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We observe n independent random variables with joint distribution P
and pretend that they are i.i.d. with some common density s (with respect to
a known measure μ) that we wish to estimate. We consider a density model S

for s that we endow with a prior distribution π (with support in S) and build
a robust alternative to the classical Bayes posterior distribution which pos-
sesses similar concentration properties around s whenever the data are truly
i.i.d. and their density s belongs to the model S. Furthermore, in this case, the
Hellinger distance between the classical and the robust posterior distributions
tends to 0, as the number of observations tends to infinity, under suitable as-
sumptions on the model and the prior. However, unlike what happens with the
classical Bayes posterior distribution, we show that the concentration prop-
erties of this new posterior distribution are still preserved when the model is
misspecified or when the data are not i.i.d. but the marginal densities of their
joint distribution are close enough in Hellinger distance to the model S.

1. Introduction. The purpose of this paper is to define and study a robust substitute to
the classical posterior distribution in the Bayesian framework. It is known that the posterior
is not robust with respect to misspecifications of the model. More precisely, if the true dis-
tribution P of an n-sample X = (X1, . . . ,Xn) does not belong to the support P of the prior
and even if it is close to this support in total variation or Hellinger distance, the posterior may
concentrate around a point of this support which is quite far from the truth. A simple example
is the following one.

Let Pt be the uniform distribution on [0, t] with t ∈ S = (0,+∞) and, given a > 0 and
α > 1, let π be the prior with density Ct−α1[a,+∞)(t), C = (α − 1)−1a1−α , with respect to
the Lebesgue measure on R+. Given a n-sample X = (X1, . . . ,Xn) with distribution Pt0 , the
posterior distribution function writes as

(1) t �→ GL(t |X) =
[
1 −

(
a ∨ X(n)

t

)n+α−1]
1[a∨X(n),+∞)(t)

and, for t0 > a, we see that this posterior is highly concentrated on intervals of the form [a ∨
X(n), (1 + cn−1)(a ∨ X(n))] with c > 0 large enough. Now assume that the true distribution
has been contaminated and is rather

P = (
1 − n−1)U([0, t0])+ n−1U

([
t0 + 100, t0 + 100 + n−1]).

Although it is quite close to the initial distribution Pt0 in variation distance (their distance is
1/n), on an event of probability 1 − (1 − n−1)n > 1/2, t0 + 100 < X(n) < t0 + 100 + n−1

and the posterior distribution is therefore concentrated around t0 + 100 according to (1). The
same problem would occur if we were using the maximum likelihood estimator (MLE for
short) as an estimator of t .
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In the literature, most results about the behaviour of the posterior do not say anything about
misspecification. Some papers like Kleijn and van der Vaart (2006, 2012) and Panov and
Spokoiny (2015) address this problem but their results involve the behaviour of the Kullback–
Leibler divergence between P and the distributions in P , as is also often the case when
studying the MLE; see, for instance, Massart (2007). However, two distributions may be very
close in Hellinger distance and, therefore, indistinguishable with our sample X, but have a
large Kullback–Leibler divergence.

Even when the model is exact, the Kullback divergence is used to analyze the properties
of the Bayes posterior. It is known mainly from the work of van der Vaart and co-authors (see
in particular Ghosal, Ghosh and van der Vaart (2000)) that the posterior distribution concen-
trates around P ∈ P as n goes to infinity but those general results require that the prior puts
enough mass on neighbourhoods of P ∈ P of the form K(P, ε) = {P ′ ∈ P,K(P,P ′) < ε}
where ε is a positive number and K(P,P ′) the Kullback–Leibler divergence between P and
P ′. Unfortunately, such neighbourhoods may be empty (and consequently the condition un-
satisfied) when the probabilities in P are not equivalent, which is, for example, the case for
the translation model of the uniform distribution on [0,1], even though the Bayes method
may work well in such cases.

As already mentioned, the lack of robustness is not specific to the Bayesian framework
but has also been noticed for the MLE. Alternatives to the MLE that remedy this lack of
robustness have been considered many years ago by Le Cam (1973, 1975, 1986) and Birgé
(1983, 1984, 2006b) but have some limitations. A new recent approach leading to what we
called ρ-estimators and described in Baraud, Birgé and Sart (2017) (hereafter BBS for short),
and Baraud and Birgé (2018) (hereafter BB) corrects a large part of these limitations. It also
improves over the previous constructions since it recovers some of the nice properties of the
MLE, like efficiency, under suitably strong regularity assumptions.

The aim of this paper is to extend the theory developed in BBS and BB to a Bayesian
paradigm in view of designing a robust substitute to the classical Bayes posterior distribution.
To be somewhat more precise, let us consider a classical Bayesian framework of density
estimation from n i.i.d. observations, although other situations could be considered as well.
We observe X = (X1, . . . ,Xn) where the Xi belong to some measurable space (X ,A ) with
an unknown distribution P on X . We have at disposal a family P = {Pt , t ∈ S} of possible
distributions on X , which is dominated by a σ -finite measure μ with respective densities
f (x|t) = (dPt/dμ)(x). We set f (X|t) = ∏n

i=1 f (Xi |t) for the likelihood of t . Assuming
that S is a measurable space endowed with a σ -algebra S , we choose a prior distribution
π on S, which leads to a posterior πL

X that is absolutely continuous with respect to π with
density gL(t |X) = (dπL

X/dπ)(t). Following this notation, the log-likelihood function and
log-likelihood ratios write respectively as L(X|t) = log(f (X|t)) = ∑n

i=1 log(f (Xi |t)) and
L(X, t, t ′) = L(X|t ′) − L(X|t) so that the density gL(t |X) of the posterior distribution πL

X
with respect to π is given by

exp[L(X|t)]∫
S exp[L(X|t)]dπ(t)

= exp[L(X|t) − supt ′∈S L(X|t ′)]∫
S exp[L(X|t) − supt ′∈S L(X|t ′)]dπ(t)

and consequently,

(2) gL(t |X) = f (X|t)∫
Sf (X|t) dπ(t)

= exp[− supt ′∈S L(X, t, t ′)]∫
S exp[− supt ′∈S L(X, t, t ′)]dπ(t)

.

Note that, if the MLE t̂ (X) exists,

sup
t ′∈S

L
(
X, t, t ′

)= L
(
X|̂t(X)

)− L(X|t)
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and that we could as well consider, for all β > 0 the distributions

gL
β (t |X) · π with gL

β (t |X) = exp[βL(X|t)]∫
S exp[βL(X|t)]dπ(t)

.

The posterior corresponds to β = 1 and when β goes to infinity the distribution gL
β (t |X) · π

converges weakly, under mild assumptions, to the Dirac measure located at the MLE. All
values of β ∈ (1,+∞) will then lead to interpolations between the posterior and the Dirac at
the MLE.

Most problems connected with the maximum likelihood or Bayes estimators are due to
the fact that the log-likelihood ratios L(X, t, t ′) involve the logarithmic function which is
unbounded. As a result, we may have

Et

[
L
(
X, t, t ′

)]= −nEt

[
log(dPt/dPt ′)(X1)

]= −∞,

the situation being even more delicate when the true distribution of the Xi is different (even
slightly) from Pt .

In BBS and BB, we offered an alternative to the MLE by replacing the logarithmic function
in the log-likehood ratios by other ones. One possibility being the function ϕ(x) defined by

ϕ(x) = 4

√
x − 1√
x + 1

for all x ≥ 0,

so that, for x > 0,

ϕ′(x) = 4

(1 + √
x)2

√
x

> 0 and ϕ′′(x) = − 2(1 + 3
√

x)

(1 + √
x)3x3/2 < 0.

Like the log function, ϕ(x) is increasing, concave and satisfies ϕ(1/x) = −ϕ(x). In fact,
these two functions coincide at x = 1, their first and second derivatives as well and for all
x ∈ [1/2,2]
(3) 0.99 <

ϕ(x)

logx
≤ 1 and

∣∣ϕ(x) − logx
∣∣≤ 0.055|x − 1|3.

