
The Annals of Statistics
2021, Vol. 49, No. 1, 346–369
https://doi.org/10.1214/20-AOS1959
© Institute of Mathematical Statistics, 2021
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In this paper, we investigate a class of spherical functional autoregressive
processes, and we discuss the estimation of the corresponding autoregressive
kernels. In particular, we first establish a consistency result (in mean-square
and sup norm), then a quantitative central limit theorem (in Wasserstein dis-
tance), and finally a weak convergence result, under more restrictive regular-
ity conditions. Our results are validated by a small numerical investigation.

1. Introduction. In recent years, a lot of interest has been drawn by the statistical anal-
ysis of spherical isotropic random fields. These investigations have been motivated by a wide
array of applications arising in many different areas, including, in particular, cosmology, as-
trophysics, geophysics, climate and atmospheric sciences, and many others; see, for example,
[2, 3, 9–13, 21, 28, 29]. Most papers in cosmology and astrophysics have focussed so far on
spherical random fields with no temporal dependence; the next generation of cosmological
experiments is however going to make the time dependence much more relevant. On the other
hand, applications in climate, atmospheric sciences, geophysics, and several other areas have
always been naturally modelled in terms of a double-dependence in the spatial and temporal
domains. In many works of these fields, the attention has been focussed on the definition
of wide classes of space-time covariance functions, and then on the derivation of likelihood
functions; the literature on these themes is vast and we make no attempt to a complete list of
references; see, for instance, [10, 13, 18, 29] and the references therein.

Our purpose in this paper is to investigate a class of space-time processes, which can be
viewed as functional autoregressions taking values in L2(S2); we refer to [5] for a general
textbook analysis of functional autoregressions taking values in Hilbert spaces, and [1, 16,
25, 26] for a very partial list of some important recent references.

Dealing with functional spherical autoregressions ensures some very convenient simplifi-
cations; in particular, we exploit the analytic properties of the standard orthonormal basis of
L2(S2) and some natural isotropy requirements to obtain neat expressions for the autoregres-
sive operators, which are then estimated by a form of frequency-domain least squares. For our
estimators, we are able to establish rates of consistency (in L2 and L∞ norms) and a quan-
titative version of the central limit theorem, in Wasserstein distance. In particular, we derive
explicit bounds for the rate of convergence to the limiting Gaussian distribution by means of
the rich machinery of Stein–Malliavin methods (see [24]); to the best of our knowledge, this is
the first quantitative central limit theorem established in the framework of functional-valued
stationary processes. Under stronger regularity conditions, we are able to establish a weak
convergence result for the kernel estimators; our results are then illustrated by simulations.

The plan of our work is then as follows: in Section 2, we present background results on the
harmonic analysis of spherical random fields and on Stein–Malliavin methods. In Section 3,
we present our basic model; we show how, under isotropy, the model enjoys a number of sym-
metry properties which greatly simplify our approach. Our main results are then collected in
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Section 4, where we investigate rates of convergence and the quantitative central limit theo-
rem; we consider also weak convergence in Cp([−1,1]), under stronger regularity conditions
for the autoregressive kernels. Large parts of the proofs and many auxiliary lemmas, some of
possible independent interest, are collected in Sections 5 and in the Appendix (Supplemen-
tary Material [8]). Finally, Section 6 provides numerical estimates on the behaviour of our
procedures.

2. Background and notation.

2.1. Spectral representation of isotropic random fields on the sphere. Let {T (x), x ∈ S
2}

denote a finite variance, isotropic random field on the unit sphere S
2 = {x ∈ R

3 : ‖x‖ = 1},
by which we mean as usual that T (g·) d= T (·),∀g ∈ SO(3) the standard 3-dimensional group
of rotations; here, the identity in distribution must be understood in the sense of stochastic
processes. For notational simplicity, and without loss of generality, we will assume in the
sequel that E[T (x)] = 0. It is well known that the following representation holds, in the
mean-square sense:

(1) T (x) =
∞∑

�=0

T�(x), T�(x) =
�∑

m=−�

a�,mY�,m(x),

where {Y�,m(·), � ≥ 0,m = −�, . . . , �} is the standard basis of spherical harmonics, which
satisfy (for ϕ ∈ [0,2π), ϑ ∈ 0, π])

�S2Y�,m = −�(� + 1)Y�,m, �S2 := 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂

∂ϕ2 ;
also {a�,m, � ≥ 0,m = −�, . . . , �} is a triangular array of zero-mean, real-valued random co-
efficients whose covariance structure is given by

E[a�,ma�′,m′ ] = C�δ
�′
� δm′

m ;
here, δb

a is the Kronecker delta function, and the sequence {C�, � ≥ 0} represents the angu-
lar power spectrum of the field. Throughout this paper, we consider the real-valued basis of
spherical harmonics and, therefore, the random coefficients are real-valued random variables
for all (�,m) (we refer for instance to [22] for a more detailed discussion on spectral repre-
sentations on the sphere). Note that the random coefficients {a�,m} can be obtained by a direct
inversion formula from the map T (·), indeed we have

a�,m :=
∫
S2

T (x)Y�,m(x) dx.

Here, we recall also the following addition formula for spherical harmonics (see [22], equa-
tion (3.42)) which entails that, for any x, y ∈ S

2,

(2)
�∑

m=−�

Y�,m(x)Y�,m(y) = 2� + 1

4π
P�

(〈x, y〉),
where 〈x, y〉 denotes the standard inner product in R

3, and P�(·) represents the �th Legendre
polynomial, defined as usual by

P�(t) = 1

2��!
d�

dt�

(
t2 − 1

)�
, t ∈ [−1,1], � ≥ 0.

It is easy to show that P�(1) = 1; moreover, the following duplication property is satisfied,
that is, ∫

S2

2� + 1

4π
P�

(〈x, y〉)2� + 1

4π
P�

(〈y, z〉)dy = 2� + 1

4π
P�

(〈x, z〉).



348 A. CAPONERA AND D. MARINUCCI

Under isotropy, from (1) and (2) the covariance function 	(x, y) = E[T (x)T (y)] satisfies

	(x, y) =
∞∑

�=0

�∑
m=−�

C�Y�,m(x)Y�,m(y)

=
∞∑

�=0

C�

2� + 1

4π
P�

(〈x, y〉) for all x, y ∈ S
2.

In the sequel, given any two positive sequences {ak, k ∈ N}, {bk, k ∈ N}, we shall write
ak ∼ bk if ∃c1, c2 > 0 such that c1bk ≤ ak ≤ c2bk,∀k ∈ N. In addition, we will denote with
const a positive real constant, which may change from line to line; also, we use ‖ · ‖L2(S2)

for the usual L2 norm on the sphere, 
min(A) and 
max(A) for the minimum and maximum
eigenvalues of the matrix A, respectively, ‖A‖op for the operator norm of A, that is, ‖A‖op =√

λmax(A′A), and Tr(A) for the trace of A.

