(Xi) = 1, i = 1, . . . ,5, when OOC by separate Shiryaev–Roberts control charts, stopping after
two streams have signaled; nominal ARL2FA = 741

ρ = corr(Xi,Xj ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ARL2FA 745 744 760 772 787 802 833 876 964 1077 1661

Table 3 presents simulation results for a Poisson example, based on 1000 repetitions. The
picture that is conveyed (in terms of the validity of the asymptotic formulae) is similar to the
normal case.

The results described in Table 4 are based on 1000 repetitions of the Shiryaev–Roberts
stopping rule applied to each of 100 streams, where for a given vector of observations the
correlation between each pair of coordinates is ρ and where one stops after 10 streams have
signalled. Again, each rule is designed (separately) to monitor a standard normal sequence
for an increase of one standard deviation. The cut-off value A for a given nominal ARL2FA
is again calculated via A = ARL2FA/(1.7845

∑10
i=1[1/(101 − i)] and the nominal standard

deviation via SD = 1.7845A

√∑10
i=1[1/(101 − i)]2. Evidently, things improve discernably as

the nominal ARL2FA increases. It is interesting to note that the asymptotics for the SD kicks
in somewhat more slowly than for the ARL2FA.

Intuitively, the case of equal correlations ρ between each pair of coordinates could be
viewed as a “worst case scenario”; if some (or all) of the coordinate pairs have lesser cor-
relation, the approximations would be expected to be better (as indicated by Tables 1, 3
and 4).

TABLE 3
Simulations: ARL2FA of SR for X ∼ Poisson(9), Y ∼ Poisson(4) when in control and X ∼ Poisson(12),

Y ∼ Poisson(6) when out of control

Threshold(X) AX = 100 500 1000 100 500 1000 100 500 1000
Threshold(Y ) AY = 70 350 700 70 350 700 70 350 700

correlation(X,Y ) ρ = 0.2 ρ = 0.4 ρ = 0.6

MX mean 178 945 1843 184 907 1879 178 883 1876
MX sd 169 903 1887 177 895 1809 170 870 1754
MY mean 127 575 1230 131 606 1265 128 615 1309
MY sd 115 572 1162 120 563 1240 123 606 1275

min{MX,MY } mean 83 374 743 88 385 799 89 407 860

min{MX,MY } sd 78 386 727 81 386 727 82 397 848
MX , MY corr 0.095 0.037 0.002 0.141 0.032 0.038 0.192 0.100 0.076
Mmax, Mmax − Mmin corr −0.009 −0.050 0.002 0.045 0.04 −0.011 0.056 −0.016 −0.067

1
1

mean{MX} + 1
mean{MY }

74 357 738 77 363 756 74 362 771
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TABLE 4
Simulations: monitoring EIC(Xi) = 0 vs. EOOC(Xi) = 1, i = 1, . . . ,100, where

ρ = ρ((Xi)j, (Xi)k) = correlation((Xi)j, (Xi)k), by separate Shiryaev–Roberts control charts, stopping after 10
of 100 streams have signaled, for various nominal values of ARL2FA

nominal simulated ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

741 ARL2FA 763 760 769 836 871 938 1063 1268 1624 2263
234 SD 234 274 316 369 458 544 684 868 1252 1906

2500 ARL2FA 2534 2513 2593 2564 2753 2936 3186 3906 4854 6964
791 SD 781 816 942 1026 1249 1564 1906 2583 3600 5727

25,000 ARL2FA 24,775 25,057 25,538 25,310 25,463 26,133 29,749 32,743 39,357 60,209
7909 SD 7705 8302 8638 8773 10,078 11,927 14,549 19,502 26,699 49,032

4. Remarks.

REMARK 1. The multivariate case follows from the bivariate case. Suppose N1,N2, . . . ,

Np stopping times were run separately on each of p streams {X(1)
i }, {X(2)

i }, . . . , {X(p)
i }. Set-

ting up blocks of size ηbX
and defining N∗

i , KX∗
i

as in Lemmas 8 and 9 in the Supplementary
Material, the results of the paper imply that when everything is in control P(Ni �= N∗

i ) = o(1)

and P(KX∗
i
= KX∗

j
) = o(1). The independence between blocks accounts for the asymptotic

independence of the stopping times, which are exponentially distributed.

REMARK 2. The two-sided (simple) Cusum control chart can be viewed as a special
case of the minimum of two control charts (equivalent to X ∼ f0 pre-change with X ∼ fθ

or X ∼ fλ post-change, where θ < 0 < λ; here correlation(ZX
θ ,ZY

λ ) = −1). Under a certain
technical condition the equality in the ARL2FA following Theorems 1 and 2 is exact, without
the o(1) piece; see Siegmund (1985), page 28.

REMARK 3. In Remark 2, the assumption that the distribution of ZX conditional on
ZY not be degenerate is obviously violated; nevertheless, the result of Theorem 1 is valid.
However, in general, if correlation(ZX,ZY ) = −1, care must be taken, as the result may not
be valid. For example, if X ∼ N(0,1) under HX

0 and Y = −X, if GX = GY are standard

normal then
∫

e
∑n

i=k ZX
i (θ) dGX(θ) and

∫
e

∑n
i=k ZY

i (λ) dGY (λ)) are identical.