The main advantage of the function ϕ as compared to the log function lies in its boundedness.
It can also be extended to [0,+∞] by continuity by setting ϕ(+∞) = 4. As a consequence,
the quantity ϕ(t ′(X)/t (X)) is well-defined (with the convention a/0 = +∞ for a > 0 and
0/0 = 1) and bounded and we can use it as a surrogate for log(t ′(X)/t (X)). This suggests
the replacement of L(X, t, t ′) by 4�(X, t, t ′) where the function � is defined as

(4) �
(
x, t, t ′

)=
n∑

i=1

ψ

(√
t ′(xi)

t (xi)

)
for all x ∈ X n and

(
t, t ′

) ∈ S
2
,

with the conventions 0/0 = 1, a/0 = +∞ for a > 0 and

(5) ψ(x) =
⎧⎨⎩

x − 1

x + 1
for 0 ≤ x < +∞,

1 for x = +∞,

so that ϕ(x) = 4ψ(
√

x). Note that ψ is Lipschitz with Lipschitz constant 2. The important
point here is that we have already studied in details in BB the behaviour and properties of a
process which is closely related to (t, t ′) �→ �(X, t, t ′).

We get a pseudo-posterior density with respect to π by replacing in (2) the quantity
supt ′∈S L(X, t, t ′) by 4 supt ′∈S �(X, t, t ′). This pseudo-posterior density can therefore be
written

g(t |X) = exp[−4 supt ′∈S �(X, t, t ′)]∫
S exp[−4 supt ′∈S �(X, t, t ′)]dπ(t)

.
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More generally, we may consider, for β > 0, the random distribution πX given by

(6)
dπX

dπ
(t) = exp[−β supt ′∈S �(X, t, t ′)]∫

S exp[−β supt ′∈S �(X, t, t ′)]dπ(t)
.

This will be the starting point for our study of this Bayes-like framework with a posterior-
like distribution πX defined by (6) that will play a similar role as the posterior distribution in
the classical Bayesian paradigm except for the fact that a random variable with distribution
πX (conditionally to our sample X) will possess robustness properties with respect to the
hypothesis that P belongs to P . We shall call it ρ-posterior by analogy with our construction
of ρ-estimators as described in BBS and BB.

To conclude this Introduction, let us emphasize the specific properties of our method that
distinguish it from classical Bayesian procedures.

– Contrary to the classical Bayesian framework, concentration properties of the ρ-Bayes
method do not involve the Kullback–Leibler divergence but only the Hellinger distance.

– Our results are nonasymptotic and given in the form of large deviations of the pseudo-
posterior distribution from the true density for a given value n of the number of observa-
tions.

– The method is robust to Hellinger deviations: even if the true distribution is at some positive
Hellinger distance of the support of the prior, the posterior will behave almost as well as if
this were not the case provided that this distance is small.

– Due to the just mentioned robustness properties, we may work with an approximate model
for the true density. In particular, when the density is assumed to belong to a nonparametric
set S , it is actually enough to apply our ρ-Bayes procedure on a parametric set S possessing
good approximation properties with respect to the elements of S . Besides, starting from
a continuous prior on a continuous model, we can discretize both of them without losing
much provided that our discretization scale is small enough.

– The ρ-posterior also possesses robustness properties with respect to the assumption that
the data are i.i.d. provided that the densities of the Xi are close enough to the model S.

Substituting another function to the log-likelihood in the expression of the posterior distri-
bution, as we do here, is not new in the literature. It has often been motivated by the will of
replacing the Kullback–Leibler loss, which is naturally associated to the likelihood-function,
by other losses that are more specifically associated to the problem that needs to be solved
(estimation of a mean, classification, etc.) or to deal with the problem of misspecification.
This approach leads to quasi-posterior distributions which properties have been studied by
many authors among which Chernozhukov and Hong (2003) and Bissiri et al. (2016) (see
also the references therein). These results do not include robustness but Chernozhukov and
Hong (2003) proved some analogues of the Bernstein–von Mises theorem under suitable as-
sumptions on the model and loss function. The use of fractional likelihoods by Jiang and
Tanner (2008) was motivated by the problem of misspecification. In a sparse parametric
framework (the true parameter θ ∈ R

d has a small number of nonzero components), Atchadé
(2017) replaces the joint density fn,θ of the observations by a suitable function qn,θ . Together
with a prior that forces sparsity, this results in tractable and consistent procedures for high-
dimensional parametric problems. All the cited results are of an asymptotic nature contrary
to the next one. Bhattacharya, Pati and Yang (2019) investigate the replacement, in the def-
inition of the posterior, of the likelihood by a fractional one, also considering the case of
misspecified models, but use what they call α-divergences instead of the KL one (but which
may also be infinite) to evaluate the amount of misspecification.

Closer to our approach is the PAC-Bayesian one that has been developed by Olivier Catoni
(2007) and our parameter β in the definition of the ρ-posterior (6) refers to the (inverse) of
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the so-called temperature parameter in the definition of the Gibbs measure. This parameter
essentially plays no role in our results.

The paper is organized as follows. In Section 2, we describe our framework and state our
main assumption that allows to solve the measurability issues that are inherent to the con-
struction of the posterior. An account of what can be achieved with a ρ-posterior distribution
is presented and commented in Section 3 in the density and regression frameworks (with a
random design). Our main result can be found in Section 4 where we present the concentra-
tion properties of our ρ-posterior distribution. These properties involve two quantities, one
which depends on the choice of the prior while the other is independent of it but depends on
the model and the true density. We show how one can control these quantities in Sections 6
and 5, respectively, giving there illustrative examples as well as general theorems that can
be applied to many parametric models of interest. Our results on the connection between the
classical Bayes posterior and the ρ-one are presented in Section 7. We show that under suit-
able assumptions on the density model and the prior, the Hellinger distance between these
two distributions tends to 0 at rate n−1/4(logn)3/4 as the sample size n tends to infinity. In
particular, this result shows that under suitable assumptions our ρ-Bayes posterior satisfies
a Bernstein–von Mises theorem. The problem of a hierarchical prior or, equivalently, that
of model selection is handled in Section 8. The proofs and discussions about measurability
issues are to be found in the Supplementary Material (Baraud and Birgé (2020)) while ad-
ditional results and examples can be found in the original version of this paper, Baraud and
Birgé (2017).

2. Framework, notation and basic assumptions.

2.1. The framework and the basic notation. We actually want to deal with more general
situations than the one we presented in the Introduction, namely the case of independent
but possibly non-i.i.d. observations, even though the statistician assumes them to be i.i.d.
By doing so, our aim is to emphasize the robustness property of our ρ-posterior distribution
with respect to the assumption that the data are i.i.d. This generalization leads to the following
statistical framework. For n ∈ N

� =N\ {0}, we observe a random variable X = (X1, . . . ,Xn)

defined on (�,
), where the Xi are independent with values in a measurable space (X ,A )

endowed with a σ -finite mesure μ. We denote by L the set of all probability densities u

with respect to μ (which means that u is a nonnegative measurable function on X such
that

∫
X u(x)dμ(x) = 1) and by Pu = u · μ the probability on (X ,A ) with density u ∈ L .

We assume that for each i ∈ {1, . . . , n}, Xi admits a density with respect to μ, that is, has
distribution Psi = si ·μ with si ∈ L . We set s = (s1, . . . , sn) and denote by Ps the probability
on (�,
) that gives X the distribution Ps = ⊗n

i=1 Psi on X n and by Es the corresponding
expectation. We shall abusively refer to s as the (true) density of X.

We denote by |A| the cardinality of a finite set A and use the word countable for finite or
countable. Parametric models will be indexed by some subset � of Rd and | · | will denote
the Euclidean norm on R

d . Finally, we shall often use the inequalities

(7) 2ab ≤ αa2 + α−1b2 and (a + b)2 ≤ (1 + α)a2 + (
1 + α−1)b2 for all α > 0.

2.2. Hellinger type metrics. For all t, t ′ ∈ L , we shall write h(t, t ′) and ρ(t, t ′) for the
Hellinger distance and affinity between Pt and Pt ′ . We recall that the Hellinger distance and
affinity between two probabilities P , Q on a measurable space (X ,A ) are given respectively
by

h(P,Q) =
[

1

2

∫
X

(√
dP

dν
−
√

dQ

dν

)2
dν

]1/2
and ρ(P,Q) =

∫
X

√
dP

dν

dQ

dν
dν,
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where ν denotes an arbitrary measure which dominates both P and Q, the result being in-
dependent of the choice of ν. It is well known since Le Cam (1973) that 0 ≤ ρ(P,Q) =
1 − h2(P,Q) and that the Hellinger distance is related to the total variation distance by the
following inequalities:

(8) h2(P,Q) ≤ sup
A∈A

∣∣P(A) − Q(A)
∣∣≤ h(P,Q)

√
2 − h2(P,Q) ≤ √

2h(P,Q).

