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Consider the heteroscedastic nonparametric regression model with ran-
dom design

Yi = f (Xi) + V 1/2(Xi)εi , i = 1,2, . . . , n,

with f (·) and V (·) α- and β-Hölder smooth, respectively. We show that the
minimax rate of estimating V (·) under both local and global squared risks is
of the order

n
− 8αβ

4αβ+2α+β ∨ n
− 2β

2β+1 ,

where a ∨ b := max{a, b} for any two real numbers a, b. This result extends
the fixed design rate n−4α ∨ n−2β/(2β+1) derived in (Ann. Statist. 36 (2008)
646–664) in a nontrivial manner, as indicated by the appearances of both α

and β in the first term. In the special case of constant variance, we show that
the minimax rate is n−8α/(4α+1) ∨n−1 for variance estimation, which further
implies the same rate for quadratic functional estimation and thus unifies the
minimax rate under the nonparametric regression model with those under the
density model and the white noise model. To achieve the minimax rate, we
develop a U-statistic-based local polynomial estimator and a lower bound that
is constructed over a specified distribution family of randomness designed for
both εi and Xi .

1. Introduction. Consider the model

(1) Yi = f (Xi) + V 1/2(Xi)εi, i = 1,2, . . . , n,

where {Xi}ni=1 are independent and identically distributed (i.i.d.) univariate random design
points, and {εi}ni=1 are i.i.d. with zero mean, unit variance and are independent of {Xi}ni=1.
In this paper, we study the optimal estimation of V (·) under both local and global squared
risks. Variance estimation is a fundamental statistical problem (von Neumann (1941, 1942),
Rice (1984), Hall, Kay and Titterington (1990)) with wide applications. It is useful in, for
example, construction of confidence bands for the mean function, estimation of the signal-
to-noise ratio (Verzelen and Gassiat (2018)), and selection of the optimal kernel bandwidth
(Fan (1992)).

When {Xi}ni=1 are fixed, estimation of V (·) in (1) has been studied extensively in the lit-
erature via residual-based methods (Hall and Carroll (1989), Ruppert et al. (1997), Härdle
and Tsybakov (1997), Fan and Yao (1998)) and difference-based methods (Müller and Stadt-
müller (1987), Müller, Schick and Wefelmeyer (2003), Brown and Levine (2007), Wang et al.
(2008)). One important heuristic from previous studies is that, compared to residual-based
methods, difference-based methods are able to achiever a smaller bias and subsequently a
smaller mean squared error by avoiding direct estimation of the mean function. More pre-
cisely, when Xi = i/n, i = 1, . . . , n and f (·) and V (·) in (1) are α- and β-Hölder smooth,
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respectively, Wang et al. (2008) proposed a difference estimator which achieved the optimal

rate of the order n−4α ∨ n
− 2β

2β+1 under both local and global squared risks.
In contrast, our study focuses on the case where {Xi}ni=1 are i.i.d. random design points on

the real line. For this, we show that when f (·) and V (·) in (1) are α- and β-Hölder smooth,

respectively, the minimax rate of estimating V (·) is of the order n
− 8αβ

4αβ+2α+β ∨ n
− 2β

2β+1 under
both local and global squared risks. This result has several noteworthy implications:

• The minimax rates in random and fixed design settings share a common component,

n
− 2β

2β+1 , as well as the same transition boundary α = β/(4β + 2).
• For α < β/(4β + 2), a faster rate is achievable with a random design.
• Unlike the fixed design setting, for α < β/(4β + 2), α and β are now both present in the

first term of the minimax rate in the random design case.

We now discuss in more detail this minimax rate. The upper bound of the minimax rate
is achieved by smoothing pairwise differences via local polynomial regression, the former of
which is formulated via U-statistics. Our analysis of this estimator hence relies on the four-
term Bernstein inequality in Giné, Latała and Zinn (2000), and unlike classic kernel methods,
requires no smoothness assumption on the design density.

For the lower bound, due to the appearances of both α and β in the nontrivial n
− 8αβ

4αβ+2α+β

part of the minimax rate and the additional randomness of {Xi}ni=1, the derivation is much
more involved than its counterpart in the fixed design setting. We tackle the first difficulty
of entangled α and β via a proper localization technique in the construction of the mean
function f (·), depicted in Figure 2 in Section 3.2. The second difficulty caused by the ran-
domness of {Xi}ni=1 is resolved with a new trapezoid-shaped construction of the mean f (·),
aided by a result due to Kolchin, Sevast’yanov and Chistyakov (1978) on the sparse multi-
nomial distribution. This result helps characterize the asymptotic behavior of the locations of
{Xi}ni=1 and plays a key role in our proof, but to our knowledge has not been well used in the
nonparametric statistics literature.

In the special case of constant variance, (1) is reduced to

(2) Yi = f (Xi) + σεi, i = 1,2, . . . , n,

and the goal becomes estimation of σ 2. In this case, the problem is linked to estimation of a
quadratic functional, which has been studied in depth in the other two benchmark nonpara-
metric models, the density model (Bickel and Ritov (1988), Laurent (1996), Giné and Nickl
(2008)) and the white noise model (Donoho and Nussbaum (1990), Fan (1991), Laurent and
Massart (2000)). In the density model, one observes an i.i.d. univariate sequence {Xi}ni=1
from some unknown density f (·), and the goal is to estimate

∫
f 2(x) dx. In the white

noise model, one observes a continuous-time process from dYt = f (t) dt + n−1/2 dWt for
t ∈ [0,1] with Wt a standard Wiener process. The goal is to estimate

∫ 1
0 f 2(t) dt . Under an

α-smoothness condition on f (·), the minimax rate in both of the aforementioned two cases
is n−8α/(4α+1) ∨ n−1 (cf. Theorem 1(ii) and 2(ii) in Bickel and Ritov (1988), Theorem 4 in
Fan (1991)).

Following Doksum and Samarov (1995), a quadratic functional of interest under (2) with
random design is

(3) Q :=
∫

f 2(x)pX(x)w(x) dx,

where pX(·) is the unknown design density and w(·) ≥ 0 is some known weight function.
Assuming in (2) that f is α-Hölder smooth, we show that the minimax rate of estimating σ 2
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TABLE 1
Summary of minimax rates in (1), (2), (4) and (5). The two types of fixed design considered, (GD) and (DD), are

defined in (20) and (21), respectively. For a d-dimensional smoothness index α = (α1, . . . , αd)�,
α := d/(

∑d
k=1 1/αk), αmin := min1≤k≤d αk , and αmax := max1≤k≤d αk . The respective sections contain the

definition of the distribution class of {(Xi, εi)}ni=1 in the random design setting and distribution class of {εi}ni=1
in the fixed design setting. Our results include all of the random design rates and fixed design rates in (4) and

(5). Note results for (4) and (5) have additional requirements; see Sections 4.1 and 4.2 for details

Stated in Minimax rate Boundary

(1), fixed Wang et al. (2008) n−4α ∨ n−2β/(2β+1)

α = β/(4β + 2)

(1), random Theorems 3, 4, 5 n
− 8αβ

4αβ+β+2α ∨ n
− 2β

2β+1

(2), fixed Wang et al. (2008) n−4α ∨ n−1
α = 1/4

(2), random Theorems 1, 2 n−8α/(4α+1) ∨ n−1

(4), fixed (GD) Proposition 3 n−4αmax/d ∨ n−1 αmax = d/4
(4), fixed (DD) Proposition 4 n−4αmin ∨ n−1 αmin = 1/4
(4), random Propositions 1, 2 n−8α/(4α+d) ∨ n−1 α = d/4

(5), fixed (GD) Proposition 5 n−1 –

(5), fixed (DD) Proposition 6 n−4αmin ∨ n−1
αmin = 1/4

(5), random Propositions 7, 8 n−8αmin/(4αmin+1) ∨ n−1

and Q (when σ 2 is unknown) is n−8α/(4α+1) ∨ n−1, thereby unifying the minimax rate of
quadratic functional estimation in all three benchmark nonparametric models.

In this paper, we also provide extensions of (2) to multivariate cases, with a focus on the
multivariate nonparametric regression model

(4) Yi = f (Xi ) + σεi, i = 1,2, . . . , n,

and the nonparametric additive model

(5) Yi =
d∑

k=1

fk(Xi,k) + σεi, i = 1,2, . . . , n,

in both fixed and random designs. Here, Xi := (Xi,1, . . . ,Xi,d)�, i = 1, . . . , n, for some fixed
positive integer d . Regarding the fixed design, we consider two types, namely, the grid design
(GD) and the diagonal design (DD). With a total of n design points, the former places them
on a regular grid in the d-dimensional cube [0,1]d while the latter only places design points
on the diagonal. Details are given in Sections 4.1 and 4.2.

We summarize the minimax rates in all of the aforementioned models in Table 1.
The rest of the paper is organized as follows. Section 2 presents the simple model (2)

with constant variance. Section 3 discusses its heteroscedastic extension (1). Section 4 dis-
cusses the multivariate nonparametric regression model (4), the additive model (5) and sev-
eral other extensions of our main results. The essential lower bound proof of the minimax
rate n−8α/(4α+1) ∨ n−1 under model (2) is presented in Section 5, with the rest of the proofs
given in the Supplementary Material (Shen et al. (2020)).

The notation used throughout the paper is as follows. For any positive integer n, [n] denotes
the set {1,2, . . . , n}. For any real number a, we use �a� to denote the smallest integer greater
than or equal to a, and 	a
 the largest integer strictly smaller than a. For any positive integer
d , 0d denotes the zero vector of dimension d and Id denotes the identity matrix of dimension
d . For a real vector x, ‖x‖ and ‖x‖∞ denote its Euclidean and infinity norms, respectively.
For a real matrix A, we use ‖A‖, ‖A‖F , and |A| to denote its spectral norm, Frobenius norm,
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and determinant, respectively. For an m-times differentiable function f : R → R with some
positive integer m, we use f (k) to denote its kth derivative for k = 1,2, . . . ,m. For identically
distributed random variables Xi and Xj , we use PXi

(·) and pXi
(·) to denote the distribution

and density of Xi , X̃ij to denote Xi − Xj , and pX̃ij
(·) to denote the density of Xi − Xj .

Similar notation PXi
(·), pXi

(·), ˜Xij , p
˜Xij

(·) applies to identically distributed random vectors
Xi and Xj . For a positive integer d and μ ∈ Rd , � ∈ Rd×d , Nd(μ,�) stands for the d-
dimensional normal distribution with mean μ and covariance �. We will drop the subscript
d for simplicity when d = 1. �(·) and ϕ(·) represent the standard normal distribution and
density. More generally, we will write ϕμ,σ 2(·) as the density for the normal distribution with
mean μ and variance σ 2. For two probability measures P, Q defined on a common space
(�,A), TV(P,Q) denotes their total variation distance, that is, TV(P,Q) := supA∈A |P(A) −
Q(A)|. For two real sequences {an} and {bn}, an � bn if |an| ≤ C|bn| for some positive
absolute constant C. We say an � bn if an � bn and bn � an.