2.2. Hermite polynomials and Stein–Malliavin results. Let us recall the family of Her-
mite polynomials {Hq(·), q ≥ 0}, defined by

Hq(x) = (−1)qex2/2 dq

dxq
e−x2/2, x ∈ R;

for instance, the first few are given by H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x and
H4(x) = x4 − 6x2 + 3. Any finite variance transform of a standard Gaussian random variable
X has a representation in terms of Hermite polynomials (see [24], Example 2.2.6, p. 27), that
is, for G such that E[G2(X)] < ∞,

G(X) =
∞∑

q=0

Jq(G)
Hq(X)

q! , Jq(G) := E
[
G(X)Hq(X)

];
more generally, for any L2(�)-closed linear Gaussian space X , we can write the Stroock–
Varadhan decomposition

X =
∞⊕

q=0

Hq,

where Hq is the qth order Wiener chaos, that is, the space spanned by qth order Hermite
polynomials; see [24], Chapter 2, for more discussions and details.

We shall exploit extensively a very powerful technique, recently discovered by [23], to
establish quantitative central limit theorems for sequences of random variables belonging to
Wiener chaos. To explain what we mean by a quantitative central limit theorem, we recall
first the notion of Wasserstein distance, that is, for any two d-dimensional random variables
X,Y ,

dW(X,Y ) = sup
h(·):‖h‖Lip≤1

∣∣E[
h(X)

] −E
[
h(Y )

]∣∣ where ‖h‖Lip = sup
x �=y

x,y∈Rd

|h(x) − h(y)|
‖x − y‖ ,

with ‖ · ‖ the usual Euclidean norm on R
d , where we assume that E|h(X)| < ∞, E|h(Y )| <

∞ for every h(·). See [24] for a discussion of the main properties of dW(·, ·) and for other
examples of probability metrics; here, we recall simply that

(3) dW(X,Y ) ≤ E‖X − Y‖.
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It is shown in [24], Theorems 5.2.6 and 5.2.7, p. 99, that for sequences of zero-mean scalar
random variables {Zk, k ∈ N} belonging to Hq (q ≥ 2) and such that E[Z2

k ] = σ 2 > 0, one
has the remarkable inequality

(4) dW(Z,Zk) ≤ 1

σ

√
2q − 2

3πq

(
E
[
Z4

k

] − 3σ 4
)
,

where Z
d= N (0, σ 2) (in our proof below we will actually exploit a multivariate extension

of this inequality, also given in [24], Theorems 6.2.2 and 6.2.3, p. 121). The inequality in
(4) can be proved by means of the so-called Stein–Malliavin approach, which establishes a
deep and surprising connection between Malliavin calculus and Stein’s equation as a tool
for the investigation of limiting distributions. In particular, in view of (4) for sequences that
belong to Wiener chaoses the investigation of the asymptotic behaviour of the fourth-moment
is enough to investigate not only the validity of a central limit theorem, but also the rate of
convergence to the Gaussian limiting distribution.

3. Spherical random fields with temporal dependence. We are now ready to introduce
our model of interest. As usual, by space-time spherical random fields we mean a collection of
random variables {T (x, t), (x, t) ∈ S

2 ×Z} such that, for every t ∈ Z, the mapping (x,ω) �→
T (x, t,ω) is B(S2) ⊗ F -measurable, for some probability space (�,F ,P). The following
definition is standard.

DEFINITION 1. {T (x, t), (x, t) ∈ S
2 ×Z} is 2-weakly isotropic stationary if E[T (x, t)] is

constant ∀(x, t) ∈ S
2 ×Z and the covariance function 	 is a spatially isotropic and temporally

stationary function on (S2 ×Z)2, that is, there exists 	0 : [−1,1] ×Z→R such that

	(x, t, y, s) = 	0
(〈x, y〉, t − s

) ∀(x, t), (y, s) ∈ S
2 ×Z.

In particular, we will focus on Gaussian random fields, where of course weak isotropy and
stationarity entails strong isotropy and stationarity, that is, the law of T (g·, · + τ) is the same
as the law of T (·, ·), in the sense of processes, for all g ∈ SO(3) and τ ∈ Z. Note that, for
(zero-mean) finite variance, isotropic random fields, Tt(·) ≡ T (·, t) is a random function of
L2(S2), t ∈ Z. Thus, for any fixed t ∈ Z, the following spectral representation holds:

(5) T (x, t) =
∞∑

�=0

�∑
m=−�

a�,m(t)Y�,m(x),

where {Y�,m(·), � ≥ 0,m = −�, . . . , �} are spherical harmonics, and {a�,m(t), � ≥ 0,

m = −�, . . . , �} (zero-mean) random coefficients which satisfy

E
[
a�,m(t)a�′,m′(s)

] = C�(t − s)δ�′
� δm′

m , t, s ∈ Z.

Note that {C�(0), � ≥ 0} corresponds to the angular power spectrum of the spherical field at
a given time point, for which we will simply write {C�}. As for the isotropic case, for fixed
t, s ∈ Z, the covariance function 	(x, t, y, s) is easily shown to have a spectral decomposition
in terms of Legendre polynomials (Schoenberg’s theorem, see also [3]), that is, for every
(x, t), (y, s) ∈ S

2 ×Z,

	(x, t, y, s) =
∞∑

�=0

C�(t − s)
2� + 1

4π
P�

(〈x, y〉).
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REMARK 2. By exploiting results from [25], it would also be possible to rewrite (5) by
means of the Cramér–Karhunen–Loève representation

T (x, t) =
∫ π

−π

∞∑
�=0

�∑
m=−�

exp(−iλt)Y�,m(x) dW�,m(λ) in L2(�),

where {W�,m(·)} is a family of independent complex-valued Gaussian random measures, with
mean zero and covariance structure

E
[
W�,m(A)W�,m(B)

] =
∫
A∩B

f�(λ) dλ for all A,B ⊂ [−π,π ],
where f�(·) denotes the spectral density of the process {a�,m(t), t ∈ Z}, which is introduced
below and satisfies

E
[
a�,m(t)a�,m(t + τ)

] =
∫ π

−π
exp(iλτ)f�(λ) dλ.

This approach is not pursued here; see also [7] for more discussion and details.

3.1. Spherical autoregressions. In this section, we introduce a particular class of space-
time spherical random fields, that is, what we call spherical functional autoregressions. As
usual in the context of autoregressive processes, we start with the definition of a spherical
white noise.

DEFINITION 3 (Spherical white noise). The space-time spherical random field {Z(x, t),

(x, t) ∈ S
2 ×Z} is a spherical white noise if:

(i) for every fixed t ∈ Z, {Z(x, t), x ∈ S
2} has mean zero and covariance function

	Z(x, y) =
∞∑

�=0

2� + 1

4π
C�;ZP�

(〈x, y〉), ∞∑
�=0

2� + 1

4π
C�;Z < ∞,

{C�;Z} denoting as usual the angular power spectrum of Z(·, t);
(ii) for every t �= s, the random fields {Z(x, t), x ∈ S

2} and {Z(x, s), x ∈ S
2} are indepen-

dent.

REMARK 4. Note that we are writing the spherical white noise as a collection of random
variables defined on every pair (x, t) ∈ S

2 ×Z. Alternatively, one could introduce {Z(·, t)} as
a sequence of random elements in a Hilbert space (in our case, corresponding to L2(S2)), see
[5], p. 72). The two approaches are equivalent here, because throughout this paper we will
always be dealing with jointly-measurable mean-square continuous random fields.