REMARK 4. In the problem of detection of a change in a normal mean, run lengths of par-
allel Shewhart charts (with similar ARL2FA) are obviously asymptotically independent. Al-
though also in many other cases this will be true, this will not be true in general. For example,
suppose Xi and Yi are distributed Cauchy(0,1) when in control and Cauchy(1,1) when out of
control, where Yi = Xi if −2 < Xi < 2 and otherwise Yi ∈ {(−∞,−2] ∪ [2,∞)} is indepen-

dent of Xi . Separate Shewhart charts based on the loglikelihood ratios ZX
i = log(

1+X2
i

1+(Xi−1)2 ),

ZY
i = log(

1+Y 2
i

1+(Yi−1)2 ) that have the same ARL2FA will stop together if the ARL2FA is large
enough.

REMARK 5. In more complicated cases—such as when initial baseline parameters are
unknown, and an invariance structure is exploited (cf. Yakir (1998))—analogous results may
be obtained. Intuitively, the reason for this is that asymptotically, it will take a long while for
a false alarm to occur, and by then the unknown parameters are almost perfectly estimated.
For example, consider the case where observations are distributed N(μ,1) when in control
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and N(μ + δ,1) when out of control, where δ is known (considered to be a representative
of a post-change increase in mean) but μ is unknown. An example of a procedure based on
invariance calls for defining Yi = Xi −X1 and monitoring the sequence Y1, Y2, . . . by Cusum
or Shiryaev–Roberts (cf. Pollak and Siegmund (1991)). A standard calculation obtains that
the log-likelihood ratio of Y2, Y3, . . . , Yn for ν = k vs. ν = ∞ (when translated back into the
X′s, ν is the first out-of-control observation and ν = ∞ means that the process is in control)
is

δ

n∑
i=k

(Xi − X̄n) − 1

2
δ2(n − k + 1)

k − 1

n
.

Average run lengths do not depend on μ, so without loss of generality assume that μ = 0. In
this case, when it is known that μ = 0, the log-likelihood ratio of X1,X2, . . . ,Xn for ν = k

versus ν = ∞ is

δ

n∑
i=k

Xi − 1

2
δ2(n − k + 1).

Now argue:

(a) If the cutoff boundary A = eb is very large, the probability that a false alarm will take
place within the first o(

√
A) observations is negligible.

(b) By virtue of Lemma 4, the “action” preceding a false alarm takes place in the last
O(logA) observations.

(c) Even after these O(logA) observations, X̄n will be of order of magnitude (logA)/n+√
1/n.

Hence, for n > o(
√

A) and k > n−O(logA), the difference [(n−k+1)[1
2δ2 n−k+1

n
−δX̄n]

between the two loglikelihood ratios is negligible, so with high probability they will raise a
false alarm together.

Finally, to see why (a) is true, recall that the Shiryaev–Roberts statistic Rj has the property
that Rj − j is a zero-expectation martingale when the process is in control (IC), so EICRj =
j . Therefore,

PIC{Shiryaev–Roberts stops before m}
= PIC{Rj > A for some j < m}

≤
m∑

j=1

PIC{Rj > A} ≤
m∑

j=1

EIC(Rj )

A
=

m∑
j=1

j

A
= O

(
m2

A

)
.

REMARK 6. A reference for the exponentiality of Shiryaev–Roberts is Yakir (1995,
1998). A reference for the classical (simple) Cusum is Pollak and Tartakovsky (2008). The
statement for Cusum with a prior for the unknown post-change parameter seems to be novel.

REMARK 7. One of the deficiencies of change-point detection methods is the lack of a
p-value for an alarm being true. At least in principle, Lemma 4 provides a possible approach.
Suppose GX is concentrated at θ . At NX , the last bX/I (θ) observations should have mean =
� ′(θ)±OP (1/

√
bX) if the alarm is false. Therefore, if these observations have a significantly

different mean (which is to be expected if a true change occurred, as one cannot predict
exactly the value of a post-change parameter), it would be an indication that the alarm is not
false.
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REMARK 8. The results have been formulated under the assumption that the vectors
observed are i.i.d. when the process is in control. In fact, it suffices that the distributions of
the marginals do not change; if the correlations change the proofs remain valid (when the
correlations are bounded away from 1).

REMARK 9. The results hold also if bX, bY → ∞ and |bX −bY | → ∞. In that case, with
probability → 1, the stopping time with the lower threshold will stop before the other.

5. Sketch of proof. The idea behind the proof is to split the line into blocks of certain
size, such that erasing the past at the start of each block has a negligible effect on the stopping
times. What happens in one block thus becomes independent of that which takes place in
other blocks. Thus the number of blocks until stopping is geometrically distributed, so that
the stopping time is approximately exponential if the ARL2FA is large.

As intimated by the heuristics in the Introduction, false alarms occur because of a “spurt”
in “recent” observations. (This is suggested by Lemma 4.) It was also surmised that a “spurt”
in one control chart may cause at most a smaller “blip” in another chart. (This is indicated
by Lemma 4.) The aforementioned blocks are set to be much larger than a “spurt,” but small
enough that the likelihood of a “spurt” in a given block is small. Therefore, if a “spurt” in one
stream takes place in a given block and the “blip” in another stream is not strong enough, a
false alarm in this stream will take place at a different, independent, block.

The full proofs are relegated to the Supplementary Material (Pollak (2020)).
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