2. Homoscedastic case. To illustrate some of the main ideas developed in this paper, we
begin with a discussion of the elementary univariate homoscedastic nonparametric regression
model (2):

Yi = f (Xi) + σεi, i = 1,2, . . . , n.

Here, {Xi}ni=1 are i.i.d. copies of a univariate random variable X, f (·) belongs to an α-
Hölder class that will be specified soon, and {εi}ni=1 are i.i.d. copies of a variable ε with zero
mean and unit variance and are independent of {Xi}ni=1. Both the mean function f (·) and the
distribution of {Xi}ni=1 are assumed unknown.

Model (2) has been extensively studied using residual-based and difference-based meth-
ods; see, among many others, von Neumann (1941, 1942), Rice (1984), Gasser, Sroka
and Jennen-Steinmetz (1986), Hall, Kay and Titterington (1990), Hall and Marron (1990),
Thompson, Kay and Titterington (1991), Müller, Schick and Wefelmeyer (2003), Wang et al.
(2008). A related functional estimation problem has also been studied in semiparametric
models (Robins et al. (2008, 2009)). Most of the previous studies focus on the case of fixed
design, especially the equidistant design with Xi = i/n, i ∈ [n], for which the minimax rate
of estimating σ 2 under an α-Hölder smoothness constraint on f (·) is known to be n−4α ∨n−1

(cf. Theorems 1 and 2 in Wang et al. (2008)).
In detail, let I be a fixed (possibly infinite) interval on the real line. Define the Hölder class

	α,I (CF ) on I as follows:

(6)
	α,I (CF ) := {

f : for all x, y ∈ I and k = 0, . . . , 	α
,∣∣f (k)(x)
∣∣≤ CF and

∣∣f (	α
)(x) − f (	α
)(y)
∣∣≤ CF |x − y|α′}

,

where α′ := α − 	α
. Denote the support of X as supp(X).
Define the joint distribution class Pcv,(X,ε) (where “cv” stands for “constant variance”)

with the following conditions:

(a) X satisfies supp(X) ⊂ I .
(b) X has density pX(·) and there exists a fixed positive constant C0 such that

sup
x∈R

pX(x) ≤ C0.

(c) There exist two fixed constants δ0 > 0 and c0 > 0 such that for any 0 < δ < δ0, there
exists a set Uδ ⊂ [−1,1] such that

λ(Uδ) ≥ c0 and inf
u∈Uδ

pX̃ij
(uδ) ≥ c0,

where λ(·) represents the Lebesgue measure on the real line, and X̃ij = Xi − Xj .
(d) Eε4 ≤ Cε for some fixed positive constant Cε .
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Note that no smoothness condition is placed on the density of X. Condition (c) essentially
requires the density pX̃ij

to be “dense” around 0, and is strictly weaker than a uniform lower
bound of pX̃ij

over a fixed neighborhood of 0. It also follows from the following sufficient
condition on the marginal density pX(·) (see Lemma A4 in the Supplementary Material (Shen
et al. (2020)) for the justification):

(c′) X is compactly supported (taken to be [0,1] without loss of generality). There exists
some positive constant c0 and subset S ⊂ [−1,1] with Lebesgue measure λ(S) ≥ 3/4 such
that pX(t) ≥ c0 uniformly over t ∈ S.

In particular, (c′) covers the uniform distribution on [0,1] and the distribution of X in the
lower bound construction in the proof of Theorem 2.

The rest of the section is devoted to proving, for any fixed positive constants CF and Cσ ,
the following minimax rate:

(7) inf
σ̃ 2

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃ 2 − σ 2)2 � n−8α/(4α+1) ∨ n−1,

where P(X,ε) denotes the joint distribution of (X, ε), and σ̃ 2 ranges over all estimators of σ 2.

2.1. Upper bound. The upper bound is achieved by a difference estimator based on U-
statistics (with convention 0/0 = 0):

(8) σ̂ 2 :=
(n
2

)−1∑
i<j Kh(Xi − Xj)(Yi − Yj )

2/2(n
2

)−1∑
i<j Kh(Xi − Xj)

.

Here, Kh(·) := K(·/h)/h, where h = hn is a bandwidth parameter satisfying hn ↓ 0 as n →
∞, and K(·) is a symmetric density kernel supported on [−1,1] that satisfies

(9) MK ≤ inf|u|≤1
K(u) ≤ sup

|u|≤1
K(u) ≤ MK

for two fixed constants MK and MK ; one example is the box kernel K(u) = 1{|u| ≤ 1}/2
which satisfies (9) with MK = MK = 1/2.

The following error bound is derived via the exponential inequality for degenerate U-
statistics due to Giné, Latała and Zinn (2000).

THEOREM 1. Suppose the kernel K(·) in σ̂ 2 is chosen such that (9) is satisfied with
constants MK and MK , and the bandwidth hn is chosen as

(10) hn �
{
n−2/(4α+1), 0 < α < 1/4,

n−1, α ≥ 1/4.

Then, under (2) with random design, it holds that

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̂ 2 − σ 2)2 ≤ C

(
n−8α/(4α+1) ∨ n−1),

where C is some fixed positive constant that only depends on MK , MK , α, CF , Cσ and C0,
c0, Cε in Pcv,(X,ε).

REMARK 1. The error rate in Theorem 1 is achieved by choosing the optimal bandwidth
hn to balance the “bias-variance” decomposition:

(11)
{
E
(
σ̂ 2 − σ 2)2}1/2 � h2(α∧1)

n + 1

nh
1/2
n

,
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where a ∧ b := min{a, b} for any two real numbers a, b. The bias term h
2(α∧1)
n reflects the

second-order effect of the unknown mean on variance estimation, which has been noted by
Hall and Carroll (1989) and Wang et al. (2008). The variance part follows from the fact that
there is an average number of n2hn pairs of (i, j) such that |Xi − Xj | ≤ hn. We note that the
same “bias-variance” decomposition has appeared in quadratic functional estimation in the
density model and Gaussian sequence model (Bickel and Ritov (1988), Fan (1991), Giné and
Nickl (2008)). See Section 4.3 for a more detailed discussion.

REMARK 2. While most of the previous works are in the context of fixed design, Müller,
Schick and Wefelmeyer (2003) considered constant variance estimation with random de-
sign, and their estimator (formula (1.4) therein) is almost identical to our σ̂ 2. Under certain
assumptions (Assumptions 1 and 2 and (2.4)–(2.7) therein), they show that their estimator
is root-n consistent and asymptotically normal. However, as commented in the first para-
graph on p. 184 of their paper, their condition (2.7) is only satisfied when the mean function
smoothness α is strictly larger than 1/4, and no analysis is provided below this threshold.
Our minimax rate n−8α/(4α+1) ∨ n−1 therefore confirms that α ≥ 1/4 is indeed the minimal
requirement for any variance estimator to be root-n consistent and we also demonstrate the
optimality of σ̂ 2 for 0 < α < 1/4.

Finally, in (2), we have assumed that the smoothness index α is known. If it is unknown,
then the variance can be estimated adaptively via Lepski-type methods (Lepski (1991, 1992)).
This is discussed in more detail in Section 4.5.

2.2. Lower bound. The derivation of the lower bound in (7) is much more involved. In
particular, the construction in the fixed design setting (cf. Theorem 2 in Wang et al. (2008))
cannot be extended to the random design case, since the spike-type construction of f (·)
located at each deterministic design point leads to a suboptimal rate in the random design
setting. To achieve a sharp rate, we have to exploit the randomness of {Xi}ni=1; this requires
us to handle a highly convoluted alternative hypothesis that no longer leads to a product
measure of {Yi}ni=1 given each realization of {Xi}ni=1 in LeCam’s two-point method. This
calls for a careful analysis of the locations of {Xi}ni=1.

We now sketch a proof of the n−8α/(4α+1) component in (7) for 0 < α < 1/4, with a
particular emphasis on where the difference arises with the fixed design setting. The proof
can be roughly divided into two steps. In the first step, we construct a two-point testing
problem with the null being a Gaussian (H0) and the alternative a Gaussian location mixture
(H̃1). In the second step, we approximate the Gaussian location mixture (H̃1) by a location
mixture with compact support (H1), which, unlike the alternative in the first step, belongs to
the considered model class.

We start by introducing the construction of f (·), σ 2, ε, and X under the null H0 and the
alternative H̃1 in the first step. For each n, let

hn � n−2/(4α+1), θ2
n � h2α

n and N := 1/(6hn),

and divide the unit interval [0,1] into N intervals of length 6hn, with n large enough and hn

chosen such that N is a positive integer.

Choice of f (·): Under H0, let f ≡ 0. Under H̃1, let f (·) be a piecewise trapezoidal function
on the N intervals. That is, for each i ∈ [N ], f takes on a value of hα

nr̃i on the intervals
[(6i −5)hn, (6i −1)hn] and then linearly decreases to zero on the two endpoints 6(i −1)hn

and 6ihn, with {̃ri}Ni=1 i.i.d. standard normal variables.
Choice of σ 2: Under H0, let σ 2 = 1 + θ2

n . Under H̃1, let σ 2 = 1.
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FIG. 1. The black solid line represents the construction of f (·) under the alternative hypothesis H̃1. The thick
red segments indicate the support of X under both H0 and H̃1, on which X is uniformly distributed. Here,
hn � n−2/(4α+1) and is chosen such that N := 1/(6hn) is a positive integer. {̃ri}Ni=1 are N i.i.d. standard normal
variables.

Choice of ε: Under both H0 and H̃1, let ε ∼ N (0,1).
Choice of X: Under both H0 and H̃1, let {Xi}ni=1 be uniformly distributed over the union
of the upper bases of the trapezoids, that is, over

⋃N
i=1[(6i − 5)hn, (6i − 1)hn].

See Figure 1 for an illustration of the construction.
In contrast to the spike-type construction of f (·) in the fixed design setting, our construc-

tion is trapezoid-shaped, which guarantees a maximal variation in the mean to compensate
for the difference in the variance under the null and alternative. This is unnecessary in the
fixed design setting since the point of maximal variation in the mean (center of each spike)
can be directly placed at each fixed Xi = i/n, resulting in n evenly spaced spikes in f (·).

Denote the joint distribution of {(Xi, Yi)}ni=1 under H0 and H̃1 by P0 and P̃1 with respec-
tive density p0 and p̃1. Under the above construction, conditional on {Xi}ni=1, {Yi}ni=1 are
distributed as

H0 : p0
({Yi}ni=1 | {Xi}ni=1

)=
n∏

i=1

ϕ0,1+θ2
n
(Yi)

and

H̃1 : p̃1
({Yi}ni=1 | {Xi}ni=1

)=
N∏

j=1

∫ ( ∏
{i:bi=j }

ϕhα
nv,1(Yi)

)
ϕ(v) dv,

where {bi}ni=1 is the location index sequence of {Xi}ni=1 defined as

bi := j if Xi ∈ [
(6j − 5)hn, (6j − 1)hn

]
,

which characterizes which trapezoid each Xi falls into. Using Lemma 2 that will be stated in
Section 5, one can then upper bound

TV(P0, P̃1) = ETV
(
P0
({Yi}ni=1 | {Xi}ni=1

)
, P̃1

({Yi}ni=1 | {Xi}ni=1
))
� θ2

nnh1/2
n ,

which can be made smaller than a sufficiently small constant c by choosing hn sufficiently
small.