DEFINITION 5. A spherical isotropic kernel operator is an application � : L2(S2) →
L2(S2) which satisfies

(�f )(x) =
∫
S2

k
(〈x, y〉)f (y) dy, x ∈ S

2,

for some continuous k : [−1,1] → R.

The following representation holds, in the L2 sense, for the kernel associated with �:

(6) k
(〈x, y〉) =

∞∑
�=0

φ�

2� + 1

4π
P�

(〈x, y〉).
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The coefficients {φ�, � ≥ 0} corresponds to the eigenvalues of the operator � and the associ-
ated eigenfunctions are the family of spherical harmonics {Y�,m}, yielding

�Y�,m = φ�Y�,m.

Thus, it holds
∑

�(2� + 1)φ2
� < ∞, and hence this operator is Hilbert–Schmidt (see,

e.g., [17]). In this paper, we shall also consider trace class operators, namely such that∑
�(2� + 1)|φ�| < ∞, for which the representation (6) holds pointwise for every x, y ∈ S

2.

DEFINITION 6. A space-time spherical random field {T (x, t), (x, t) ∈ S
2 × Z} is called

the spherical autoregressive process of order p (written SPHAR(p)) if there exist p isotropic
kernel operators {�1, . . . ,�p} and a spherical white noise {Z(x, t), (x, t) ∈ S

2 ×Z} such that

(7) Tt(x) − (�1Tt−1)(x) − · · · − (�pTt−p)(x) − Zt(x) = 0

for all (x, t) ∈ S
2 ×Z, the equality holding both in the L2(�) and in the L2(S2 × �) sense.

REMARK 7. It should be noted that the solution process is defined pointwise, that is,
for each (x, t) there exists a random variable defined on (�,F ,P) such that the identity (7)
holds.

REMARK 8. The definition of spherical functional autoregressions could be given in
a more general form than we did here; for instance, it is clearly possible to define the
SPHAR(p) process with a sequence of anisotropic “innovation” fields {Z(·, t), t ∈ Z}. How-
ever, in the absence of isotropy the spectral representation theorem would no longer hold, and
the same notion of random spectral coefficients {a�,m(t)} may become ill-defined. Similarly,
it would also be possible to relax the isotropy assumption on the auto-regressive kernels, for
example, considering continuous symmetric functions on S

2 × S
2 or more general compact

self-adjoint operators (see [5, 17]). In this case, however, we would not be in the position to
exploit the harmonic expansion (6). For these reasons, in this paper we just restrict ourselves
to the isotropic framework.

Let us define the eigenvalues {φ�;j , � ≥ 0, j = 1, . . . , p} which satisfy

�jY�,m = φ�;jY�,m and kj

(〈x, y〉) =
∞∑

�=0

φ�;j
2� + 1

4π
P�

(〈x, y〉).
Hence, for 2-weakly isotropic stationary solutions, it holds

(�jTt−j )(x) =
∞∑

�=0

�∑
m=−�

φ�;j a�,m(t − j)Y�,m(x),

that is, (�jTt−j )(·) admits a spectral representation in terms of spherical harmonics with
coefficients {φ�;j a�m(t − j), � ≥ 0,m = −�, . . . , �}. Likewise, we obtain

(8) a�,m(t) = φ�;1a�,m(t − 1) + · · · + φ�;pa�,m(t − p) + a�,m;Z(t);
to ensure identifiability, we assume that there exists at least an � such that φ�;p �= 0, so that
Pr{(�pTt )(·) �= 0} > 0, t ∈ Z; see again [5]. Now, define as usual the associated polynomials
φ� : C→C, � ≥ 0:

(9) φ�(z) = 1 − φ�;1z − · · · − φ�;pzp.
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CONDITION 9. The sequence of polynomials (9) is such that

|z| ≤ 1 ⇒ φ�(z) �= 0.

More explicitly, there are no roots in the unit disk, for all � ≥ 0.

REMARK 10. Condition 9, together with the summability of {φ2
�;j }, ensures that the

smallest root taken among all nondegenerate polynomials is bounded away from one. Indeed,
if ξ�;1, . . . , ξ�;d�

are the roots of the d�-degree polynomial (9), 1 ≤ d� ≤ p, then

|ξ�;j | ≥ ξ∗ > 1,

uniformly over �. Equivalently, there exists δ > 0 such that

|z| < 1 + δ ⇒ φ�(z) �= 0 for all � ≥ 0.

As a consequence, equation (7) admits a unique 2-weakly isotropic stationary solution; the
proof can be given along the same lines as in [5], and it is omitted for brevity’s sake; see [7]
for more discussion and details.

EXAMPLE 11 (SPHAR(1)). The family of random variables {T (x, t), (x, t) ∈ S
2 ×Z} is

a spherical autoregressive process of order one if for all pairs (x, t) ∈ S
2 ×Z it satisfies

Tt(x) = (�Tt−1)(x) + Zt(x).

In this case, Condition 9 simply becomes |φ�| < 1, for all � ≥ 0, which is equivalent to ask

‖�‖op := max
�≥0

|φ�| < 1;
see also [5], Section 3.4.

REMARK 12. The autocovariance function of a 2-weakly isotropic stationary SPHAR(1)

process is easily seen to be given by (writing τ = t − s),

	(x, t, y, s) = 	0
(〈x, y〉, τ ) =

∞∑
�=0

C�(τ)
2� + 1

4π
P�

(〈x, y〉) =
∞∑

�=0

φ
|τ |
� C�;Z
1 − φ2

�

2� + 1

4π
P�

(〈x, y〉).
It is easy hence to envisage a number of parametric models for sphere-time covariances; for
instance, a simple proposal is

φ� = G × {∣∣� − �∗∣∣ + 1
}−αφ , �∗ ≥ 0, αφ > 2,0 < G < 1,(10)

C�;Z = GZ(1 + �)−αZ , αZ > 2.

Here, the parameters αZ and αφ control, respectively, the smoothness of the innovation pro-
cess and the regularity of the autoregressive kernel (see [20]); the positive integer �∗ can be
seen as a sort of “characteristic scale”, where the power of the kernel is concentrated. More
generally, we can take φ� = G(�;α1, . . . , αq), where α1, . . . , αq are fixed parameters and G

is any function such that

sup
�

∣∣G(�;α1, . . . , αq)
∣∣ < 1 and

∑
�

(2� + 1)
∣∣G(�;α1, . . . , αq)

∣∣ < ∞,

uniformly over all values of (α1, . . . , αq).

CONDITION 13 (Gaussianity and identifiability). The spherical white noise {Z(x, t),

(x, t) ∈ S
2 ×Z} is Gaussian and such that C�;Z > 0 for all � = 0,1,2, . . . .
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REMARK 14. The previous condition contains an identifiability assumption; indeed, it
is simple to verify from our arguments below that for C�;Z = 0 the component of the kernel
corresponding to the �th multipole is not observable, that is, the AR(p) process has the same
distribution whatever the values of {φ�;j , j = 1, . . . , p}. It is possible, however, to estimate
the “sufficient” version of the kernel, that is, its projection on the relevant subspace, such
that C�,Z > 0. The extension is straightforward and we avoid it just for brevity and notational
simplicity. Of course, as a consequence we have that∫

S2×S2
	Z(x, y)f (x)f (y) dx dy > 0 ∀f (·) ∈ L2(

S
2), f (·) �= 0.