Therefore, robustness with respect to the Hellinger distance implies robustness with respect
to the total variation distance.

The Hellinger closed ball centred at t ∈ L with radius r > 0 is denoted B(t, r) and, for
s ∈ L n, we define

B(s, r) = {
t ∈ L , h2(s, t) ≤ r2} with h2(s, t) = 1

n

n∑
i=1

h2(si, t) ≤ 1.

Then, for S ⊂ L , we set BS(t, r) = S ∩ B(t, r) and BS(s, r) = S ∩ B(s, r). If the Xi

are truly i.i.d. with density s, s = (s, . . . , s) and h2(s, t) = h2(s, t) for all t ∈ L ; hence
BS(s, r) = BS(s, r).

Note that although h is a genuine distance on the space of all probabilities on X , therefore,
on {Pt , t ∈ L }, it is only a pseudo-distance on L itself since h(t, t ′) = 0 if t 
= t ′ but t = t ′
μ-a.e. For simplicity, we shall nevertheless still call h a distance on L and set h(t,A) =
infu∈A h(t, u) for the distance of a point t ∈ L to the subset A of L . Similarly, h(s,A) =
inft∈A h(s, t). We recall that a pseudo-distance d satisfies the axioms of a distance apart from
the fact that one may have d(x, y) = 0 with x 
= y.

2.3. Models and main assumptions. We consider a density model S, that is, a subset of
L , acting as if the data were i.i.d., and our aim is to estimate the n-uple s = (s1, . . . , sn)

from the observation of X on the basis of this model. Adopting the Bayesian paradigm,
we endow S with a σ -algebra S as well as a prior π on (S,S ). There is no reason for
t �→ �(X, t, t ′) defined by (4) and t �→ supt ′∈S �(X, t, t ′) to be measurable functions of t

on (S,S ) and the function ω �→ supt ′∈S �(X(ω), t, t ′) to be a random variable on (�,
).
Therefore, our ρ-posterior distribution πX , as given by (6), might not be well-defined. In
order to overcome these difficulties, we introduce the following assumption and also slightly
modify the definition of our ρ-posterior distribution that was originally given by (6) in the
density framework. The following assumption ensures that the sets and random variables that
we shall introduce later are suitably measurable. We refer the reader to the Supplementary
Material (Baraud and Birgé (2020)) for a discussion about Assumption 1 and how it can be
checked on examples.

ASSUMPTION 1.

(i) The function (x, t) → t (x) on X × S is measurable with respect to the σ -algebra
A ⊗ S .

(ii) There exists a countable subset S of S and, given t ∈ S and t ′ ∈ S, one can find a
sequence (tk)k≥0 in S such that, for all x ∈ X ,

(9) lim
k→+∞ tk(x) = t (x) and lim

k→+∞ψ

(√
t ′(x)

tk(x)

)
= ψ

(√
t ′(x)

t (x)

)
.

Note that it follows from Proposition 2 in the Supplementary Material (Baraud and Birgé
(2020)) that S is dense in S with respect to the distance h. Of course, when S is countable,
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we shall set S = S without further notice and Assumption 1(ii) will be automatically satisfied
with the σ -algebra S gathering all the subsets of S. In the sequel, we shall always assume
that the set S associated to the model S has been fixed once and for all.

The following proposition (to be proven in the Supplementary Material) ensures that the
measurability properties required for a proper definition of the posterior distribution hold.

PROPOSITION 1. Under Assumption 1, given t ′ ∈ S and �(x, t, t ′) defined by (4), the
functions

(x, t) �→ �
(
x, t, t ′

)
and (x, t) �→ �(x, t) = sup

u∈S

�(x, t, u)

are measurable with respect to the σ -algebra A ⊗ S . Hence the function

x �→
∫
S

exp
[−β�(x, t)

]
dπ(t)

is measurable with respect to A and the function t �→ h(t, s) is measurable with respect to
S whatever s ∈ L .

2.4. The ρ-posterior distribution πX . Let S be the countable subset of S provided by
Assumption 1. For ω ∈ � and β > 0, we define the distribution πX(ω) on S by its density
with respect to the prior π :

(10)
dπX(ω)

dπ
(t) = g

(
t |X(ω)

)= exp[−β�(X(ω), t)]∫
S exp[−β�(X(ω), t ′)]dπ(t ′)

.

Proposition 1 implies that the function (ω, t) �→ g(t |X(ω)) is measurable with respect to the
σ -algebra 
 ⊗ S . We recall that the choice of β = 4 leads to an analogue of the classical
Bayes posterior since the function x �→ 4ψ(

√
x) is close to logx as soon as x is not far from

one. Throughout the paper, the parameter β will remain fixed and part of our results will
depend on it.

DEFINITION 1. The method that leads from the set S and the prior π on S to the dis-
tribution πX (and all related estimators) will be called ρ-Bayes estimation and πX is the
ρ-posterior distribution.

3. A flavour of what a ρ-Bayes procedure can achieve. Throughout this section, we
take β = 4, the value for which the ρ-posterior distribution is the analogue of the classical
Bayes posterior.

3.1. The density framework. Let S be a density model for the supposed common density
of our observations X1, . . . ,Xn and consider the following entropy condition.

ASSUMPTION 2. There exists a nonincreasing function H from (0,1] to [3,+∞) such
that, for any ε ∈ (0,1], there exists a subset Sε of S with cardinality not larger than exp[H(ε)]
and such that h(t, Sε) ≤ ε for all t ∈ S.

PROPOSITION 2. Let S satisfy Assumption 2 and εn be such that

(11) εn ≥ 1/(2
√

n) and H(εn) ≤ (
4 · 10−6)nε2

n.

There exists a prior π on S (depending on εn only) such that, whatever the true density s =
(s1, . . . , sn) and ξ > 0, there exists a measurable subset �ξ of � satisfying Ps(�ξ ) ≥ 1− e−ξ

and for all ω ∈ �ξ ,

πX(ω)

({
t ∈ S,h(s, t) ≤ Crn

})≥ 1 − e−ξ ′
for all ξ ′ > 0,
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with C a positive universal constant and

rn = h(s, S) + εn +
√

ξ + ξ ′
n

.

In particular, if X1, . . . ,Xn are truly i.i.d. with density s ∈ L ,

πX(ω)

(
BS(s,Crn)

)≥ 1 − e−ξ ′
with rn = h(s, S) + εn +

√
ξ + ξ ′

n
.

This result shows that with probability close to 1, the ρ-posterior distribution concentrates
around points t in the density model S which satisfy[

1

n

n∑
i=1

h2(si, t)

]1/2

≤ Crn with rn of order h(s, S) + εn.

The quantity εn corresponds to the concentration rate we get when the Xi are truly i.i.d. with
density in S. For instance, when H(ε) = Aε−V for all ε > 0 and some constants A,V > 0,
εn is of order n−1/(V +2). This concentration rate remains of the same order as long as h(s, S)

is small enough compared to εn, which is actually possible even when none of the densities
si belongs to S. This stability result accounts for the robustness property of our procedure.

It is well known (see, for instance, Birgé (1983) and (1986)) that, in many cases, the small-
est value of εn, which satisfies (11) corresponds to the minimax rate of estimation (with re-
spect to n) over S. Here are two typical illustrations for densities with respect to the Lebesgue
measure:

(i) Assume that S is the set of all nonincreasing densities on [0,1] which are bounded
by M < +∞. Of course, if s ∈ S,

√
s is also nonincreasing and is bounded by

√
M and the

Hellinger entropy of S corresponds to the L2-entropy of the set {√s, s ∈ S} which is known
from van de Geer (2000) to be bounded by Aε−1 leading to an εn of order n−1/3 which is
known to be the minimax rate for this problem.

(ii) If S is the set of α-Hölderian densities on [0,1]d with α > 0, its Hellinger entropy is
known from Birgé (1986) to be of order ε−2d/α leading to a convergence rate with respect
to n of order n−α/2(α+d). All details can be found in Birgé (1986) (see in particular his
Corollary 3.2) where it is also proved that this rate is minimax (see his Proposition 4.3).