The second step of the proof aims to find a sequence of bounded random variables {ri}Ni=1
to replace the standard normal sequence {̃ri}Ni=1 in P̃1, so that for each realization of {ri}Ni=1,
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the corresponding f (·) in the alternative is α-Hölder smooth with a fixed constant. Then, de-
noting the distribution of {ri}Ni=1 as G, one wishes to approximate the conditional distribution
P̃1({Yi}ni=1 | {Xi}ni=1) in H̃1 by P1({Yi}ni=1 | {Xi}ni=1) with density

p1
({Yi}ni=1 | {Xi}ni=1

)=
N∏

j=1

∫ ( ∏
{i:bi=j}

ϕhα
nv,1(Yi)

)
G(dv)

in H1. Even with the aid of moment matching techniques already established in the literature,
upper bounding TV(P1, P̃1) is still nontrivial. Specifically, unlike in the fixed design setting,
now with high probability the conditional distribution of {Yi}ni=1 given {Xi}ni=1 is no longer
a product measure. This is because multiple Xi ’s could fall into the same trapezoid in the
construction of f (·). This can be handled relatively easily in the first step since there we
only have to analyze the pairwise correlation of Yi | Xi and Yj | Xj depending on whether
Xi and Xj fall into the same trapezoid, but it is much less tractable in the second step. More
specifically, in order to match moments, we now have to divide the Xi’s into groups based on
their memberships among the trapezoids, which naturally requires us to monitor the locations
of {Xi}ni=1, and in particular the number of Xi’s that fall into the same trapezoid. This is
possible by observing that the memberships of {Xi}ni=1 now follow a sparse multinomial
distribution (n2/(4α+1) bins, n balls) so that a result in Kolchin, Sevast’yanov and Chistyakov
(1978) can be applied. This allows us to show that with high probability the maximum number
of Xi’s in each trapezoid is bounded by a fixed constant, which, along with Lemma 1 in
Section 5, allows us to calculate

TV(P1, P̃1)� nθ2p
n

for p := 1 + �1/4α�. This indicates that TV(P1, P̃1) is smaller than some sufficiently small
constant c. Then, by the triangle inequality,

TV(P0,P1) ≤ TV(P0, P̃1) + TV(P1, P̃1) ≤ 2c.

Details of the above derivation will be given in Section 5. The resulting lower bound is as
follows.

THEOREM 2. Under (2) with random design, it holds that

inf
σ̃ 2

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃ 2 − σ 2)2 ≥ c

(
n−8α/(4α+1) ∨ n−1),

where c is some fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε in
Pcv,(X,ε), and σ̃ 2 ranges over all estimators of σ 2.

REMARK 3. It remains an open problem to prove a lower bound rate that is strictly
slower than n−1 over the sub-class of Pcv,(X,ε) with more regular designs, which includes in
particular the uniform design on [0,1]. We conjecture that in this case, n−8α/(4α+1) ∨ n−1 is
still the minimax rate in view of analogous results in quadratic functional estimation (Bickel
and Ritov (1988), Fan (1991)).

3. Heteroscedastic case. We now study the heteroscedastic model (1),

Yi = f (Xi) + V 1/2(Xi)εi, i = 1,2, . . . , n,

where {Xi}ni=1 are i.i.d. copies of X on the real line, f (·) and V (·) are α- and β-Hölder
smooth on the fixed (possibly infinite) interval I , respectively, and {εi}ni=1 are i.i.d. copies
of ε with zero mean and unit variance and are independent of {Xi}ni=1. As in Section 2,



VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION 3597

smoothness indices α and β are assumed known, while f (·), V (·), and the distribution of X

are unknown. For any estimator Ṽ (·), the estimation accuracy is measured both locally via

(12) R1
(
Ṽ , V ;x∗) := (

Ṽ
(
x∗)− V

(
x∗))2

at a point x∗ in the support of X, supp(X), and globally via

(13) R2(Ṽ ,V ) :=
∫ (

Ṽ (x) − V (x)
)2
PX(dx)

with PX the distribution of X.
Model (1) has been studied in, for example, Müller and Stadtmüller (1987), Hall and Car-

roll (1989), Ruppert et al. (1997), Härdle and Tsybakov (1997), Fan and Yao (1998), Munk
and Ruymgaart (2002), Brown and Levine (2007), Wang et al. (2008), with a focus mainly on
the fixed design case. An exception is Munk and Ruymgaart (2002), with which we draw a
detailed comparison in Remark 8 below. Theorems 1 and 2 in Wang et al. (2008) established
a minimax rate of the order n−4α ∨ n−2β/(2β+1) under equidistance design Xi = i/n, i ∈ [n]
when f (·) and V (·) are α- and β-Hölder smooth on [0,1].

Define Pvf,(X,ε) (where “vf” stands for “variance function”) as follows:

(a) X satisfies supp(X) ⊂ I .
(b) X has density pX(·), and there exists a fixed positive constant C0 such that

sup
x∈R

pX(x) ≤ C0.

(c) There exist fixed positive constants c0 and δ0 such that

inf
x∗∈supp(X)

pX

(
x∗)≥ c0 and

inf
0<δ<δ0

inf
x∗∈supp(X)

λ
({

u ∈ [−1,1] : x∗ + δu ∈ supp(X)
})≥ c0,

where λ(·) is the Lebesgue measure on the real line.
(d) Eε4 ≤ Cε for some fixed positive constant Cε .

One can readily verify that Pvf,(X,ε) ⊂ Pcv,(X,ε), with the latter defined in the beginning of
Section 2. Compared to Pcv,(X,ε), Condition (c) in Pvf,(X,ε) is posed on the marginal den-
sity and support of X, since in the variance function case we require a sufficient number of
close pairs (Xi,Xj ) around each target x∗. We also note that, as in Pcv,(X,ε), no smoothness
assumption is posed on the design density in Pvf,(X,ε).

The rest of the section is devoted to proving, for any fixed positive constants CF and CV ,
the following minimax rates:

(14)

inf
Ṽ

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

sup
x∗∈supp(X)

ER1
(
Ṽ , V ;x∗)

� n
− 8αβ

4αβ+2α+β ∨ n
− 2β

2β+1 ,

inf
Ṽ

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(Ṽ ,V ) � n
− 8αβ

4αβ+2α+β ∨ n
− 2β

2β+1 ,

where P(X,ε) denotes the joint distribution of (X, ε), and Ṽ (·) ranges over all estimators of
V (·).
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3.1. Upper bound. We now propose an estimator of V (x∗) for some fixed x∗ ∈ supp(X)

by combining pairwise differences with local polynomial regression. We first introduce some
notation. Let  be the largest integer strictly smaller than β and

q(u) := (
1, u,u2/2!, . . . , u/!)�.

For any 1 ≤ i < j ≤ n, define

Dij := (Yi − Yj )
2/2, Xij := (Xi + Xj)/2 and Kij := Kh1(Xi − Xj)Kh2

(
Xij − x∗),

where h1, h2 are two bandwidths. Define an ( + 1) × ( + 1) matrix

Bn :=
(
n

2

)−1 ∑
i<j

q

(
Xij − x∗

h2

)
q�

(
Xij − x∗

h2

)
Kij

and B∗
n as its adjugate such that BnB∗

n = B∗
nBn = |Bn|I+1. For example, when  = 1, we

have

Bn =
[
s0 s1
s1 s2

]
, B∗

n =
[

s2 −s1
−s1 s0

]
and |Bn| = s0s2 − s2

1 ,

where

sk :=
(
n

2

)−1 ∑
i<j

(
Xij − x∗

h2

)k

Kij , k = 0,1,2.

Following Fan (1993), we propose a robust local polynomial estimator:

(15) V̂LP
(
x∗) :=

(
n

2

)−1 ∑
i<j

Dij

(|Bn| + τn

)−1
q�(0)B∗

nq

(
Xij − x∗

h2

)
Kij ,

where τn is some sufficiently small positive constant that decays to 0 polynomially with n.
Let

wij :=
(
n

2

)−1

q�(0)B∗
nq

(
Xij − x∗

h2

)
Kij and w̃ij := wij/

(|Bn| + τn

)
.

Then it holds that V̂LP(x∗) =∑
i<j w̃ijDij ,

∑
i<j wij = |Bn|, and

(16)
∑
i<j

wij

(
Xij − x∗)k =∑

i<j

w̃ij

(
Xij − x∗)k = 0, k = 1,2, . . . , .

The last property (16) is referred to as the reproducing property of local polynomial estima-
tors (cf. Proposition 1.12 in Tsybakov (2009)).

THEOREM 3. Suppose the kernel K(·) in V̂LP is chosen such that (9) holds with constants
MK and MK , τn � n−κ for some fixed constant κ ≥ 1, and the bandwidths h1, h2 are chosen
as

(17) (h1, h2) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
n

− 2β
4αβ+β+2α , n

− 4α
4αβ+β+2α

)
, 0 < α <

β

4β + 2
,

(
n−1, n

− 1
2β+1

)
, α ≥ β

4β + 2
.

Then, under (1) with random design, it holds that

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

sup
x∗∈supp(X)

ER1
(
V̂LP,V ;x∗)≤ C

(
n

− 8αβ
4αβ+β+2α ∨ n

− 2β
2β+1

)
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and

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(V̂LP,V ) ≤ C
(
n

− 8αβ
4αβ+β+2α ∨ n

− 2β
2β+1

)
,

where C is some fixed positive constant that only depends on MK , MK , α, β , CF , CV and
C0, c0, Cε in Pvf,(X,ε).

REMARK 4. Variance function estimation in (1) with fixed design Xi = i/n, i ∈ [n], has
been studied in Wang et al. (2008). There the minimax rate is

inf
Ṽ

sup
f ∈	α,[0,1](CF )

sup
V ∈	β,[0,1](CV )

sup
Eε4≤Cε

sup
x∗∈[0,1]

ER1
(
Ṽ , V ;x∗)� n−4α ∨ n−2β/(2β+1),

inf
Ṽ

sup
f ∈	α,[0,1](CF )

sup
V ∈	β,[0,1](CV )

sup
Eε4≤Cε

ER2(Ṽ ,V ) � n−4α ∨ n−2β/(2β+1),

with the integral in R2 under the Lebesgue measure on [0,1]. Comparing the above result
with the error rate in Theorem 3, we see that the transition boundary in both the fixed and
random design settings is α = β/(4β + 2). When α ≥ β/(4β + 2), V (·) under both R1 and
R2 can be estimated at the classic nonparametric rate n−2β/(2β+1) as if the mean function
f (·) were known. When α < β/(4β + 2), a faster rate can be achieved in the random design
case. This can be intuitively understood by the fact that, by contrast to the fixed design case,
a significant portion of pairs have distance smaller than 1/n in the random design setting.