4. Main results. Throughout this paper, we shall assume to be able to observe the pro-
jections of the fields on the orthonormal basis {Y�m}, that is, we assume to observe

a�,m(t) :=
∫
S2

T (x, t)Y�,m(x) dx, t = 1, . . . , n.

The estimator we shall focus on is a form of least squares regression on an increasing subset
of the orthonormal system {Y�,m}; more precisely, we shall define k(·) := (k1(·), . . . , kp(·))′
for the vector of nuclear kernels, a growing sequence of integers LN , LN → ∞ as N → ∞;
and a vector of estimators

(11) k̂N (·) := (
k̂1;N(·), . . . , k̂p;N(·))′ = arg min

k(·)∈Pp
N

N∑
t=1

∥∥∥∥∥Tt+p −
p∑

j=1

�jTt+p−j

∥∥∥∥∥
2

L2(S2)

,

where N := n − p, N > p, and Pp
N is the Cartesian product of p copies of

PN = span
{

2� + 1

4π
P�(·), � ≤ LN

}
.

As common in the autoregressive context, we drop the first p observations when computing
our estimators, in order to avoid initialization issues. We shall write LN(·) for the function
LN : [−1,1] → R,

(12) LN(z) =
LN∑
�=0

2� + 1

16π2 P 2
� (z), z ∈ [−1,1].

Note that

LN(1) = LN(−1) =
LN∑
�=0

2� + 1

16π2 = (LN + 1)2

16π2 ;

on the other hand, for z ∈ (−1,1) we have the identity (see [15, 31])

LN∑
�=0

2� + 1

16π2 P 2
� (z) = LN + 1

16π2

[
P ′

LN+1(z)PLN
(z) − P ′

LN
(z)PLN+1(z)

];
it is then possible to show that (see Lemma 4 in the Supplementary Material [8])

(13) LN(z) � 2LN

π
√

1 − z2
as LN → ∞,

where � indicates that the ratio of left- and right-hand sides converges to unity.
For our results to follow, we need slightly stronger assumptions on the “high frequency”

behaviour of the kernels kj (·). More precisely, we shall introduce the following.
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CONDITION 15 (Smoothness). For all j = 1, . . . , p, there exists positive constants βj , γj

such that

(14) |φ�;j | ≤ γj

�βj
, βj > 1, � > 0.

We let β∗ = minj∈{1,...,p} βj . We shall say that this condition is satisfied in the strong sense
if βj > 2, j = 1, . . . , p.

REMARK 16. It is readily seen that Condition 15 leads to Hilbert–Schmidt operators,
since it implies

∑
�(2� + 1)φ2

�;j < ∞, j = 1, . . . , p; whereas the strong version Condition
15 is specific for nuclear operators, since it entails

∑
�(2� + 1)|φ�;j | < ∞, j = 1, . . . , p; see

again [17].

REMARK 17. Condition 15 is interpretable in terms of the regularity of each kernel kj (·).
Indeed, in [20] it is shown that

∞∑
�=0

|φ�;j |2 2� + 1

4π

(
1 + �2η) < ∞

implies integrability of the first η derivatives of kj (·), that is, kj (·) belongs to the Sobolev
space W1,η.

Our first result refers to the asymptotic consistency of the kernel estimators that we just
introduced.

THEOREM 18 (Consistency). Consider k̂N (·) in equation (11). Under Conditions 9, 13
and 15, for LN ∼ Nd,0 < d < 1, we have that

(15) E

[∫ 1

−1

∥∥k̂N (z) − k(z)
∥∥2

dz

]
=O

(
Nd−1 + N2d(1−β∗)).

Moreover, under Conditions 9, 13 and 15 (in the strong sense), for LN ∼ Nd,0 < d < 1
3 ,

E

[
sup

z∈[−1,1]
∥∥k̂N (z) − k(z)

∥∥] = O
(
N(3d−1)/2 + Nd(2−β∗)).

REMARK 19 (Optimal choice of d). The optimal choice of d , in terms of the best conver-
gence rates, is given by d∗ = 1

2β∗−1 , leading to the exponents 2−2β∗
2β∗−1 and 2−β∗

2β∗−1 , respectively.

Heuristically, the result can be explained as follows: larger values of β∗ entail higher regu-
larity/smoothness properties of the kernels to be estimated; as usual in nonparametric esti-
mation, more regular functions can be estimated with better convergence rates, as the bias
term is controlled more efficiently. Indeed, for d = d∗ and β∗ → ∞, the mean squared error
approximates the parametric rate 1/N , as expected.

REMARK 20 (Plug-in estimates). For applications to empirical data, the optimal rate
can be implemented by means of plug-in techniques, that is, estimating (under additional
regularity conditions) the value of the parameter β∗ by means of first step-estimators of the
coefficients {φ�,j }. Let us sketch the main ideas for this approach, omitting some details for
brevity. Consider for simplicity the SPHAR(1) case, and let us make Condition 15 stronger
by assuming that

|φ�| = γ

�β
+ o

(
1

�β

)
some γ > 0, β > 1,∀� > 0.
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Consider the estimator

φ̂�,N :=
∑

t a�,m(t − 1)a�,m(t)∑
t a

2
�,m(t − 1)

, � = 0,1,2, . . . ,

from which we can now build the pseudo log-regression model

log φ̂2
�,N = log

φ̂2
�,N

γ 2�−2β
+ log

(
γ 2�−2β) = log

(
γ 2) − 2β log� + v�,

v� := log
φ̂2

�,N

γ 2�−2β
, � = 0,1,2, . . . ,

where the “regression residuals” {v�} are independent over �, with asymptotically mean zero
and bounded variance as N → ∞. It is then possible to study the asymptotic consistency of
the OLS-like estimator (see also [30] for the related log-periodogram estimator)

β̂N := −
∑

�{log� × log φ̂2
�,N }

2
∑

�{log�}2 .

The optimal rates can then be consistently estimated by means of the plug-in estimates d̂∗
N =

1
2β̂N−1

.
A more rigorous and complete investigation on these issues is currently in preparation and

is not reported here for brevity’s sake.

Our second result refers to a quantitative central limit theorem for the kernel estimators.
Consider k̂N (·) in equation (11) and, for any m ∈N, any z1, . . . , zm ∈ (−1,1), z1 �= · · · �= zm,
define the mp × 1 vectors

KN = KN(z1, z2, . . . , zm) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
N

LN(z1)

(
k̂N (z1) − k(z1)

)
...√

N

LN(zm)

(
k̂N (zm) − k(zm)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Z

d= Nmp(0mp, Imp).

THEOREM 21. Under Conditions 9, 13 and 15 (in the strong sense), for LN ∼ Nd,d >
1

2β∗−2 , we have that

dW(Z,KN) = O
(
N−1/2 + N1/2+d(1−β∗) + N−d logN

)
.