Assumption 2 can actually be replaced by the more general one that S admits a metric
dimension D (according to Definition 3 below) in which case the same conclusion holds
with εn ≥ 1/(2

√
n) satisfying D(εn) ≤ 10−6nε2

n.

3.2. The regression framework. We observe i.i.d. pairs Xi = (Wi, Yi) with values in W ×
R drawn from the regression model

Yi = f �(Wi) + εi for i = 1, . . . , n.

We assume that the regression function f � is bounded in supnorm (denoted ‖·‖∞) by some
known number B > 0, that the Wi are i.i.d. with unknown distribution PW on W and the εi

are i.i.d. with unknown density p with respect to the Lebesgue measure λ on R.
We consider a model F for f � which is a set of functions on W satisfying the following

property.

ASSUMPTION 3. For all f ∈ F , ‖f ‖∞ ≤ B and there exists a nonincreasing function H

on [3,+∞) such that for all ε > 0, one can find a subset Fε ⊂ F with cardinality not larger
than exp[H(ε)] which satisfies infg∈Fε ‖f − g‖∞ ≤ ε for all f ∈F .
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The density p being unknown, we consider a candidate density q for p. Denoting by qδ

the translated density qδ(·) = q(· − δ) for δ ∈ R, we assume that q is of order α ∈ (−1,1],
that is, satisfies, for some constant a ≥ 1,

(12) a−1[|δ|1+α ∧ a−1]≤ h2(qδ, q) ≤ a
[|δ|1+α ∧ a−1] for all δ ∈R.

Note that the mapping δ �→ qδ is one-to-one.
For f ∈ F , we denote by qf the density of X1 (with respect to μ = PW ⊗ λ) when p = q

and f � = f which is given by qf (w,y) = q(y −f (w)). The set S = {qf , f ∈ F} is a density
model for the true density s of X1. A prior π ′ on F induces a prior π on S by taking the image
of π ′ by the mapping f �→ qf . In turn, the ρ-posterior πX on (S,π) induces a ρ-posterior
distribution π ′

X on F which is the image of πX by the reciprocal mapping qf �→ f . Let us
choose as our loss function on F∥∥f � − f

∥∥
1+α =

(∫
W

∣∣f � − f
∣∣1+α

dPW

)1/(1+α)

for f ∈F .

PROPOSITION 3. Let Assumption 3 hold, q satisfy (12) for some a ≥ 1 and α ∈ (−1,1]
and let εn satisfy

(13) εn ≥ 1/(2
√

n) and H
[(

ε2
n/a

)1/(1+α)]≤ (
4 · 10−6)nε2

n.

There exists a prior π ′ on F (which only depends on εn) such that, whatever the function f �

bounded by B , whatever the distribution PW , whatever the density p and the positive number
ξ , there exists a measurable subset �ξ of � satisfying Ps(�ξ ) ≥ 1 − e−ξ and for all ω ∈ �ξ ,

π ′
X(ω)

({
f ∈ F,

∥∥f � − f
∥∥

1+α ≤ Cr2/(1+α)
n

})≥ 1 − e−ξ ′
for all ξ ′ > 0,

where

(14) r2
n = h2(p, q) + inf

f ∈F
∥∥f � − f

∥∥1+α
∞ + ε2

n + ξ + ξ ′

n
,

for some constant C > 0 depending on a, B and α only.

Let us first emphasize the fact that neither the prior nor the construction of the posterior re-
quires the knowledge of the distribution of the design PW or any assumption about it. The re-
sult shows that with probability close to 1 the ρ-posterior on F concentrates around functions
f ∈ F for which ‖f − f �‖1+α is of order [h2(p, q) + inff ∈F ‖f � − f ‖1+α∞ + ε2

n]1/(1+α).

The quantity ε
2/(1+α)
n corresponds to the concentration rate we get when p is equal to q

and f � belongs to F while the terms inff ∈F ‖f � − f ‖1+α∞ and h2(p, q) account for the ro-

bustness of the procedure with respect to a misspecification of the class F of the regression
functions and the noise distribution, respectively. The loss and the quantity εn depend on the
specific features of the chosen density q .

When H(ε) = Aε−V for some constants A,V > 0, then

ε2/(1+α)
n = C′n−1/(V +1+α),

where C′ > 0 depends on A, a, α and V only. We refer to Ibragimov and Has’minskiı̆ (1981)
Chapter VI, page 281 for sufficient conditions on the density q to be of order α. For illustra-
tion, when q is Gaussian, α = 1, the loss corresponds to the L2(PW)-norm and ε

2/(1+α)
n = εn

is of order n−1/(V +2); when q is the uniform density on an interval, α = 0, the loss corre-
sponds to the L1(PW)-norm and ε

2/(1+α)
n = ε2

n is of order n−1/(V +1).
When F is a subset of the L∞(PW)-ball with radius B and center 0 of a linear space with

dimension d ≥ 1, a classical result on the entropy of balls in a finite dimensional linear space
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implies that Assumption 3 is satisfied with H(ε) = d log(1+[2B/ε]) which leads to an upper
bound for ε

2/(1+α)
n of order [d log(nB/d)/n]1/(1+α). Note that this rate is faster than the usual

parametric rate 1/
√

n when α ∈ (−1,1).
Choosing a specific density q and a single model F for f � is usually not enough for

many applications. It is however possible to mix up several choices of q and F by using a
hierarchical prior as we shall show in Section 8 and by arguing as in BBS, Sections 7.2 and
7.3.

4. Our main results. Our main results and definitions involve some numerical constants
that we list below for further reference.

(15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c0 = 103; c1 = 15; c2 = 16; c3 = 0.62;
c4 = 3.5 max

{
375;β−1/2}; c5 = 16 × 10−3; c6 = 7 × 104;

c7 = 4.01; c8 = 0.365; c9 = c−1
8

[
(2c6) ∨ β−1];

cn = 1 + [
(log 2)/ log(en)

]; γ = β/8.

The properties of πX actually depend on two quantities, namely εS
n(s) and ηS,π

n (t) for t ∈ S,
that we shall now define. The former only depends on S via S and also possibly on s while
the latter depends on the choice of the prior π but not on s.

4.1. The quantity εS
n(s). Given X with distribution Ps and y > 0, we set

Z
(
X, t, t ′

)= �
(
X, t, t ′

)−Es
[
�
(
X, t, t ′

)]
,

and

wS(s, y) = Es

[
sup

t,t ′∈BS(s,y)

∣∣Z(X, t, t ′
)∣∣] with the convention sup

∅

= 0.

Note that wS(s, y) = wS(s,1) for y > 1. We then define εS
n(s) as

(16) εS
n(s) = sup

{
y > 0|wS(s, y) > 6c−1

0 ny2}∨ 1√
n

with sup∅ = 0.

Since the function ψ is bounded by 1, wS(s, y) is not larger than 2n; hence εS
n(s) is not larger

than (c0/3)1/2. The quantity εS
n(s) measures in some sense the massiveness of the set S. In

particular, if S ⊂ S′, εS
n(s) ≤ εS

′
n (s).

4.2. The quantity ηS,π
n (t).

DEFINITION 2. Let γ = β/8. Given the prior π on the model S, we define the function
ηS,π

n on S by

ηS,π
n (t) = sup

{
η ∈ (0,1]|π(BS(t,2η)

)
> exp

[
γ nη2]π(BS(t, η)

)}
,

with the convention sup∅= 0.

Note that ηS,π
n (t) ≤ 1 since π(BS(t, r)) = π(S) = 1 for r ≥ 1 and that

(17) π
(
BS(t,2r)

)≤ exp
[
γ nr2]π(BS(t, r)

)
for all r ∈ [

ηS,π
n (t),1

]
.