REMARK 5. As has been noted in Wang et al. (2008), in the fixed design setting, estimat-
ing the variance (function) by smoothing the squared residuals obtained from pre-estimation
of the mean function f (·) is suboptimal. The same conclusion also applies to the random
design setting. Since the design being fixed or random has no first-order effect on the esti-
mation of the mean, the above method only achieves the rates n−4α/(2α+1) ∨ n−1 in variance
estimation and n−4α/(2α+1) ∨ n−2β/(2β+1) in variance function estimation, neither of which
is minimax optimal.

REMARK 6. Unlike in the fixed design case, once below the threshold α = β/(4β + 2),
α and β are now both present in the minimax rate in the random design case, suggesting
that the smoothness of V (·) always has an effect on its estimation. This is because variance
function estimation in the random design setting is essentially a “two-dimensional” problem,
where we have to jointly choose two optimal neighborhood sizes to characterize the closeness
between (i) each Xi and Xj ; and (ii) every pair (Xi,Xj ) and each target point x∗. By contrast,
in the fixed design setting, the distance between Xi and Xj is constrained to be no smaller
than 1/n, and thus cannot be jointly optimized with the distance between (Xi,Xj ) and x∗.

REMARK 7. One might wonder whether the following Nadaraya–Watson-type estimator
can be used to establish the upper bound in Theorem 3:

(18) V̂NW
(
x∗) :=

∑
i<j Kh1(Xi − Xj)Kh2(Xij − x∗)Dij∑

i<j Kh1(Xi − Xj)Kh2(Xij − x∗)
,

where K(·) is now chosen to be a higher-order kernel to further reduce bias when β > 1.
It turns out that the analysis of V̂NW requires an extra assumption on the smoothness of the
density pX(·) which can be completely avoided with V̂LP. Moreover, it is well known that
local polynomial estimators have good finite sample properties and boundary performances
when X is compactly supported (Fan and Gijbels (1996)).
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REMARK 8. Munk and Ruymgaart (2002) considered minimax estimation of the vari-
ance function (and more generally, its derivatives) in the context of nonparametric regression
with random design. We focus on the comparison of their results on variance function es-
timation with ours. Their lower bound (Theorem 1 therein) is proved independent of the
smoothness level of the mean function and upper bound (Theorem 4 therein) is proved under
sufficient smoothness on the mean function. Therefore, their minimax rate is only compa-
rable to the n−2β/(2β+1) component in ours. In this case, their lower bound of the order
n−(2β−1)/(2β) is proved over the following class of variance function:

Sβ :=
{

1 +
∞∑

k=1

δkek : |δk|� k−β

}

for any β > 1, where {ek}∞k=1 is an arbitrary basis on L2([−π,π ]). Moreover, continuous dif-
ferentiability of the error density is required in their paper. In contrast, we pose no smoothness
conditions on the error density, and neither Sβ nor Sβ+1/2 can be embedded in the β-Hölder
class 	β considered in our setting (e.g., f (x) = |x| with domain [−π,π ] belongs to S2 but
is not 1.5- or 2-Hölder smooth since it is not differentiable at the origin). In summary, the
results in Munk and Ruymgaart (2002) neither imply nor contradict the n−2β/(2β+1) part in
our minimax rate, and our results are more refined since they characterize the exact elbow
α = β/(4β + 2) and also the minimax rate below this threshold.

3.2. Lower bound. The following are matching lower bounds to Theorem 3.

THEOREM 4. Under (1) with random design, for any x∗ ∈ supp(X),

inf
Ṽ

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER1
(
Ṽ , V ;x∗)≥ c

(
n

− 8αβ
4αβ+β+2α ∨ n

− 2β
2β+1

)
,

where c is some fixed positive constant that only depends on α, β , CF , CV and C0, c0, Cε in
Pvf,(X,ε), and Ṽ ranges over all estimators of V .

THEOREM 5. Under (1) with random design,

inf
Ṽ

sup
f ∈	α,I (CF )

sup
V ∈	β,I (CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(Ṽ ,V ) ≥ c
(
n

− 8αβ
4αβ+β+2α ∨ n

− 2β
2β+1

)
,

where c is some fixed positive constant that only depends on α, β , CF , CV and C0, c0, Cε in
Pvf,(X,ε), and Ṽ ranges over all estimators of V .

Due to the appearances of both α and β in the nontrivial n
− 8αβ

4αβ+β+2α part of the minimax
rate, proving the above two results is more involved than proving Theorem 2. In particular,
it takes an extra step of localization in the construction of the mean function f (·) as well as
V (·). More precisely, for the lower bound at a target point x∗ in Theorem 4, our construction
of both f (·) and V (·) only has variation within a small neighborhood of x∗. Such local-
ized construction is not necessary in the fixed design setting, since when proving the n−4α

component therein (see Remark 4), the variance function can simply be taken as a constant.
In what follows, we give a proof sketch of the nontrivial n−8αβ/(4αβ+β+2α) component of

the lower bound in Theorem 4 for α < β/(4β + 2); the proof of Theorem 5 can be seen as
an extension of Theorem 4 via a standard construction of multiple hypotheses. We assume
the support of X is contained in I = [0,1], and for clarity of illustration, here we present the
construction for an interior point x∗ ∈ (0,1)∩ supp(X). The proof works for boundary points
as well.
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FIG. 2. The black solid line on the top represents the variance function V (·) in the alternative H̃1, and the black
solid line on the bottom represents the mean function f (·). The thick red segments mark the support of X under

both H0 and H̃1. Here, h1 � n
− 2β

4αβ+β+2α , h2 � n
− 4α

4αβ+β+2α , and are chosen such that both M := h2/(4h1)−1/2
and N := 2M + 1 are positive integers. {̃ri}Ni=1 are N i.i.d. standard normal variables.

We continue to adopt the two-step approach introduced in the proof sketch of Theorem 2
in Section 2.2. The second step is very similar with the help of Lemmas 1 and 3, so we will
focus on the construction under the null H0 and alternative H̃1 in the first step. Choose the
parameters

h1 � n
− 2β

4αβ+β+2α , h2 � n
− 4α

4αβ+β+2α and θ2
n = h2α

1 = h
β
2

so that h2/h1 → ∞ as n → ∞.

Choice of V (·): Under H0 let V ≡ 1. Under H̃1, let V (·) be one minus a smooth bump
function around x∗ with width h2 and height h

β
2 so that V (x∗) = 1 − θ2

n .
Choice of f (·): Under H0 let f ≡ 0. Under H̃1, let f (·) be a “local” version of the design
in Theorem 2. That is, f takes on a value of 0 outside of [x∗ − h2, x

∗ + h2], and inside
that h2-neighborhood of x∗, f is piecewise trapezoidal with upper base length 2h1, lower
base length 4h1 and height {hα

1 r̃i}Ni=1 for a standard normal sequence {̃ri}Ni=1 with N :=
h2/(2h1) a positive integer.
Choice of ε: Under both H0 and H̃1, let ε ∼ N (0,1).
Choice of X: Under both H0 and H̃1, let X be uniformly distributed on the union of
[0,1]\[x∗ −h2, x

∗ +h2] and the upper bases of all the trapezoids inside [x∗ −h2, x
∗ +h2].

See Figure 2 for an illustration of H̃1.
Under the above construction, the squared distance between the null and alternative hy-

potheses (1 − (1 − θ2
n))2 = θ4

n � n
− 8αβ

4αβ+β+2α is the desired minimax rate. Using Lemma 2, we
can show that

TV(P0, P̃1)� θ2
nnh

1/2
1 h

1/2
2 ≤ c

for some sufficiently small c, where P0 and P̃1 represent the joint distribution of {(Xi, Yi)}ni=1
under H0 and H̃1, respectively. The detailed proof is presented in the Supplementary Material
(Shen et al. (2020)).

4. Discussion. The two univariate models (1) and (2) discussed in the previous two sec-
tions raise natural questions about possible extensions to the multivariate setting. In what
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follows, we first present some partial results in this direction in the sense of (4) and (5).
We then establish some connections between our study and quadratic functional estimation
and variance estimation in the linear model. Lastly, we discuss two more extensions of (2)
in the direction of adaptive estimation and mean function with inhomogeneous smoothness.
Throughout, consider CF , Cσ , C0, c0, Cε to be fixed positive constants.

4.1. Multivariate nonparametric regression. Consider the following multivariate version
of (2):

Yi = f (Xi ) + σεi, i = 1,2, . . . , n,

where {Xi}ni=1 = {(Xi,1, . . . ,Xi,d)�}ni=1 are i.i.d. copies of X = (X1, . . . ,Xd)� in Rd for
some fixed positive integer d , {εi}ni=1 are i.i.d. copies of ε with zero mean and unit variance
and are independent of {Xi}ni=1, and f : Rd → R belongs to a d-dimensional anisotropic
Hölder class with smoothness index α = (α1, . . . , αd)� defined below. The goal is to estimate
σ 2 with f (·) and the distribution of X as nuisance parameters. This problem has been studied
in Spokoiny (2002), Munk et al. (2005), Cai, Levine and Wang (2009), to name a few, again
with a focus on the fixed design setting.

Let I1, . . . , Id be d fixed (possibly infinite) intervals on R and let I be their Cartesian
product I1 × · · · × Id ⊂ Rd . Following Barron, Birgé and Massart (1999) and Bhattacharya,
Pati and Dunson (2014), we define an anisotropic Hölder class 	α,I (CF ) on I as fol-
lows. For any x ∈ I and k ∈ [d], let fk(· | x−k) denote the univariate function y �→
f (x1, . . . , xk−1, y, xk+1, . . . , xd), with x−k defined as x without the kth component. Then
	α,I (CF ) is defined as all f : I �→R such that

max
1≤k≤d

max
0≤j≤	αk


sup
x∈I

∥∥f (j)
k (· | x−k)

∥∥∞ ≤ CF

and

max
1≤k≤d

sup
x∈I

sup
y1,y2∈Ik

|f (	αk
)
k (y1 | x−k) − f

(	αk
)
k (y2 | x−k)|

|y1 − y2|α′
k

≤ CF ,

where again 	αk
 is the largest integer strictly smaller than αk and α′
k := αk − 	αk
. Let

supp(X) be the support of X.
Define Pmcv,(X,ε) (where “mcv” stands for “multivariate constant variance”) as the multi-

variate counterpart of Pcv,(X,ε):

(a) X satisfies supp(X) ⊂ I .
(b) X has density pX(·) and there exists a fixed positive constant C0 such that

sup
u∈Rd

pX(u) ≤ C0.