An immediate corollary is the following.

COROLLARY 22. Under the same conditions and notation as in Theorem 21, for any
fixed z ∈ [−1,1], we have that√

N

LN(z)

(
k̂N (z) − k(z)

) → Np(0p, Ip), N → ∞.

REMARK 23. As usual, the values of d that guarantee asymptotic normality do not mini-
mize the mean squared error; in fact, we have that d∗ = 1

2β∗−1 < 1
2β∗−2 , which is the minimal

value of d for Theorem 21 to hold. Indeed, asymptotic Gaussianity requires undersmoothing,
that is, a value of d which makes the asymptotic bias negligible, rather than of the same order
as the variance. Once again the rate can be taken to approach N−1/2 for β∗ → ∞.



356 A. CAPONERA AND D. MARINUCCI

For our third and final result, we need to strengthen the conditions on the regularity of the
autoregressive kernels.

CONDITION 24. The kernel kj (·) admits a finite expansion in the Legendre basis, that
is, there exist an (arbitrary large but finite) integer L > 0 such that∫ 1

−1
kj (z)P�(z) dz = 0 for all j = 1, . . . , p and � > L.

Condition 24 clearly implies that there exist finite integers L1, . . . ,Lp ≤ L such that

kj (z) =
Lj∑
�=0

2� + 1

4π
φ�;jP�(z), z ∈ [−1,1], j = 1, . . . , p;

we also need to introduce, for � = 0,1,2, . . . , the p × p autocovariance matrix

	� :=

⎛⎜⎜⎜⎝
C� C�(1) · · · C�(p − 1)

C�(1) C� · · · C�(p − 2)
...

...
. . .

...

C�(p − 1) C�(p − 2) · · · C�

⎞⎟⎟⎟⎠ ,

and we shall write Wp(·) for the zero-mean, p-dimensional Gaussian process with covariance
function

	k

(
z, z′) =

L∑
�=0

C�;Z	−1
�

2� + 1

16π2 P�(z)P�

(
z′).

We are now able to state our last theorem.

THEOREM 25. Under Conditions 9, 13 and 24, we have that√
N

(
k̂N (·) − k(·)) =⇒ Wp(·), N → ∞,

where =⇒ denotes weak convergence in Cp([−1,1]) (the space of continuous functions from
[−1,1] to R

p , with the standard uniform metric).

REMARK 26. At first sight, it may look surprising that the weak convergence for the es-
timators in Theorem 25 occurs at a faster rate

√
N than the convergence in finite-dimensional

distributions of Theorem 21. This comparison, however, is misleading; indeed, in Theorem 21
we are not assuming the expansion of the kernels to be finite and, therefore, we need to in-
clude a growing number of multi-poles LN , to ensure that bias terms are asymptotically
negligible. On the other hand, note that weak convergence cannot hold under the conditions
of Theorem 21, as the limiting finite dimensional distributions correspond to Gaussian inde-
pendent random variables for any choice of fixed points (z1, . . . , zm): no Gaussian process
with measurable trajectories can have these finite-dimensional distributions. The limiting dis-
tribution is characterized by the nuisance parameters {C�,C�(1), . . . ,C�(p − 1),C�;Z}; for
brevity’s sake, estimation of these parameters is deferred to future work.

5. Proofs of the main results. We now present the main arguments of our proofs, which
are based on a number of technical results collected in the Appendix (Supplementary Material
[8]). For � = 0,1,2, . . . , it is convenient to introduce the N(2� + 1)-dimensional vectors

Y�;N := (
a�,−�(p + 1), . . . , a�,�(p + 1), . . . , a�,�(n)

)′
,

ε�;N := (
a�,−�;Z(p + 1), . . . , a�,�;Z(p + 1), . . . , a�,�;Z(n)

)′;
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moreover, let us consider the N(2� + 1) × p matrix

X�;N := {Y�;N−1 : Y�;N−2 : · · · : Y�;N−p},
where

Y�;N−j := (
a�,−�(p + 1 − j), . . . , a�,�(p + 1 − j), . . . , a�,�(n − j)

)′
, j = 1, . . . , p.

We start from the proof of the consistency results.

PROOF OF THEOREM 18. It is easy to see that we have

k̂N (·) = arg min
k(·)∈Pp

N

n∑
t=p+1

∥∥∥∥∥Tt −
p∑

j=1

�jTt−j

∥∥∥∥∥
2

L2(S2)

=
LN∑
�=0

φ̂�;N
2� + 1

4π
P�(·),

where

φ̂�;N := (
φ̂�;N(1), . . . , φ̂�;N(p)

)′
= arg min

φ�∈Rp

n∑
t=p+1

�∑
m=−�

(
a�,m(t) −

p∑
j=1

φ�;j a�,m(t − j)

)2

.

Now, let rN(z) be the difference between the kernel and its truncated version

kN(z) =
LN∑
�=0

φ�

2� + 1

4π
P�(z),

that is,

rN(z) = k(z) − kN(z) =
∞∑

�=LN+1

φ�

2� + 1

4π
P�(z).

where the equality holds in the L2 sense. Then

(16) E

[∫ 1

−1

∥∥k̂N (z) − k(z)
∥∥2

dz

]
= E

[∫ 1

−1

∥∥k̂N (z) − kN(z)
∥∥2

dz

]
+

∫ 1

−1

∥∥rN(z)
∥∥2

dz,

since E[∫ 1
−1〈k̂N (z) − kN(z), rN(z)〉dz] = 0, from orthogonality of Legendre polynomials.

Now notice that∫ 1

−1

∥∥k̂N (z) − kN(z)
∥∥2

dz

=
LN∑
�=0

LN∑
�′=0

〈φ̂�;N − φ�, φ̂�′;N − φ�′ 〉2� + 1

4π

2�′ + 1

4π

∫ 1

−1
P�(z)P�′(z) dz

=
LN∑
�=0

LN∑
�′=0

〈φ̂�;N − φ�, φ̂�′;N − φ�′ 〉2� + 1

4π

2�′ + 1

4π

2

2� + 1
δ�′
�

=
LN∑
�=0

‖φ̂�;N − φ�‖2 2� + 1

8π2 .
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Then, from Lemma 2 in the Supplementary Material [8],

E

[∫ 1

−1

∥∥k̂N (z) − kN(z)
∥∥2

dz

]
=

LN∑
�=0

E‖φ̂�;N − φ�‖2 2� + 1

8π2 ≤ const
LN + 1

N
.

On the other hand,∫ 1

−1

∥∥rN(z)
∥∥2

dz =
∞∑

�=LN+1

∞∑
�′=LN+1

〈φ�,φ�′ 〉2� + 1

4π

2�′ + 1

4π

∫ 1

−1
P�(z)P�′(z) dz

=
∞∑

�=LN+1

∞∑
�′=LN+1

〈φ�,φ�′ 〉2� + 1

4π

2�′ + 1

4π

2

2� + 1
δ�′
�

=
∞∑

�=LN+1

‖φ�‖2 2� + 1

8π2 .