This inequality indeed holds by definition for r > ηS,π
n (t), which implies by monotonicity

that it also holds for r = ηS,π
n (t). Then, if 0 < η ≤ 1 and

(18) π
(
BS(t,2r)

)≤ exp
[
γ nr2]π(BS(t, r)

)
for all r ∈ [η,1],

it follows from (17) that ηS,π
n (t) ≤ η.
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The quantity ηS,π
n (t) corresponds to some critical radius over which the π -probability of

balls centred at t does not increase too quickly. In particular, if the prior puts enough mass on
a small neighbourhood of t , ηS,π

n (t) is small. Indeed, since π(BS(t,2r)) ≤ 1 for all r > 0,
the inequality

(19) π
(
BS(t, η)

)≥ exp
[−γ nη2] for some η ∈ (0,1]

implies that, for 1 ≥ r ≥ η,

π
(
BS(t, r)

)≥ exp
[−γ nr2]≥ π

(
BS(t,2r)

)
exp

[−γ nr2],
hence that ηS,π

n (t) ≤ η. However, the upper bounds on ηS,π
n (t) that are derived from (19) are

usually less accurate than those derived from (18).

4.3. Our main theorem. The concentration properties of the ρ-posterior distribution πX

are given by the following theorem.

THEOREM 1. Let Assumption 1 be satisfied. Then, whatever the true density s of X and
ξ > 0, there exists a measurable subset �ξ of � with Ps(�ξ ) ≥ 1 − e−ξ such that

(20) πX(ω)

(
BS(s, r)

)≥ 1 − e−ξ ′
for all ω ∈ �ξ, ξ

′ > 0 and r ≥ rn

with

(21) rn = inf
t∈S

[
c1h(s, t) + c2η

S,π
n (t)

]+ c3ε
S
n(s) + c4

√
ξ + ξ ′ + 2.61

n
.

The constants cj , 1 ≤ j ≤ 4 are given in (15) and actually universal as soon as β ≥ 7.2 ×
10−6.

In the favorable situation where the observations X1, . . . ,Xn are truly i.i.d. so that s =
(s, . . . , s), (20) can be reformulated equivalently as

πX(ω)

(
BS(s, r)

)≥ 1 − e−ξ ′
for all ω ∈ �ξ, ξ

′ > 0 and r ≥ rn

with

(22) rn = inf
t∈S

[
c1h(s, t) + c2η

S,π
n (t)

]+ c3ε
S
n(s) + c4

√
ξ + ξ ′ + 2.61

n
,

which measures the concentration of the ρ-posterior distribution πX around the true density s

of our i.i.d. observations X1, . . . ,Xn. It involves three main terms: h(s, t), ηS,π
n (t) and εS

n(s).
For many models S of interest, as we shall see in Section 5, it is possible to show an upper
bound of the form

(23) εS
n(s) ≤ vn(S) for all s ∈ L n,

where vn(S) is of the order of the minimax rate of estimation on S (up to possible logarithmic
factors), that is, the rate one would expect by using a frequentist or a classical Bayes estimator
provided that the true density s does belong to the model S and the prior distribution puts
enough mass around s. Under (23), if s does belong to S, we deduce from (22) that

(24) rn ≤ (c2 + c3)max
{
ηS,π

n (s);vn(S)
}+ c4

√
ξ + ξ ′ + 2.61

n
.

In many cases, the quantity ηS,π
n (s) turns out to be of the same order or smaller than vn(S)

provided that the prior π puts enough mass around s. In (22), the term inft∈S[c1h(s, t) +
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c2η
S,π
n (t)] expresses some robustness with respect to this ideal situation: if π puts too little

mass around s, possibly zero mass when s does not belong to the model, but if s is close
enough to some point t ∈ S around which π puts enough mass, the previous situation does
not deteriorate too much. When s does not belong to the model, one may think of t as a best
approximation point t of s in S when ηS,π

n (t) is not too large or alternatively to some point

t that may be slightly further away from s but for which ηS,π
n (t) is smaller than ηS,π

n (t) in

order to minimize the function t ′ �→ c1h(s, t ′) + c2η
S,π
n (t ′) over S.

If X1, . . . ,Xn are not truly i.i.d. but are independent and close to being drawn from a
common density s0 ∈ S, that is, s = (s1, . . . , sn) with h(si, s0) ≤ ε for some small ε > 0
and all i ∈ {1, . . . , n}, then h(s, s0) ≤ ε and BS(s, r) ⊂ BS(s0, ε + r). We therefore deduce
from (20) and (21) with t = s0 that, if (23) holds, the posterior distribution concentrates on
Hellinger balls around s0 with radius not larger than

ε + rn ≤ (1 + c1)ε + (c2 + c3)max
{
ηS,π

n (s0);vn(S)
}+ c4

√
ξ + ξ ′ + 2.61

n
,

which is similar to (24) with s = s0 except for the additional term (1 + c1)ε which expresses
the fact that our procedure is robust with respect to a possible departure from the assumption
of equidistribution.

5. Upper bounds for εS
n(s).

5.1. Case of a finite set S. There are many situations for which it is natural, in view of
the robustness properties of the ρ-Bayes posterior, to choose for S a finite set, in which case
we take S = S and the quantity εS

n(s) can then be bounded from above as follows.

PROPOSITION 4. If S is a finite set and S = S,

εS
n(s) <

(√
c0/3

)
min

{√√
2c0n−1 log

(
2|S|2),1

}
.

An important example of such a finite set S is that of an ε-net for a totally bounded set. We
recall that, if S̃ is a subset of some pseudo-metric space M endowed with a pseudo-distance
d and ε > 0, a subset Sε of M is an ε-net for S̃ if, for all t ∈ S̃, one can find t ′ ∈ Sε such
that d(t, t ′) ≤ ε. When S̃ is totally bounded one can find a finite ε-net for S̃ whatever ε > 0.
This applies in particular to totally bounded subsets S̃ of (L , h). The smallest possible size
of such nets depends on the metric properties of (S̃, h) and the following notion of metric
dimension, as introduced in Birgé (2006a) (Definition 6, p. 293) turns out to be a central tool.

DEFINITION 3. Let D be a function from (0,1] to [3/4,+∞) which is right-continuous.
A model S̃ ⊂ L admits a metric dimension bounded by D if, for all ε ∈ (0,1], there exists
an ε-net Sε for S̃ such that, for any s in L ,

(25)
∣∣{t ∈ Sε,h(s, t) ≤ r

}∣∣≤ exp
[
D(ε)(r/ε)2] for all r ≥ 2ε.

Note that this implies that Sε is finite and that one can always take D(1) = 3/4 since h is
bounded by 1. The following result shows how a bound D for the metric dimension can be
used to bound εS

n(s) for a model S which is an ε-net for S̃ which satisfies (25).

PROPOSITION 5. Let S̃ be a totally bounded subset of (L , h) with metric dimension
bounded by D and let ε be a positive number satisfying

(26) ε ≥ 1/(2
√

n) and D(ε) ≤ n(ε/c0)
2.

If Sε is an ε-net for S̃ satisfying (25) and S = S = Sε , then εS
n(s) ≤ 2ε whatever s ∈ L n.
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Starting from a classical statistical model S̃ with metric dimension bounded by D we may
therefore replace it by a suitable ε-net S in order to build a ρ-Bayes posterior based on some
prior distribution on S. The robustness of the procedure, as shown by Theorem 1, implies that
the replacement of S̃ by S will only entail an additional bias term of order ε.w.

5.2. Weak VC-major classes.

DEFINITION 4. A class of real-valued functions F on a set X is said to be weak VC-
major with dimension not larger than d ∈ N if, for all u ∈R, the class of sets

Cu(F ) = {{f > u}, f ∈ F
}

is VC on X , with VC-dimension not larger than d . The weak VC-major dimension of F is
the smallest such integer d .

For details on the definition and properties of VC-classes, we refer to van der Vaart and
Wellner (1996) and for weak VC-major classes to Baraud (2016). One major point about
weak VC-major classes is the fact that if F is weak VC-major with dimension not larger
than d ∈ N, the same holds for any subset F ′ of F .

PROPOSITION 6. Let F be the class of functions on X given by

(27) F =
{
ψ

(√
t ′
t

)
,
(
t, t ′

) ∈ S
2
}
.

If it is weak VC-major with dimension not larger than d ≥ 1, then, whatever the density
s ∈ L n,

(28) εS
n(s) ≤ 11c0

4

√
cn(d ∧ n)

n

[
log

(
en

d ∧ n

)]3/2
with cn = 1 + log 2

log(en)
.

5.3. Examples. We provide below examples of parametric models indexed by some sub-
set � of a Euclidean space putting on our models the σ -algebra induced by the Borel one
on �. Since our results are in terms of VC-dimensions, they hold for all submodels of those
described below.