(c) There exist two fixed constants δ0 > 0 and c0 > 0 such that for any δ ∈ Rd that satisfies
‖δ‖∞ < δ0, there exists a set U := Uδ ⊂ [−1,1]d such that

λ(Uδ) ≥ c0 and inf
u∈Uδ

p
˜Xij

(u1δ1, . . . , udδd) ≥ c0,

where λ(·) represents the Lebesgue measure on Rd .
(d) Eε4 ≤ Cε for some fixed positive constant Cε .

For an upper bound on the minimax risk, we propose the following multivariate extension
of (8) via a product kernel (again with convention 0/0 = 0):

(19) σ̂ 2
d :=

(n
2

)−1∑
i<j (

∏d
k=1 Khk

(Xi,k − Xj,k))(Yi − Yj )
2/2(n

2

)−1∑
i<j (

∏d
k=1 Khk

(Xi,k − Xj,k))
,

where K(·) is a kernel chosen to satisfy (9), and {hk}dk=1 is a kernel bandwidth sequence.
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In the following results, we will use α to denote the harmonic mean of the d-dimensional
smoothness index α, that is, α := d/(

∑d
k=1 1/αk). This quantity is known as the effective

smoothness in classical problems such as anisotropic density estimation (Ibragimov and
Khas’minskiı̆ (1981), Birgé (1986)) and anisotropic function estimation (Nussbaum (1986),
Hoffmann and Lepski (2002)).

PROPOSITION 1. Suppose 0 < αk ≤ 1, k ∈ [d]. Suppose the kernel K(·) in σ̂ 2
d is chosen

such that (9) is satisfied with constants MK and MK , and the bandwidth sequence is chosen
as hk � n−2α/(αk(4α+d)) for all k ∈ [d]. Then, under (4) with random design, it holds that

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pmcv,(X,ε)

E
(
σ̂ 2

d − σ 2)2 ≤ C
(
n−8α/(4α+d) ∨ n−1),

where C is some fixed positive constant that only depends on MK , MK , α, CF , Cσ and C0,
c0, Cε in Pmcv,(X,ε).

PROPOSITION 2. Under (4) with random design, it holds that

inf
σ̃ 2

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pmcv,(X,ε)

E
(
σ̃ 2 − σ 2)2 ≥ c

(
n−8α/(4α+d) ∨ n−1),

where c is some fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε in
Pmcv,(X,ε), and σ̃ 2 ranges over all estimators of σ 2.

We note that Proposition 1 is only proved for αk ∈ (0,1], k ∈ [d]. The general case when
αk is possibly larger than 1 is much more involved due to the difficulty in the random design
analysis. Propositions 1 and 2, combined, imply that the minimax rate is n−8α/(4α+d) ∨ n−1

for αk ∈ (0,1], k ∈ [d]. In particular, when f is in an isotropic α-Hölder class (0 < α ≤ 1),
this rate becomes n−8α/(4α+d) ∨ n−1. We also remark that a different estimator achieving the
rate n−8α/(4α+d) ∨ n−1 over an isotropic α-Hölder class has been briefly sketched in Robins
et al. (2008).

For completeness, we also state without proof some results for model (4) in the fixed
design setting. In particular, we consider the following two types of fixed designs in the d-
dimensional unit cube [0,1]d , namely, the grid design (GD):

(20)
(X(i1,...,id ),1, . . . ,X(i1,...,id ),d) = (

i1/n1/d, . . . , id/n1/d),
(i1, . . . , id) ∈ [

n1/d]× · · · × [
n1/d]

assuming n1/d is an integer, and the diagonal design (DD):

(21) (Xi,1, . . . ,Xi,d) = (i/n, . . . , i/n), i ∈ [n].
Here, for any positive integer n, [n] denotes the set {1,2, . . . , n}. Let αmax := maxk∈[d] αk and
αmin := mink∈[d] αk . The first result for (GD) is a simple modification of the isotropic result
in Cai, Levine and Wang (2009) by taking differences along the smoothest direction with
index αmax. The second result can be readily deduced from the fact that Yi = f̃ (i/n) + σεi ,
i ∈ [n], where f̃ (x) := f (x, . . . , x) is αmin-Hölder smooth.

PROPOSITION 3. Under (4) with fixed design (GD), it holds that

inf
σ̃ 2

sup
f ∈	

α,[0,1]d (CF )

sup
σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̃ 2 − σ 2)2 � n−4αmax/d ∨ n−1

up to some fixed positive constant that only depends on α, CF , Cσ , Cε , where σ̃ 2 ranges over
all estimators of σ 2.
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PROPOSITION 4. Under (4) with fixed design (DD), it holds that

inf
σ̃ 2

sup
f ∈	

α,[0,1]d (CF )

sup
σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̃ 2 − σ 2)2 � n−4αmin ∨ n−1

up to some fixed positive constant that only depends on α, CF , Cσ , Cε , where σ̃ 2 ranges over
all estimators of σ 2.

When f (·) belongs to an isotropic α-Hölder class, Proposition 3 implies the minimax rate
n−4α/d ∨ n−1 derived in Cai, Levine and Wang (2009). Comparison with the random design
rate n−8α/(4α+d) ∨ n−1 thus shows that, for 0 < α ≤ 1, a faster rate is again achievable in the
random design setting for α < d/4.

4.2. Nonparametric additive model. Consider variance estimation in the additive model
(5):

Yi =
d∑

k=1

fk(Xi,k) + σεi, i = 1,2, . . . , n,

for some fixed integer d ≥ 2, where {εi}ni=1 are i.i.d. with zero mean and unit variance and
are independent from {Xi}ni=1 = {(Xi,1, . . . ,Xi,d)�}ni=1 in the random design setting. Unlike
Section 4.1, we specify d ≥ 2, since the minimax rate in the fixed design (GD) has completely
different behavior for d = 1 and d ≥ 2 (see Proposition 5 below).

4.2.1. Fixed design. We first consider the two fixed designs (GD) and (DD) defined in
(20) and (21). For both designs, we consider an error distribution class with only a finite fourth
moment condition. We start with (GD), where by iteratively taking pairwise differences, one
is able to estimate the variance at the parametric rate n−1 without any smoothness assumption
on the additive components {fk}dk=1. For simplicity, we illustrate this idea with d = 2 with
two additive components f (·) and g(·), and assume that

√
n is an even number. In this case,

Yi,j = f

(
i√
n

)
+ g

(
j√
n

)
+ σεi,j , (i, j) ∈ [√n] × [√n],

where {εi,j }i,j∈[√n] are i.i.d. with zero mean and unit variance. By taking the pairwise differ-
ence in the first dimension, we have

Y(i1,i2),j := Yi1,j − Yi2,j = f

(
i1√
n

)
− f

(
i2√
n

)
+ σ(εi1,j − εi2,j )

for all j ∈ [√n] and (i1, i2) ∈ [√n] × [√n] such that i1 �= i2. Taking again the pairwise
difference in the second dimension, we have

Y(i1,i2),(j1,j2) := Y(i1,i2),j1 − Y(i1,i2),j2 = σ(εi1,j1 − εi2,j1 − εi1,j2 + εi2,j2)

for all (i1, i2, j1, j2) ∈ [√n] × [√n] × [√n] × [√n] such that i1 �= i2 and j1 �= j2. Clearly,
we have EY(i1,i2),(j1,j2) = 0 and Var(Y(i1,i2),(j1,j2)) = 4σ 2. Let m := √

n/2 and define
I := {(1,2), (3,4), . . . , (2m − 1,2m)} with cardinality m. Then, for the set of data points
{Y(i1,i2),(j1,j2)}(i1,i2),(j1,j2)∈I with cardinality m2 = n/4, it can be readily verified that they
are i.i.d. with mean 0 and variance 4σ 2. Therefore, with Y defined as the sample average of
{Y(i1,i2),(j1,j2)}(i1,i2),(j1,j2)∈I , the sample variance estimator,

σ̂ 2
add,GD := 1

n

∑
(i1,i2),(j1,j2)∈I

(Y(i1,i2),(j1,j2) − Y)2,

achieves the parametric rate n−1. A similar derivation holds for general d .
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PROPOSITION 5. Suppose d ≥ 2. Under (5) with fixed design (GD), it holds that

inf
σ̃ 2

sup
fk,k∈[d]

sup
σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̃ 2 − σ 2)2 � n−1

up to some fixed positive constant that only depends on Cσ and Cε , where σ̃ 2 ranges over all
estimators of σ 2, and the first supremum is taken over all functions defined on [0,1] for each
k ∈ [d].

Now we move on to the design (DD), where we assume each additive component fk in
(5) is αk-Hölder smooth on [0,1] with some fixed constant CF . In this case, the model can
equivalently be written as

Yi = f̃ (i/n) + σεi, i = 1,2, . . . , n,

where f̃ := ∑d
k=1 fk is αmin-Hölder smooth. Therefore, the univariate estimator and lower

bound in Wang et al. (2008) can be directly applied.

PROPOSITION 6. Under (5) with fixed design (DD), it holds that

inf
σ̃ 2

sup
fk∈	αk,[0,1](CF ),k∈[d]

sup
σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̃ 2 − σ 2)2 � n−4αmin ∨ n−1

up to some fixed positive constant that only depends on CF , Cσ , Cε , where σ̃ 2 ranges over
all estimators of σ 2.

Comparison of Propositions 6 and 4 shows that, in contrast to grid design (GD) and random
design below, there is no gain from an additive structure in the mean function for the diagonal
design (DD).

4.2.2. Random design. We now discuss (5) with a random design for {Xi}ni=1 when fk

is αk-Hölder smooth on some fixed set Ik for each k ∈ [d]. Since a shift in the mean does not
affect the estimation of variance, we assume Efk(X1,k) = 0 for each k ∈ [d] for simplicity.
Recall the definition of Pcv,(X,ε) in the beginning of Section 2. Define the joint distribution
class Padd,(X,ε) (where “add” stands for “additive”) as:

For each k ∈ [d], the joint distribution of (Xk, ε) belongs to Pcv,(X,ε) and the components
of X are mutually independent.

In view of Theorem 2, the following lower bound is immediate.

PROPOSITION 7. Under (5) with random design, it holds that

inf
σ̃ 2

sup
fk∈	αk,Ik

(CF ),k∈[d]
sup

σ 2≤Cσ

sup
P(X,ε)∈Padd,(X,ε)

E
(
σ̃ 2 − σ 2)2 ≥ c

(
n

− 8αmin
4αmin+1 ∨ n−1),

where c is a fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε in
Padd,(X,ε), and σ̃ 2 ranges over all estimators of σ 2.

We now describe a procedure that matches the lower bound in Proposition 7, but depends
crucially on mutual independence. For illustrative purposes, we again consider the case of
only two additive components f (·) and g(·), which are α- and β-Hölder smooth, respectively.
Let X and W denote the two covariates. For each i ∈ [n], define

εX
i := f (Xi) + σεi and εW

i := g(Wi) + σεi,
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and their corresponding variances

σ 2
X := Ef 2(X) + σ 2 and σ 2

W := Eg2(W) + σ 2.