Therefore, under Condition 15 and for LN ∼ Nd,0 < d < 1, we have∫ 1

−1

∥∥rN(z)
∥∥2

dz = O
(
N2d(1−β∗))

and

E

[∫ 1

−1

∥∥k̂N (z) − k(z)
∥∥2

dz

]
=O

(
Nd−1 + N2d(1−β∗)),

where β∗ = minj∈{1,...,p} βj , as claimed.
Under the strong version of Condition 15, each kernel kj (·) is defined for all z ∈ [−1,1]

as the pointwise limit of its expansion in terms of Legendre polynomials and

E

[
sup

z∈[−1,1]
∥∥k̂N (z) − k(z)

∥∥] ≤ E

[
sup

z∈[−1,1]
∥∥k̂N (z) − kN(z)

∥∥] + sup
z∈[−1,1]

∥∥rN(z)
∥∥,

by the triangle inequality. Hence, for the first component we have

E

[
sup

z∈[−1,1]

∥∥∥∥∥
LN∑
�=0

(φ̂�;N − φ�)
2� + 1

4π
P�(z)

∥∥∥∥∥
]

≤
LN∑
�=0

E‖φ̂�;N − φ�‖
2� + 1

4π

≤ const
LN∑
�=0

√
2� + 1√

N

≤ const
(LN + 1)3/2

√
N

,

again in view of Lemma 2 in the Appendix (Supplementary Material [8]) and the Cauchy–
Schwarz inequality. On the other hand,

sup
z∈[−1,1]

∥∥rN(z)
∥∥ ≤

∞∑
�=LN+1

‖φ�‖
2� + 1

4π
.

Therefore, again under the strong version of Condition 15 and for LN ∼ Nd,0 < d < 1
3 , we

have

sup
z∈[−1,1]

∥∥rN(z)
∥∥ = O

(
Nd(2−β∗))
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and thus

E

[
sup

z∈[−1,1]
∥∥k̂N (z) − k(z)

∥∥] = O
(
N(3d−1)/2 + Nd(2−β∗)),

as claimed. �

We are now in the position to establish the quantitative central limit theorem.

PROOF OF THEOREM 21. Let us recall that the minimizing estimator takes the form

k̂N (·) = arg min
k(·)∈Pp

N

n∑
t=p+1

∥∥∥∥∥Tt −
p∑

j=1

�jTt−j

∥∥∥∥∥
2

L2(S2)

=
LN∑
�=0

φ̂�;N
2� + 1

4π
P�(·),

where

φ̂�;N = arg min
φ�∈Rp

n∑
t=p+1

�∑
m=−�

(
a�,m(t) −

p∑
j=1

φ�;j a�,m(t − j)

)2

= (
X′

�;NX�;N
)−1

X′
�;NY�;N = φ� + (

X′
�;NX�;N

)−1
X′

�;Nε�;N.

We shall introduce some more notation:

A�;N := 1

C�N(2� + 1)
X′

�;NX�;N, �� := E[A�;N ] = 	�

C�

,

and

B�;N := 1

C�

√
N(2� + 1)

X′
�;Nε�;N.

Therefore, √
N(2� + 1)(φ̂�;N − φ�) = A−1

�;NB�;N.

Heuristically, the proof of the quantitative central limit theorem can be described as follows:
in order to be able to exploit Stein–Malliavin techniques, we need to deal with variables
belonging to some qth order chaos; now the ratio above does not fulfill this requirement,
because A−1

�;N is a random quantity which does not belong to any Hq . On the other hand,
componentwise we have B�;N ∈ H2, for each �. We shall then show that it is possible to re-
place A−1

�;N by its (deterministic) probability limit �−1
� , without affecting asymptotic results;

because our kernel estimators will be written as linear combinations of φ̂�;N , the proof can
be completed by a careful investigation of multivariate fourth-order cumulants.

Let us now make the previous argument rigorous. Let KN and UN be two mp-dimensional
random vectors, defined as

KN :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
N

LN(z1)

(
k̂N (z1) − k(z1)

)
...√

N

LN(zm)

(
k̂N (zm) − k(zm)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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and

UN =
⎛⎜⎝UN(z1)

...

UN(zm)

⎞⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
LN(z1)

LN∑
�=0

�−1
� B�;N

√
2� + 1

4π
P�(z1)

...

1√
LN(zm)

LN∑
�=0

�−1
� B�;N

√
2� + 1

4π
P�(zm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, E[UN ] = 0mp and E[UNU ′
N ] = VN , where VN is a block matrix whose generic

ij th block, i, j ∈ {1, . . . ,m}, is given by

VN(i, j) = E
[
UN(zi)U

′
N(zj )

]
= 1√

LN(zi)

1√
LN(zj )

LN∑
�=0

C�;Z
C�

�−1
�

2� + 1

16π2 P�(zi)P�(zj ).

Now, consider Z
d= Nmp(0mp, Imp) and ZN

d= Nmp(0mp,VN). Applying the triangle in-
equality twice, it follows that

dW(Z,KN) ≤ dW(Z,UN) + dW(UN,KN)

≤ dW(Z,ZN) + dW(ZN,UN) + dW(UN,KN).

From [24], equation (6.4.2), p. 126, we have

dW(Z,ZN) ≤ √
mp min

{∥∥V −1
N

∥∥
op‖VN‖1/2

op ,1
}‖VN − Imp‖HS,

where ‖A‖HS = √
Tr(A′A), and we observe that

(17) ‖VN − Imp‖HS ≤ mp‖VN − Imp‖∞ =O
(
N−d logN

)
,

from Lemmas 3 and 4 in the Supplementary Material [8]. Indeed, for every i ∈ {1, . . . ,m},
∥∥VN(i, i) − Ip

∥∥
HS ≤ const

LN + 1

LN∑
�=0

∥∥∥∥C�;Z
C�

�−1
� − Ip

∥∥∥∥∞
(2� + 1)

≤ const

LN + 1
;

the logarithmic term comes from equation (8) in the Supplementary Lemma 4 [8]. Equation
(17) entails that VN → Imp , thus we have ‖V −1

N ‖op‖VN‖1/2
op → 1, as N → ∞, and

(18) dW(Z,ZN) = O
(
N−d logN

)
.

Let us recall again from [24], p. 122 (second point of Theorem 6.2.2) that

dW(ZN,UN) ≤ √
mp

∥∥V −1
N

∥∥
op‖VN‖1/2

op m(UN),

where

m(UN) = 2mp

m∑
i=1

p∑
j=1

√√√√√Cum4

[
1√

LN(zi)

LN∑
�=0

b̃�;N(j)

√
2� + 1

4π
P�(zi)

]
,

b̃�;N(j) being the j th element of �−1
� B�;N . Moreover, for the j th element of �−1

� B�;N we
have

Cum4
[
b̃�;N(j)

] = 6

N(2� + 1)

(
C�;Z
C�

s�(j, j)

)2
;
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see equation (4) in Lemma 1. In addition,

Cum4

[
1√

LN(zi)

LN∑
�=0

b̃�;N(j)

√
2� + 1

4π
P�(zi)

]

= 1

L2
N(zi)

LN∑
�=0

Cum4
[
b̃�;N(j)

](2� + 1)2

(4π)4 P 4
� (zi),

in view of the independence across different multi-poles �. Therefore,

Cum4

[
1√

LN(zi)

LN∑
�=0

b̃�;N(j)

√
2� + 1

4π
P�(zi)

]

= 6

NL2
N(zi)

LN∑
�=0

(
C�;Z
C�

s�(j, j)

)2 2� + 1

(4π)4 P 4
� (zi)

≤ 6

NL2
N(zi)

LN∑
�=0

[
C�;Z
C�

Tr
(
�−1

�

)]2 2� + 1

(4π)4 P 4
� (zi)

≤ const

N(LN + 1)2

LN∑
�=0

(2� + 1)P 4
� (zi).