PROPOSITION 7. Let (gj )1≤j≤J with J ≥ 1 be real-valued functions on a set X .

(a) If the elements t of the model S are of the form

(29) t (x) = exp

[
θ0 +

J∑
j=1

θjgj (x)

]
for all x ∈ X

with θ0, . . . , θJ ∈ R, then F defined by (27) is weak VC-major with dimension not larger
than d = J + 2.

(b) Let J = (Ii)i=1,...,k (k ≥ 2) be a partition of X . If the elements t of the model S are
of the form

(30) t (x) =
k∑

i=1

exp

[
J∑

j=1

θi,j gj (x)

]
1Ii

(x) for all x ∈ X

with θi,j ∈ R for i = 1, . . . , k and j = 1, . . . J , then F defined by (27) is weak VC-major with
dimension not larger than d = k(J + 2).
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If X is an interval of R (possibly R itself), the second part of the proposition extends to
densities based on variable partitions of X .

PROPOSITION 8. Let (gj )1≤j≤J (J ≥ 1) be real-valued functions on an interval I of R.
Let the elements t of the model S be of the form

(31) t (x) = ∑
I∈J (t)

exp

[
J∑

j=1

θI,j gj (x)

]
1I (x) for all x ∈ X ,

where J (t) is a partition of I which may depend on t , into at most k intervals (k ≥ 2), and
(θI,j )j=1,...,J ∈ R

J for all I ∈ J (t). Then F defined by (27) is weak VC-major with dimen-
sion not larger than d = �18.8k(J +2)�, which means the smallest integer j ≥ 18.8k(J +2).

If, for instance, S consists of all positive histograms defined on a bounded interval I of R
with at most k pieces, then one may take J = 1, g1 ≡ 1 and Proposition 8 implies that F is
weak VC-major with dimension not larger than 56.4k.

Note that the densities t given by (30) can be viewed as elements of a piecewise exponen-
tial family. Let us indeed consider a classical exponential family on the set X with densities
(with respect to μ) of the form

(32) tθ (x) = exp

[
J∑

j=1

θjTj (x) − A(θ)

]
for all x ∈ X

with θ = (θ1, . . . , θJ ) ∈ � ⊂ R
J . It leads to a model S of the form (29) with gj = Tj for

1 ≤ j ≤ J and θ0 = −A(θ). In particular, F is weak VC-major with dimension not larger
than d = J + 2 and we deduce from Proposition 7 that

(33) εS
n(s) ≤ (11/4)c0

√
cn(J + 2)

n
log3/2(en) for all s ∈ L n.

If all elements of S are piecewise of the form (32) on some partition J = (Ii)i=1,...,k of X
into k subsets, F is then weak VC-major with dimension not larger than k(J + 3) and for
some positive universal constant c′,

(34) εS
n(s) ≤ c′

√
kJ

n
log3/2(en) for all s ∈ L n.

When X = [0,1], one illustration of case b) is provided by �i = [−M,M]J for i ∈
{1, . . . , k} and Tj (x) = xj−1 for j ∈ {1, . . . , J }. We may then apply Proposition 7 and the
performance of the ρ-posterior distribution will depend on the approximation properties of
the family of piecewise polynomials on the partition J with respect to the logarithm of
the true density. Numerous results about such approximations can be found in DeVore and
Lorentz (1993).

6. Upper bounds for η
S,π
n (t).

6.1. Uniform distribution on an ε-net. We consider here the situation where S̃ is a totally
bounded subset of (L , h) with metric dimension bounded by D, ε ∈ (0,1], S = Sε is an ε-net
for S̃ which satisfies (25) and we choose π as the uniform distribution on S.

PROPOSITION 9. If D(ε) ≤ (γ /4)nε2, then ηS,π
n (t) ≤ ε for all t ∈ S.
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PROOF. Let t ∈ S. For all r > 0, π(BS(t, r)) ≥ π({t}) = |S|−1. Using (25), we derive
that

π(BS(t,2r))

π(BS(t, r))
≤ |S|π(BS(t,2r)

)= ∣∣BS(t,2r)
∣∣≤ exp

[
4D(ε)

(
r

ε

)2]
for all r ≥ ε. The conclusion follows from the fact that 4D(ε)/ε2 ≤ γ n. �

6.2. Parametric models indexed by a bounded subset of Rd . In this section, we consider
the situation where S is a parametric model {tθ , θ ∈ �} indexed by a measurable (with respect
to the Borel σ -algebra) bounded subset � ⊂R

d and we assume that the prior π is the image
by the mapping θ �→ tθ of some probability ν on �. Besides, we assume that the Hellinger
distance on S is related on � to some norm |·|∗ on R

d in the following way:

(35) a
∣∣θ − θ ′∣∣α∗ ≤ h(tθ , tθ ′) ≤ a

∣∣θ − θ ′∣∣α∗ for all θ, θ ′ ∈ �,

where a, a and α are positive numbers. Since h is bounded by 1, (35) implies that � is
necessarily bounded. Let us denote by B∗(θ, r) the closed ball (with respect to the norm |·|∗)
of center θ and radius r in R

d .

PROPOSITION 10. Assume that � is measurable and bounded in R
d , that (35) holds and

that ν satisfies

(36) ν
(
B∗(θ ,2x)

)≤ κθ (x)ν
(
B∗(θ , x)

)
for all θ ∈ � and x > 0,

where κθ (x) denotes some positive nonincreasing function on R+. Then, for all θ ∈ �,

(37) ηS,π
n (tθ ) ≤ inf

{
η > 0

∣∣∣η2 ≥ log(κθ ([η/a]1/α))

γ n

[
log(2a/a)

α log 2
+ 1

]}
.

If κθ (x) ≡ κ0 for all θ ∈ � and x > 0, then

(38) ηS,π
n (tθ ) ≤

√
logκ0

γ n

[
log(2a/a)

α log 2
+ 1

]
for all θ ∈ �.

In particular, if � is convex and ν admits a density g with respect to the Lebesgue measure
λ on R

d which satisfies

(39) b ≤ g(θ) ≤ b for λ-almost all θ ∈ � with 0 < b ≤ b,

then (36) holds with κθ (x) ≡ κ0 = 2d(b/b), hence, for all t ∈ S,

(40) ηS,π
n (t) ≤ c

√
d

n
with c2 = log(2[b/b]1/d)

γ

[
log(2a/a)

α log 2
+ 1

]
.

6.3. Example. Let us consider, in the density model with n i.i.d. observations on R, the
following translation family tθ (x) = t (x − θ) where t is the density of the Gamma(2α,1)

distribution, namely

t (x) = c(α)x2α−1e−x1x≥0 with 0 < α < 1

and θ belongs to the interval � = [−1,1]. It is known from Example 1.3, page 287 of Ibrag-
imov and Has’minskiı̆ (1981) that, in this situation, (35) holds for |·|∗ the absolute value and
a, a depending on α. Let us now derive upper bounds for ηS,π

n (tθ ) when ν has a density g

with respect to the Lebesgue measure.
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– If ν is uniform on �, then b = b and (40) is satisfied for some constant c depending on α

and γ only.
– If g(z) = (ξ/2)|z|ξ−11[−1,1](z) with 0 < ξ < 1, in order to compute κ0 one has to compare

the ν-measures of the intervals I1 = [(θ − x) ∨ −1, (θ + x) ∧ 1] and I2 = [(θ − 2x) ∨
−1, (θ + 2x) ∧ 1] for x > 0.

PROPOSITION 11. If in this example g(z) = (ξ/2)|z|ξ−11[−1,1](z), (38) holds since

ν(I2) ≤ κ0ν(I1) with κ0 = 21+ξ (2ξ − 1
)−1

.

One should therefore note that if (39) is sufficient for κθ (r) to be constant, it is by no means
necessary.

– Let us now set g(z) = c−1
δ exp[−(2|z|δ)−1]1[−1,1](z) for some δ > 0, which means that the

prior puts very little mass around the point θ = 0.

Then

PROPOSITION 12. In this example, ηS,π
n (t0) ≤ Kn−α/[2α+δ], for some K depending on

α, δ, a, a and γ .