Clearly, we have EεX
i = 0 and EεW

i = 0, and εX
i and εW

i are independent of g(Wi) and f (Xi),
respectively. Now, notice that the additive model in (5) can be equivalently viewed as Yi =
f (Xi)+ εW

i . Thus by applying the univariate kernel estimator defined in (8) to {(Yi,Xi)}ni=1,
which we denote as σ̂ 2

W , one obtains

E
(
σ̂ 2

W − σ 2
W

)2 ≤ C
(
n−8α/(4α+1) ∨ n−1)

for some fixed positive constant C. Similarly, defining σ̂ 2
X as σ̂ 2

W , one has

E
(
σ̂ 2

X − σ 2
X

)2 ≤ C
(
n−8β/(4β+1) ∨ n−1).

Lastly, under a finite fourth moment assumption on ε, a sample variance estimator of {Yi}ni=1,
denoted as σ̂ 2

Y , achieves the parametric rate n−1 in estimating the total variance Var(Y ),
which can be decomposed as Ef 2(X) + Eg2(W) + σ 2. Consequently, we have shown that
the method-of-moments estimator

(22) σ̂ 2
moment,2 := σ̂ 2

X + σ̂ 2
W − σ̂ 2

Y

achieves the optimal rate in Proposition 7. We summarize the above derivation for the natural
extension σ̂ 2

moment,d to general d .

PROPOSITION 8. Under (5) with random design, it holds that

sup
fk∈	αk,Ik

(CF ),k∈[d]
sup

σ 2≤Cσ

sup
P(X,ε)∈Padd,(X,ε)

E
(
σ̂ 2

moment,d − σ 2)2 ≤ C
(
n

− 8αmin
4αmin+1 ∨ n−1),

where C is some fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε in
Padd,(X,ε).

Propositions 7 and 8 together imply the minimax rate over Padd,(X,ε), which further illus-
trates the fact that an additive structure in the mean function could possibly avoid the “curse
of dimensionality” in variance estimation. However, we note that our results crucially rely
on the mutual independence condition. It is still largely unclear if the same minimax rate
could apply to the general case without this condition, though a discussion of an interesting
connection to variance estimation under linear models shall be made in Section 4.4.

4.3. Connection to quadratic functional estimation. We now formally state the connec-
tion between quadratic functional estimation and variance estimation in (2), the first of which
has been studied in, for example, Doksum and Samarov (1995), Ruppert, Sheather and Wand
(1995), Huang and Fan (1999) and Robins et al. (2009).

Recall the definition of Q in (3) with some nonnegative weight function w(·). Squaring
both sides of (2), multiplying by w(Xi), and then taking the expectation, one has

E
(
Y 2

i w(Xi)
)= E

(
f 2(Xi)w(Xi)

)+ σ 2E
(
w(Xi)ε

2
i

)= Q + σ 2Ew(Xi).

Under a finite fourth moment assumption on ε, both E(Y 2
i w(Xi)) and Ew(Xi) can be esti-

mated at the parametric rate via the sample mean estimator, and σ 2 can be estimated via σ̂ 2

in (8) with rate n−8α/(4α+1) ∨ n−1 under the quadratic risk. Therefore, the estimator

Q̂ := 1

n

n∑
i=1

Y 2
i w(Xi) −

(
1

n

n∑
i=1

w(Xi)

)
· σ̂ 2
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achieves the same rate n−8α/(4α+1) ∨ n−1. In fact, it is not possible to improve upon this
rate since if there exists an estimator Q̃ with a faster convergence rate, then the “conjugate”
estimator of σ 2 defined as

σ̃ 2 := max
{ 1

n

∑n
i=1 Y 2

i w(Xi) − Q̃

1
n

∑n
i=1 w(Xi)

,0
}

· 1
{

1

n

n∑
i=1

w(Xi) > 0

}

will also converge to σ 2 at a faster rate, violating the lower bound in Theorem 2.
The following result summarizes the derivation. Recall the definition of Pcv,(X,ε) in the

beginning of Section 2.

PROPOSITION 9. Suppose the weight function w(·) in the definition of Q is uniformly
bounded on R. Then it holds that

inf
Q̃

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E(Q̃ − Q)2 � n−8α/(4α+1) ∨ n−1

up to some fixed positive constant that only depends on w(·), α, CF , Cσ and C0, c0, Cε in
Pcv,(X,ε), where Q̃ ranges over all estimators of Q.

4.4. Connection to the linear model. Throughout this paper, we have treated the distri-
bution of X as a nuisance parameter. Interestingly, when we do know the distribution of X,
variance estimation in nonparametric regression with random design becomes substantially
easier with the aid of parallel work in the high-dimensional linear model (Verzelen and Villers
(2010), Dicker (2014), Kong and Valiant (2018), Verzelen and Gassiat (2018)). We first elab-
orate on this point using the simple model (2), and then formulate corresponding results for
(4) and (5).

By applying the inverse of the distribution function F of X, (2) can be equivalently written
as

Yi = f (Ui) + σεi, i = 1,2, . . . , n,

where {Ui}ni=1 = {F(Xi)}ni=1 are i.i.d. uniform on [0,1], and f (·) := f ◦ F−1(·) is still
α-Hölder smooth under Lipschitz continuity on F−1. Then, using a wavelet expansion for
Hölder classes (cf. Proposition 2.5 in Meyer (1990)), one has

(23) Yi = f 1(Ui) +
2J∑

j=1

ψj(Ui) + σεi, i = 1,2, . . . , n,

where {ψj }∞j=1 is an L2-orthonormal wavelet basis under the Lebesgue measure on [0,1], and
f 1(·) is the remainder term after truncation at resolution J = Jn which satisfies ‖f 1‖∞ =
O(2−αJn). Let ψ := (ψ1, . . . ,ψ2J ) and assume without loss of generality that Eψ = 02J ,
since a mean shift does not affect the estimation of variance. Moreover, due to the orthonor-
mality of {ψj }∞j=1, we have Cov(ψ) = E(ψψ�) = I2J . Following Verzelen and Gassiat
(2018) and Kong and Valiant (2018), the estimator

σ̂ 2
proj := 1

n − 1

n∑
i=1

(Yi − Y)2 −
(
n

2

)−1 ∑
i<j

YiYjψ
�(Ui)ψ(Uj )

has a variance term of the order (2Jn + n)/n2 and a bias term of the order 2−2αJn . There-
fore, by choosing the optimal truncation level 2Jn � n2/(4α+1), σ̂ 2

proj recovers the optimal rate

n−8α/(4α+1) ∨ n−1 in Theorem 1.
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Define σ̂ 2
proj,d (with tensor wavelet basis) and σ̂ 2

proj,add as the natural extensions of σ̂ 2
proj

under (4) and (5), respectively (see the proofs of Propositions 10 and 11 in the Supplementary
Material (Shen et al. (2020)) for exact definitions). In the wavelet expansion, we will use
Jk to denote the truncation level for the kth component of f (·) in (4) and fk in (5), and
we use Fk to denote the marginal distribution of X1,k . Recall that α = d/(

∑d
k=1 1/αk) for

α = (α1, . . . , αd)�.

PROPOSITION 10 (Multivariate nonparametric regression, design known). Suppose the
distribution of X is known with supp(X) ⊂ I for some fixed set I ⊂ Rd , and F−1

k (·) is Lip-
schitz continuous for all k ∈ [d] with some fixed positive constant. Then, when 2Jk is chosen
to be of the order n2α/(αk(4α+d)) for k ∈ [d] in σ̂ 2

proj,d , it holds that

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̂ 2

proj,d − σ 2)2 ≤ C
(
n−8α/(4α+d) ∨ n−1),

where C is some fixed positive constant that only depends on α, CF , Cσ , Cε and the distri-
bution of X.

PROPOSITION 11 (Nonparametric additive model, design known). Suppose the distribu-
tion of X is known with supp(X) ⊂ I1 × · · · × Id for some fixed intervals I1, . . . , Id on the
real line, and F−1

k (·) is Lipschitz continuous for all k ∈ [d] with some fixed positive constant.
Then, when 2Jk is chosen to be of the order n2αk/(4αk+1) for k ∈ [d] in σ̂ 2

proj,add, it holds that

sup
fk∈	αk,Ik

(CF ),k∈[d]
sup

σ 2≤Cσ

sup
Eε4≤Cε

E
(
σ̂ 2

proj,add − σ 2)2 ≤ C
(
n

− 8αmin
4αmin+1 ∨ n−1),

where C is some fixed positive constant that only depends on α, CF , Cσ , Cε and the distri-
bution of X.

As in the classical setting of mean function estimation via orthogonal series, the difference
of the rates in Propositions 10 and 11 is clearly explained by the number of wavelet bases
used to approximate f in (4) and {fk}dk=1 in (5). We also note that, quite interestingly, Propo-
sition 10 gives results beyond the case 0 < α1, . . . , αd ≤ 1 considered in Proposition 1, and
Proposition 11 does not rely on the mutual independence of the components of X.

4.5. Adaptive estimation of constant variance. In this subsection, we consider adaptive
estimation of the variance σ 2 in model (2). This is achieved by a Lepski-type procedure
(Lepski (1991, 1992)). Let σ̂ 2(h) be the estimator in (8) with an explicit dependence on the
bandwidth parameter h. For any given sample size n and fixed positive constant δ, define two
positive integers m1 and m2 such that 2−m1 ≤ n−1 ≤ 2−m1+1 and 2−m2−1 ≤ n−(2−δ) ≤ 2−m2 ,
and define the following dyadic grid:

Hδ := {
2−j : m1 ≤ j ≤ m2, j ∈ Z

}
.

Then define the estimator σ̂ 2
adapt := σ̂ 2(ĥδ) with

ĥδ := max
{
h ∈ Hδ : ∣∣σ̂ 2(h) − σ̂ 2(h′)∣∣≤ τ(logn)1/2n−1(h′)−1/2

,∀h′ ∈ Hδ, h
′ < h

}
for some sufficiently large positive constant τ . If the set being maximized is empty, we will
take ĥδ = n−(2−δ).

To state the error bound of σ̂ 2
adapt, we need the following variant Padapt

cv,(X,ε) of the distri-
bution class Pcv,(X,ε) considered in Theorem 1, where we replace the finite fourth-moment
assumption (d) therein by the stronger sub-Gaussian tail condition:
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(d′) There exist some fixed positive constants C1,ε and C2,ε such that E exp(tε) ≤
C1,ε exp(C2,εt

2) for any t ∈ R.

A similar exponential moment assumption has been made in the context of adaptive estima-
tion under fixed design (cf. Theorems 1 and 2 in Cai and Wang (2008)).