Thus, we have

m(UN) ≤ const
m2p2

LN + 1

√
logN

N

and

(19) dW(ZN,UN) =O
(
N−(d+1/2)(logN)1/2).

Now, consider the decomposition√
N

LN(z)

(
k̂N (z) − k(z)

) = 1√
LN(z)

LN∑
�=0

√
N(2� + 1)(φ̂�;N − φ�)

√
2� + 1

4π
P�(z)

−
√

N

LN(z)

∞∑
�=LN+1

φ�

2� + 1

4π
P�(z)

= 1√
LN(z)

LN∑
�=0

�−1
� B�;N

√
2� + 1

4π
P�(z)

+ 1√
LN(z)

LN∑
�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z)

−
√

N

LN(z)

∞∑
�=LN+1

φ�

2� + 1

4π
P�(z).
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Without loss of generality, we shall focus on the case m = 1; the more general argument is
basically identical, with a slightly more cumbersome notation. For z ∈ (−1,1),∥∥∥∥∥ 1√

LN(z)

LN∑
�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z)

∥∥∥∥∥
≤ const√

LN + 1

LN∑
�=0

∥∥[A−1
�;N − �−1

�

]
B�;N

∥∥√2� + 1
∣∣P�(z)

∣∣,
and then

E

[∥∥∥∥∥ 1√
LN(z)

LN∑
�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z)

∥∥∥∥∥
]

≤ const√
LN + 1

LN∑
�=0

E
∥∥[A−1

�;N − �−1
�

]
B�;N

∥∥√2� + 1
∣∣P�(z)

∣∣
≤ const√

LN + 1

LN∑
�=0

1√
N(2� + 1)

√
2� + 1

∣∣P�(z)
∣∣

= O
(

1√
N

)
,

(20)

where for the second inequality we have exploited the Appendix Lemma 2, while for the last
step the Hilb’s asymptotics (11) in the Appendix (see, also, [31, 32]). Likewise,

(21)

∥∥∥∥∥
√

N

LN(z)

∞∑
�=LN+1

φ�

2� + 1

4π
P�(z)

∥∥∥∥∥ ≤ const

√
N

LN + 1

∞∑
�=LN+1

‖φ�‖(2� + 1)
∣∣P�(z)

∣∣
≤ const

√
N

LN + 1

∞∑
�=LN+1

‖φ�‖
√

2� + 1

=O
(

1

Nd(β∗−1)−1/2

)
.

From equations (20) and (21),

(22) dW(UN,KN) = O
(
N−1/2 + N1/2+d(1−β∗)).

In the end, combining equations (18), (19) and (22), it holds that

dW(Z,KN) = O
(
N−1/2 + N1/2+d(1−β∗)).

Note that the constant in this bound may depend on the choice of m and z1, . . . , zm. �

We can now give the proof of the third (and final) result.

PROOF OF THEOREM 25. Under Condition 24, we have that, for z ∈ [−1,1],
√

N
(
k̂N (z) − k(z)

) =
L∑

�=0

√
N(2� + 1)(φ̂�;N − φ�)

√
2� + 1

4π
P�(z)

=
L∑

�=0

A−1
�;NB�;N

√
2� + 1

4π
P�(z)(23)
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=
L∑

�=0

�−1
� B�;N

√
2� + 1

4π
P�(z)

+
L∑

�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z).

Then

sup
z∈[−1,1]

∥∥∥∥∥
L∑

�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z)

∥∥∥∥∥ ≤
L∑

�=0

∥∥[A−1
�;N − �−1

�

]
B�;N

∥∥√
2� + 1

4π
,

and hence

E

[
sup

z∈[−1,1]

∥∥∥∥∥
L∑

�=0

[
A−1

�;N − �−1
�

]
B�;N

√
2� + 1

4π
P�(z)

∥∥∥∥∥
]

≤
L∑

�=0

E
∥∥[A−1

�;N − �−1
�

]
B�;N

∥∥√
2� + 1

4π
→ 0, N → ∞,

in view of the Supplementary Lemma 2 [8]. Then the second part of the sum in (23) goes to
zero in probability. Since the sum (over �) has independent components, we just need to prove
that, for each � = 0,1,2, . . . ,L, {B�;NP�(·)} forms a tight sequence. Using the tightness
criterion given in [4], equation 13.14, p. 143, it is sufficient to show that, for z1 ≤ z ≤ z2,

E
∥∥B�;NP�(z) − B�;NP�(z1)

∥∥∥∥B�;NP�(z2) − B�;NP�(z)
∥∥

= ∣∣P�(z) − P�(z1)
∣∣∣∣P�(z2) − P�(z)

∣∣E‖B�;N‖2

≤ p
C�;Z
C�

Q2
�|z − z1||z2 − z|

≤ p
C�;Z
C�

Q2
�(z2 − z1)

2.

Convergence of the finite-dimensional distributions is standard and we omit the details,
which are close to those given in the proofs of the previous theorem. Thus the sequence
converges weakly to a zero-mean multivariate Gaussian process with covariance function

	kL

(
z, z′) =

L∑
�=0

C�;Z	−1
�

2� + 1

16π2 P�(z)P�

(
z′).

�

6. Some numerical evidence. In this section, we present some short numerical results
to illustrate the models and methods that we discussed in this paper.

We stress first that random fields on the sphere cross time can be very conveniently gen-
erated by combining the general features of Python with the HEALPix software (see [14]
and https://healpix.sourceforge.io). More precisely, HEALPix (which stands for Hierarchi-
cal Equal Area and iso-Latitude Pixelation) is a multipurpose computer software package
for a high resolution numerical analysis of functions on the sphere, based on a clever tessella-
tion scheme: the spherical surface is hierarchically partitioned into curvilinear quadrilaterals
of equal area (at a given resolution), distributed on lines of constant latitude, as suggested
in the name. In particular, we shall make use of healpy, which is a Python package based
on the HEALPix C++ library. HEALPix was developed to efficiently process Cosmic Mi-
crowave Background data from cosmological experiments (like Planck, [27]), but it is now
used in many other branches of astrophysics and applied sciences.

https://healpix.sourceforge.io
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In short, HEALPix allows to create spherical maps according to the spectral representation
(1), accepting in input either an array of random coefficients {a�,m}, or the angular power
spectrum {C�}, by means of the routines alm2map and synfast: in the latter case, random
{a�,m} are generated according to a Gaussian zero mean distribution with variance {C�}. The
routine is extremely efficient and allows to generate maps of resolution up to a few thousands
multi-poles in a matter of seconds on a standard laptop computer.