It is not difficult to check that in this situation the family F defined by (27) consists of
elements f for which either f or −f is unimodal. In particular, for f ∈ F , the levels sets
{f > u} with u ∈ R consist of a union of at most two disjoint intervals. It follows from
Lemma 1 of Baraud and Birgé (2016) that F is then weak-VC major with dimension not
larger than 4 so that, as a consequence of Proposition 6, εS

n(s) ≤ C(logn)3/2 for some univer-
sal constant C > 0 and all densities s ∈ L n. Applying Theorem 1 when the true parameter θ

is 0 leads to a bound for (22) of the form

rn ≤ K

[
n−α/(2α+δ) +

√
log3 n

n
+
√

ξ + ξ ′ + 2.61

n

]
,

which is of the order of n−α/(2α+δ) and clearly depends on the relative values of α and δ. In
particular, if α = 1/2, which corresponds to the exponential density, we get a bound for rn of
order n−1/[2(1+δ)].

7. Connexion with classical Bayes estimators. Throughout this section, we assume
that the data X1, . . . ,Xn are i.i.d. with density s on the measured space (X ,A ,μ).

We consider a parametric set of real nonnegative functions {tθ , θ ∈ �} satisfying∫
X tθ (x) dμ(x) = 1, indexed by some subset � of R

d and such that the mapping θ �→
Pθ = tθ · μ is one-to-one so that our statistical model be identifiable. Our model for s is
S = {tθ , θ ∈ �}. We set ‖t‖∞ = supx∈X |t (x)| for any function t on X . Since the map-
ping θ �→ tθ is one-to-one, the Hellinger distance can be transferred to � and we shall write
h(θ , θ ′) for h(tθ , tθ ′) = h(Pθ ,Pθ ′).

We consider on (S,h) the Borel σ -algebra S and, given a prior π on (S,S ), we consider
both the usual Bayes posterior distribution πL

X and our ρ-posterior distribution πX given by
(6) with β = 4. A natural question is whether these two distributions are similar or not, at
least asymptotically when n tends to +∞. This question is suggested by the fact, proven
in Section 5.1 of BBS, that under suitable regularity assumptions, the maximum likelihood
estimator is a ρ-estimator, at least asymptotically.

In order to show that the two distributions πL
X and πX are asymptotically close, we shall

introduce the following assumptions that are certainly not minimal but at least lead to simpler
proofs.
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ASSUMPTION 4.

(i) The function (x, θ) �→ tθ (x) is measurable from (X × �,A ⊗ G (�)) to (R+,R)

where G (�) and R denote respectively the Borel σ -algebras on � ⊂ R
d and R+.

(ii) The parameter set � is a compact and convex subset of �′ ⊂ R
d and the true density

s = tϑ belongs to S.
(iii) There exists a positive function A2 on � such that the following relationship between

the Hellinger and Euclidean distances holds:

(41)
A2(θ

′)
2

|θ − θ | ≤ h

(
tθ + tθ ′

2
,
tθ + tθ ′

2

)
for all θ, θ, θ ′ ∈ �.

(iv) Whatever θ ∈ �, the density tθ is positive on X and there exists a constant A1 such
that ∥∥∥∥

√
tθ

tθ ′
−
√

tθ
tθ ′

∥∥∥∥∞
≤ A1|θ − θ | for all θ , θ and θ ′ ∈ �.

These assumptions imply that (S,h) is a metric space and that the function t �→ t (x) from
(S,h) to (0,+∞) is continuous whatever x ∈ X . Furthermore, Assumption 4(iv) implies
that the Hellinger distance on � is controlled by the Euclidean one in the following way:

h2(θ , θ) = 1

2

∫ (√
tθ

tθ ′
−
√

tθ
tθ ′

)2
tθ ′ dμ ≤ A2

1

2
|θ − θ |2.

Since the concavity of the square root implies that

(42) h

(
tθ + tθ ′

2
,
tθ + tθ ′

2

)
≤ 1

2
h(θ , θ),

we derive from (41) with θ ′ = ϑ that h(θ , θ) ≥ A2(ϑ)|θ − θ |. The Hellinger and Euclidean
distances are therefore equivalent on �:

(43) A2|θ − θ | ≤ h(θ , θ) = h(tθ , tθ ) ≤ A3|θ − θ | for all θ , θ ∈ �,

with A2 = A2(ϑ) < A3 = A1/
√

2.
In particular, the mapping tθ �→ θ is continuous from (S,h) to (�, |·|), hence measur-

able from (S,S ) to (�,G (�)) and so are f : (x, tθ ) �→ (x, θ) from (X × S,A ⊗ S ) to
(X ×�,A ⊗G (�)) and (x, tθ ) �→ tθ (x) from (X ×S,A ⊗S ) to (R+,R) as the compo-
sition of f with (x, θ) �→ tθ (x) which is measurable under Assumption 4(ii). Consequently
Assumption 1(i) is satisfied and so is (9) if we take for S the image by the mapping θ �→ tθ
of a countable and dense subset of (�, |·|) and use the fact that for all x ∈ X , the function
t �→ t (x) is continuous and positive on (S,h).

We deduce from (41) and (42) that

(44)
A2

2
|θ − θ | ≤ h

(
tθ + s

2
,
tθ + s

2

)
≤ A3

2
|θ − θ | for all θ , θ ∈ �,

and since ψ is a Lipschitz function with Lipschitz constant 2, Assumption 4(iv) implies that∥∥∥∥ψ(√
tθ

tθ ′

)
− ψ

(√
tθ
tθ ′

)∥∥∥∥∞
≤ 2A1|θ − θ | for all θ , θ and θ ′ ∈ �.

If � is a compact subset of an open set �′ and the the parametric family {tθ , θ ∈ �′} is regular
with invertible Fisher Information matrix, the same holds for the family {[tθ + tθ ′ ]/2, θ ∈ �′}
for each given θ ′ in �, which implies that Assumption 4(iii) holds.
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ASSUMPTION 5. The prior π on (S,S ) is the image via the mapping θ �→ tθ of a prob-
ability ν on (�,G (�) that satisfies the following requirements for suitable constants B ≥ 1
and γ ∈ [1,4): if B(θ , r) denotes the closed Euclidean ball in � with center θ and radius r ,
whatever θ ∈ � and r > 0,

(45) ν
[
B
(
θ ,2kr

)]≤ exp
[
Bγ k]ν[B(θ , r)

]
for all k ∈ N

�.

The convexity of � and the well-known formulas for the volume of Euclidean balls imply
that this property holds for all probabilities which are absolutely continuous with respect
to the Lebesgue measure with a density which is bounded from above and below but other
situations are also possible. One simple example would be � = [−1,1] and ν with density
(1/2)(α + 1)|x|α , α > 0 with respect to the Lebesgue measure.

THEOREM 2. Under Assumptions 4 and 5, one can find two functions C and n1 on
(0,+∞), also depending on s and all the parameters involved in these assumptions but in-
dependent of n, such that, for all n ≥ n1(z),

Ps

[
h2(πL

X, πX
)≤ C(z)

(logn)3/2
√

n

]
≥ 1 − e−z for all z > 0.

This means that, under suitably strong assumptions, the usual posterior and our ρ-posterior
distributions are asymptotically the same which shows that our construction is a genuine gen-
eralization of the classical Bayesian approach. It also implies that the Bernstein–von Mises
theorem also holds for πX as shown by the following result.

COROLLARY 1. Let Assumptions 4 and 5 hold, (̂θn) be an asymptotically efficient se-
quence of estimators of the true parameter ϑ and assume that the following version of the
Bernstein–von Mises theorem is true:∥∥πL

X −N (̂θn, [nI
(
ϑ]−1)∥∥

TV
P−→

n→+∞ 0,

where I denotes the Fisher Information matrix and ‖·‖TV the total variation norm. Then the
ρ-posterior distribution also satisfies the same Bernstein–von Mises theorem, that is,∥∥πX −N (̂θn, [nI

(
ϑ]−1)∥∥

TV
P−→

n→+∞ 0.