PROPOSITION 12. For any given sufficiently small fixed α∗ > 0, fix some δ∗ ∈ (0,8α∗/
(4α∗ + 1)). Suppose the kernel K(·) in σ̂ 2

adapt = σ̂ 2(ĥδ∗) is chosen such that (9) is satisfied
with constants MK and MK , and τ in ĥδ∗ is chosen to be sufficiently large (only depending
on δ∗, C1,ε , C2,ε). Then, under (2) with random design, it holds uniformly over all α ≥ α∗
that

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Padapt

cv,(X,ε)

E
(
σ̂ 2

adapt − σ 2)2 ≤ C

{(
logn

n2

)4α/(4α+1)

∨ n−1
}
,

where C is some fixed positive constant that only depends on δ∗, MK , MK , CF , Cσ and C0,
c0, C1,ε , C2,ε in Padapt

cv,(X,ε).

The following proposition shows that the extra polylogarithmic term cannot be removed.

PROPOSITION 13. Let φn,α := (logn/n2)2α/(4α+1) ∨ n−1/2 for any α > 0 and positive
integer n. Consider any fixed positive α∗ and α∗ ≤ α1 < α2 < ∞. Then, for any sufficiently
large n and sufficiently small fixed positive constant c, any estimator σ̃ 2 will satisfy that, if

sup
f ∈	α2,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Padapt

cv,(X,ε)

E
((

σ̃ 2 − σ 2)/φn,α2

)2 ≤ c,

then

sup
f ∈	α1,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Padapt

cv,(X,ε)

E
((

σ̃ 2 − σ 2)/φn,α1

)2 ≥ c.

The above two results combined are in line with analogous adaptation results in quadratic
functional estimation (Efromovich and Low (1996), Cai and Low (2006)).

5. Proof of Theorem 2.

PROOF. We will only prove the lower bound n−8α/(4α+1) in the regime 0 < α < 1/4
since for α ≥ 1/4, the rate reduces to the parametric rate n−1 and the proof is straightfor-
ward. Throughout the proof, C represents a generic sufficiently large positive constant and c

represents a generic sufficiently small positive constant always taken to be smaller than 1/4.
Both C and c only depend on α, CF , Cσ , Cε , C0, c0 and might have different values for
each occurrence. By appropriately rescaling the parameters in the lower bound construction,
without loss of generality, we assume that the sample size n and the constants CF , Cσ , Cε ,
C0 are sufficiently large, c0 is sufficiently small, and [0,1] ⊂ I .

We will make use of Le Cam’s two point method. Introduce the following constants:

(24) θ2
n := h2α

n := cn−4α/(4α+1) and N := Nn := 1/(6hn),

where we tune the constant c in hn so that N is a positive integer. We now specify f (·),
distribution of X and distribution of ε in the null and alternative hypotheses, H0 and H1,
respectively.

Choice of σ 2: Under H0, let σ 2 = 1 + θ2
n . Under H1, let σ 2 = 1.
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Choice of ε: Under both H0 and H1, let ε ∼ N (0,1).
Choice of X: Under both H0 and H1, let X be uniformly distributed on the union of the
intervals [(6i − 5)hn, (6i − 1)hn] for i ∈ [N ].
Choice of f (·): Under H0, let f ≡ 0. Under H1, let f take the value hα

nri on [(6i −
5)hn, (6i − 1)hn], where {ri}Ni=1 are N i.i.d. symmetric and bounded random variables
with distribution G satisfying

(25)
∫ ∞
−∞

xjG(dx) =
∫ ∞
−∞

xjϕ(x) dx, j = 1, . . . , q,

where q is some fixed odd integer strictly larger than 1 + 1/(2α). Let f be 0 at points
6(i − 1)hn for i ∈ [N ], and then linearly interpolate f for the rest of the unspecified points
on [0,1].

See Figure 1 for an illustration. In the definition of f (·) under H1, the existence of the dis-
tribution G is guaranteed by Lemma 1, and the range of {ri}Ni=1, which we denote as B , only
depends on α.

Clearly, σ 2 ≤ Cσ under both H0 and H1. Moreover, f (·) under both H0 and H1 be-
longs to 	α,[0,1](CF ) due to the boundedness of {ri}Ni=1 in H1. Next, we show that the
joint distribution of (X, ε) belongs to Pcv,(X,ε). Condition (d) clearly holds and Condition
(a) holds with I = [0,1]. Condition (b) holds as well by the fact that pX(u) = 3/2 for
u ∈ [(6i − 5)hn, (6i − 1)hn] for i ∈ [N ] and pX(u) = 0 otherwise. Lastly, for Condition (c),
it holds by the convolution formula that for any 0 < u < 1/2,

pX̃ij
(u) =

∫ 1

u
pX(t)pX(t − u)dt ≥

N∑
i=�u/(6hn)�+1

∫ (6i−1)hn

(6i−5)hn

pX(t)pX(t − u)dt

≥
N∑

i=�u/(6hn)�+1

3

2
· 3

2
· 2hn ≥ 3

8
− 9hn ≥ 1

4

for sufficiently large n. Here, the second inequality follows from the fact that for any fixed t ∈
[(6i − 5)hn, (6i − 1)hn], pX(t) = 3/2 and pX(t −u) = 0 on a subset with Lebesgue measure
at most 2hn. By symmetry of X̃ij , Condition (c) also holds with δ0 = 1/2 and Uδ ≡ [−1,1].

Denote by σ 2
i , fi , Pi,(X,ε), i = 0,1, the choice of σ 2, f , and P(X,ε) under H0 and H1, re-

spectively. Let π be the distribution on 	α,I (CF ) such that f1 ∼ π . Moreover, let Eσ 2,f,P(X,ε)

represent the expectation with respect to the model (2) with parameters σ 2, f , P(X,ε). Then
we have

inf
σ̃ 2

sup
f ∈	α,I (CF )

sup
σ 2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃ 2 − σ 2)2

≥ inf
σ̃ 2

{
1

2
Eσ 2

0 ,f0,P0,(X,ε)

(
σ̃ 2 − σ 2)2 + 1

2

∫
Eσ 2

1 ,f,P1,(X,ε)

(
σ̃ 2 − σ 2)2 dπ(f )

}

≥ inf
σ̃ 2

{
1

2
Eσ 2

0 ,f0,P0,(X,ε)

(
σ̃ 2 − σ 2)2 + 1

2
Eσ 2

1 ,f1,P1,(X,ε)

(
σ̃ 2 − σ 2)2},

where the first inequality follows by lower bounding the maximum risk with Bayes risk with
prior π . In what follows, we will use P0 and P1 to denote the joint distribution of {Yi,Xi}ni=1
under H0 and H1, respectively. Note that the choice of θ2

n in (24) leads to the desired lower
bound under the quadratic loss. Therefore, adopting the standard reduction scheme with Le
Cam’s two point method (cf. Theorem 2.2 in Tsybakov (2009)), it suffices to show that
TV(P0,P1) ≤ c < 1. To show this, let {̃ri}Ni=1 be N i.i.d. standard normal random variables,
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and P̃1 be the joint distributions of {Xi,Yi}ni=1 under H1 with {ri}Ni=1 replaced by {̃ri}Ni=1.
Then, by triangle inequality, we have

TV(P0,P1) ≤ TV(P0, P̃1) + TV(P1, P̃1).

We will show TV(P0, P̃1) ≤ c and TV(P1, P̃1) ≤ c separately.
For the first inequality, define x := (x1, . . . , xn), dx := dx1 · · · dxn and similarly for y and

dy. Denote p0, p1, and p̃1 as the densities of P0, P1, and P̃1 with respect to the Lebesgue
measure. Then we have

(26)

TV(P0, P̃1) = 1

2

∫ ∫ ∣∣p0(x,y) − p̃1(x,y)
∣∣dx dy

=
∫

p(x) dx

{
1

2

∫ ∣∣p0(y | x) − p̃1(y | x)
∣∣dy

}
=
∫

p(x) dx TV
(
P0(y | x), P̃1(y | x)

)
,

where p(x) := ∏n
i=1 pX(Xi) stands for the common density of {Xi}ni=1 under P0 and P̃1.

Note that under P0, y | x ∼ Nn(0,�0), with �0 = (1 + θ2
n)In. Define {bi}ni=1 to be the loca-

tion index sequence of {Xi}ni=1 taking values in [N ], that is,

bi = j if Xi ∈ [
(6j − 5)hn, (6j − 1)hn

]
.

Then, due to the symmetry of {ri}Ni=1 and design of the nonparametric component f , it holds
that under P̃1, y | x ∼ Nn(0,�1), with (�1)ii = 1+h2α

n = 1+θ2
n and (�1)ij = h2α

n 1{bi = bj }
for i �= j . Define N0 :=∑

i �=j 1{bi = bj }. Since �1 is positive definite (see Lemma A5 in the
Supplementary Material (Shen et al. (2020))), we have by Lemma 2 that

TV
(
P0(y | x), P̃1(y | x)

)≤ C
θ2
n

1 + θ2
n

N
1/2
0 ≤ Cθ2

nN
1/2
0 .

Note that N0 is a random variable that depends on {Xi}ni=1, and by (26) and Jensen’s inequal-
ity we have

TV(P0, P̃1) ≤ Cθ2
nEN

1/2
0 ≤ Cθ2

n(EN0)
1/2.

Some simple algebra shows that EN0 ≤ Cn2hn, thus by choosing a sufficiently small c in the
definition of hn in (24), we have

TV(P0, P̃1) ≤ Cθ2
nnh1/2

n ≤ c.

To complete the proof, we now show that TV(P1, P̃1) ≤ c. Consider an arbitrary realization
of {Xi}ni=1, and assume that based on their location indices {bi}ni=1, {Xi}ni=1 is partitioned
into L clusters with corresponding cardinality s so that the Xi’s in the same cluster have
the same value bi . Apparently, we have the relations 1 ≤ L ≤ n and

∑L
=1 s = n. Let mmax

be the maximum cluster size, and define the “good event” �n := {mmax ≤ K}, where K :=
	2/(1 − 4α))
 + 2. Then it holds that

TV(P1, P̃1) = E(1�nTV
(
P1(y | x), P̃1(y | x)

)+E
(
1�c

n
TV

(
P1(y | x), P̃1(y | x)

))
≤ E(1�nTV

(
P1(y | x), P̃1(y | x)

)+ P
(
�c

n

)
.

Under the choice of hn in (24), N is of the order n2/(4α+1), and

λK := lim
n→∞

nK

K!NK−1 = 0.
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Thus by Lemma 3 (and continuity), it holds that �n has asymptotic probability 1 under both
P1 and P̃1. As a result, it suffices to upper bound TV(P1(y | x), P̃1(y | x)) for each realization
x in �n, where the maximum cluster size mmax is bounded by a fixed constant.

Denoting p1,π
and p̃1,π

for each  ∈ [L] as the joint density of those yi ’s in the th cluster
π conditioning on the given realization of {Xi}ni=1 under P1 and P̃1, we obtain that

p1(y | x) − p̃1(y | x) =
L∏

=1

p1,π
−

L∏
=1

p̃1,π
.

The above inequality further implies by telescoping that

∣∣p1(y | x) − p̃1(y | x)
∣∣≤ L∑

=1

|p1,π
− p̃1,π

|.