In our case, however, we need random fields where the random harmonic coefficients
have themselves a temporal dependence structure. For this reason, we implemented a simple
routine in Python, to simulate Gaussian {a�,m(t)} processes, each following an AR(p) de-

FIG. 1. Two realizations of {T (x, t)} at times t = 1,2,3,4 (clockwise). Upper panel: maximum resolution
Lmax = 30. Lower panel: maximum resolution Lmax = 200.
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pendence structure. These random harmonic coefficients are then uploaded into HEALPix,
to generate maps such as those that are given in Figure 1. In particular, in these two cases
we fixed Lmax = max(�) = 30,200, respectively. Then we generated {a�,m(t)} according
to stationary AR(1) processes, with parameters φ� � const × �−3; similarly, we took here
C�;Z � const × �−2. In the figure, we report the realization for the first 4 periods, simply for
illustrative purposes.

We are now in the position to use simulations to validate the previous results. In our first
Tables 1–3, we report for B = 1000 Monte Carlo replications the values of the “variance” and
“bias” terms, that is, the first and second summand in the mean squared error equation (16);
the second term is actually deterministic, and it is reported to illustrate the approximation
one obtains by cutting the expansion to a finite multi-pole value. In the third column, we
report, the actual (squared) L2 error. On the left-hand side, we fix the number of multi-
poles to be exploited in the reconstruction of the kernel; on the right-hand side, we consider
a sort of “oracle” estimator, where the number of multi-poles grows with the optimal rate

N
1

2β∗−1 . As before, we took C�;Z � const × �−2, φ� � const × �−β for β = 2,2.5,3; for
N = 100,300,700 the left-hand side uses LN ∼ N0.6, while the right-hand side takes LN ∼
N

1
2β∗−1 , as explained above.
We note how the estimators perform very efficiently, and show the errors scale approxi-

mately as Nα , where α ≈ 2−2β∗
2β∗−1 , as predicted by our computations; see Remark 19. In partic-

ular, Figure 2 shows the behaviour of the L2 error, as a function of N . For β∗ = 2,2.5,3, the
empirical mean squared error is computed over a grid of N which ranges from 50 to 1000 in

TABLE 1

L2 errors obtained with β∗ = 2; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right)

N Variance Bias MSE

100 0.00082 0.00006 0.00088
300 0.00057 0.00001 0.00059
700 0.00041 0.00001 0.00042

N Variance Bias MSE

100 0.00041 0.00023 0.00065
300 0.00022 0.00010 0.00031
700 0.00012 0.00005 0.00018

TABLE 2

L2 errors obtained with β∗ = 2.5; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right)

N Variance Bias MSE

100 0.00081 0.00007 0.00088
300 0.00056 0.00001 0.00057
700 0.00041 0.00000 0.00041

N Variance Bias MSE

100 0.00063 0.00014 0.00077
300 0.00029 0.00006 0.00035
700 0.00016 0.00003 0.00019

TABLE 3

L2 errors obtained with β∗ = 3; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right)

N Variance Bias MSE

100 0.00082 0.00001 0.00084
300 0.00058 0.00000 0.00058
700 0.00041 0.00000 0.00041

N Variance Bias MSE

100 0.00041 0.00021 0.00062
300 0.00021 0.00004 0.00025
700 0.00009 0.00004 0.00013
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FIG. 2. L2 errors (dots) over a grid of N , for β∗ = 2,2.5,3 (clockwise) and LN ∼ N
1

2β∗−1 . The green lines
represent the (calibrated) theoretical upper bounds in equation (24).

steps of 50. The green lines represent respectively the curves

(24) y = exp(−4.28)x−0.667, y = exp(−3.7)x−0.75, y = exp(−3.7)x−0.80.

As explained earlier, the exponents match our theoretical results, whereas the multiplicative
constants have been chosen by a least squares fit.

We can now focus quickly on the main result of our paper, dealing with the quantitative
central limit theorem, in Wasserstein distance; the latter is computed following the Python
routine (scipy.stats.wasserstein_distance). We consider again a model where
the autoregressive parameter and the angular power spectra are exactly the same as in the
previous settings, in particular, taking β = 3 and d = 0.5, up to integer approximations; we
fix Lmax = 1000 for the number of components under the null hypothesis. Under these cir-
cumstances, we evaluate (univariate) Wasserstein distances for the kernel estimators at m = 9
different locations, performing B = 10,000 Monte Carlo replications.

In our simulations, we took a number of time-domain observations ranging from N = 100
to N = 1000 in steps of 100; it should be noted that huge sample sizes are quite common
when dealing with sphere-cross-time data; see, for example, the NCEP/NCAR reanalysis
datasets [19] for atmospheric research. In Table 4, we report for brevity a subset of these
results, while the full sample is considered in Figure 3.

Again, we note that simulations track closely the theoretical predictions. More precisely,
by our theoretical upper bound, we expect the Wasserstein distance dW(·, ·) to decay faster
than N−0.5 (up to logarithmic factors) in the setting of Table 4, in good agreement with
simulations. To help visualize this behaviour, we report in Figure 3 the decay of numerically
estimated Wasserstein distances for KN(z) (see Theorem 21) considered for three different
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TABLE 4
Wasserstein distances obtained with β∗ = 3 and LN ∼ N0.5

N \ z −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

100 0.52 0.15 0.70 0.19 0.69 0.66 0.42 1.13 0.79
500 0.04 0.10 0.11 0.11 0.10 0.08 0.08 0.13 0.26

1000 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.07

FIG. 3. Wasserstein distances for z = −0.5,0,0.5 and theoretical upper bound logN × N−0.5.

values z = −0.5,0,0.5, for N in steps of 100 ranging from 100 to 1000; in blue, we reproduce
also the expected upper bound, of order logN × N−0.5. It is evident that the realized values
are well controlled by the theoretical bound, with the exception of the smallest samples.

REMARK 27. Although the setting considered in this paper is mainly theoretical, we
believe that the models and procedures introduced here have plenty of potential for important
applications. A possible dataset, which is in our view amenable to SPHAR modeling, is the
NCEP reanalysis catalogue (see [19]); it provides the near-surface air temperature of the
planet Earth over a grid of 94 × 192 unique spatial locations with a time span of 50 years
(starting in 1948), sampled every day; overall, then, there are publicly available 18,048 ×
18,250 space-cross-time observations. Clearly, for temperature (and, more generally, climate)
variables we cannot expect isotropy to hold exactly, due to the presence of features which
depend on the location on the surface of the Earth; our idea, however, is that these anisotropic
components can be estimated and removed in a preliminary stage of the analysis, just like
trend and cyclical components are usually subtracted from time series data before standard
ARMA models are implemented (see [6], Section 1.4). These topics are the object of current
ongoing research; however, because those investigations require considerable extra work,
together with ideas and techniques which are specific to a given application, they will be
dealt in a future, more applied paper.
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotics for spherical functional autoregressions” (DOI: 10.1214/
20-AOS1959SUPP; .pdf). This appendix collects a numbers of lemmas which are instrumen-
tal for the proofs of the main results in our paper; see [8].
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