PROOF. It follows from the triangular inequality and the classical relationship between
Hellinger and total variation distances given by (8). �

8. Combining different models.

8.1. Priors and models. In the case of simple parametric problems with parameter set
�, such as those we considered in Section 7, S is the image of a subset of some Euclidean
space R

d and one often chooses for π the image of a probability on � which has a density
with respect to the Lebesgue measure. The choice of a convenient prior π becomes more
complex when S is a complicated function space which is very inhomogeneous with respect
to the Hellinger distance. In such a case, it is often useful to introduce “models”, that is to
consider S as a countable union of more elementary and homogeneous disjunct subsets Sm,
m ∈ M, and to choose a prior πm on each Sm in such a way that Theorem 1 applies to each
model Sm and leads to a nontrivial result. It remains to put all models together by choosing
some prior ν on M and defining our final prior π on S = ⋃

m∈M Sm as
∑

m∈M ν({m})πm.
This corresponds to a hierarchical prior.
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One can as well proceed in the opposite way, starting from a global prior π on S and
partitioning S into subsets Sm, m ∈ M, of positive prior probability, then setting ν({m}) =
π(Sm) and defining πm as the conditional distribution of a random element t ∈ S when it
belongs to Sm. The two points of view are actually clearly equivalent, the important fact for
us being that the pairs (Sm,πm) are such that Theorem 1 can be applied to each of them.

Throughout this section, we work within the following framework. Given a countable
sequence of disjunct probability spaces (Sm,Sm,πm)m∈M on (X ,A ), we consider S =⋃

m∈M Sm endowed with the σ -algebra S defined as

S = {A ⊂ S,A ∩ Sm ∈ Sm for all m ∈ M}.
In order to define our prior, we introduce a mapping pen from M into R+ that will also be

involved in the definition of our ρ-posterior distribution. The prior π on S is given by

(46) π(A) = �
∑

m∈M

∫
A∩Sm

exp
[−β pen(m)

]
dπm(t) for all A ∈ S

with

� =
( ∑

m∈M

∫
Sm

exp
[−β pen(m)

]
dπm(t)

)−1
,

so that π is a genuine prior. This amounts to put a prior weight proportional to
exp[−β pen(m)] on the model Sm. We shall assume the following.

ASSUMPTION 6.

(i) For all m ∈ M, the function (x, t) → t (x) on X × Sm is measurable with respect to
the σ -algebra A ⊗ Sm.

(ii) For all m ∈ M, there exists a countable subset Sm of Sm with the following property:
given t ∈ Sm and t ′ ∈ S = ⋃

m′∈M Sm′ , one can find a sequence (tk)k≥0 in Sm such that (9)
holds for all x ∈ X .

(iii) There exists a mapping m �→ ε2
m from M to R+ such that, whatever the density

s ∈ L n,

(47) ε
Sm∪Sm′
n (s) ≤

√
ε2
m + ε2

m′ for all m,m′ ∈ M.

(iv) Given a set {Lm,m ∈ M} of nonnegative numbers satisfying

(48)
∑

m∈M
exp[−Lm] = 1,

the penalty function pen is lower bounded in the following way:

(49) pen(m) ≥ c5nε2
m + (

c6 + β−1)Lm for all m ∈ M,

with constants c5 and c6 defined in (15).

8.2. The results. We define the ρ-posterior distribution πX on S by its density with re-
spect to the prior π given by (46) as follows:

(50)
dπX

dπ
(t) = exp[−β�(X, t)]∫

S exp[−β�(X, t ′)]dπ(t ′)
for all t ∈ S,

with

�(X, t) = sup
m∈M

sup
t ′∈Sm

[
�
(
X, t, t ′

)− pen(m)
]
.
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Note that if we choose β = 1 and replace �(X, t, t ′) by the difference of the log-likelihoods∑n
i=1 log t ′(Xi)−∑n

i=1 log t (Xi), πX is the usual posterior distribution corresponding to the
prior π . We finally, introduce a mapping η on S which associates to an element t ∈ Sm with
m ∈ M the quantity η2

n(t) given by

(51) η2
n(t) = inf

r∈(0,1]

[
c7r

2 + 1

2nβ
log

(
1

πm(BSm(t, r))

)]
for all t ∈ Sm,

which only depends on the choice of the prior πm on Sm. Taking r = 1, we see that η2
n(t) ≤ c7

for all t ∈ S. Moreover, if, for some η ∈ (0,1] and λ > 0,

πm

(
BSm(t, r)

)≥ exp
[−λnr2] for all r ≥ η,m ∈ M and t ∈ Sm,

then

η2
n(t) ≤ inf

r≥η

[
c7r

2 + λr2

2β

]
=
[
c7 + λ

2β

]
η2,

a result which is similar to the one we derived for ηS,π
n (t) in Section 4.2 under an analogous

assumption.

THEOREM 3. Let Assumption 6 hold. For all ξ > 0 and whatever the density s ∈ L n of
X, there exists a set �ξ with Ps(�ξ ) ≥ 1 − e−ξ and such that

πX(ω)

(
BS(s, r)

)≥ 1 − e−ξ ′
for all ω ∈ �ξ, ξ

′ > 0 and r ≥ rn

with

r2
n = inf

m∈M inf
s∈Sm

[
3c7

c8
h2(s, s) − h2(s, S) + 2

c8

(
2 pen(m)

n
+ η2

n(s) − Lm

βn

)]

+ c9
ξ + ξ ′ + 2.4

n

and constants cj , 7 ≤ j ≤ 9 defined in (15).

This result about the concentration of the ρ-posterior distribution is analogue to that one
can obtain from a frequentist point of view by using a model selection method. Up to pos-
sible extra logarithmic terms, the ρ-posterior concentrates at a rate which achieves the best
compromise between the approximation and complexity terms among the family of models.

8.3. Model selection among exponential families. In this section, we pretend that the
observations X1, . . . ,Xn are i.i.d. but keep in mind that the Xi might not be equidistributed
so that their true joint density s might not be of the form (s, . . . , s).

Hereafter, �2(N) denotes the Hilbert space of all square-summable sequences θ = (θj )j≥0
of real numbers that we endow with the Hilbert norm | · | and the inner product 〈·, ·〉. Let
M =N, M be some positive number and for m ∈ M, let �′

m be the subset of �2(N) of these
sequences θ = (θj )j≥0 such that θj ∈ [−M,M] for 0 ≤ j ≤ m and θj = 0 for all j > m.

For a sequence T = (Tj )j≥0 of linearily independent measurable real-valued functions on
X with T0 ≡ 1 and m ∈ M, we define the density model Sm as the exponential family

Sm = {
tθ = exp

[〈θ ,T〉 − A(θ)
]
, θ ∈ �′

m, θm 
= 0
}
,

where A denotes the mapping from � =⋃
m∈M �′

m to R defined by

A(θ) = log
∫
X

exp
[〈
θ ,T(x)

〉]
dμ(x),
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and μ is a finite measure on X . Note that, whatever θ ∈ �, x �→ 〈θ ,T(x)〉 is well-defined
on X since only a finite number of coefficients of θ are nonzero.

For all m ∈ M, we endow Sm with the Borel σ -algebra Sm and the prior πm which is
the image of the uniform distribution on �′

m (identified with [−M,M]m+1) by the mapping
θ �→ tθ on �′

m. Throughout this section, we consider the family of (disjunct) measured spaces
(Sm,Sm,πm) with m ∈ M together with the choice Lm = (m + 1) log 2 for all m ∈ M, so
that

∑
m∈M e−Lm = 1. Then S =⋃

m∈M Sm, π is given by (46) and for all m ∈ M,

pen(m) = c5nε2
m + (

c6 + β−1)Lm with εm = 11c0

4

√
cn(m + 3)

n
log3/2(en)

and c0, c5, c6, cn defined in (15). In such a situation, we derive the following result.

PROPOSITION 13. Assume that, for all m ∈ M, the restriction Am of A to �′
m is convex

and twice differentiable on the interior of �′
m with a Hessian whose eigenvalues lie in (0, σm]

for some σm > 0. Whatever the density s of X, for all ξ > 0, with Ps-probability at least
1 − e−ξ ,

πX
(
BS(s, r)

)≥ 1 − e−ξ ′
for all ξ ′ > 0 and all r ∈ [rn,1]

with

r2
n ≤ C(β) inf

m≥1

[
h2(s, Sm) + m + 1

n

[
log3(en) + log

(
1 + nσ 2

mM2)]]

+ c9
ξ + ξ ′ + 2.4

n

and some constant C(β) > 0 depending on β only.
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