For each  ∈ [L], |p1,π
− p̃1,π

| only depends on the th cluster through its cardinality, which
we now control for a general cluster size d ≥ 1. Without loss of generality, we assume that
 = 1 and the yi’s in this cluster are {y1, . . . , yd} with common location index bi = 1 for
i ∈ [d]. Then, under the choice of θ2

n in (24), we clearly have Yi = θnr1 + εi under P1 and
Yi = θnr̃1 + εi under P̃1 for i ∈ [d], where the sequence {εi}di=1 follows the standard normal
distribution under both P1 and P̃1. Therefore, it holds that

p1,π1(y1, . . . , yd) =
∫ ∞
−∞

ϕ(y1 − θnv) . . . ϕ(yd − θnv)G(dv),

p̃1,π1(y1, . . . , yd) =
∫ ∞
−∞

ϕ(y1 − θnv) . . . ϕ(yd − θnv)ϕ(v) dv,

where G is the distribution of {ri}Ni=1 specified in (25). Using the well-known equality ϕ(t −
θnv) = ϕ(t)(

∑∞
k=0 vkθk

nHk(t)/k!) for any t , v, where Hk is the kth order Hermite polynomial,
it holds that

ϕ(y1 − θnv) · · ·ϕ(yd − θnv)

= ϕ(y1) · · ·ϕ(yd)

∞∑
k1,...,kd=0

v
∑d

i=1 ki θ

∑d
i=1 ki

n
Hk1(y1)

k1! · · · Hkd
(yd)

kd !

= ϕ(y1) · · ·ϕ(yd)

∞∑
k=0

vkθk
n

∑
k1+···+kd=k

Hk1(y1)

k1! · · · Hkd
(yd)

kd !

and, therefore,

p1,π1(y1, . . . , yd) − p̃1,π1(y1, . . . , yd)

= ϕ(y1) · · ·ϕ(yd)

∞∑
k=0

θk
n

∑
k1+···+kd=k

Hk1(y1)

k1! · · · Hkd
(yd)

kd !
∫

vk(G− �)(dv)

= ϕ(y1) · · ·ϕ(yd)

∞∑
k=p

θ2k
n

∑
k1+···+kd=2k

Hk1(y1)

k1! · · · Hkd
(yd)

kd !
∫

v2k(G− �)(dv),
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where the second equality follows by the symmetry and moment matching property of G in
(25) and p := (q + 1)/2 is a positive integer. This further yields∣∣p1,π1(y1, . . . , yd) − p̃1,π1(y1, . . . , yd)

∣∣
≤ ϕ(y1) · · ·ϕ(yd)

∞∑
k=p

θ2k
n

∑
k1+···+kd=2k

|Hk1(y1)|
k1! · · · |Hkd

(yd)|
kd !

∫
v2kG(dv)

+ ϕ(y1) · · ·ϕ(yd)

∞∑
k=p

θ2k
n

∑
k1+···+kd=2k

|Hk1(y1)|
k1! · · · |Hkd

(yd)|
kd !

∫
v2kϕ(v) dv

:= I + II.

For term I , since G is compactly supported on [−B,B], one clearly has

I ≤ ϕ(y1) · · ·ϕ(yd)

∞∑
k=p

θ2k
n B2k

∑
k1+···+kd=2k

|Hk1(y1)|
k1! · · · |Hkd

(yd)|
kd ! .

For term II, using the equality
∫

ϕ(v)v2k dv = (2k − 1)!!, with (2k − 1)!! := (2k − 1)(2k −
3) . . .1, we obtain

II = ϕ(y1) · · ·ϕ(yd)

∞∑
k=p

θ2k
n (2k − 1)!! ∑

k1+···+kd=2k

|Hk1(y1)|
k1! · · · |Hkd

(yd)|
kd ! .

We now upper bound
∫∞
−∞ |Hk(t)|ϕ(t) dt for an arbitrary positive integer k. When k is even,

as has been calculated in Wang et al. (2008) (cf. chain of inequality after equation (19) on
page 662),

∫∞
−∞ |Hk(t)|ϕ(t) dt ≤ 2k/2(k − 1)!!. When k is odd, set k = 2k̃ + 1, then we have

∫ ∞
−∞

∣∣Hk(t)
∣∣ϕ(t) dt =

∫ ∞
−∞

ϕ(t)

∣∣∣∣∣(2k̃ + 1)!
k̃∑

m=0

(−1)mt2k̃+1−2m

m!(2k̃ + 1 − 2m)!2m

∣∣∣∣∣dt

≤
k̃∑

m=0

(2k̃ + 1)!
m!(2k̃ + 1 − 2m)!2m

∫ ∞
−∞

|t |2k̃+1−2mϕ(t) dt

=
√

2

π

k̃∑
m=0

(2k̃ + 1)!(2k̃ − 2m)!!
m!(2k̃ + 1 − 2m)!2m

=
√

2

π

k̃∑
m=0

(2k̃ + 1)!(2m)!!
(k̃ − m)!(2m + 1)!2k̃−m

=
√

2

π
(2k̃ + 1)!!

k̃∑
m=0

k̃!
m!(k̃ − m)!

(m!)222m

(2m + 1)!

≤ (2k̃ + 1)!!
k̃∑

m=0

k̃!
m!(k̃ − m)!

= (2k̃ + 1)!!2k̃,

where in the third line we use the fact that
∫∞
−∞ |t |2+1ϕ(t) dt = √

2/π(2)!! for any positive
integer . Define for any positive integer k: [k]1 := k − 1 if k is even and k if k is odd, and
[k]2 := k/2 if k is even and (k − 1)/2 if k is odd. Then the above calculation implies that
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−∞ |Hk(t)|ϕ(t) dt ≤ ([k]1)!!2[k]2 for any k, and moreover, it can be readily checked that

([k]1)!!/(k!) = 1/(2[k]2([k]2)!). Therefore, for term I = I (y1, . . . , yd), we have∫
Rd

I (y1, . . . , yd) dy1 · · · dyd

≤
∞∑

k=p

θ2k
n

(
B2)k ∑

k1+···+kd=2k

1

(k1)! · · · (kd)!
([k1]1

)!!2[k1]2 · · · ([kd ]1
)!!2[kd ]2

=
∞∑

k=p

θ2k
n

(
B2)k ∑

k1+···+kd=2k

1

([k1]2)! · · · ([kd ]2)! .

Now note that the number of d-tuple (k1, . . . , kd) such that k1 + · · · + kd = 2k is upper
bounded by (Ck)d , which is further bounded by Ck for every k ≥ 0 with some sufficiently
large C that only depends on d , and for each such tuple, it holds that

k − d

2
=

d∑
i=1

ki − 1

2
≤

d∑
i=1

[ki]2 ≤
d∑

i=1

ki

2
= k,

thus we have∑
k1+···+kd=2k

{([k1]2
)! · · · ([kd ]2

)!}−1 ≤ Ck
∑

k−d/2≤k1+···+kd≤k

{
(k1)! · · · (kd)!}−1

.

For the latter quantity, we have by the multinomial identity∑
x1+···+xd+1=k

k!/(x1! · · ·xd+1!)(d + 1)−k = 1

that

(d + 1)k

k! = ∑
k1+···+kd+1=k

1

(k1)! · · · (kd+1)!

= ∑
k1+···+kd≤k

1

(k1)! · · · (kd)!(k − (k1 + · · · + kd))!

≥ ∑
k−d/2≤k1+···+kd≤k

1

(k1)! · · · (kd)!(k − (k1 + · · · + kd))!

≥
((

d

2

)
!
)−1 ∑

k−d/2≤k1+···+kd≤k

1

(k1)! · · · (kd)! .

This concludes that∫
Rd

I (y1, . . . , yd) dy1 · · · dyd ≤ θ2p
n

∞∑
k=p

(CB2)k

k! ≤ θ2p
n eCB2

.

Using a similar argument for II = II(y1, . . . , yd), we obtain

(27)

∫
Rd

II(y1, . . . , yd) dy1 · · · dyd ≤
∞∑

k=p

(2k − 1)!!
k! θ2k

n Ck

=
∞∑

k=p

(2k − 1)!!
(2k)!! θ2k

n (2C)k ≤ θ2p
n Cp

since θ2
n < 1/C for sufficiently large n.
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Putting together the pieces, we have for every realization x in �n,∫
Rn

∣∣p1(y | x) − p̃1(y | x)
∣∣dy ≤

L∑
=1

∫
R|π| |p1,π

− p̃1,π
| ≤ L max

1≤d≤K
θ2p
n

(
eCB2 + Cp)

≤ nθ2p
n

(
eCB2 + Cp)≤ c.

Here, the second inequality follows since every |p1,π
− p̃1,π

| depends on the th cluster
only through its cardinality, the third inequality follows since L ≤ n and K is a fixed absolute
constant that only depends on α, and the last inequality follows due to the choice θ2

n = h2α
n =

cn−4α/(4α+1) and the value of p. This completes the proof. �

LEMMA 1 (Lemma 1, Wang et al. (2008)). For any fixed positive integer q , there exist
a B < ∞ and a symmetric distribution G on [−B,B] such that G and the standard normal
distribution have the same first q moments, that is,∫ B

−B
xjG(dx) =

∫ ∞
−∞

xjϕ(x) dx, j = 1, . . . , q.

LEMMA 2 (Theorem 1.1, Devroye, Mehrabian and Reddad (2018)). If μ ∈ Rd and �1
and �2 are positive definite d × d matrices, then

1

100
≤ TV(Nd(μ,�1),Nd(μ,�2))

min{1,‖�−1
1 �2 − Id‖F } ≤ 3

2
.

For the following lemma, we first introduce some terminology regarding the multinomial
distribution. Let m, M be two positive integers, and the random vector (f1, . . . , fM) be the
multinomial count with total count m and equal probability (1/M,1/M, . . . ,1/M). Define
ρ := m/M . For any positive integer r ≥ 2, define λ := λr := limm→∞ mr/(r!Mr−1). Follow-
ing Kolchin, Sevast’yanov and Chistyakov (1978) (Chapter 2, equation (11)), we will call the
domain of variation m,M → ∞, in which

ρ → 0, 0 < λr < ∞
the left-hand r-domain. The following lemma characterizes the asymptotic behavior of the
maximum frequency fmax defined as max1≤j≤M fj .

LEMMA 3 (Theorem 1 of Section 2.6, Kolchin, Sevast’yanov and Chistyakov (1978)).
Suppose the multinomial distribution with total count m and equal probability (1/M, . . . ,

1/M) is in the left-hand r-domain for some positive integer r ≥ 2 with limit λr , then it holds
that

P(fmax = r − 1) → e−λr and P(fmax = r) → 1 − e−λr ,

that is, the maximum frequency converges asymptotically to a two-point distribution.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal estimation of variance in nonparametric regression with
random design” (DOI: 10.1214/20-AOS1944SUPP; .pdf). This supplement contains proofs
of remaining results.
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